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Abstract: The hard problem of induction is to argue without begging the question
that inductive inference, applied properly in the proper circumstances, is con-
ducive to truth. A recent theorem seems to show that the hard problem has a
deductive solution. The theorem, provable in , states that a predictive func-
tionM exists with the following property: whatever world we live in,M correctly
predicts the world’s present state given its previous states at all times apart from
a well-ordered subset. On the usual model of time a well-ordered subset is small
relative to the set of all times. M’s existence therefore seems to provide a solution
to the hard problem.

My paper argues for two conclusions. First, the theorem does not solve the hard
problem of induction. More positively though, it solves a version of the problem
in which the structure of time is given modulo our choice of set theory.

1   
Call the task of persuading an inductive sceptic that inductive inference to
new conclusions is truth-conducive the hard problem of induction. Inductive
inference is here understood as deductively invalid inference.1 A method is
truth-conducive when it generally leads to the truth (applied properly in the
proper circumstances—this is understood). And an inductive sceptic is some-
one who does not antecedently accept inductive inference as a route to new
conclusions but is in other respects like us: he accepts deductive inference,

1Inductive inference in this broad sense subsumes, but is not restricted to, enumeratively
inductive inference. Note that our definition allows that one can reason inductively to nec-
essary conclusions and deductively to contingent ones. Some philosophers contrast inductive
inferences with deductive ones according to the nature of the conclusions they support. For
instance, in his discussion of the problem of induction Vickers (2009, sec. 1.2) disbars deductive
inferences from having contingent conclusions, by definition. This has the strange consequence
that a syllogism such as ‘All Frenchmen are charming; Olivier is a Frenchman; therefore Olivier
is charming’ is not deductive.
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takes normal perceptual experience at face value, relies on memory as we do,
is self-aware, and accepts any a priori truths available to him, for example of
mathematics, modality and morality. This is a hard version of the problem of
induction because the task is to persuade the sceptic, rather than to reassure
ourselves, of the truth-conduciveness of inductive inferences.

A recent mathematical theorem due to Christopher Hardin and Alan Tay-
lor seems to offer a solution to the hard problem. The theorem states that
a function exists with the following property: whatever world we live in, the
function predicts the world’s present state from its previous states and does so
correctly at all times, apart from a well-ordered subset. On the usual model of
time, a well-ordered subset is small relative to the set of all times. The func-
tion in question is accordingly almost always correct, and thus the theorem
apparently solves the hard problem of induction.

The first of this paper’s two main conclusions is that, despite appearances,
the theorem does not solve the hard problem. But there is a weaker version
of the problem, namely, to persuade an inductive sceptic that inductive in-
ference is truth-conducive given the structure of time. We may call this the
parametrised hard problem of induction, since the time parameter is given.
Our second and more positive conclusion is that the Hardin–Taylor Theorem
solves the parametrised hard problem of induction modulo our choice of set
theory. More precisely: if the development of set theory were to take a par-
ticular route, the parametrised problem would have a deductive solution. Al-
hough a more modest epistemological conclusion than that the hard problem
of induction is soluble, it is nevertheless significant.

The paper is organised as follows: §2 contains some preliminaries, §3 sets
out the theorem, §4 draws its apparent epistemological implications, §5 clar-
ifies several points in this connection (for a shorter version of the paper this
middle section may be omitted), and §§6–9 assess the theorem’s implications.

2 
Let T be the partial order consisting of the set of all times ordered by ‘earlier
than’, and S the set of all states the world might be in. Call any function from
T to S a world history.2 A world history thus encodes a possible way the world
might be at all times (it is in this sense a possible world). For example, if f is
a world history and t is a member of T , the value of f at t, f(t), represents the
way the world is at t according to world history f. The set of world histories is
the set TS, that is, the set of functions with domain T and range S. Similarly,
call any function from {t� 2 T : t� < t} to S, which encodes a possible way the
world might be up to some time, a partial world history. We write {t�2T :t�<t}S

for the set of functions with domain {t� 2 T : t� < t} and range S. If a world
history f agrees with a partial world history on the latter’s domain—the times

2For ease of exposition, we shall often equate partial orders (which may be linear) with their
domains.
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up to some t—we symbolise the latter as ft and say that f extends ft. Likewise
ft2 extends ft1 if the former’s domain is a superset of the latter and the two
functions agree on ft1 ’s domain.

A predictive function is a function P from
S
t2T

{t�2T :t�<t}S to TS with the
following property: given a partial world history ft, P(ft) is a world history
that agrees with ft up to t (but not necessarily on any time later or equal to
t). Given any predictive function P we may consider P’s success in predicting
the present state of the world for varying presents.3 Let WP(f) be the set of
times at which P predicts a state of the world represented by the world history
f different from the actual state given by f. WP(f) is thus the set of times t in
T such that (P(ft))(t) 6= f(t). We may think of WP(f) as the set of ‘presents’ at
which the predictive function P predicts the wrong state of the present given
the past in a world represented by the world history f. Likewise, the set RP(f)

is the set of times at which P predicts the right state of the world in this same
sense. P almost always correctly predicts f just when WP(f) is a small subset of
T . What ‘small’ might mean in this context will be clarified shortly.

