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Abstract: N. Cartwright’s results on invariance under intervention and causality (2003) are reconsidered. Pro-

cedural approach to causality elicited in this paper and contrasted with Cartwright’s apparently philosophical one 
unravels certain ramifications of her results. The procedural approach seems to license only a constrained notion of 
intervention and in consequence the “correctness to invariance” part of Cartwright’s first theorem fails for a class 
of cases. The converse “invariance to correctness” part of the theorem relies heavily on modeling assumptions 
which prove to be difficult to validate in practice and are often buttressed by independently acquired evidence.
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Cartwright’s Approach to Invariance under Intervention

Abstrakt: Ustalenia N. Cartwright dotyczące niezmienniczości przyczynowości w przypadku interwencji 
(2003) są przedyskutowane w artykule. Proceduralne podejście do przyczynowości skontrastowane jest z jednym 
z filozoficznych założeń twierdzenia Cartwright w celu ukazania konsekwencji jej rezultatów. Podejście proce-
duralne legitymizuje tylko w ograniczonym zakresie pojęcie interwencji, a w konsekwencji jej niezmienniczość 
ogranicza do pewnej klasy przypadków, których dotyczy twierdzenie Cartwright. Z kolei druga część omawianego 
twierdzenia opiera się głównie na założeniach modelowych, które okazują się trudne do sprawdzenia w praktyce 
i są często ograniczone niezależnie od podanych dowodów.

Słowa kluczowe: N. Cartwright, przyczynowość, interwencja

1. Introduction

N. Cartwright (2003) published results aiming to pin down the conceptual bonds 
between invariance under intervention and causal dependence. The results, which 
are commonly taken for granted (Cartwright 2007; Godfrey-Smith 2010; Hoover 
2009; Malaterre 2011; Pearl 2000; Woodward 2003; Woodward 1999), pertain to 
theories of causality. Besides, as Cartwright is right to emphasize “[t]his project is 
important to practicing science” (2003, 205). This seems to suggest that her pri-
mary focus is on the issues of causal inference as contrasted with the nature of 
causality. But from the point of view of the former, as will be argued in the ensuing, 
her results appear to have certain ramifications (Glymour 2010).

The primary practical concern as regards causality, I take it, seems to be whether 
the propounded causal claim can be sustained given the evidence. Fortunately, we 
don’t have to sit and wait until the relevant piece of evidence hits upon us, we 
reach for it by intervening on a causal mechanism operating out there in the world, 
or so we believe. Drawing upon a causal model at hand we set ourselves to form 
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expectations as to what would happen given an action is performed and then up-
date the model to accord with the actual result of the action performed (Eberhardt 
and Scheines 2007; Rickles 2009). This rough picture seems to pick out how we 
intuitively relate interventions to causality (cf. Woodward 2002, S369-S371) and in 
Section 3 below I will try to cast those intuitions in a more precise form.

And this is how I proceed in the ensuing. First, I highlight two common moti-
vations for drawing the link between causality and intervention. Next, I bring out 
the points of difference between how the two characterize intervention. With the 
modified notion at hand I will reconsider Cartwright’s first theorem. The paper 
concludes with discussion of the plausibility of the assumptions of the theorem as 
confronted with “practicing science”.

2. Intervention and Causality

I proceed now to indicate distinctive features of the twofold relationship betwe-
en causality and intervention. The pragmatic concern with intervention as under-
lying causality derives, at least in part, from the fact that in some cases it seems 
to be indispensable in discriminating which correlations among the data manifest 
a genuine causal relationship.1 as D. Hausman and J. Woodward put it:

[f]or most scientists, the crucial difference between the claim that X and Y are correlated and the 
claim that X causes Y is that the causal claim, unlike the claim about correlation, tells one what would 
happen if one intervened and changed the value of X. It is this feature of causal knowledge that is so 
important to action. (1999, 533)

