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ORIGINAL PAPER

On the development of geometric cognition: Beyond 
nature vs. nurture
Markus Pantsar 1,2

1Department of Philosophy, History and Art Studies, University of Helsinki, Helsinki, Finland; 2KHK 
Kolleg Cultures of Research, RWTH University, Aachen, Germany

ABSTRACT
How is knowledge of geometry developed and acquired? 
This central question in the philosophy of mathematics has 
received very different answers. Spelke and colleagues argue 
for a “core cognitivist”, nativist, view according to which 
geometric cognition is in an important way shaped by 
genetically determined abilities for shape recognition and 
orientation. Against the nativist position, Ferreirós and 
García-Pérez have argued for a “culturalist” account that 
takes geometric cognition to be fundamentally a culturally 
developed phenomenon. In this paper, I argue that when 
understood as moderate versions supported by the state-of- 
the-art research, the nativist and culturalist views are in fact 
possible to reconcile. While Ferreirós and García-Pérez pre
sent the work of Spelke and colleagues as implying that 
geometric cognition is genetically determined, I argue that 
they fail to appreciate the role that Spelke and colleagues see 
for cultural factors. On this basis, I provide theoretical and 
terminological clarifications and show that moderate ver
sions of the nativist and culturalist view are in fact consistent 
with each other. I then propose a unifying theoretical frame
work for future study that can integrate the two accounts in 
ontogeny by moving beyond the crude nature (nativism) vs. 
nurture (culturalism) dichotomy.
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1. Introduction

Geometry is a key area of mathematics in several ways. It forms an impor
tant part of mathematical education on almost every level, and geometric 
theories are fundamental for many scientific fields, such as physics and 
chemistry. Historically, geometry has served a crucial role in the develop
ment of mathematics both in terms of content and methodology, therefore 
shaping mathematical thinking in important ways (Boyer, 1991). 
Nevertheless, the development and characteristics of the cognitive processes 
involved in the learning and practice of geometry are not well known at the 
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present time. This is the case already with the very foundation of geometric 
cognition. Some researchers have argued for a “core cognitivist”, nativist, 
view according to which geometric cognition is in an important way shaped 
by “evolutionarily ancient” abilities for shape recognition and orientation 
(e.g., Spelke & Dehaene & Brannon, 2011; Spelke & Lee, 2012; Spelke et al., 
2010). This approach has been contested by researchers arguing for 
a “culturalist” view according to which geometric cognition is fundamen
tally a culturally developed phenomenon (Ferreirós & García-Pérez, 2020).

In this paper, I aim to show that these two views, understood in a proper 
way, are not necessarily in conflict with each other. In particular, I will focus 
on the version of the nativist view proposed by Spelke and colleagues 
(Spelke et al., 2010) and the recent criticism of it by Ferreirós and 
García-Pérez (2020). The latter present Spelke et al. as implying that geo
metric cognition is in a strong way shaped by genetically stored information, 
and thus fails to include the way geometry is the product of a long line of 
cultural development. At first glance, this view is understandable, given the 
emphasis that Spelke and colleagues place on the influence of “evolutiona
rily ancient”, so-called core cognitive systems, that we share with many non- 
human animals, and which are thought to function as a basis for the 
development of geometry and the acquisition of geometric abilities. 
However, I will argue that Ferreirós and García-Pérez fail to appreciate 
the role that Spelke and colleagues see for culture-specific factors in their 
account. As a consequence of this, I believe that the criticism of Ferreirós 
and García-Pérez is partly misplaced. Nevertheless, I believe it is fruitful 
criticism that will enable future research to be more attentive to the balance 
of genetic and cultural factors in explaining the emergence and acquisition 
of geometric knowledge.

The purpose of this paper is to show how this can be achieved by 
establishing a common ground for the nativist and culturalist views. The 
requirement for that is that the views in question are of moderate types that 
can include a plurality of influences, moving beyond a crude dichotomy 
between nature (nativism) vs. nurture (culturalism) in ontogeny, as well as 
the dichotomy between biological evolution (nativism) and cultural devel
opment (culturalism) in the phylogeny and history of geometrical knowl
edge. If geometric cognition is thought to be determined solely by 
genetically stored information, the culture-specific aspects of it are merely 
superficial conventions. Conversely, if geometry is thought to be exclusively 
a cultural development, the results about core cognition related to geometry 
may be inconsequential for the development of geometric cognition. I will 
argue that both of these radical positions are untenable in the face of the 
state-of-the-art of empirical data and the best philosophical understanding 
of them. However, I will also argue that the theory of Spelke and colleagues 
is not nativist in this radical sense, nor is the critical view of Ferreirós and 
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García-Pérez culturalist in a similarly extreme sense. While some differences 
remain, a common ground can be established that can work toward 
a synthesis of factors including products of biological evolution and cultural 
evolution.

In Section 1 of the paper, I will analyze the core cognitivist view and its 
place in the study of foundations of mathematics. I will use similar, but at 
present further developed, work on the foundations of arithmetic cogni
tion as a parallel in order to establish how the core cognitivist view of 
geometry, what Spelke and colleagues call “natural geometry”, should be 
understood. In Section 2, I analyze the criticism of “natural geometry” by 
Ferreirós and García-Pérez, focusing on their notion of “proto-geometry”. 
I use my earlier notion of proto-arithmetic to illuminate the importance of 
distinguishing between proto-mathematical and mathematical cognition, 
a distinction which is important for theoretical coherence. Like the pro
posed core cognitive proto-geometric abilities in the case of geometry, 
evolutionarily developed proto-arithmetic abilities (subitizing and estimat
ing) may form the foundation for arithmetic cognition, but should not be 
confused with arithmetic abilities. Based on these distinctions, I will argue 
that there are important similarities in the earlier discourse on arithmetic 
cognition and that of geometric cognition, and similar theoretical con
siderations should be made in both. This analysis will then be used in 
Section 3 to show that the account of Spelke and colleagues is in fact 
consistent with the culturalist view of Ferreirós and García-Pérez. In 
Section 4, I will propose a way forward by reconciling the two seemingly 
opposed views into a coherent theoretical framework. Finally, in Section 5 
I will propose a way to pursue future research in such a theoretical frame
work, with focus on the notions of enculturation and cumulative cultural 
evolution.

