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Abstract

Neo-Fregean approaches to set theory, following Frege, have it that sets are the

extensions of concepts, where concepts are the values of second-order variables. �e

idea is that, given a second-order entity X, there may be an object εX, which is

the extension of X. Other writers have also claimed a similar relationship between

second-order logic and set theory, where sets arise from pluralities.
�is paper considers two interpretations of second-order logic—as being either

extensional or intensional—and whether either is more appropriate for this approach

to the foundations of set theory. Although there seems to be a case for the extensional

interpretation resulting from modal considerations, I show how there is no obstacle

to starting with an intensional second order logic. I do so by showing how the ε
operator can have the e�ect of ‘extensionalising’ intensional second-order entities.

It is o�en thought that there is a close connection between sets and the denotation of

the second-order variables under various interpretations of second-order logic. Even if it

is denied that second-order entities just are sets (as, for example, is famously claimed by

Quine, 1970), it might be thought that sets ‘arise’ from second-order entities in some

way.

So, for example, Frege’s (inconsistent) set theory had it that sets are extensions of
concepts (which are what his second-order variables range over). More recently, attempts

to extend the neo-Fregean programme of Bob Hale and CrispinWright (Hale andWright,

2001a) to set theory have followed suit to some extent, albeit with restrictions on which

concepts form sets (e.g. Boolos, 1989; Hale, 2000; Shapiro, 2003). In addition, a number

of articles which are less explicitly Fregean in motivation have claimed that sets arise

from the denotation of second-order variables, where second-order quanti�cation is

interpreted as plural quanti�cation (e.g. Burgess, 2004; Linnebo, 2010).

Call such an approach to set theory the abstractionist approach1. �e idea is that, for a

second-order entity X, there may be (though will not always be, on pain of contradiction)

an object εX, which is the set of X.2 Central to an abstractionist approach to set theory

1�is is a somewhat wider use of the term ‘abstractionist’ than is common, where it is used to refer to an

explicitly Fregean and neo-Fregean approach to mathematics in general.

2�is way of putting things does not do justice to the plural interpretation of second-order logic, nor,

arguably, to the interpretation of second-order logic over concepts.

Under the plural interpretation, it would not be right to call the denotation of X a single entity. Instead, for
plural quanti�ers, this should read as ‘for any objects xx, there may be a set εxx, which is the set of them.’ And

it may not be correct to refer to the values of second-order variables as entities on the concept reading, since
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will be a principle of extensionality similar to a restriction of Frege’s Basic Law V. Where

X and Y are second-order entities which do have a corresponding set,

(Ext) εX = εY ↔ ∀x(Xx ↔ Yx)

Now, a question arises concerning the interpretation of second-order logic which

is appropriate for this approach to set theory. In particular, there is a choice between

an extensional interpretation of the second-order quanti�ers—for example, as plural
quanti�cation, so that sets arise from pluralities—and an interpretation of the second-

order quanti�ers as being over intensional entities, such as properties or Fregean concepts.
In this paper, I shall look at considerations concerning the modal properties of various

interpretations of second-order logic and of sets which seem to tell in favour of the

plural interpretation. In particular, on this interpretation, sets can be seen as inheriting

their extensional nature from the extensional nature of the second-order entities. I shall,

however, argue that there is no obstacle to proceeding with intensional second-order

logic, and will show how one can proceed in such a way, by making use of trans-world

identity conditions which have the e�ect of ‘extensionalising’ the second-order entities.

�e outline of the paper will be as follows. In section i, I shall �esh out in more detail

the general shape that an abstractionist set theory may take in a non-modal setting, and

what the intended interpretation of the ‘ε’ operator would be in this setting. My aim

will be for this to be general enough so as to accommodate a wide range of theories

or positions which can reasonably be called abstractionist. In section ii, I shall discuss

extending the theory of the previous section to modal contexts. In particular, I shall

consider the modal behaviour of the second-order quanti�ers and the expected modal

behaviour of sets. At this point, it will become apparent that there is a prima facie
argument in favour of an extensional interpretation of the second-order quanti�ers, since

then the modal properties of the second-order quanti�ers will be very similar to the

modal properties of sets.

In section iii, I consider a way of avoiding the conclusion of this argument by restrict-

ing attention to only certain kinds of property, which I then go on to dismiss. Finally, in

sections iv and v I present my own solution to the problem, whereby the ε operator has
the e�ect of ‘extensionalising’ concepts. Section iv concerns the semantics of such an

operator, and v shows how the correct behaviour can be described in the object language,

by adopting a trans-world principle of extensionality.

i. Abstractionist Set�eory

�e key feature of an abstractionist set theory—as I shall understand it here—is the

presence of a type lowering function ε. By this I mean a function which takes a second-

order term in its argument place, and which results in a �rst-order term. Where X is a

this may suggest that they are a kind of object, and thus values of �rst-order variables.

For simplicity’s sake, I shall continue to write of the value of a plural variable or a concept variable as being

a single entity, with the understanding that this could be transformed to whichever strictly correct reading may

be preferred.
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second-order term, εX will be a �rst-order term which should be read as ‘the set of X ’
or something similar.3 Such operators are also o�en called abstraction operators; I shall
for the most part follow this usage.