3  
Christopher Hardin and Alan Taylor (2008) proved:

For any linear T and any S, there is a predictive function M with
the property that, for any f, WM(f) is a well-ordered subset of T
(with respect to the given ordering on T ).

Recall that, in , the Axiom of Choice is equivalent to the Well-Ordering
Principle, and thus that  proves that every set can be well-ordered. In
particular, it proves that a well-ordering of TS exists. Pick one of these well-
orderings. For every partial world history ft in {t�2T :t�<t}S let M(ft) be the
least element of the subset of TS which consists of all the functions in TS

that agree with ft on all times previous to t (the least element, that is, with
respect to the chosen well-ordering on TS). M is well-defined because TS is
well-ordered and the subset of TS that consists of the functions agreeing with
ft on times previous to t is non-empty, since it contains all extensions of ft.
The predictive function we seek is M.

To show this, we must prove that WM(f) is well-ordered for any f. Fixing
a world history f, suppose t1 < t2 (in the given ordering of T )4 and that M
is wrong at both t1 and t2, i.e. that (M(ft1))(t1) and (M(ft2))(t2) are wrong
predictions of the state of the world, so that both t1 and t2 are members of
WM(f). Now if a function in TS agrees with ft1 prior to t1 then it agrees with

3Hardin and Taylor (2008) take partial world histories as equivalence classes of world histo-
ries that agree up to but not including some time.

4We use the same symbol ‘<’ for the given ordering relation T and the chosen ordering
relation on TS; it will be clear from the relata which is which. Subsets of T or TS are assumed to
inherit these respective orderings.
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ft2 prior to t1 as well since ft2 extends ft1 . Moreover, M(ft1) and M(ft2) are
by assumption distinct, since (M(ft1))(t1) 6= f(t1) and (M(ft2))(t1) = f(t1),
as M(ft2) agrees with f on all times prior to t2, including t1. Thus M(ft1) <

M(ft2) in the chosen well-ordering of TS. In other words, for all t1 and t2 in
WM(f), if t1 < t2 then M(ft1) < M(ft2). Given the assumption that WM(f)

is linearly ordered, the converse follows similarly. The set of times WM(f)

at which M delivers the wrong prediction is therefore order-isomorphic to a
subset of TS under the chosen well-ordering. HenceWM(f) is also well-ordered
with respect to the given ordering on T . No specific facts about f were used in
this proof, so the result generalises for any world history f.

4  
What gives the Hardin–Taylor theorem great interest in connection with the
hard problem of induction is that for some T , well-ordered subsets of T are
small compared to T itself. In particular, suppose T is the set of real num-
bers.5 Any subset of the real numbers well-ordered under their standard order
is countable and has measure zero.6 Hence if T is the set of real numbers, stan-
dardly ordered, WM(f) is small compared to T for any f whatsoever.7 Likewise
if T is an interval of real numbers, or a union of intervals of real numbers, or any
subset of the reals containing a real interval.8 Since time is usually modelled as
the real numbers, or more generally spacetime is modelled as a geometry based
on the real numbers, the Hardin–Taylor theorem therefore seems to show that
the hard problem of induction is solvable on our usual physical assumptions.

It is worth stressing just how strong the theorem is. Suppose T is the set
of real numbers and that the actual world’s world history is f@. A consequence
of the theorem is that there is a predictive function M such that M(f@t(t))

agrees with f@(t) for all but a small subset of T . This fact might be thought
easy to contrive: simply takeM to be the function which outputs the constant
function f@ for any input. However, the theorem demonstrates that the same
function M whose existence it guarantees would work even if our actual world
history were different: M is almost always correct for any choice of world his-
tory. On the assumption that T is the set of real numbers, the theorem is the
strong claim that there is a predictive function that is almost always correct

5For brevity, I usually write ‘T is the set of real numbers’ in place of ‘T is modelled as the set
of real numbers’, etc.

6By ‘countable’ we mean either countably infinite or finite. If X is a well-ordered subset of
reals under their standard order then there is a rational between its αth and α+ 1th members, so
the cardinality of X is no greater than that of the rationals, which are countable. A countable
set has measure zero since singletons have measure zero and measures are countably additive.

7Hereon we suppress the qualification that the order of the reals is the standard one and
assume all familiar domains have their standard order unless otherwise specified.

8An (open) interval of real numbers is here taken to be a set of the form {x : p < x < q},
usually written (p, q), where p and q are real numbers such that p < q, or p is −∞ and q is real,
or q is +∞ and p is real, or p is −∞ and q is +∞.
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whatever the world is like. It is not the trivial claim that, given a particular
world, there is an almost always correct predictive function for it.

Another aspect of the theorem’s strength is its independence from prob-
ability. The Achilles heel of Bayesian attempts to solve the hard problem of
induction is that they have to assume that the sceptic’s prior probability of f@
being our actual world history is non-zero (where f@ is our actual world his-
tory).9 In contrast, the Hardin–Taylor theorem does not depend on particular
world histories having positive prior probability. It is independent of all prob-
ability assignments.