2. Core cognition and mathematics

In the past two decades, the study of foundations of mathematics, which in 
the 20th century was mainly focused on approaches based on logic in the 
tradition of Frege (1884), Russell (1903), and others (see, e.g., Benacerraf & 
Putnam, 1984), has taken a significant “cognitive turn”. Many researchers 
have aimed to explain the emergence and acquisition of mathematical 
knowledge in terms of evolutionarily ancient abilities that shape the devel
opment of our cognitive faculties (for overviews, see, e.g., Cohen Kadosh & 
Dowker, 2015; Dehaene & Brannon, 2011). For the most part, this research 
direction has focused on the cognitive foundations of natural numbers and 
their arithmetic (e.g., Butterworth, 1999; Carey, 2009; Dehaene, 1997/2011). 
There has been a wealth of studies on how humans (including infants and 
individuals in isolated cultures) and nonhuman animals process 
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quantitative information (e.g., Gordon, 2004; Pica et al., 2004; Piazza et al., 
2007; Spelke & Dehaene & Brannon, 2011; Nieder, 2016). Many researchers 
have argued that these processes form the cognitive basis for arithmetic 
knowledge (e.g., Carey, 2009; Dehaene, 1997/2011; Feigenson et al., 2004).

According to the best current understanding, there are two evolutionarily 
developed core cognitive proto-arithmetic systems for processing quantita
tive information (Carey, 2009): the object tracking system (OTS) and the 
approximate number system (ANS) (see, e.g., Pantsar, 2019, 2021a; Spelke 
et al., 2010). By allowing the observation of the surrounding environment in 
terms of discrete objects, the OTS is thought to enable the subitizing ability 
of determining the amount of objects without counting, up to four items 
(Carey, 2009; Spelke, 2010). The OTS cannot track more than four objects, 
but quantitative information is also processed by the ANS, which allows 
estimating and comparing the sizes of larger collections (Agrillo, 2015; 
Dehaene, 1997/2011; Feigenson et al., 2004). While the ANS is not limited 
to small quantities, it becomes increasingly inaccurate as the quantities 
become larger, thus having a logarithmic character: it is easier to distinguish 
the difference between, say, six and eight objects than it is between sixteen 
and eighteen objects. Some authors believe that the ANS is the primary 
system for the development of arithmetic (e.g., Dehaene, 1997/2011) while 
others argue that OTS is the key core cognitive system (e.g., Beck, 2017; 
Carey, 2009). In recent times, also hybrid models in which both the ANS 
and the OTS are thought to play a crucial role in the emergence and 
acquisition of arithmetic knowledge have been proposed (e.g., Pantsar, 
2014, 2015, 2019,Pantsar, 2021b; vanMarle et al., 2018).1 This discussion 
has been highly active in recent years and the analysis of the cognitive 
foundations of arithmetic has become an important research question 
both in the cognitive sciences and the philosophy of mathematics.

More recently, important results suggest that also geometric knowledge is 
based on core cognitive abilities (e.g., Izard & Spelke, 2009). Infants, animals 
and members of isolated cultures have been reported to be sensitive to 
detecting geometric shapes and orienting based on geometric structures 
(Dehaene et al., 2006; Izard et al., 2011; Spelke et al., 2010). For example, 
it has been reported that infants react to changes in angle size rather than in 
the orientation of the angle (Cohen & Younger, 1984), suggesting that 
observing shapes in terms of angles has an ontogenetically early basis. In 
the experiment reported by Cohen and Younger, and later replicated and 
extended by others (see, e.g., Lindskog et al., 2019), 6-week-old and 14-week 
-old infants were habituated to simple two-dimensional forms consisting of 
two lines forming an angle. During the test trials, the angle (either 45 or 135 
degrees) remained the same while the orientation changed. The results of 
tracking their eye movements showed that the 6-week-olds dishabituated to 
a change in orientation. In other words, they were surprised by the changing 
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orientation and had a long looking time at each new form. The 14-week- 
olds, on the other hand, dishabituated to the angle size and not the orienta
tion. As long as the angle stayed the same, they were not surprised by the 
next form. But as soon as the angle changed, their looking times became 
longer.

What Cohen and Younger (1984)concluded was that there must be 
a developmental shift between the ages of 6 and 14 weeks, during which 
the infants became sensitive to recognizing the geometric property of two 
lines being at a certain angle. In addition to these habituation experiments 
on infants, similar tests have been run on older children. It has been 
established that at least from four years of age, children can consistently 
pick out a deviant geometric form (a different angle, but also others, such as 
different lengths) from a collection of forms (Izard & Spelke, 2009).

Results like these are often reported in terms of infants observing geome
trical shapes. However, as will be seen in the next section, such evolutiona
rily ancient abilities should be distinguished from actual geometrical 
cognition. Thus the question is, is the ability to discriminate between 
different angles, lengths, and other properties treated in geometry indicative 
of a universal core cognitive ability, similar to those studied in relation with 
arithmetic cognition, that is the foundation of geometric cognition? Studies 
of the Munduruku people of Amazon suggest that the discrimination ability 
is indeed universal to humans. Adults and children from (at least) four years 
of age can make similar shape discriminations as European and North 
American children (Izard et al., 2011). Combining the infant data with 
these results, the evidence converges toward the position that as the product 
of biological evolution, there is an ability to observe our environments in 
terms of simple reoccurring shapes like angles, comparable to the abilities 
due to OTS and/or ANS for observing quantities.