If any set theory is to be carried out in such a framework, it will obviously be necessary

to de�ne a membership relation. But this is easily done. We can simply take ‘x ∈ y’ to be
an abbreviation of ∃X(y = εX ∧ Xx). With extensionality on board, it is then possible

to prove that, where εX exists, x ∈ εX and Xx will be equivalent.4

Now, if a full impredicative comprehension scheme is part of the second-order logic,

then it can not be the case that for every X, ‘εX ’ denotes a set.5 If that were the case, a
näıve comprehension principle for sets would result, and Russell’s paradox would follow

shortly therea�er—we simply take the second-order entity R de�ned by the formula

‘x ∉ x ’, and consider the resulting set.

So, set abstraction must be restricted somehow. Although I do not wish to dwell on

this issue—my principle concern is with the behaviour of the sets that do exist—I will note

what may be done to achieve this. �ere are two questions concerning restriction: �rstly,

what the restrictions will be (i.e. which second-order entities form sets) and secondly,

how these restrictions will be imposed.

On the �rst of these, one may wish to impose either necessary conditions, su�cient

conditions, or necessary and su�cient conditions for a second-order entity to have a

corresponding set. So, for example, Boolos, 1989 gives as a necessary and su�cient

condition that a concept not be in a one to one correspondence with the universe. Or,

the existence assumptions which form part of the standard ZF axioms can be seen as

giving su�cient conditions for a concept to have a corresponding set.6

In terms of actually imposing a restriction, there are two options. �e �rst is to adopt

a free logic, and so allow that not every function is total, and not every singular term

3It would also be possible to proceed instead with a relation between second-order entities and �rst order

entities, Set(X , x), where this is to be read as ‘x is the set of X ’, or something similar. �is is the approach taken

by Burgess, 2004 and Linnebo, 2010.�ere are a few reasons why I have chosen to proceed with a type-lowering

function rather than a relation: (1) �ere is a long history, going back to Frege, 1893, of examining principles of

a form similar to (Ext)—called abstraction principles—which make use of type-lowering functions. (2) My

aim in this paper will be to argue against some reasons for thinking that, for the purposes of abstractionist

set theory, sets should be thought of as arising from pluralities rather than properties. It seems to me that

these reasons are stronger when considering the functional approach. So, by concentrating on the functional

approach, I am addressing a (prima facie) stronger, rather than weaker, argument.

In any case, is should be apparent that both approaches are in all other respects equivalent.

4Proof : For the le� to right direction, suppose that x ∈ εX. �en, by the de�nition, ∃Y(Yx ∧ εX = εY). By
extensionality, since εX = εY), ∀y(Xy↔ Yy). So, since Yx, Xx as required.

For the right to le� direction, suppose Xx. �en, trivially (but making use of the existence of εX, εX =

εX ∧ Xx. �us ∃Y(εX = εY ∧ Yx), which is x ∈ εX as required.

5I will not consider approaches that place restrictions on the second-order comprehension principle.

6�at this is the case allows one to easily develop a theory within this framework which interprets all of

ZFC. Simply add to (Ext1) set existence axioms such as:

¬∃xXx → E!εX(Empty set)

∀x(Xx ↔ x = u ∨ x = v) → E!εX(Pairing)

∀x(Xx ↔ ∀y(y ∈ x → y ∈ u)) → E!εX(Power set)

and so on for other existence axioms. �en choice can be taken to be a principle in the second-order logic, and

foundation can be achieved simply by restricting quanti�ers to well-founded sets.
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refers. �en we can allow that, for ‘bad’ second-order entities X (such as the one de�ned

by the formula ‘x ∉ x ’), ‘εX ’ does not refer to any object. Explicit existence assumptions

can then be given in terms of an existence predicate ‘E!’, where ‘E!x ’ is an abbreviation

of ‘∃y(y = x)’.
In this case, extensionality can be restricted as follows:

(Ext1) ∀X∀Y[E!εX ∧ E!εY → (εX = εY ↔ ∀x(Xx ↔ Yx))].

�en necessary, su�cient, or necessary and su�cient conditions for X to have a corre-

sponding set can be given as:

E!εX → ϕ(X), ϕ(X) → E!εX , ϕ(X) ↔ E!εX

respectively.7

A second way of restricting is to let all bad second-order entities map to the same

‘dummy’ object. �is way of restricting set abstraction, which is adopted by Boolos, 1989,

has been the focus of much of the discussion concerning neo-Fregean set theory. It has

the advantage of not requiring a free logic, but it has a disadvantage in that it does not

easily allow for set existence assumptions which do not take the form of a necessary and

su�cient condition stateable as a formula of the language.