This point on the relationship between causality and intervention may further 
be elaborated to back up scientists in inferring causal facts from data; such an ap-
proach will be henceforth referred to as procedural.2 Alternatively, the elaboration 
may also be oriented towards solving conceptual issues pertaining to philosophical 
theories of causality, especially the issue of reductive analysis of this notion. The 
difference between procedural and philosophical approaches in discussing the rela-
tion between causality and intervention is succinctly and perspicuously worded by 
P. Menzies and H. Price thus

we disavow any view which states that the meaning of causal statements is to be given in terms 
of their verification-conditions or the conditions for their warranted assertion. In our view, the notion 
of agency enters the analysis of causation not because experimental manipulations provide evidence 
for causal claims, but because the notion of causation is an extrinsic one which by its very nature is 
rooted in the idea of manipulation. (1993, 196)

1 Especially if it is neither the case when a causal dependence is uniquely determined by a distribution, nor 
the case when substantive assumptions could assist scientists in this task (Pearl 2000, 19; Gopnik et al., 2004).

2 A perspicuous illustration of this approach is in (Cooper 1999, 9-11). 
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Hausman and Woodward emphasize that the discrepancy between the two ap-
proaches becomes apparent when one turns to a reductive analysis of the notion of 
causality:

a number of philosophers, including R. G. Collingwood, Douglas Gasking, G. H. von Wright, and 
most recently, Peter Menzies and Huw Price have defended a more ambitious thesis. They have held, not 
just that there is a connection between causation and manipulation … but that one can appeal to this con-
nection to provide a reductive analysis of causation. (1999, 534; bibliographical references omitted)

Hausman and Woodward contrast then what I call here procedural with philo-
sophical approach to causality, especially with agency theories, arguing that in-
tervention “could not possibly provide a reductive analysis of causation” (1999, 
535; Hausman 1997, S19-S23). admittedly, I do not need to counter this claim 
while still holding that what is characteristic of philosophical theories of causality 
is that they take the notion of intervention to be constitutive of a notion of causality 
independently of how the meaning of the latter notion or a proposition in which it 
occurs is verified (Bontly 2006; Pearl 1995).

Of course, the above characterization is far from complete. The highlighted di-
stinctive features of the two approaches will suffice, however, for the task at hand, 
i.e. to set apart two different notions of intervention: Cartwright’s and procedural 
(as defined in Section 3 below).

Let me now turn to Cartwright’s analysis of intervention, which – despite the 
appearance to the contrary – bears the mark of philosophical approach. In contrast 
to agency theories, Cartwright rejects outright to attribute a substantive meaning to 
intervention as “setting the target feature were we wish it to be, or at will, or arbi-
trarily” (2003, 204). For, as she argues, “[n]either set of theorems requires a notion 
so strong. all that is required is that nature allow specific kinds of variation in the 
features under study” (2003, 204), “[or] – she continues in the footnote – if the right 
kind of variation does not actually occur, there must be a fact of the matter about 
what would happen were it to do so” (2003, 204 f. 1).3

She acknowledges that intervention “of the right sort” may well suffice for the 
right kind of variability, while not the reverse. For intervention may “mislead us 
into demanding stronger tests for causality than are needed” (2003, 205).

The point is reaffirmed in Section 2 of her paper in the context of the notion of 
intervention required for the first theorem. She admits:

it is the occurrence of these [causal] systems that matters for testing the correctness of causal 
claims; it is not necessary that they come to occur through anything naturally labeled an intervention 
or a manipulation. I shall, therefore, talk not of intervention but rather, of variation. (2003, 207)

3 as emphasized by Woodward (1999, 202) what matters for this kind of intervention is not the result of 
actually performed experiment, but the result of an ideal experiment which perfectly conforms to assumptions 
underlying the causal system on which the calculation of the causal effect of intervention is performed.
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and again in the footnote she continues:

it is mistaken to argue that manipulation is central to causation on the grounds that one important 
kind of test for causal correctness – the “invariance” test – cannot do without it. (2003, 207 f. 5)

Thus, Cartwright leaves room for discussion of the conceptual bond between 
manipulation and causation and therefore implicitly validates the distinction betwe-
en philosophical and procedural approaches (Cartwright and efstathiou 2011; Car-
twright 2007; Glymour 2010; Hoover 2009; Pearl 2010; Steel 2010; Weber 2010).