Like in the case of proto-arithmetic cognition, there actually appear to be 
two distinct core cognitive systems that can feasibly form a (at least partial) 
basis for geometric knowledge, one for shape recognition and one for 
orientation. Hupbach and Nadel (2005), for example, showed that when 
reorienting themselves after a disorientation in a rhombic environment, 
children up to four years of age were not sensitive to differences in the angles 
of the rhombus. Instead of looking for an object in a specific corner (that 
they had observed before the disorientation), they looked in each four 
corners equally. This was unexpected since children of that age are able to 
distinguish between angles when they observe visual forms. It has been 
reported that both children and non-human animals differ also in other 
ways in completing detection and reorientation tasks, for example, when it 
comes to using the shape of a surface to find an object (Spelke et al., 2010).
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Results like this have made many researchers conclude that the core 
cognitive system for detecting shapes must be different from the core 
cognitive system for orientation. Importantly, like the former system, also 
the latter is often considered to form a cognitive foundation for geometry 
(e.g., Hohol, 2019; Spelke, 2011). Experiments suggest that the orientation 
system, which is used by birds and other animals for navigation, works by 
capturing spatial relationships in an abstract manner. For example, Quirk 
et al. (1990) report that rats navigate according to the shape of a chamber 
even in the dark. It is also reported that radical changes in the texture, 
material and color of a chamber do not influence rats’ navigation over the 
shape (Lever et al., 2002).

In their analysis of the core systems for quantity, shape recognition and 
orientation, Spelke et al. (2010) have emphasized that there is a parallel 
between the core cognitive origins of arithmetic and those of geometry. 
They argue that just like “natural number” is thought by many, most 
influentially by Carey (2009), to be a concept constructed based on the 
core cognitive abilities related to quantities, Euclidean geometry is con
structed in a similar way based on the core cognitive abilities for shape 
recognition and orientation (Hohol, 2019; Spelke, 2011).2 Following this 
analysis, Spelke et al. (2010) call Euclidean geometry “natural geometry”, as 
a kind of conceptual counterpart of “natural number”.

3. “Natural geometry” and “proto-geometry”

The claim by Spelke et al. (2010) that Euclidean geometry is “natural 
geometry” based on core cognitive systems has been contested recently by 
Ferreirós and García-Pérez (2020). They argue that what Spelke and collea
gues call “natural geometry”, namely Euclidean geometry, is not natural in 
any relevant sense, but rather a product of a long line of culturally deter
mined development in which cognitive artifacts (e.g., ruler, compass) and 
external representations (e.g., pictures and diagrams) play a crucial role. To 
establish their view, Ferreirós and García-Pérez (ibid.) introduce a three- 
part distinction between the abilities due to the core cognitive systems, an 
intermediate stage that they label “proto-geometry”, and finally proper 
“geometry” (or theoretical geometry). Importantly, unlike the core cognitive 
abilities, both proto-geometry and geometry are culturally developed. In this 
manner, they end up classifying the following three-level process for the 
emergence of geometric knowledge (Ferreirós & García-Pérez, 2020, p. 194). 
On Level 1 is visuo-spatial cognition, which includes the kind of core 
cognition described by Spelke and colleagues. Level 2 is the level of proto- 
geometry, on which basic concepts, like circle or square, are formed. On this 
level, artifacts and external representations play a key role, and with their 
help approximative results (for example, that the value of pi is 
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approximately 3) on the basic concepts can be acquired. It is only on Level 3, 
geometry, that Euclidean geometry (and other properly mathematical the
ories of geometry) appears in the development. Euclidean geometry requires 
systematic refinement of proto-geometry with further cultural develop
ments. Thus the main argument of Ferreirós and García-Pérez (2020) is 
that the gap between visuo-spatial cognition (which the core cognitive 
abilities fall under) and geometry is too wide for Euclidean geometry to be 
called “natural geometry”.

I believe that the kind of distinction that Ferreirós & García-Pérez make 
between visuo-spatial cognition, proto-geometry, and geometry is impor
tant in order to avoid conceptual confusion. It is much too common in the 
literature to conflate different abilities related to geometric concepts. To give 
just one example, there is an influential paper titled “Ants Learn Geometry 
and Features” (Wystrach & Beugnon, 2009). With conceptual distinctions 
like the ones proposed by Ferreirós and García-Pérez (2020) in place, 
ascribing geometric abilities to ants becomes radically mistaken, as it should 
be.3 I believe that establishing a coherent theoretical framework, including 
consistent terminology, is an important development if we wish to have 
fruitful and systematic interdisciplinary collaboration in the study of foun
dations of geometry. If the word “geometry” is used both for Euclid’s system 
and the ability of ants, there is little hope of finding the required termino
logical and theoretical coherence.