If we add a primitive predicate of second-order terms ‘Good(X)’ to the language,

then we can express extensionality as follows:

(Ext2) ∀X∀Y[εX = εY ↔ (¬Good(X) ∧ ¬Good(Y) ∨ ∀x(Xx ↔ Yx))]

�is has the e�ect of mapping all bad second-order entities to the same object, and

mapping other second-order entities to objects extensionally. Necessary, su�cient or

necessary and su�cient conditions for a second-order entity to have a set can then be

given as:

Good(X) → ϕ(X), ϕ(X) → Good(X), ϕ(X) ↔ Good(X)

7�is way of restricting extensionality and stating existence conditions will likely not be acceptable from a

neo-Fregean point of view. �e reasons are (1) it makes use of the abstraction operator ‘ε’ in the restriction (see,

e.g. Wright, 2001, pp. 9–10 for reasons why neo-Fregeans �nd this unacceptable). (2) Existence assumptions

here are explicit, whereas neo-Fregeans would like existence claims to follow from the abstraction principle

itself.

However, in certain circumstances, there will be equivalent ways of restriction which are acceptable for the

neo-Fregean. When ϕ(X) is a su�cient condition for X to have a set, then the following will be equivalent to

(Ext1) together with the restriction:

∀X∀Y(ϕ(X) ∧ ϕ(Y) → εX = εY ↔ ∀x(Xx ↔ Yx)).

(�is is essentially the same as the form of restriction (A) discussed by Hale, 2000.)

When ϕ(X) is a necessary and su�cient condition for X to have a set, the following will be equivalent to

(Ext1) together with the restriction:

∀X∀Y(εX = εY ↔ ϕ(X) ∧ ϕ(Y) ∧ ∀x(Xx ↔ Yx)).

In either of these cases, if ϕ is a sentence which does not involve the abstraction operator, the resulting

principles avoid the problems which face (Ext1).
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If necessary and su�cient conditions for goodness are given by a formula ϕ(X), then

clearly we can dispense with ‘Good’ as a primitive, by replacing ‘Good(X)’ with ‘ϕ(X)’

in the above (as is the case in, for example Boolos, 1989). But if we only have a su�cient

condition or a necessary condition, we must retain the primitive predicate.

Which approach is taken does not have much in the way of consequence for the

questions that I am considering. From now on, I shall adopt the free logic approach since,

in easily accommodating a wider variety of restrictions, it is in many respects the more

general of the two. It also simpli�es the semantics somewhat, since there is no need for a

distinguished ‘dummy’ object for bad concepts to map to. But not much hangs on this.

Model�eory And Intended Interpretations

Just as it could be said that the intended interpretation of ‘∈’ in standard treatments

�rst-order set theory is the realmembership relation (or at least, the membership relation

in the ambient set theory), so too can we single out the intended interpretation of the

abstraction operator. First, it should be noted what a model will be, and what form any

interpretation of ε must take.

A model will be a tripleM = ⟨D,D2 , I⟩. Here, D is the domain of the �rst-order

variables, and D2 ⊆ P(D) is the domain of the second-order variables.8 I shall only

consider full second-order models, so thatD2 is the full powerset of D, but nothing of
import hangs on this for my present purposes. I is an interpretation function, which

maps each item of non-logical vocabulary onto entities of the appropriate kind.

In the present case, there is only one item of non-logical vocabulary—namely, the

abstraction operator ε. Since ‘ε’ is to denote a function from second-order entities to

�rst-order entities, I(ε) will be a (partial) function I(ε) ∶ D2 → D. Moreover, there is a

natural intended interpretation. �is will be, for Y ∈ D2:

I(ε)(Y) = {
Y Y ∈ D
unde�ned Y ∉ D

�us, it takes each subset ofD onto itself if it is also amember ofD, but remains unde�ned

otherwise. �is interpretation will only make sense (or rather, de�ne a function which

is at least partly de�ned) when there are some subsets of the domain D which are also

members of D. But this will be the case for most natural models of set theory, such as

transitive sets, where every member of D is also a subset of D, or models built up from a

set of urelements by successively taking powersets.

Satisfaction in the model and relative to a variable assignment a will then just be

given in the standard way. It should be noted that, since the language features functional

expressions, it is necessary �rst to recursively de�ne the denotation of terms, including

complex terms, with respect to an assignment. �is I shall denote as tM,a . For a (�rst- or

8By only considering one second-order domain, this will only accommodate monadic second-order logic.

But since the target of study is the abstraction operator ε, which acts only on monadic second-order entities,

this will su�ce. (In addition, in the case of plural logic, it is quite unclear what polyadic second-order variables

might refer to.)
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second-order) variable v, vM,a = a(v). For a non-logical primitive ξ, ξM,a = I(ξ). For a
complex term f (t1 , . . . , tn), ( f (t1 , . . . , tn))M,a = fM,a(tM,a

1 , . . . , tM,a
n ). In particular,

for set abstract terms of the form εX, (εX)M,a = εM,a(XM,a). Satisfaction of a formula

in a model with respect to a variable assignment can then proceed in the usual way.

ii. Modalising

So far, there will be no di�erence—at least, no technical di�erence—between the abstrac-

tionist approach when taking the second-order quanti�ers to be plural quanti�ers, and

the same approach when taking the second-order quanti�ers to range over something

like properties or concepts.9 In both cases, the semantics is the same, where subsets of D
are taken as surrogates for second-order entities. A di�erence does however occur when

developing the underlying logic to amodal logic, in which case the natural semantics

di�er.