Now if T is the set of rational numbers, WM(f) could be the same size as T
since the rationals and therefore their well-ordered subsets are countable. For
example, the set of natural numbers considered as a subset of the rational num-
bers is well-ordered and countable. However, WM(f) might still be considered
a smaller set than T in senses of ‘small’ other than cardinality. For example, one
has to live through an infinity of time instants not in WM(f) to reach the next
time instant inWM(f). If the sceptic appliesM in a world whose time instants
are rational then every time M leads him astray it will subsequently be correct
for an infinity of times. Or consider that WM(f) is nowhere dense in T .10 In
this topological sense, well-ordered sets of rationals are small relative to all the
rationals or to any interval of rationals. Well-ordered subsets of the rational
numbers have mathematical properties typical of smallness, even if they are of
the same cardinality as the set of rationals itself.

A third possibility is that T is a subset of the integers, e.g. T might be the
natural numbers or some finite segment thereof. In that case, WM(f) can be
equal to T , and so WM(f) is not guaranteed to be smaller than T , either in the
sense of cardinality or in any other sense. And in the case in which T is the
set of integers, at any given instant the set of future times in WM(f) can be
equal to the set of all future times in T . In other words, M may be perfectly
falsehood-conducive in the present and future.

There are of course many other possibilities for T than these salient ones.

5 
The Hardin–Taylor theorem apparently solves the hard problem of induction.
Roughly, the reason is that the sceptic can avail himself of the predictive func-
tion M to predict the state of the world at any given time. Given the standard
scientific assumption that the set of times T in our world is an interval of real
numbers, the set of times at which M gives a wrong prediction is small. In
other words, the sceptic can be persuaded that there is a predictive function
which predicts the present state of the world given past states, and does so
correctly for all but a small number of ‘presents’, with ‘small’ understood in the

9Howson (2000, ch. 4) offers an overview of Bayesian arguments.
10X is nowhere dense in T if any non-empty interval in T contains a non-empty interval

disjoint from X. (An open interval in the rationals is the rational analogue of a real interval.)
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sense of cardinality. The purpose of this section, which can be skipped on first
reading, is to sharpen this rough explanation of the theorem’s epistemological
import in a numbered series of comments.
(1) As noted, the theorem essentially depends on the Axiom of Choice, which
is used to well-order the set TS. Choice refuseniks will accordingly not accept
the theorem. This should not trouble the rest of us.
(2) The set T need not be linear. For instance, T might be a branching tree
representing a world in which time splits into two branches every second. The
result applies to such branching time scenarios too. Our application of the the-
orem uses the fact thatWM(f) is a linearly ordered set, which follows from the
assumption that the sceptic’s path through time is linear. This seems a reason-
able assumption so long as the sceptic is assumed to be a unified consciousness.
If this a contingent feature of sceptics in our world, so be it: the solution, if
successful, is contingently successful. For similar reasons, the result applies in
a relativistic setting.
(3) For appropriate T , the Hardin–Taylor theorem establishes that WM(f) is
small relative to T . Yet consider the subsetO of T at which the sceptic observes
the state of the world. What if O is not T? For example, what if the sceptic’s
existence occupies a cosmically short interval of time? Can the theorem still
reassure him that his observations will be correct on all but a small number of
occasions?

One way to sidestep this worry is to think of the theorem as applying to
a subjunctive version of the hard problem. The theorem reassures the sceptic
that, for appropriate T , were he to live and observe the states of the world for
longer (in particular, were he to observe the state of the world throughout T ),
the predictive function M would only let him down a small number of times.

In the indicative version of the hard problem, in contrast, the sceptic won-
ders how often use of a predictive function will let him down during his actual
observational lifespan. The answer to this question depends not just on T but
also on O, as the following two scenarios demonstrate. In the first scenario,
T is the set of real numbers and O is a well-ordered sequence of real intervals
(a1, b1), (a2, b2), . . . , where ai < bi < ai+1. For example, O might be a finite
sequence of intervals (a1, b1), . . . , (an, bn) during which the sceptic is awake
and paying attention to the world around him. Now if a1 is a real number (not
−∞) the sceptic has not observed all of the past. So, you might ask, how is the
sceptic supposed to know the partial world history up to a1 in order to feed
it into M? The answer concedes that he doesn’t know what fa1 is, but that
he can nonetheless apply the result by taking T to be (a1, b1). The Hardin–
Taylor theorem reassures him that WM(f) is small relative to this interval for
any f. He can then repeat the application with T as (a2, b2), etc. Or instead
of taking a different T each time and applying the theorem anew to each of his
observational intervals, he can take T itself to be O, that is, the sequence of
real intervals (a1, b1), . . . , (an, bn), and apply the theorem in one fell swoop to
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this choice of T . Either way, the theorem reassures him that M lets him down
on a small number of occasions only.

Another scenario is when T is the set of real numbers and the sceptic only
observes the state of the world during some finite set of times in T , say the
integer times from 0 to 100. In that case, the result is compatible with each
of his 101 predictions being wrong. Whether WM(f) is small relative to the
sceptic’s life span is therefore not determined by the fact, if it is one, that
WM(f) is small relative to T .

In sum, if the theorem is to apply to the indicative version of the hard
problem of induction, the set O must be of a certain kind. Roughly speaking,
O must not be too small relative to T for the result to bite. For the sake of
simplicity, we suppress mention of O, it being understood that discussion of
the theorem’s application to the hard problem in its indicative version depends
not just on T but on O as well.