To see this more clearly, let us consider the corresponding situation in the 
foundations of arithmetic. I have in my previous work on the epistemology 
of arithmetic argued for the importance of making a distinction between 
arithmetic and proto-arithmetic in order to distinguish core cognitive and 
other primitive abilities for treating numerosities from the actual arithmetic 
treatment of natural numbers (Pantsar, 2014, 2015, 2019, 2020, Pantsar, 
2021b). In the case of arithmetic, the problems arising from confusing 
terminology are obvious. For example, in reporting perhaps the most 
famous experiment in the field of numerical cognition, Wynn (1992) 
wrote that infants can carry out simple addition and subtraction operations. 
Wynn observed infants reacting with surprise (i.e., longer looking time) to 
the “unnatural arithmetic” of 1 + 1 = 1, instantiated by the infant seeing two 
dolls being put behind a screen but only one being there after the screen was 
lifted (the other having been removed clandestinely). This is thought to be 
due to the OTS-based core cognitive ability of subitizing (Starkey & Cooper, 
1980). From different configurations in the subitizing range (from one to 
four), Wynn concluded that infants are able to carry out rudimentary 
arithmetic operations. But as I have argued before (Pantsar, 2018), this 
conclusion is unwarranted. What the infants could be doing is having 
some kind of cognitive mechanism or procedure in place for keeping 
track of one quantity. When the expected quantity did not match their 
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expectations, they were surprised. Under this explanation, nothing like an 
arithmetic operation is presupposed to take place in the cognitive process. 
What is presupposed is merely an ability to track small quantities. 
Nevertheless, Wynn’s paper was called “Addition and subtraction by 
human infants”, postulating arithmetic abilities to situations in which proto- 
arithmetic abilities were in fact being employed. Similar confusions have 
been made also in animal studies, where talk of arithmetic abilities in non- 
human animals is common (e.g., Agrillo, 2015).

The notion of proto-arithmetic I have proposed, when transferred to the 
domain of the development of geometric cognition, would include both 
Levels 1 and 2 of Ferreirós and García-Pérez (2020). The details of the 
applied taxonomy are certainly not without importance, but for the present 
purposes the crucial point is to distinguish between proper mathematical 
cognition and the proto-mathematical cognition preceding it. In this way, 
the approaches of Ferreirós and García-Pérez (2020) and Pantsar (2014, 
2015, 2018, 2019, 2020, 2021a, Pantsar, 2021b) are compatible. The simila
rities go beyond the distinction between proto-mathematics and mathe
matics, because both approaches emphasize how modern mathematical 
systems have been made possible by a long line of culturally shaped devel
opment, and that we should be very careful to distinguish the cognitive 
abilities applied in connection with those systems from the proto- 
mathematical abilities that have preceded them.4

Directly related to this, one major problem Ferreirós and García-Pérez 
have with the approach of Spelke et al. (2010) is the way the latter see 
Euclidean concepts as being “extremely simple”, in the sense that “just five 
postulates, together with some axioms of logic, suffice to specify all the 
properties of points, lines, and forms.” (Spelke & Lee, 2012, p. 2785). As 
Ferreirós and García-Pérez (2020, p. 187) point out, this does not corre
spond to the modern foundational study of mathematics. First of all, basing 
a system of geometry on logical principles requires an axiomatic system that 
is much richer than Euclid’s five postulates, as shown by Hilbert (1902) and 
others (see Manders, 2008). But more interestingly in the present context, 
Ferreirós and García-Pérez (2020, p. 188) continue, Euclidean geometry 
should not be equated with modern axiomatic Hilbert-style geometry focus
ing on logical step-by-step proofs. As the likes of Netz (1999) and Manders 
(2008) have shown, Euclidean geometry is heavily based on a particular 
method of proof in which diagrams (lettered diagrams, in particular, as Netz 
argues) play an indispensable role. Indeed, Ferreirós (2015) has argued that 
Euclid’s postulates should not be considered to be on par with Hilbertian 
axioms. Rather, they should be thought of as rules for constructing dia
grams. This distinction is important because, as Ferreirós and García-Pérez 
(2020, p. 188) argue, the different styles of geometry involve different 
cognitive abilities. When searching for the cognitive foundations of 
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geometric knowledge, this is undoubtedly an important matter. Euclidean 
geometry may not be “extremely simple”, after all, as it is closely tied to 
artifacts (ruler, compass) that allow the construction of diagrams, and the 
embodied practices involved in the successful application of those artifacts. 
If knowledge and skills for using such artifacts is required for developing 
and learning Euclidean geometry, the question is just how “natural” can 
it be?

4. Could Euclidean geometry still be “natural geometry”?

I agree with Ferreirós and García-Pérez (2020) that Euclidean geometry, 
neither in its original form nor in the modern versions (like that of Hilbert), 
is not as simple as it may seem. This is the case formally in terms of the 
logical principles required, but more importantly for the present context, 
also in terms of the cognitive abilities required. However, I contend that it 
could still be “natural geometry”, in the sense meant by Spelke and collea
gues (Spelke & Lee, 2012; Spelke et al., 2010). This is due to a crucial 
difference in what is understood by “natural geometry” by the participants 
of this discussion. It is important to note that Spelke et al. (2010) write about 
“natural geometry” as a simple abstract conceptual system comparable to 
“natural number”. Furthermore, following Carey (2009), they emphasize 
that as natural as they may seem, natural number concepts do not come 
particularly naturally to humans (Spelke et al., 2010, pp. 863–864). They 
explicitly mention that the construction of integers depends on culturally 
developed cognitive artifacts, namely counting devices (ibid, p. 864). From 
this, they conclude that:

Natural number may be therefore partly a product of human culture, built on 
a foundation of core systems that emerge in infancy, guide the reasoning of adults 
in all cultures, and are shared with other animals.. (Spelke et al., 2010, p. 864)