Modal Set-theoretic Targets

Before considering the modal logic of plural quanti�cation and quanti�cation over

properties, it will be useful to survey the modal properties that could be expected of

sets.10 For the sake of simplicity, I shall consider only cases where the domain is constant

across worlds, so that objects exist of necessity. I shall also assume that the modal logic

satis�es the S5 axioms, so that the accessibility relation is an equivalence relation.

In such a case, we would expect the following rigidity principle to hold of sets:

(Rigid∈) ◻∀x∀y(◊x ∈ y → ◻x ∈ y)

�is can be thought of as the combination of two principles. Firstly, that if an object is a

member of a set, then necessarily it is a member of that set (x ∈ y → ◻x ∈ y). Secondly,
that if an object is not a member of a set, then necessarily it is not a member of that set

(x ∉ y → ◻x ∉ y, or, contraposed, ◊x ∈ y → x ∈ y).
�is principle can be seen as resulting from some plausible considerations concerning

the nature of sets. One may, for example, claim that it is essential to a set that it has

the elements that it actually has. Or, informal considerations concerning extensionality

could play a role: given a set x, had there been a set with di�erent members, it would not

have been the same set as x. Although (Rigid∈) may be thought of as being motivated

by extensionality, it does not follow from (Ext) nor from the more standard form of

9One di�erence in the non-modal case might be achieved by restricting plural comprehension to cases

where a formula is instantiated by at least one (or perhaps at least two) objects. �e rationale behind this would

be that it is incorrect to say, for example ‘there are some things which are all and only the non-self-identicals’—

there isn’t even one non-self-identical, let alone some non-self-identicals. I am following Burgess, 2004 and

Linnebo, 2010 in ignoring such a consideration. Ultimately, this may be a feature of plural logic which tells

against it as a basis for abstractionist set theory (since then it may not be able to accommodate the empty

set). My discussion will however only concern di�erences between the interpretations with respect to modal

behaviour.

10See, for example, Fine, 1981, Parsons, 1983 andWilliamson, 2010 for arguments that sets should be expected

to obey such properties.
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extensionality as expressed using a primitive membership relation. One of my main aims

in section v will be to show how a more general version of extensionality does entail

(Rigid∈).

Another principle which has been suggested is the following:

(RigidSet) ◻∀x(◊∃X(x = εX) → ◻∃X(x = εX))

�is expresses the idea that nothing that actually is a set could have failed to be a set, and

that nothing which is not a set could have been a set. Again, this seems to be a natural

principle to adopt.

�ese principles then should be the targets for any modal set theory. �e obvious

question to ask is: do either of the plural version or property version of the abstraction

approach do better at hitting such a target? In order to evaluate this question, we need to

look more carefully at the modal properties of each version.

Modal Second-order Logic

In a modal setting, the interpretation of second-order quanti�cation as plural quanti�ca-

tion and its interpretation as quanti�cation over properties are likely to come apart (see,

for example Williamson, forthcoming, but see also Hewitt, 2011 for a dissenting view).

�e reason is that a plural variable will refer to some objects, and, being a variable, will do
so rigidly. Hence, an assignment will assign a plural variable the same extension at every

world. A concept variable will refer to the same concept in each world, but the extension

of a concept may vary with each world. Hence an assignment will assign to each concept

variable a function from worlds to the extension of the concept in that world.

More formally, we can extend the semantics of non-modal second-order logic in

the following way. As usual for a quanti�ed modal logic, a model with be of the form

M= ⟨W ,D, I⟩,11 whereW is a set of worlds, and D is the domain of objects (i.e. values

of �rst-order variables). In contrast to the non-modal case, we will now have di�erent

domains for second-order variables depending onwhether we take them to be extensional

(as in the case of plural variables), or intensional (as in the case of concept variables).

�e domain of the plural variablesDpl will simply be P(D). For concept variables, by

contrast, the domainDpr will be the set of functions f ∶W → P(D).

Since we are now distinguishing between plural quanti�cation and concept quanti�-

cation, it will be useful to set up di�ering notation for the variables. For plural variables,

I shall use repeated lower-case letters, xx , yy, zz etc., and for concept variables, capital

letters, F ,G ,H etc. �en plural membership (x is one of xx) will be denoted with ≺ (so

that ‘x ≺ xx ’ means that x is one of xx).
�e interpretation function will di�er slightly from the non-modal case. Whereas

there the interpretation function is simply a map from non-logical vocabulary to entities

of the appropriate kind, in the modal case it will be a binary function from worlds and

non-logical vocabulary to entities of the appropriate kind. �e reason is that we may

11Since the underlyingmodal logic will be S5, I am for simplicity omittingmention of an accessibility relation;

every world will be accessible from every other world.
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wish to allow for non-rigid designators—terms which denote di�erent entities depending

on the world at which they are evaluated. So, for example, we may wish to have a non-

rigidly designating constant c, in which case for each w ∈W I(c,w) ∈ D, but, for some

w ,w′ ∈ W , I(c,w) ≠ I(c,w′). �is di�ers from most approaches to quanti�ed modal

logic, where the interpretation function is monadic, as in the non-modal case. �us the

non-logical primitives are assumed to be rigid, and non-rigidity only arises (if at all) in

the case of complex terms. I wish to consider non-rigidly designating primitives since

doing so will provide an option concerning the interpretation of ε (albeit one which I

shall reject). However, since for the most part I shall be considering rigidly designating

non-logical constants, I shall o�en suppress mention of the world and simply write I(ξ)
for the interpretation of ξ.