Note finally that the theorem’s application depends on idealising the scep-
tic. For instance, taking T = R and O = (0, 1) assumes that the sceptic has
observed all the states of the world during the latter time interval. Yet no hu-
man sceptic appears capable of recording this many observations throughout
(0, 1). Perhaps this is what Hardin and Taylor mean by saying: “We should
emphasize that these results do not give a practical means of predicting the fu-
ture” (2008, p. 92).11 However, this idealisation does not damage the theorem’s
application to the problem of induction, which usually entertains an idealised
sceptic.

(4) The Hardin–Taylor theorem does not draw a distinction between observ-
able and unobservable states. Yet its epistemological application to the hard
problem of induction must do so. If the sceptic is incapable of knowing what ft
is at any given t, or of verifying whether M(ft)(t) is in fact the correct state of
the world at t, he won’t be able to use the theorem to reassure himself that in-
ductive inference can be truth-conducive. If S consists of states unobservable
by the sceptic, the function M makes predictions about unobservable states,
and the sceptic cannot check the state of the universe to narrow the range of
world histories as time progresses. More precisely, if S consists of unobservable
states then for a given world history f, the set RM(f) of instants at which M
gives the right answer might, for all the sceptic knows, be null. Correspond-
ingly, the argument for the well-ordering of the setWM(f) of instants at which
M gives the wrong answer breaks down: if t1 is prior to t2 and the world histo-
ries M(ft1) and M(ft2) give unobservable predictions at t1 and t2 respectively,
it does not follow that M(ft1) and M(ft2) must be distinct, since they could
agree at t1 if M(ft1)(t1) is not equal to f(t1) but both are unobservable states
of the world. M(ft1) and M(ft2) might thus both be wrong at t1, for all the
sceptic can tell. Updating one’s partial world history on the basis of experience

11It is unlikely they are alluding to the point to be made in §6, since they do not raise the
issue of definability.
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is crucial to the application of the Hardin–Taylor theorem to the hard prob-
lem, in order to eliminate incorrect candidate world histories. This cannot be
done if the states of the world according to those candidate world histories are
not observed by the subject attempting the updating.

If in contrast S consists of states of the world observable by the sceptic
then the epistemological application of the Hardin–Taylor theorem to the hard
problem of induction proceeds without hindrance. For example, suppose that
the sceptic has noticed that in the past the law of gravity has held in his envi-
rons.12 The Hardin–Taylor theorem reassures him that the function M, which
counsels him let us suppose to assume that the law of gravity holds in his envi-
rons at t if it has held in his environs at all times previous to t, can only let him
down on a well-ordered set of times.13 Given that in this instance S is a set of
observable states, the theorem does not justify the belief that the law of gravity
holds more generally beyond his environs. This is not at all damaging. The hard
problem of induction is to convince the sceptic of the truth-conduciveness of
inductive inference to new conclusions (in some circumstances), for example,
the inference to the nature of his future environment from his past experience
of it. It is not to convince him of facts we generally believe about the world,
for instance that it extends far beyond our perceptual range and that the law
of gravity holds throughout it (more on this in the sixth comment).

In sum, although the Hardin–Taylor theorem itself draws no distinction
between observable and unobservable states, its application to the hard prob-
lem naturally proceeds by construing S as consisting of states observable by the
sceptic.

(5) Suppose that T is the set of real numbers.14 Then at any given time t, the
possible world histories that agree with the sceptic’s partial world history are
uncountable. Yet only one of these uncountably many possible world histories
is the correct one for that world. In one sense, then, the sceptic who uses
the Hardin–Taylor theorem never learns from experience: at any given time
t, the uncountably many rivals to the actual world history that agree with his
partial world history are just as ‘live’ for him as the actual world history itself.
Although any given rival to the actual world history will be ruled out at some
time by observation, at any given time the predictive function M has zero
chance of outputting the actual world history. Even on the assumption that he
is omniscient about the past, the existence of M does not change the fact that
at any given time the sceptic is none the wiser as to which of the uncountably
many possible extensions of his partial world history is the correct one.

Viewed from this perspective, the Hardin–Taylor theorem may seem para-
doxical. Yet the semblance of paradox is dispelled by keeping the bigger pic-

12By the sceptic’s environs at any given time we mean what he observes at that very time,
irrespective of whether it has taken some time for that information to reach him.

13Well-ordered, to repeat, with respect to the given ordering of time.
14And that S has more than one element.
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ture in mind, as Hardin and Taylor stress in their paper. Locally speaking—at
any given time t—the predictive functionM applied to ft does indeed have no
more chance of being right about the observable state of the world at t than
any other method (necromancy, reading tea leaves, guessing, etc.). The local
perspective makes M’s success a mystery. Viewing things globally, however, we
see that M can only go wrong on a well-ordered set of times, which must be
small if T = R. M can be successful in this global sense without being any
better locally than its rivals.

(6) The predictive function M may not be a function we would recognise as
representing a correct means of projecting from past experience. For instance,
M may not counsel the sceptic to infer that all emeralds he will ever observe
are green from the fact that all emeralds he has previously observed are green.
Despite his having only observed green emeralds, it may counsel him that the
emeralds he will henceforth observe are red; re-applied an hour later it may
counsel him that they are yellow; and two hours later that they are blue with
pink dots. As Alexander George (2007) points out, there is no reason to think
that M vindicates our inductive practices; it may instead vindicate ‘gruesome’
inductive inferences.