Similarly, moving to their treatment of the development of geometric 
cognition, Spelke and colleagues ask: “What are the sources of Euclidean 
geometrical intuitions?” (ibid.). Leaving aside potential problems with dif
ferent understandings of the word “intuition”, the underlying message 
appears to be clear. While they certainly seem to downplay the cognitive 
complexity (Pantsar, 2021c, 2021d) of Euclidean geometry, Spelke and 
colleagues are not claiming it is “natural geometry” because we have 
straight-forward, natural cognitive access to it. What they are claiming, to 
the best of my understanding, is that Euclidean geometry is in an important 
way based on cognitive abilities that are easily acquired due to their close 
relation to the cognitive core systems, which are the product of biological 
(rather than cultural) evolution.
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Here it is again helpful to consider the case of arithmetic in parallel. As 
seen above, Spelke and colleagues explicitly compare the development of 
“natural number” to that of “natural geometry”. Both, they argue, are based 
on cognitive core systems but require culturally determined aspects to 
develop. This, I assume, is the case in ontogeny (in the way individual 
members of a particular culture acquire arithmetic concepts), but also in 
phylogeny and history (in the way arithmetic concepts originally emerged 
within cultures). In modern mathematics, the standard way of presenting 
the arithmetic of natural numbers is by the Peano (or Dedekind-Peano) 
axioms. These are comparable to the five Euclidean postulates in that they 
are seemingly very simple and easy to grasp (Peano, 1889). The Peano 
axioms have the following informal content:

(1) Zero is number.
(2) If n is a number, the successor of n is a number.
(3) Zero is not the successor of any number.
(4) If two numbers have equal successors, they are themselves equal.
(5) If a set S of numbers contains zero, and for every number in S its 

successor is also in S, then every number is in S.

The last axiom is called the “induction principle” and it can be presented as 
a second-order axiom (as in here) or a first-order axiom schema. At least for 
a person with some mathematical education, the Peano axioms are likely to 
appear obvious. Indeed, when explained in familiar terminology, with the 
possible exception of the induction principle, the amount of mathematical 
education required to understand the axioms seems to be rather minimal.

Nevertheless, to say that the Peano axioms are simple would be careless in 
a similar way to calling the Euclidean postulates “extremely simple”. They 
are the product of a millennia-long development in arithmetic. While their 
informal content is perhaps unproblematic to understand for a person 
educated in basic mathematics, a proper mathematical grasp of the Peano 
axioms may require more complex cognitive abilities than is initially appar
ent. Thus “natural number” as a mathematical concept may not be as 
“natural” as it first seems. This can be seen in the divergent paths that the 
development of arithmetic has taken in different cultures. The Mayans, for 
example, had very sophisticated systems of arithmetic that allowed calcula
tions for extremely large numbers, yet it did not seem to include the concept 
of infinity, at least in the sense it exists in our arithmetic (Ifrah, 1998).5

This is not to suggest that the concept of natural number could not be 
natural in that it is in a strong way influenced by the core cognitive abilities 
for determining quantities. The point I want to make here is that since Spelke 
et al. (2010) draw a parallel between “natural number” and “natural geome
try”, their account of the latter already includes a strong influence by 
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culturally developed factors. Indeed, in Spelke et al. (2010), ”culturally vari
able counting devices” are explicitly mentioned as something that the con
struction of natural numbers depends upon (p. 864). Following a similar line 
of argumentation, it is clearly possible that diagrams and other cognitive tools 
(Fabry & Pantsar, 2021) play an integral role in the construction of the 
concepts of “natural geometry”, understood as Euclidean geometry. But this 
matter does not concern only the difference between the Levels 1 and 3 of the 
three-part distinction of Ferreirós and García-Pérez (2020), i.e., visuo-spatial 
cognition and theoretical geometry. When analyzed in terms of the three-part 
distinction of the development of Euclidean geometric knowledge (and other 
theoretical geometry), also proto-geometry is the result of culturally deter
mined developments. Following my analysis above, the account of Spelke 
et al. (2010) is consistent with this. In the case of arithmetic, they argue, the 
culturally variable counting devices are required to acquire and grasp natural 
number concepts. Similarly, the way I understand the proposal of Spelke and 
colleagues, acquiring basic concepts like circle and square (which fall under 
proto-geometry) is tightly connected to culturally variable devices, including 
artifacts like compass or ruler. Therefore, for Spelke et al. (2010), only visuo- 
spatial cognition appears to be free of cultural influences. This is perfectly 
consistent with the view of Ferreirós and García-Pérez (2020).

5. Reconciling the two approaches: Culturally determined “natural” 
geometry

The analysis in the previous section should make us reconsider whether the 
approaches of Ferreirós and García-Pérez (2020) and Spelke et al. (2010) are 
necessarily in conflict. If not, could the problem be more in the usage of 
different theoretical frameworks and the consequent clash in terminology? 
To start analyzing this question, it should first be noted that Ferreirós and 
García-Pérez (2020) do not want to deny the possibility that Euclidean 
geometry is natural geometry. They write:

Perhaps it is impossible to establish conclusively that the CKS [core cognitive system] 
and Level 1 do not contain structures corresponding to Euclidean geometry, but here 
the burden of proof should be on those who make such a claim. (Ferreirós & 
García-Pérez, 2020, p. 200)

But why, one must wonder, should the burden of proof be on those who aim 
to explain geometric cognition as emerging from the cognitive core systems? 
Ferreirós and García-Pérez answer:

Merely for reasons of information-theoretic plausibility, an explanation of our pro
togeometric knowledge that does not rely exclusively on genetically stored informa
tion seems more plausible than a nativist viewpoint. (ibid.)
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Concerning this, two points should be made. First, it is important to note 
that neither Spelke and her collaborators nor, to the best of my knowledge, 
anyone else in the modern literature suggest that proto-geometric knowl
edge in the sense of Level 2 (let alone geometric knowledge in the sense of 
Level 3) of Ferreirós and García-Pérez relies exclusively on genetically stored 
information.6 While there are different views concerning to what extent the 
cognitive core systems shape geometric cognition, Spelke and colleagues 
always include cultural influences in developing what is, in the terminology 
here, proto-geometric cognition. The following passage, for example, leaves 
little doubt about it:

Like natural number, natural geometry is founded on at least two evolutionarily 
ancient, early developing, and cross-culturally universal cognitive systems that cap
ture abstract information about the shape of the surrounding world: two core systems 
of geometry. Nevertheless, each system is limited: It captures only a subset of the 
properties encompassed by Euclidean geometry, and it applies only to a subset of the 
perceptible entities to which human adults give shape descriptions. Children go 
beyond these limits and construct a new system of geometric representation that is 
more complete and general, by combining productively the representations delivered 
by these two systems. This productive, combinatorial process, we suggest, depends in 
part on uniquely human, culturally variable artifacts: pictures, models, and maps. 
Thus, like the system of number, the system of geometry that feels most natural to 
educated adults is a hard-won cognitive achievement, constructed by children as they 
engage with the symbol systems of their culture. (Spelke et al., 2010, p. 865, emphasis 
added).