Given the two domains of the second-order variables and the interpretation function,

the relevant part of the semantics can then be given. Firstly, a variable assignment

a will assign to each concept variable F an element a(F) ∈ Dpr, and to each plural

variable xx an element a(xx) ∈ Dpl. �en, as before, a denotation can be given to each

term with respect to an assignment. As was the case with the interpretation of the non-

logical vocabulary, denotations will be relative not just to a model and an assignment,

but also to a world. So, each term t has as a denotation tM,w ,a . Similarly to the non-

modal case, this can be de�ned inductively as follows: for variables v of various types,
vM,w ,a = a(v); for a non-logical primitive ξ, ξM,w ,a = I(ξ,w), and for a complex term

f (t1 , . . . , tn), ( f (t1 , . . . , tn))M,w ,a = fM,w ,a(tM,w ,a
1 , . . . , tM,w ,a

n ). I shall leave it open,

for the moment, how exactly this should apply to set abstract terms, since there will be

a number of options, depending, for example, on whether it is taken to apply to plural

terms or to predicate terms.

�en, satisfaction can be de�ned along usual lines. In particular, predication, plural

membership and the two kinds of second-order quanti�cation will have as their semantic

clauses:

M,w , a ⊧ Ft i� tM,w ,a ∈ a(F)(w)

M,w , a ⊧ t ≺ xx i� tM,w ,a ∈ a(xx)

M,w , a ⊧ ∀Fϕ i� for each f ∈ Dpr , M,w , aFf ⊧ ϕ

M,w , a ⊧ ∀xxϕ i� for each X ∈ Dpl , M,w , axxX ⊧ ϕ

where aFf denotes the assignment which is identical with a with the exception of mapping

the variable F to the function f (and similarly for axxX ).

With these semantic clauses in place, it is easy to see that plural quanti�cation and

concept quanti�cation will di�er. In addition, this di�erence will manifest itself in the

object language12 in the form of principles very much like (Rigid∈). In particular:

12Unlike, say a di�erence between the second-order domain being all subsets of D versus just the second-

order de�nable subsets of D.
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Proposition ii.1. �e following principle concerning plural quanti�cation is valid:

(Rigidpl) ◻∀x∀xx(◊x ≺ xx ↔ ◻x ≺ xx)

whereas the corresponding principle for properties:

(Rigidpr) ◻∀x∀F(◊Fx ↔ ◻Fx)

is not valid.

Proof. �at (Rigidpl) holds at any world in any model follows simply from the fact that,

for any assignment a, whetherM,w , a ⊧ x ≺ xx does not depend on w.
A countermodel of (Rigidpr) can be given byW = {w1 ,w2}, D = {0, 1}. �en a vari-

able assignment a such that a(F) is the function given by a(F)(w1) = {0}, a(F)(w2) =

{1} will clearly provide a counterexample.

�at (Rigidpl) is valid and (Rigidpr) is not valid is very natural. If something is one

of some things, then is can not but be one of those very things. But, if something has a

property, it will not in general be the case that it necessarily has that property.

�e Prima-facie Case Against Properties

Now, it may seem at this point that, in order to pursue an abstractionist approach to

set-theory, we must take the second-order quanti�ers to be plural quanti�ers; pluralities

satisfy the same rigidity properties as sets, whereas concepts do not. �us the extensional

and rigid nature of sets could be seen to be inherited from the pluralities from which they

arise. And, indeed, a number of authors have taken the intensional and non-rigid nature

of concepts to mean that extensional entities—such as sets—may not arise from them in

the way in which sets may arise from pluralities. Instead, corresponding to concepts will

be some kind of intensional objects.

So, for example, Linnebo, 2006, 2010 claims that pluralities give rise to sets in a broadly

abstractionist manner, but that concepts give rise to objects which he calls properties. (It

should be noted that this use of ‘property’ di�ers from mine. In particular, I have used

the word to refer to values of second-order variables, whereas for Linnebo, properties

are a kind of object, and thus a possible value of �rst-order variables.) Moreover, the

reasoning that he gives for this distinction derives from the di�ering modal properties

of pluralities and concepts, so that ‘the intensional nature of concepts o�en prevents

concepts from de�ning sets’ Linnebo, 2010, p. 150. In Linnebo, 2006, he gives more detail.