This is not a criticism of the application of the theorem to the hard prob-
lem of induction, which is just one version in the cluster of problems known
loosely as ‘the problem of induction’. The problem of persuading the sceptic
of the truth-conduciveness not just of any old inductive inferences but of our
own dear and accustomed ones is an even harder task than solving the hard
problem of induction. A solution to the hard problem of induction need not
also be a solution to this further problem.

(7) Lots of functions other than M will do the predictive job. Suppose that
instead of taking M(ft) to be the least element of the subset of TS consisting
of all the functions that agree with ft on times previous to t we take M(ft) to
be this subset’s second least element.15 As can be verified by running the proof
with this choice of M, the resulting set WM(f) is also well-ordered (with re-
spect to the given ordering of T ). And of course there are many well-orderings
of TS one could choose in the first place;M depends upon this initial choice of
well-ordering as well.

In attempting to persuade the sceptic of the truth-conduciveness of a pre-
dictive function we are thus faced with an embarras de choix. There are many
such predictive functions M. However, this does not threaten the Hardin–
Taylor theorem’s application to the hard problem of induction. On the con-
trary, if the argument is sound it shows that the inductive sceptic can be rea-
sonably persuaded to choose one from several almost always correct predictive
functions. So much the better.

(8) We come finally to the question of when the sceptic is supposed to apply
15This is a different choice assuming that S has at least two members.
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the function M. The various problems that come under the heading of the
problem of induction are traditionally concerned with how to justify a claim
about unobserved states of the world on the basis of its observed states. Yet the
first thing that strikes everyone about the Hardin–Taylor theorem’s application
to the hard problem of induction is that it does not seem to be an instance of
this general category, because the predictive function M predicts the present
rather than the future from past observations. Since the sceptic observes the
present state of the world, applying M to the present instant seems not to
afford him any more information than is experientially available to him. The
observed present state of the world is by definition already part of his past and
present experience. So in what sense does the Hardin–Taylor theorem offer a
potential solution to the hard problem of induction?

The answer is not entirely straightforward and will occupy the rest of this
section.16 A first stab at answering the question is to exploit the theorem by
applying the prediction to the next moment in time. Suppose t is the present
and t+ the next moment in time following the present. Since we are assuming
that the sceptic observes the present and that he has observed the past, he
knows what ft+ is (recall that ft+ is the partial world history up to but not
including t+). Hence he can apply M to ft+ to output a prediction for the
observable state of the world at t+.

A problem with this strategy to be discussed in §7 is that the sceptic cannot
assume that any given moment in time has a successor, even if this has proved
true in the past. A second problem is that the worlds in which every moment in
time has a successor are not worlds in which a well-ordered subset of T is small
compared to T . Any linearly ordered set in which every element has an imme-
diate successor or is the set’s maximum element is made up of some copies of
the integers or the natural numbers, with a copy of the negative numbers or a
finite ordered set possibly tagged on at the end.17 Yet a well-ordered subset of
the integers or the positive numbers or a finite ordered set need not be small
in any pertinent sense of ‘small’. It is true that an element of a well-ordered
subset of the integers can only have finitely many predecessors; yet it is also
true that all the integers after it may be members of the well-ordered subset
in question. Thus if the sceptic can come to justifiably believe that every time
instant has an immediate successor, he can no longer use the theorem to reason
that the set of times at which M fails is small compared to T .

An alternative answer to our question of when and how to apply M is that
16Suppose the theorem could do no more than show that the present state of the world is

predictable correctly for most presents. It would belittle the theorem’s epistemological value to
claim it as nil because the present is already observed. The theorem would offer an inferential
warrant on top of an observational warrant for the world’s current state.

17Let S(a) be the successor of a and P(a) the predecessor of a. Then the set of points
finitely accessible from a by applications of S or P is either (i) {. . . , PPa, Pa, a, Sa, SSa, . . .},
or (ii) {Pm(a), . . . , PPa, Pa, a, Sa, SSa, . . .}, or (iii) {. . . , PPa, Pa, a, Sa, SSa, . . . , Sn(a)}, or (iv)
{Pm(a), . . . , PPa, Pa, a, Sa, SSa, . . . , Sn(a)}.
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M should not be applied to predict the present. It should be used instead to
predict the state of the world at some fixed time in the future. For example,
M may be used to predict the observable state of the world one second after
the present. With the same choice of M, the prediction is M(ft)(t+ 1) rather
than the prediction M(ft)(t).

The problem with this suggestion is that the Hardin–Taylor theorem no
longer applies. If t1 < t2 then it follows, as in §3, that M(ft1) cannot be any
greater than M(ft2) in the well-ordering of TS. But that (M(ft1))(t1 + 1) and
(M(ft2))(t2 + 1) are wrong predictions does not entail that M(ft1) and M(ft2)

are distinct. For if t2 is less than a second after t1 the partial world history ft2
contains no information about the observable state of the universe at t1 + 1.
Hence the world historyM(ft2), which extends ft2 , may have the same value as
M(ft1) at t1 + 1. In other words, all times within a one-second interval of each
other may be in WM(f), and consequently the predictive function M need not
almost always be correct even if T is the set of reals. The objection generalises
to the proposal that M should be used to predict the future ε time units later
for any ε > 0.