A second point should also be made about the above quotation of Ferreirós 
and García-Pérez. They claim that due to “reasons of information-theoretic 
plausibility”, the nativist (i.e., core cognitivist) explanations carry the bur
den of proof. Perhaps this would be seen in different light once it is made 
clear that the core cognitivist view of Spelke and others does not require 
exclusive reliance on genetically stored information. But assuming that the 
argument of Ferreirós and García-Pérez would remain similar, it is not at all 
clear why the burden of proof should lie on the nativist side. As I understand 
information-theoretic plausibility in this context, the least plausible view is 
that the evolutionarily developed core-cognitive abilities do not play any 
role at all in the development of proto-geometric cognition. It seems highly 
unlikely that proto-geometric cognition would develop completely indepen
dently of the core cognitive abilities for orientation and shape recognition.

While I see that as unlikely, it is of course a possibility that should be 
analyzed. If proto-geometric cognition is indeed independent from the core 
cognitive abilities for orientation and shape recognition, there are two 
remaining options. First, proto-geometric cognition develops based on 
some other evolutionarily ancient abilities, but not the two that the nativists 
have proposed. It is certainly a conceivable scenario that other core 
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cognitive abilities are in play. Indeed, even if we accept the core cognitivist 
view of Spelke and others, this possibility should be considered. But if core 
cognitive abilities are evoked in the explanation anyway, on what grounds 
do we exclude the two abilities that seem to fit proto-geometric cognition 
the best? I am not claiming that this kind of argument necessarily makes the 
nativist position stronger. But it should make us reconsider where the 
burden of proof lies.

The second possibility is that proto-geometric cognition develops in an 
important way independently of evolutionarily ancient abilities.7 In this 
case, proto-geometric cognition would be essentially a matter of convention. 
This possibility cannot be completely ruled out, either. But again, the 
burden of proof surely lies now in showing that all the resemblances 
between proto-geometric cognition and the abilities based on core cognitive 
abilities are merely coincidental.

Of course, Ferreirós and García-Pérez do not claim that proto-geometric 
cognition is completely independent of the core cognitive abilities. But 
based on my analysis above, neither would Spelke and her colleagues 
claim that what Ferreirós and García-Pérez call proto-geometric cognition 
is entirely determined by the core cognitive abilities. Therefore, both views 
can include a role for both core cognitive abilities and cultural influences in 
the development of geometric cognition. Certainly there are important 
differences in the accounts, some of which may be irredeemable. Spelke 
and colleagues clearly emphasize the importance of the core cognitive 
abilities. For example, in Dehaene et al. (2006), – in which Spelke is one 
of the authors – it is explicitly argued that the data on the Munduruku is 
evidence of universal intuitions of basic geometric concepts (e.g., points, 
lines, parallelism). Even adjusting for terminology (i.e., calling the intuitions 
proto-geometric), this is very different from the kind of basic object percep
tion that Ferreirós and García-Pérez are ready to accept.

Nevertheless, even accounting for such differences, I believe that the 
approaches of Ferreirós and García-Pérez and Spelke and colleagues are 
for the most significant part compatible. To see why, let us analyze the 
concluding words of Ferreirós and García-Pérez in their paper:

[W]e aim to promote interdisciplinary work in this field by bringing in logical results 
and historical evidence, in a spirit of constructive cooperation with the empirical 
cognitive sciences. The problem of analyzing visuo-spatial cognition and proto- 
geometry is quite complex, and perhaps none of the disciplines mentioned can 
hope to succeed working in isolation. We believe that the strategy should be one of 
interdisciplinary cooperation, working toward convergence between the various fields, 
as well as trying to clarify and explain those issues further by “triangulating them,” so 
to say, with information obtained from different disciplines. (Ferreirós & 
García-Pérez, 2020, p. 200, italics in the original).
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In this spirit, I suggest that the present paper should be considered an effort 
to “triangulate” the issue of natural geometry in the name of exactly such 
interdisciplinary cooperation by applying systematic conceptual analysis on 
the key terms “natural geometry” and “proto-geometry”. I hope to have 
shown that in the approaches of Spelke and colleagues on the one hand, and 
Ferreirós and García-Pérez on the other hand, such convergence can hap
pen to a large degree, and the apparent conflict is mainly due to a lack of 
terminological and conceptual coherence between the two accounts.

6. A way forward

The reconciliation of the “nativist” and “culturalist” views I have argued for 
in this paper may sound like an inherently flawed pursuit. Indeed, it would 
be one, were we to understand nativism and culturalism as radical versions 
that do not allow for other types of influences in the development of 
geometric cognition. However, neither the view of Spelke and colleagues 
nor that of Ferreirós and García-Pérez, as I have argued, represents such 
a radical position. Instead, I interpret both ultimately as the kind of mod
erate accounts that leave space for a plurality of influences. Therefore, the 
purpose of the present account is not to argue for one of the accounts over 
another. Instead, I want to propose an approach in which we can move past 
the limiting, crude dichotomy of nature (nativism) vs. nurture (culturalism) 
in ontogeny. Similarly, in the proposed approach we move beyond the 
dichotomy between biological evolution (nativism) and cultural develop
ment (culturalism) in the phylogeny and history of geometrical knowledge. 
The first stage of this approach is to construct a conceptually coherent 
theoretical framework, including consistent inter-disciplinary terminology. 
As we have seen, this issue of terminology is not merely a question of 
establishing acceptable jargon. Inconsistent terminology can lead to erro
neous positing of cognitive abilities for groups of subjects, like when ants are 
thought to learn geometry and infants to have arithmetic abilities.