First, he notes, as I have done, that concepts do not behave rigidly:

�e identity of a concept . . . is tied to its condition of application . . . . Had

there been other objects satisfying the condition . . . than there actually are,

then these objects too would have fallen under the concept . . . . And had

some of the objects which actually satisfy the condition . . .not done so, then

they would not have fallen under this concept. (p. 159)
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�en, introducing properties as ‘nominalized concepts’, he asserts that

Because properties are just nominalized concepts, they inherit their essen-

tial properties, namely their conditions of application. �is means that

properties and sets have completely di�erent essential properties. (p. 160)

Other writers have entertained similar claims, albeit not corresponding as closely to

the present framework (i.e. that of considering two forms of second-order modal logic

and taking sets to be abstracted from the second-order entities). So, Parsons, 1983, p. 303

considers distinguishing between sets, which are ‘constituted by their elements’, with the

result that ‘set membership is rigid’, from classes, which are ‘constituted by predicates’,

with a possible consequence that we ‘reject the rigidity ofmembership for classes’. Barcan

Marcus, 1974makes a similar distinction between classes (which correspond to predicates

and are non-rigid) and ‘assortments’, which are rigid.

I wish to claim that the poor �t between the modal behaviour of properties and sets

need not rule out an abstractionist set theory based on the intensional interpretation of

second-order logic. To get clearer on the obstacles that face the concept-based approach,

it will be useful to consider an argument which purports to show that intensional logic

can not be used for such a purpose. �at argument is as follows: First, instantiate y in
(Rigid∈) with εF (where we assume that εF exists). �en we get:

◻∀x(◊x ∈ εF → ◻x ∈ εF)

But, since, when εF exists, x ∈ εF and Fx are equivalent, we have:

◻∀x(◊Fx → ◻Fx)

But this is just an instance of (Rigidpr), which we saw was not valid.

�is argument is not, as it stands, valid. For the argument to be valid—and, in

particular, for the substitution of εF for y to be legitimate—we need an additional claim

to the e�ect that the set abstract term εF is a rigid designator. �us, for the defender of

the concept-based approach to avoid the conclusion of the argument, they must deny

that set abstract terms, so formed, are rigid designators.

Now, of course, set abstract terms as commonly used in natural language—such as

‘the set of inhabitants of England’—are non-rigid designators; such a term will plainly

refer to di�erent sets under di�erent circumstances. But it is not su�cient for the defender

of the concept approach to simply assert this. �ey need to be able to claim that these

non-rigid terms can be conceived of as arising from abstraction on concepts—in this case,

on the concept inhabitant of England—rather than as abstraction on pluralities—in this

case, on the inhabitants on England. In the plural case, there is a simple explanation as to

how a non-rigid set term can result; the constituent plural term ‘the occupants of England’

is itself a non-rigid designator. �at is, it would refer to a di�erent plurality of people

under di�erent circumstances. But the same can not be said of the concept approach.

For if ‘inhabitant of England’ is taken to denote a concept or property, then it will do

so rigidly; regardless of the circumstances, it will refer to the same property of being an
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inhabitant of England. It thus might be thought that a consequence of the concept based

approach would be that abstract terms, based as they are on rigidly denoting concept

terms, are themselves rigid.13

So, the defender of the concept is le� with the following task: to explain how an

abstractionist account of set theory can account for this non-rigidity when set terms are

formed out second-order variables, which are themselves rigidly designating.

�e carrying out of such a task will be the aim of sections iv and v of this paper.

In section iv, I shall show that there is a natural interpretation of the ε operator which
allows set abstract terms to be non-rigidly designating. �us, the intensional nature of

second-order variables may be preserved (i.e. (Rigidpr) fails), whilst allowing for the

sets that arise out of them to be extensional (i.e. (Rigid∈) is true). In section v, I show

how such behaviour can be enforced in the object language in a natural—and, moreover,

distinctly abstractionist—manner.

Before doing so, however, I wish to brie�y consider an alternative way out for the

defender of the concept based approach, which involves placing further restrictions on

set formation.14 �is will be the topic of the next chapter.

iii. Interlude: Rigid properties

�e problems that seem to arise when sets are abstracted from properties only arise for

properties which are themselves non-rigid. �at is, for properties, such as inhabitant
of England, for which the relevant instance of (Rigidpr) is false. But there are some

properties—such as natural number less than 17—for which the relevant instance of

(Rigidpr) is true. �is suggests that we might avoid the problems by restricting set

formation to those properties which are rigid. �at is, in addition to any restrictions on

Basic Law V which have been put in place so as to avoid paradox (as in section i), the

following necessary condition is put in place:

E!εF → ◻∀x(◊Fx → ◻Fx)

It is then trivial that this restriction will succeed in avoiding any problems that are

not faced by the plural account. For all intents and purposes, rigid properties will behave

exactly like pluralities. In particular, (Rigidpr) will simply be a tautology when restricted

to rigid properties.

Despite the fact that this proposal will avoid the problems faced by the unrestricted

intensional account, it is unsatisfactory for a number of reasons. Firstly, the proposal

does not so much solve the mismatch between properties and sets, but merely skirts

around it. �e challenge is to show how an intensional logic may be reconciled with

an abstractionist approach to set theory. But the present proposal does not do this,

13�is may be what Parsons, 1983, p. 303 means to suggest when he writes that ‘classes are essentially

extensions of predicates . . .however it might be with sets, when we speak of classes in modal context, we should

regard class abstracts as rigid designators’.