A proposal in the same vein is to use M to predict the observable state of
the world at one-second intervals. If T is the set of reals and the sceptic starts
observing at 0, M might be used to predict the observable state of the world
at times 0, 1, 2, 3 . . . The problem with this variant of the previous suggestion
should be obvious. If the sceptic applies M to predict the state of the world at
one-second intervals, the set of times at which predictions are made is thereby
guaranteed to be well-ordered. For his predictions will be at staggered time
instants: 0, 1, 2, 3, . . . This sequence is by definition well-ordered, so it could be
equal toWM(f): the sceptic could go wrong at all these times. Neither of these
ways of implementing the second answer therefore overcomes the problem.

Here is my suggested answer to the question. Assume for the rest of this
section that T is the set of reals. A well-ordered set of reals has the following
property: for any real number x, be it in the set or not, there is a positive εx
such that the interval (x, x + εx) is disjoint from the set.18 Now for any f the
set WM(f) is well-ordered, so this property of well-ordered sets of reals im-
plies that the set of times at which the predictive functionM wrongly predicts
the immediate future is null. ‘The immediate future’ is here understood not
as the time instant immediately succeeding the present (there is no such time
when T = R), but rather as any time interval starting from but not including
the present. Suppose then that the sceptic uses the function M to predict his
world’s world history so that at any given time t he predicts that the world
history is M(ft). Whether or not this prediction lets him down at the present
time t, it will stand him in good stead in the immediate future, that is, through-

18Consider the subset of the well-ordered set consisting of elements greater than x. If this
subset is empty, the result follows. If not, it has a least element, y. Pick εx such that 0 < εx <
y− x.

Alexander Paseau, “Proving Induction”, Australasian Journal of Logic (9) 2011, 1–17

http://www.philosophy.unimelb.edu.au/ajl/2011
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2011 12

out a time interval (t, t + εt) for some positive amount εt. This is the sense
in which the Hardin–Taylor underwrites an inference about future observable
states of the world, and hence from observed states to unobserved states of the
world.

Thus understood, the predictive value of M should not be overestimated.
What εt might be for any given t cannot be determined in advance. In par-
ticular, the sceptic cannot make any plans for the future on the basis of the
theorem. For example, if M predicts that no predators will pounce at t, the
sceptic cannot go to sleep at t safe in the knowledge that his life is not en-
dangered. For one thing, t might be one of those few times at which M goes
wrong. For another, even if M is correct at t and thus at an interval starting
at t, as it almost always is if T = R, the interval [t, t + εt) throughout which
it is correct may be shorter than the time needed to renew his energies before
rejoining battle with his predators. In fact, there is no positive amount ε such
that εt must be larger than ε for any t: the greatest lower bound of the values
εt over all times tmay be 0. And the sceptic must keep on updating his partial
world history at every instant in [t, t+ εt); for if he doesn’t—if he takes M(ft)

as his best estimate of the world function throughout [t, t + εt)—he could go
wrong at all these times. Nevertheless, the sceptic can rest assured that the
function M will, for most times (if T = R), correctly predict some stretch of
the immediate future, of positive but unknown duration, in the sense we have
carefully specified.

6 :   19

We now argue for two main conclusions. The negative conclusion is that the
theorem does not solve the hard problem of induction. The positive conclu-
sion is that, given a particular choice of extension of set theory, it solves a
weaker form of the problem.

So far we have gone along with the idea thatM is a method or policy, which
counsels various predictions. But is that so? Take the most promising applica-
tion of the theorem, in which T = R (and S has more than one member). The
proof that there is a well-ordering of the reals is nonconstructive in the follow-
ing sense. A term is a formula {x : φ(x, y1, . . . , yn)} where φ(x, y1, . . . , yn) is a
wff whose free variables are y1, . . . , yn (if n > 0). A term is said to be definable
if and only if it can be expressed with no free variables. This definition accords
with the intuitive idea of definability, namely expressibility by a sentence rather
than an open formula. Using forcing, it can be shown that no well-ordering of
the real numbers is definable in .20 Applied to the case in which T = R,

19This section overlaps with my (2008).
20The result was proved in Feferman (1965). Note that if we augment the language of set

theory with a term ‘<RS’ and add to the axioms the formula ‘<RS’ is a well-ordering of RS’,
it would be easy to name a well-ordering of RS: its name would simply be ‘<RS’. However,
although we would then possess a name for the strategy that name would be uninformative. A
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the indefinability of a real well-ordering shows that the Hardin–Taylor theo-
rem is nonconstructive in a strong sense. The proof derives the function M
from a well-ordering of the set TS = RS of all functions from R to S. But it
would follow straightforwardly from the definability of a well-ordering of this
set that the real numbers also have a definable well-ordering.21 Thus the well-
ordering of RS which the proof uses to derive M is not definable. Hence the
Hardin–Taylor proof does not give us a method or rule or means of inference
for predicting the present. A method for predicting the present given the past
that cannot be expressed in words does not merit the label. If we cannot in
principle express or exhibit our supposed method, it is no method at all, not
even an in principle method.