The claims brought out in the above quotations coupled with the commitment 
that

[t]his project is important to practicing science. When we know necessary or sufficient conditions 
for a causal-law claim to be correct, we can put them to use to devise real tests for scientific hypoth-
eses. (2003, 205)

give the impression that hers bears the mark of a procedural notion of interven-
tion.

on the definition she propounds (for a quote see Section 4) intervention takes 
place in a causal system, which is contrasted with its model, i.e. a causal structure. 
In the case a causal inference is pursued, as Woodward (2000, 204-205 f. 1) points 
out, causal systems fail to provide an “independent alternative (and non-trivial) 
characterization” of causal dependencies. Only when the issues pertaining to in-
ferring causal facts from data are disregarded for the sake of conceptual bonds 
between the notion of intervention and causality that causal systems are put back 
to work. Therefore, the notion of intervention Cartwright propounds is designed to 
resolve conceptual issues pertaining to the nature of causality.4

3. Marking out Intervention

Admittedly, a more detailed procedural theory relating intervention to causality 
will turn on how the former notion is characterized. It has to be acknowledged that 
Cartwright’s remarkable contribution is in demonstrating that intervention comes in 
a variety.5 Nevertheless, a comprehensive outline of the whole territory seems not 
yet forthcoming. even her own definitions of intervention are, as she admits, frag-

4 In commenting on Woodward’s claim S. Psillos observes a distinction analogous to the one postulated here 
between procedural and philosophical approaches to causality, but questions that the latter may also apply to the 
notion of intervention (2002, 106); see also (Glymour 2010).

5 Hausman and Woodward (2004) seem to counter this claim for its purported entailment of causal plural-Hausman and Woodward (2004) seem to counter this claim for its purported entailment of causal plural-
ism. But that such an entailment prevails would require a separate argument. See also (Woodward 1999, 202; 
Woodward 2003).
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mentary. So, I am not here going to set out myself with this formidable task and will 
only focus on what sets the procedural notion of intervention apart from others.

Cartwright’s criticism (2002) of the characterization of intervention by Hau-
sman and Woodward (1999) elicits two kinds of intervention of major importance. 
With regard to a causal system μ = <v, l>, where v is a set of m variables and l 
is a set of causal laws governing them, intervention may be set out either as modi-
fying the laws themselves leading thus to a modified causal system, or as changing 
the values of variables within the causal system and examining the effects it has for 
other variables. In this paper I am concerned with the former kind of intervention.

In response to Cartwright’s criticism Hausman and Woodward present an expli-
cit definition of “an arrow-breaking” intervention (2004, 149-50). Roughly, in the 
deterministic case an arrow-breaking intervention causes a given variable Xi to take 
on a particular value “regardless of the values” of any other variables in this model 
as well as error terms and interventions on other variables. The arrow-breaking in-
tervention on Xi is idealized not to be causally involved with any other interventions 
or error terms and cause variables other than Xi only via this variable (Spirtes et al. 
1999, 74). In other words, the arrow-breaking intervention is “a completely exoge-
nous direct cause of Xi which, for some values, sets the value or probability distri-
bution of Xi without regard to the values of the other causes of Xi” (2004, 150).

Both Cartwright’s notion of intervention as well as Hausman and Woodward’s 
raise concern (eberhardt and Scheines 2007; Rickles 2009; Glymour 2010). let us 
turn to the former. as pointed out in Section 2, on this account intervention takes 
place in the causal system, which is contrasted with its model, i.e. the causal struc-
ture. Correctness of a given “causal-law” claim in causal structure is tested against 
the results of intervention as specified in the corresponding causal system. In the 
case of causal inference there is no independent characterization of causal system 
other than investigating causal structures. If causal correctness of a given claim 
is tested against pre-intervention and post-intervention distributions, then causal 
structure may not be uniquely identified. Therefore the procedural definition of 
intervention needs to face this problem.

Now, the definition of arrow-breaking intervention on a variable Xi formulated 
by Hausman and Woodward is explicitly related to the set of variables V to which 
Xi belongs. Moreover, it is also implicitly related to at least another part of a causal 
model, i.e. to the causal laws binding the variables in V. This becomes apparent 
once we insist on a more explicit formulation of “regardless” which occurs in the 
definition (as quoted above). In consequence at least two different types of models 
have to be accounted for – in Cartwright’s terms – intervention takes place in a “test 
system” which is a transformation of a given “causal system”.6 Given the fact that 

6 M. Weber, for one, claimed that the assessment of causal powers of historical and unrepeatable events is 
only possible when a set of alternative models is considered rather than a particular model with the event consid-
ered (1922, 287).
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in most cases neither of these is uniquely determined by the underlying distribu-
tions, the procedural definition of intervention refers to sets of observationally indi-
stinguishable models7 which are compatible with the distributions8.