14�ank you to an anonymous referee for highlighting this alternative proposal, and for some suggestions

on why it may be less than optimal.
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since by restricting to rigid properties, the logic may as well be extensional; all that is

intensional about it has been thrown out or ignored. As such, the present approach fails

to be explanatory in a way in which I claim my proposal is. It would desirable to explain

how it is that non-rigid set abstract terms may arise from rigid terms for properties. But

this approach simply ignores non-rigid set abstract terms.

A second reason why the present approach is undesirable is that it seems to rule out

set abstract terms that would otherwise seem to be perfectly acceptable. �e restriction,

if it is to be imposed in the same way as any other restriction, should apply equally well

in modal and non-modal contexts alike. But then, even if we just consider how things

actually are, it will deny that the property ‘inhabitant of England’ has an extension, even

though this concept is clear, precise and does not threaten paradox in the way in which

the Russell set and other paradoxical sets do. Worse, although there will be no set of

inhabitants of England, there will be a set which has as members all and only those

objects that are inhabitants of England, assuming some rigid property can be picked

out under which all inhabitants of England actually fall (perhaps some long disjunction

making use of rigid designators for each individual involved).

�is then leads on to the third problemwith the proposal; it results in a kind of failure

of extensionality which is perhaps worse than the one which it seeks to avoid. In contrast

to the kind of restrictions which might be motivated by a desire to avoid the paradoxes,

the restriction in question here fails to be a congruence with respect to coextensiveness.

�at is, two concepts may be coextensive but di�er with respect to whether they are rigid.

As a result, just as in the above example, one may have two concepts which, although

coextensive, do not de�ne the same set (since one does not de�ne a set at all).

As such, the present approach should be rejected. Instead, I shall show how extensions

of non-rigid properties may be accommodated rather than ignored.

iv. Interpretations Of ε In A modal Context

What is the intended interpretation of the set operator when we consider possible-worlds

models for modal logic? Is there an interpretation which can reasonably be called

‘intended’ and which allows for the intensional interpretation of second-order logic?

In the case of the plural interpretation, the same interpretation as in the non-modal

case will do the job. We just let εM be the function εM ∶ P(D) → D given by:

(1) I(ε)(X) = {
X X ∈ D
unde�ned X ∉ D

It is then simple to check that, with the standard translation of ∈, this will satisfy (Rigid∈)

and (Ext):

Proposition iv.1. For anyM = ⟨D,W , I⟩ where I is de�ned as in (1),M ⊧ (Rigid∈)

andM⊧ (RigidSet).
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Proof. First, we can prove that, for any assignment a,

(∗) M,w , a ⊧ x ∈ y i� a(x) ∈ a(y) and a(y) ⊆ D

and

(∗∗) M,w , a ⊧ ∃xx(x = εxx) i� a(x) ⊆ D.

For (∗), suppose thatM,w , a ⊧ x ∈ y. �en, by the de�nition of ∈,M,w , a ⊧
∃xx(y = εxx ∧ x ≺ xx). So, there is X ⊆ D such that a(y) = I(ε)(X) and a(x) ∈ X. By
(1), we then have a(y) = X, so a(x) ∈ a(y) and a(y) ⊆ D as required.

For the converse direction, suppose that a(x) ∈ a(y) and a(y) ⊆ D. �atM,w , a ⊧
∃xx(y = εxx ∧ x ≺ xx) follows simply by considering an assignment which maps xx to

a(y) (which, being a subset of D, is eligible as such an interpretation).

For (∗∗),M,w , a ⊧ ∃xx(x = εxx), i� for some X ⊆ D, a(x) = X, i� a(x) ⊆ D.
Now we can show that (Rigid∈) and (RigidSet) hold. For the �rst, suppose that

M,w , a ⊧ ◊(x ∈ y). So, for some w′ ∈W ,M,w′ , a ⊧ (x ∈ y) and thus a(x) ∈ a(y) by
the le� to right direction of (∗). Now, for any arbitrary worldw′′ ∈W ,M,w′′ , a ⊧ x ∈ y,
by the right to le� direction of (∗). HenceM,w , a ⊧ ◻(x ∈ y) as required.

For (RigidSet) the proof is essentially the same, using (∗∗).

But what about for the intensional case? Since ε denotes a function from intensions

to objects, we would perhaps expect the interpretation of ε to be a function Dpr → D.
Indeed, given what I have said about how the denotation of a complex term is to be

de�ned, it must be. But, when considering that εF must be a non-rigid designator, the

value of (εF)M,w ,a must depend on w. In particular, we want (bearing in mind that this

is not a proposal for an interpretation of ε, but the outcome of such an interpretation for

the denotation of εF):

(εF)M,w ,a = {
a(F)(w) a(F)(w) ∈ D
unde�ned a(F)(w) ∉ D

�e most immediate suggestion of how to achieve this outcome would be for the in-

terpretation of ε itself to depend on a world. So, we assign ε a di�erent interpretation
I(ε,w) ∶ Dpr → D, depending on the world w:

(2) I(ε,w)( f ) = {
f (w) f (w) ∈ D
unde�ned f (w) ∉ D

However, on closer inspection this proposal may be thought to be unsatisfactory.