Establishing a coherent theoretical framework is of course only a first step 
in explaining the emergence of geometric cognition and the acquisition of 
geometric knowledge and abilities. Indeed, as the work progresses, it is 
possible that the framework itself needs updating. Yet we must start from 
somewhere in trying to find basis for inter-disciplinary research on geo
metric cognition that can include both genetically and culturally shaped 
influences. Due to considerations of space, it is not possible here to give 
a detailed presentation of what such a theoretical framework should com
prise. Nevertheless, some central characteristics of a feasible framework can 
be established. I submit that an acceptable framework should contain at least 
three key elements. First, it should be sensitive to the contribution of the 
core cognitive systems to the early (and possibly also later) development of 
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geometric cognition. Second, it should be sensitive to the way cultural 
developments take place and how they are transmitted across generations 
and social groups. Finally, third, it should be able to combine the two types 
of contribution – and their interrelation – for a plausible explanation on 
a neuronal level. That is, the framework should provide theoretical grounds 
for an empirically informed explanation of the way human subjects develop 
geometric cognition in ontogeny by adopting culturally shaped information 
and practices.

For the first of the above key elements, the work of Spelke and colleagues, 
as well as others (see, e.g., Hohol, 2019), has paved the way. The empirical 
data on core cognitive abilities in shape recognition and orientation are 
increasing both in quantity and quality, and I believe that the core cogniti
vist view proposed by Spelke and others is fundamentally on the right track 
about how this data should be included in explanations of the development 
of geometric cognition. This work should also be combined with an account 
of how perception is possible in the first place, as well as an account of how 
the core cognitive abilities are employed in further steps of cognitive 
processing. Hatfield has emphasized the importance of distinguishing 
between “sense perception” and “cognitive perception” (Hatfield, 2009, 
p. 5). Sense perception refers to the mere color and spatial properties of 
the visual scene, while cognitive perception assigns functional significance 
and identities to objects. Placed within this account, the core cognitive 
abilities related to geometric cognition would seem to play a crucial middle 
part. Shape recognition is based on sense perception by applying the core 
cognitive systems, while cognitive perception of objects is possible by the 
shape recognition (and orientation) enabled by the core cognitive systems.

For the second key element, the development of culturally specific knowl
edge, practices and artifacts related to geometry, the kind of work presented 
in Ferreirós (2015) and Ferreirós and García-Pérez (2020) is of great impor
tance (for literature on artifacts, see also Hohol & Miłkowski, 2019; 
Magnani, 2013, 2021; Netz, 1999). Generally, this kind of historical work 
fits well with work on cumulative cultural evolution, which refers to the way 
human cultures gradually develop their knowledge and skill sets (see, e.g., 
Boyd & Richerson, 1985, 2005; Henrich, 2015; Heyes, 2018; Tomasello, 
1999). Technologies and practices are improved upon in small generational 
increments, and in large enough societies – or ones with extensive interac
tions with other societies – this process can establish a status of knowledge 
and skills where they are no longer tied to a small group of individuals. In 
addition to language and other culturally specific practices, just like 
Ferreirós and García-Pérez (2020) argue, a crucial aspect of mathematical 
practices is formed by the tools that are used (for an overview, see Robson & 
Stedall, 2009).
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The importance of cultural evolution can also explain why the core 
cognitive systems have not had a universally transforming effect on 
human cultures, even though the core-cognitive capacities are shared uni
versally. Just like the development of arithmetic, the emergence of geometry 
has required a suitable cultural setting in which language, artifacts and 
practices could develop. This development is connected to practical applica
tions, educational practices, and many other cultural factors that are not 
universally present in human cultures (Pantsar, 2019). In this way, the 
evolutionarily ancient core cognitive capacities may have been a necessary 
condition for the development of geometry, but they are far from a sufficient 
condition. Geometry requires processes of cultural evolution, which take 
place on a much smaller time scale than biological evolution.

Finally, the theoretical framework I have proposed requires the third key 
element, how to combine genetic and cultural factors on the neuronal level. 
For this, I see great potential in the notion of enculturation as proposed by 
Menary (2015) for explaining mathematical cognition. Processes of encul
turation transform our basic biological faculties through the cultural trans
mission of cognitive practices. In particular, enculturation refers to the 
transformative process in which interactions with the surrounding culture 
determine how cognitive practices are acquired and developed (Fabry, 2020; 
Menary, 2015; Pantsar, 2019, 2020). Enculturation is made possible by the 
mechanism Menary (2014), (2015) calls “learning driven plasticity”, which 
enables the acquisition of new cognitive capacities due to the neural plasti
city of the brain that makes both structural and functional variations 
possible (Anderson, 2015; Ansari, 2008; Dehaene, 2009; Fabry, 2020; 
Jones, 2020). The human brain is now understood to be highly plastic, 
developing in different ways depending on the specific experiences of 
different individuals, while also being constrained by genetically determined 
factors. Culturally developed cognitive abilities like reading and writing are 
thus made possible by redeploying older, evolutionarily developed neural 
circuits for new culturally specific functions (Dehaene, 2009; Menary, 2014). 
The same has been argued to be the case for the cognitive ability of 
arithmetic (Fabry, 2020; Jones, 2020; Menary, 2015; Pantsar, 2019). Here 
I want to submit that there is great potential in giving geometric cognition 
a similar treatment. To be more precise, I believe that close attention should 
be given to the hypothesis that in the development of geometric cognition, 
neural circuits associated with the core cognitive abilities are partly rede
ployed for proto-geometric and geometric functions.