To conclude the above remarks, I proceed to characterize the procedural notion 
of intervention. A causal structure D = <V, L> consists of the set of variables V 
and the set of their functional dependencies L of the form Xi = fi(PAi, Ui) – where 
PAi ⊂ V is a set of parents of Xi (Pearl 2000, 14) and Ui is a random disturbance. 
A latent structure lS is a pair <D, O> (where O ⊆ V is a set of observed variables). 
Now, one latent structure lS = <D, O> is preferred to another lS’ = <D’, O> iff 
for every set of parameters ΘD compatible with D there exists Θ’D’ such that P[O]
(<D’, Θ’D’>) = P[O](<D, ΘD>). Finally, two further notions needed are: minimal lS 
and LS consistent with a distribution. LS is minimal with regard to a class of latent 
structures iff no member of that class is preferred to lS. and lS = <D, O> is con-
sistent with a distribution P* over O if there exists a parametrization ΘD such that 
P[O](<D, O>) = P*.

In general, the minimal set of structures consistent with a distribution P will 
extend beyond the true causal model. For a pre-intervention, i.e. nonexperimental 
distribution may leave unoriented links between some variables, may lead to wrong 
estimates of coefficients and may also leave out common causes (to be replaced by 
additional variables).

(PI)  PIX: L → XL  is an intervention on X ⊆ V in LS ∈ L iff L  is a set of mi-
nimal latent structures consistent with (pre-intervention) stable distribution 
P over V and XL is a set of minimal latent structures consistent with each 
(post-intervention) stable distribution 

i
PX ∈ PX (where 

i
PX is a transforma-

tion of P resulting from setting Xi = xi and dropping all laws of the form Xi 
= fi(PAi, Ui); PX is the set of such transformations for all Xi in X).

One idealization is that the distributions are stable (Pearl 2000, 48). Let 
I(P) denote the set of all conditional independence relationships embodied in P. 
I(P(<D, ΘD>)) is stable iff I(P(<D, ΘD>)) ⊆ I(P(<D, Θ’D>)).

Another idealization is that any constraints on which variables in V could be 
intervened on are ignored and it is taken for granted that for any variable in the 
model one could come up with an appropriate intervention. The upshot of these 
idealizations as with respect to the “invariance to correctness” part of the proof of 
the first Cartwright’s theorem will be considered in Section 6.

In their joint paper Hausman and Woodward (1999) observe a subtle point as 
regards observationally indistinguishable causal models. Admittedly, any interven-
tion in a causal system is modal. Even if two causal systems are observationally 

7 a similar point is discussed in (Spirtes et al. 2000, 50). Moreover, Spirtes et al. introduce variety of notions 
corresponding to “observational indistinguishability” (2000, 59-72).

8 For a precise formulation see (Pearl 2000, 24). 
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indistinguishable, intervention may well sustain empirically verifiable counterfac-
tuals yielding different expectations. apparently, a definition of intervention which 
aims at restoring our intuitive understanding of this notion should not be limited to 
the specification of the actions involved, but also pay close attention to its modal 
aspect. Such a definition should then tell us more about counterfactual states of 
affairs. apparently, the definition (PI) satisfies this postulate as causal structures 
intervened on can vary without violating observational equivalence.

In order to align it with the procedural definition of intervention (PI) invariance 
needs to be recast as follows:

(I)  a functional dependence G: Xi = fi(PAi, Ui) in LS ∈ XL is invariant under 
intervention PIPA: L →L PA (PA ⊆ PAi) iff G ∈ L’ for every L’ in L PA.

One idealization endorsed in (I) is that the new distributions in PPA change only 
those dependencies that could not be read off pre-intervention distribution P.