To elaborate on this point, the following are methods or rules or means of
inference: ‘if you have observed that A1 to An are Bs, infer that all As are Bs’,
or ‘if you have observed that A1 to An are Bs, infer that no other As are Bs’.
But the latter is not: ‘if you have observed that A1 to An are Bs, infer that all
As are Bs if f(t) = 1’, where f is an unspecified function. This instruction is
impossible to follow unless one knows what f is. In the context of the hard
problem of induction, what this shows is that we cannot convince the sceptic
that there is some inductive method or rule or means of inference which is
truth-conducive. At most, we can convince him of the existence of a truth-
conducive function. What we would like to persuade the sceptic of, however,
is that such a function exists and that it can be applied, at least in principle, by
human reasoners.22

Now in some models of , there are definable well-orderings of both the
set of reals R and the set RR of functions from the reals to the reals. An exam-
ple is Gödel’s constructible universeL. If one adds the ‘axiom’ of constructibil-
ity to , which states that the class V, the universe of sets, equals the class
L, the universe of constructible sets, then all functions become definable. The
reason is that there is a global well-ordering of the universe in L (every set first
appears at some Lα and each set in Lα+1 is defined by a formula in the language
of set theory with parameter sets drawn from the well-ordered Lα), so one can
always define a set with a particular property (if there is one) as the least set
with that property in the global well-ordering. Yet the axiom of constructibil-
ity is not generally accepted.23 Similarly, the inner model HOD, the class of
hereditarily ordinal-definable sets, is also globally well-orderable and thus con-

bare stipulated name of this kind has no informational value.
21For example, the real number r may be identified with its characteristic function χr, where

χr(r) = s1 and χr(x) = s2 if x 6= r, for some distinct s1 and s2 in S.
22In several areas of mathematics, for example game theory or descriptive set theory, the

word ‘strategy’ is used to denote arbitrary functions of a certain kind, be they expressible or
not. We should not confuse this usage with the standard non-mathematical one, which is the
one relevant to the problem of induction. (Ditto for related uses of ‘method’, ‘rule’, ‘means of
inference’. . . )

23Gödel’s initial inclination to accept it notwithstanding. See Maddy (1993) for a summary
of arguments against V = L.
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tains a definable well-ordering of the set RR.24 Yet neither V =HOD nor any
other axiom extending  that implies that real well-orderings are definable
commands general acceptance.

In sum, the Hardin and Taylor theorem implies that a mostly correct pre-
dictive function exists if T = R. However, it does not follow that this func-
tion is definable. If in a century’s time say our accepted best set theory allows
for definable well-orderings of such functions—for example, if some principle
that entails the definability of a well-ordering of RR comes to be accepted—
the theorem could be used to establish the existence of a definable mostly
correct predictive function, assuming our world is of this type.25 As far as to-
day’s mathematics goes, however, the proof does not furnish the sceptic with a
truth-conducive means of inference.

7   T
How are we supposed to convince the sceptic that the set of times has a par-
ticular structure? For example, how might we convince him that T = R? There
are in fact two objections here. The first is difficult to assess, but the second
is fatal. The first objection asks how the sceptic is supposed to convince him-
self that the times he has experienced are modelled as the reals say rather than
the rationals or even the integers. Is the structure of experienced time an ob-
served fact? Arguably, no. That past time can be modelled as an interval of real
numbers (say) seems to be an inference to the best explanation of experience
rather than something given by experience itself. Yet inference to the best ex-
planation is not a means of inference available to our inductive sceptic. So by
assumption the sceptic is not justified in believing that the structure of past
times—the times he has already experienced—is given by the real numbers.

As I say, this objection is difficult to assess, because it is difficult to deter-
mine whether or not the structure of time is experientially given. As already
acknowledged the sceptic is an idealised being, so perhaps he can experience
a real time interval as a real time interval even if we more limited beings are
unable to do so. There is more to say on this point, but this is not the place to
do so. Either way, a second and fatal objection looms.

Suppose that time has so far assumed the structure of the real numbers, or
any set whose well-ordered subsets are small, even observably. Nevertheless,
the sceptic has no grounds for thinking this structure will continue into the fu-
ture. It follows that he cannot be persuaded that there exists a truth-conducive
function M. For example, perhaps in the past T has had the structure of a real
interval; yet that does not prevent it from being discrete in future. Given his
inductive scepticism, the inductive sceptic cannot brush aside this possibility.
As Hume pointed out, invoking a principle of uniformity, which states that the

24For a review of the relevant properties of L andHOD, see ch. 13 of Jech (2003).
25This would be an in principle construction of course, since the definability of a well-

ordering does not imply, say, its effectiveness.
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future will resemble the past, begs the question against the sceptic.26 This cir-
cularity objection is the besetting problem for purported solutions to the hard
problem of induction. For all the sceptic knows, then, the set of present and
future times he will experience is a discrete ordered set of a million instants.
If so, M can go wrong at all of them, and the Hardin–Taylor theorem does not
provide a mathematical recipe for doing any better.

This objection is unanswerable: the result that the set of present and future
times in WM(f) is a small subset of the set of present and future times in T
depends on what T is. Yet his future’s topology is not a fact available to the
sceptic.

8 :   S27

Does a version of the same objection apply to the choice of S? You might think
it does—after all, why should the inductive sceptic assume that some particular
set S is the set of world-states? All the world states he has so far observed may
be elements of S. But that this will continue to be the case is not a fact given by
experience, and there is no acceptable argument for it from the sceptic’s point
of view. Does this mean that we cannot get him to accept that the theorem
applies to his situation, as it assumes that world states will in future continue
to be drawn from S?