However, this kind of reuse of evolutionary ancient cognitive capacities does 
not need to be limited to the redeployment of particular neural circuits (what is 
called neuronal recycling in the literature (Dehaene, 2009; Menary, 2014)). 
Anderson (2015) has argued for a more general principle of neural reuse, 
which has been proposed by Fabry (2020) and Jones (2020)as a better fit 
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with the development of arithmetic cognition. This could be also the case for 
the development of geometric cognition. My proposed framework in this paper 
is not restricted to a particular theory concerning the mechanism of learning on 
the neuronal level. The important matter is that the mechanism allows for 
culturally-specific factors to shape the development of mathematical cognition 
based on proto-mathematical capacities. This can include both the redeploy
ment of specific neuronal circuits or a more general reuse of neural resources.

There is evidence of mathematical cognition including at least some domain- 
general properties. Cognitive processes involving analogical reasoning, which is 
thought to be crucial for the kind of abstract reasoning involved in mathe
matics, involve a similar neural circuit as cognition of geometric relations, 
comprising the bilateral dorsal prefrontal and intraparietal cortices (Amalric 
& Dehaene, 2016; Krawczyk et al., 201c1; Watson & Chatterjee, 2012). As 
reported by Amalric and Dehaene (2016), fMRI studies of high-level mathe
matical cognition show remarkably little domain-specificity: solving problems 
in algebra, analysis, topology, and geometry induce activity in largely the same 
areas of the brain, namely the bilateral intraparietal sulci, the bilateral interior 
temporal regions, and the mesial prefrontal cortex. This suggests that high-level 
mathematical reasoning deals with similar cognitive processes regardless of the 
particular area of mathematics. Interestingly for the present purposes, however, 
geometric reasoning showed additional activation in the posterior inferior 
temporal and the posterior parietal cortices (Amalric & Dehaene, 2016). The 
inferior temporal cortex is associated with shape and object recognition 
(DiCarlo et al., 2012) while the posterior parietal cortex is typically activated 
in spatial reasoning, including movement planning (Sack, 2009). Evidence thus 
suggests that brain activity connected with the core cognitive processes of shape 
recognition and orientation occurs partly in the same regions as geometric 
reasoning. This supports the hypothesis that there is a connection between the 
core cognitive systems and the development of geometric cognition, plausibly 
due to a partial redeployment of the neural circuits associated with the core 
cognitive processes for new, culturally specific purposes. However, at present 
the empirical data is far from conclusive and further study is needed especially 
on how activity in different areas of the brain is associated with cognitive tasks 
in different developmental stages and levels of expertise.

Although we still need to learn much more about the neuronal-level 
mechanism of culturally shaped learning, I believe that the framework of 
enculturation provides a highly promising platform on which to proceed. In 
this manner, by explaining how cultural practices, which are the product of 
cumulative cultural evolution, transform our basic biological core cognitive 
faculties, introducing the notion of enculturation can complete the three- 
part theoretical framework suggested above. How this process exactly hap
pens is something that requires the kind of inter-disciplinary triangulation 
suggested by Ferreirós and García-Pérez. Granted, the rough outline of 
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a framework I have suggested here is only the very beginning. But I believe it 
is the beginning of a highly important process: finding a coherent way to get 
the best out of the results offered by different disciplines involved in the 
study of the foundations of geometric cognition.

Notes

1. In addition, it has been recently proposed that the distinction between the OTS and the 
ANS is not required to explain many empirical data (Cheyette & Piantadosi, 2020).

2. Euclidean geometry refers to the system of geometry presented by Euclid in his text
book The Elements around the year 300 BC. This system is the basis for the geometry 
taught in schools. It should be noted that there are also many other types of geometric 
systems studied in mathematics, including two so-called non-Euclidean geometries, 
namely hyperbolic and elliptic geometries. These geometries reject the Euclidean 
postulate that given a line on a plane and a point not on the line, at most one line 
that is parallel to the given line can go through the point. See (Coxeter, 1998) for more.

3. To be clear, I do not want to suggest that Wystrach and Beugnon (2009) believe that 
ants learn geometry in the sense human beings do. The point I want to make is that the 
two abilities are so distant from each other that a single term should not cover both.

4. In Section 5 I will discuss the importance and the mechanisms of culturally shaped 
factors on the development of mathematical cognition.

5. There could be some debate whether such systems should be called “arithmetic”. 
However, as I have argued before (Pantsar, 2014, 2015, 2018), limiting the word 
“arithmetic” to Western modern axiomatic system is problematic. While, to the best 
of our knowledge, the Mayan arithmetic did not include the kind of proof procedures 
familiar to us, the calculating ability and practical applications were highly sophisticated 
and general, comparable to Western pre-modern arithmetic (Ifrah, 1998; Pantsar, 2019). 
I have proposed that both systems should be called arithmetic, while modern axiomatic 
arithmetic should be characterized as “formal arithmetic” (see Pantsar, 2018 for more).

6. It should be noted that “genetically stored information” is a potentially problematic 
notion here, as the same genes can be expressed in different phenotypes. Instead of the 
genetic information itself, it would seem that it is the phenotype that is – under the 
nativist account – important for the development of geometric cognition. I thank 
Regina Fabry for pointing this out.

7. I say “in an important way” here because certainly some genetically determined 
abilities, like vision, always play a role.
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