4. Cartwright’s Theorems on Causality and Invariance

Cartwright characterizes the task she sets herself out to accomplish succinctly 
thus:

To get clear about whether invariance under intervention is or is not necessary or sufficient for 
a causal-law claim to be correct, and under what conditions, we need to know what counts as an inter-
vention, what invariance is, and what it is for a causal-law claim to be correct. (2003, 204)

Both sets of theorems apply to linear deterministic systems. The first one may 
roughly be characterized as concerned with modification of a causal mechanism 
which leads to adding and dropping the relevant causal laws within a given causal 
system.

So, Cartwright’s first theorem reads:
A functionally true equation is causally correct iff it is invariant in all its independent variables, 

either singly or in any combination. (2003, 208)

Intervention on q in a given causal system μ results in a “test system”, which 
appends the set of laws in μ with the causal law that a target quantity q is set to 
a specific value Q (within the allowed range of q) and, as a consequence, all laws 
which take q as an effect are dropped.9

Cartwright defines the relevant kind of invariance thus:

an equation in a (linear deterministic) causal system <Q, Cl> giving a true functional relation 
(but not necessarily one that replicates one of nature’s causal laws) is invariant in q iff it continues 

9 This may come in an explicit form as well as be derived by numerical transitivity (A4), see (Cartwright 
2003, 207).
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to give a true functional relation for any value that q takes in any test situation10 for q relative to <Q, 
Cl>. (2003, 208)11

Admittedly, the proof of the implication “correctness to invariance” turns on 
the notion of invariance – on Cartwright’s definition this holds trivially for the only 
kind of laws dropped in the test system are those where qi was taken as a function 
of its causal parents. Therefore, as one would expect, this result may not hold for 
a different notion of intervention (eberhardt and Scheines 2007; Rickles 2009).

5. Variance and Effective Intervention

The procedural approach endorses tailoring of both the notion of intervention 
as well as invariance. The definition of intervention (PI) and of invariance (I) seem 
to incorporate the proper adjustments. With the modified notions I proceed to re-
examine separately both implications of Cartwright’s first theorem.

Correctness to Invariance
For all H: Xi = fi(PAi, Ui) if H is in a lS (compatible with distribution P), then H 

is invariant under intervention PIPA in all Xj ∈ PAi.
Consider LS in which G2: Xi = fi(Xj, Ui) holds. Suppose that in the set of varia-

bles V in LS no Xk exists such that it would yield G3: Xk = fk(Xi, Xj, …, Ui). It is 
then possible to find a distribution

j
PX such that Xj is dependent on Xi, but not the 

reverse.
Apart from this particular class of cases this implication holds analogously to 

the original.

Invariance to Correctness
For all H: Xi = fi(PAi, Ui) if H is invariant under intervention PIPA in all Xj ∈ PAi, 

then H is in a lS (compatible with distribution P).
Proof. The intervention PIPA transforms P into the space of probability distri-

butions PIPA. It follows from the definition of PIPA that for all L’ ∈ L PA H ∈ L’. H 
preserves then all probabilistic independencies for all 

n
PX ∈ PPA. Hence, H is in at 

least one observationally indistinguishable LS compatible with P.
In the next section we need to face reasons why the assumptions and idealiza-

tions used in establishing the latter implication could – and sometimes are – under-
mined in “practicing science”.

10 I assume that the phrase “test situation” in the definition should read “test system”.
11 There is an ambiguity in describing the first element in <Q, Cl> as an ordered set of quantities <q1, …, qm>. 

The second element is a set of causal laws qk c= Σj<kakjqj, where akj is a real number and the laws satisfy Cartwright 
six axioms (2003, 205-206). Moreover, the notion of invariance in the proof is ambiguous as Cartwright moves 
between invariance of causal systems and – an undefined concept of – invariance of representation of those sys-
tems.
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6. Causal Systems and Confounders

We may now ponder to what extent the inference from “invariance to correct-
ness” is a matter of conceptual analysis and if the stubbornness in applying it is not 
an argument for its contingency (Cartwright 2004; Clarke 2010).