No. The sceptic may take S to consist of all previously observed states
s1, s2, . . . , together with the catch-all hypothesis ‘none of the above’. For
example, if the previously observed states are (the mutually exclusive) s1, s2,
s3, the catch-all hypothesis would be ¬s1 ∧ ¬s2 ∧ ¬s3; in other words S =

{s1, s2, s3,¬s1 ∧ ¬s2 ∧ ¬s3}. Or he might take S = {s1, s2, s3, s4,¬s1 ∧ ¬s2 ∧

¬s3∧¬s4} for some state s4 distinct from and mutually exclusive with s1, s2 and
s3. Or he might take S to consist of all the states of affairs he can conceive of.
Some of these he might have experienced, others he might not have. Suppose
for example that the sceptic can only conceive of two particulars, a and b and
two properties F and G. The conceivable atomic states of affairs are for him
Fa, Fb, Ga, Gb, and the conceivable world states, which may be taken as the
members of S, are their sixteen combinations �Fa∧�Fb∧�Ga∧�Gb.

Which set the sceptic adopts as S will naturally affect the predictive func-
tion M’s informativeness. For instance, taking S as {Fa,¬Fa} will result in a
predictive function with binary output. Taking S as the sixteen-membered set
consisting of the conjuncts of the atoms Fa, Fb,Ga,Gb and their negations will

26On the circularity of all such attempts Hume writes: “. . . all our experimental conclusions
proceed upon the supposition that the future will be conformable to the past. To endeavour,
therefore, the proof of this last supposition by probable arguments, or arguments regarding
existence, must be evidently going in a circle, and taking that for granted, which is the very
point in question.” (1748, pp. 35–6)).

27In this section we are prescinding from the objections in §6 and §7. We also assume that
S consists of observable states, for reasons mentioned in the fourth comment in §5.
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result in a more informative predictive function with 16 possible outputs.28

The informativeness of M (modulo the definability objection in §6) thus de-
pends on S. If the sceptic wishes to extract maximum information about the
future state of his environs, he should choose as fine-grained a set as possi-
ble. Either way, whether his choice of S is fine- or coarse-grained, there is no
corresponding objection to the one in §7. The sceptic can simply adopt any
partition of world states as the set S and apply the theorem for this particular
choice of S.

9   
On first appearance, the Hardin–Taylor theorem promises an a priori solution
to the hard problem of induction. Alas, for the two reasons given, it doesn’t
deliver on that promise. The non-constructive nature of the proof seems to
imply that the theorem does not establish a means of inductive inference, even
an in principle means (§6). The actual proof doesn’t define a predictive func-
tion, nor does it explain how to go about defining one. Perhaps the deepest
objection is the second one (§7), that the argument’s application to the hard
problem of induction assumes a time structure that the sceptic has no reason
to accept. Hume’s circularity objection strikes again.

And yet there is something of positive epistemological value to be extracted
from the Hardin–Taylor theorem. It solves a weaker problem of induction than
the hard problem, modulo the definability objection. This problem is that of
persuading an inductive sceptic that there is a mostly correct inductive func-
tion given T , that is, given the structure of time.29 Earlier, we called this the
parametrised hard problem of induction: the hard problem of induction with
T a shared parameter in the dialectic between sceptic and anti-sceptic. If it
weren’t for the problem of definability, the Hardin–Taylor theorem would solve
this problem. If only our generally accepted set theory took a slightly different
form (for example, if it incorporated the extra axiom V = L or V = HOD),
and if time were correctly modelled by some interval of the real numbers, as
we generally think it is, the theorem would demonstrate that the parametrised
problem of induction for the actual world is solvable. If set theory were to be
extended in such a way that well-orderings of the reals are definable—certainly
not something we can guarantee, yet neither something we can conclusively
rule out—the parametrised problem has an a priori solution. To put it another

28Consider two sets S1 and S2, each of which is an exhaustive and mutually exclusive set of
world states. Let f1 represent the world history with world-states drawn from S1 and f2 the
world history with world-states drawn from S2; thus f1 2 TS1 and f2 2 TS2 for some set of times
T . Suppose M1 and M2 are Hardin–Taylor functions derived for this respective choice of set of
world states. M1 andM2 correctly predict f on all but all a well-ordered set of times, so they are
compatible with each other on all but a well-ordered set of times, since they conflict at most on
the union of two well-ordered sets of times, which is well-ordered.

29As noted in §8, the sceptic can choose any S, though the finer-grained S the more infor-
mative the mostly correct predictions delivered by M will be.

Alexander Paseau, “Proving Induction”, Australasian Journal of Logic (9) 2011, 1–17

http://www.philosophy.unimelb.edu.au/ajl/2011
http://www.philosophy.unimelb.edu.au/ajl/


http://www.philosophy.unimelb.edu.au/ajl/2011 17

way, it is consistent with present-day mathematics that the parametrised prob-
lem is a priori solvable.

Although it falls short of all we might have wished for in reply to the scep-
tic, this is still a surprising epistemological implication. Many of us would not
have thought this much could be achieved.30
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