Pearl, for one, answers succinctly thus:

the assumption that one is in the possession of a probability function on all variables relevant to 
a given domain … absolves the analyst from worrying about unmeasured spurious causes that might 
(physically) affect several variables in the analysis and still remain obscure to the analyst. It is well 
known that the presence of such “confounders” may reverse or negate any causal conclusion that 
might be drawn from probabilities. (2000, 252)

The most ardent critic of straightforward acceptance of “invariance to correct-
ness” on merely conceptual grounds, David Freedman, gives a list of reasons why 
the assumptions fail in many empirical studies:

effects are weak and inconsistent. endpoints are poorly defined. There is an extensive search for 
statistical significance. Important confounders are ignored. (1999, 12)12

a compelling example of successful scientific investigation on causal facts he 
cites is research on cervical cancer:

This cancer has been studied for many years. Some investigators have identified the cause as tis-
sue irritation; others point to syphilis, or herpes, or chlamydia; still others have found circumcision 
of the husband to be protective. … Today it is believed that cervical cancer is in large part a sexually 
transmitted disease, the agent being certain types of human papillomavirus, or HPv. There is sug-
gestive evidence for this proposition from epidemiology and from clinical practice, as well as quite 
strong evidence from molecular biology. If so, the earlier investigators were mislead by confounding. 
(1999, 13)13

The moral is then that in establishing causal influence one needs to combine dif-
ferent kinds of evidence in order to get an independent warrant in case the modeling 
assumptions turn out defective. Commenting on the result that smoking causes lung 
cancer Freedman concedes:

The strength of the case rests on the size and coherence of the effects, the design of the underlying 
epidemiologic studies, and on replication in many contexts. Great care was taken to exclude alterna-
tive explanations for the findings. even so, the argument requires a complex interplay among many 
lines of evidence. Regression models are peripheral to the enterprise. (1999, 16)

12 For a similar discussion and list see also (Cooper 1999, 11).
13 For other examples see also (Greenland et al. 1999).
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Analogous observations are ubiquitous in the literature and often are stressed 
by scientists who deal with weak causal dependencies, especially sociologists and 
epidemiologists.14

These critical remarks, especially Freedman’s objections (Freedman and Hum-
phreys 1999), could be alleviated by paying attention to disparities in investigated 
cases. In (2004) a. Gopnik, C. Glymour and their co-workers compellingly argue 
that apart from data a system for causal inference draws upon two kinds of assump-
tions: formal (general knowledge mainly concerning mathematical properties of 
data) and substantive (domain specific knowledge about types of causal depen-
dencies).15 It might then be conjectured that in cases when substantive knowledge 
is considerable, the modeling assumptions could be relied upon with a confidence 
(Pearl 1995b, 12). Otherwise, researchers have to gather more varied and more 
ample evidence independently of the modeling assumptions:

[i]n complex fields like the social sciences and epidemiology, there are only few (if any) real life 
situations where we can make enough compelling assumptions that would lead to identification of 
causal effects. (Pearl personal communication, I quote from Freedman 2002, 15)

7. Conclusion

a proponent of philosophical approach need not be distracted by this kind of 
problems for in this case the “invariance to correctness” part of Cartwright’s the-
orem may rely on assistance of substantial metaphysical claims (Clarke 2010; 
Glymour 2010). A prominent illustration is the notion of invariance understood 
as stable configurations of capacities which give rise to “nomological machines” 
manifesting themselves in causal laws.16 Only when confronted with the problem 
of identification – pertaining to procedural approach – this kind of solution will 
perhaps drive us back to the discussion of the previous section.

To conclude, it turns out that when we attend to the problems of “practicing 
science” we do not seem to be driven by Cartwright’s results far beyond her dictum 
“No causes in, no causes out”.17

14 J. Robins comes up with a telling argument. He identifies a case in which a hypothesis that a given variable 
has a direct effect on another variable is identifiable based on the observed data, but “cannot be tested simply by 
testing for the presence of absence of arrows in the DAG” (1999, 350).

15 A similar distinction is observed also in Pearl 1995a, 1999.
16 Cartwright’s focus on what “capacities do and why we need them” rather than on what they are obscures 

the fact that her interest is ultimately ontological (1999, 73; Psillos 2002, 192). This problem seems analogous to 
the one encountered in Section 2 in classifying Cartwright’s approach to causality as procedural.

17 The paper is a revised version of my preprint (Kawalec 2004).
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