Since it assigns ε a di�erent interpretation at di�erent worlds, the result is that ‘ε’ becomes

in some sense a non-rigid designator. �at is, at each world it denotes a di�erent type-
lowering function, just as in the example of a non-rigid constant term, c denotes a
di�erent object at each world. But this is rather implausible. We do not mean to denote a
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di�erent function at each world; we want to signify the set of operator, no matter which

world we are at.

�ere is, however, a di�erent way to look at the matter which is more plausible. �at

is to treat ‘ε’ as a rigid designator (by it having the same interpretation at every world),

but with its interpretation being an intensional entity. �e appropriate comparison is

that, instead of being like a non-rigid singular constant, ‘ε’ is like a predicate, such as

‘red’, which denotes the same property or intension at every world, but that this intension

acts like a function from worlds to extensions. So, the interpretation of ‘ε’ is a function
I(ε) ∶W ×D2 → D, which may be given by:

(3) I(ε)(w , f ) = {
f (w) f (w) ∈ D
unde�ned f (w) ∉ D

(2) and (3) are obviously very similar; indeed all that has changed is that the parameter

w has moved from one bracket to another. But they are nonetheless importantly di�erent.

�is di�erence is perhaps clearer if the suppressed world parameter of I is displayed,
even in the case where, as in (3), it makes no di�erence. �en there is no change for (2),

but (3) becomes:

(3′) I(ε,w)(w′
, f ) = {

f (w′) f (w′) ∈ D
unde�ned f (w′) ∉ D

In (2), ε is assigned a functionDpr → D, whereas in (3′), ε is assigned a completely

di�erent kind of function, which, instead of taking one argument (fromD2), takes two

arguments (one fromD2 and one fromW).

�at I(ε) is now a function from worlds and intensions to objects means that a slight

change is required in how the denotation of a complex term is de�ned. Rather than

being de�ned as (εF)M,w ,a = I(ε)(a(F)), it must instead be de�ned as (εF)M,w ,a =

I(ε)(w , a(F)), to take into account the fact that I(ε) is now a binary function.15

�e interpretation of ‘ε’ given in (3) and (3′) will also then satisfy (Rigid∈) and

(RigidSet):

Proposition iv.2. For anyM = ⟨D,W , I⟩ where I is de�ned as in (3),M ⊧ (Rigid∈)

andM⊧ (RigidSet).

15It should be noted that, although (2) and (3) are di�erent ways of interpreting th abstraction operator, this

di�erence does not manifest itself in the object language, at least, not without the addition of extra expressive

power to the language. �e reason is that the abstraction operator only ever appears as a component of a term

of the form εF, and (2) and (3) result in the same interpretation for such a term.

�e di�erence would manifest itself in the object language if we were to add some expressive resources, such

quanti�cation and identity over the appropriate kinds of function. �en, the rigidity of ε could be expressed as:

◻∀f (◊( f = ε) → ◻( f = ε))

So, if one is only interested with di�erences at the level of the object language, the di�erence between (2)

and (3) will be moot.

�ank you to an anonymous referee for highlighting this matter to me.
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Proof. First we can see that, as for the plural case, we have:

M ,w , a ⊧ x ∈ y i� a(x) ∈ a(y) and a(y) ⊆ D

and

M ,w , a ⊧ ∃F(y = εF) i� a(y) ⊆ D

For the �rst, suppose thatM,w ⊧ x ∈ y. �en, by the de�nition of ∈,M,w ⊧
∃F(y = εF ∧ Fy), so there is an intension f ∶W → P(D) such that a(y) = I(ε)(w , f )
and a(x) ∈ f (w) ⊆ D. By (3), we thus have a(y) = f (w), and so a(x) ∈ a(y) and
a(y) ⊆ D, as required. For the converse direction, suppose that a(x) ∈ a(y) ⊆ D.
�en, let f ∈ Dpr be given by f (w) = a(y) for all w ∈W . �is then provides a suitable

assignment to F to make (y = εF ∧ Fx) true.
For the second, suppose thatM,w ⊧ ∃F(x = εF). So, there is f ∶W → P(D) such

that a(x) = I(ε)(w , f ). So, by (3), a(x) = f (w) ⊆ D, as required. For the converse
direction, suppose that a(x) ⊆ D. Let f (w) ∶ W → P(D) be the constant function

f (w) = a(x), which will then witness ∃F(x = εF) at any world.
With these, the proof of (Rigid∈) and (RigidSet) then can proceed exactly as for the

plural case.

v. Trans-world Extensionality

So, there is no obstacle as far as semantics go to having extensional sets arising from

intensional entities. All that is required is that ε itself be intensional in such a way as to

cancel out the intensionality in the second-order variables. Such an operator might be

called an extensionalising operator. But, wemight ask, how canwe force the interpretation

of ε to have such behaviour in the object language? �at is, what additional axioms are

needed in order to guarantee that the operator has the appropriate extensionalising

behaviour?

Of course, one possible answer is that (Rigid∈) and (RigidSet) will su�ce. But it would

be desirable if these were not required, and if instead they were to follow from suitably

modalised versions of the non-modal axioms. A�er all, it is considerations concerning

extensionality which seem to motivate the two rigidity constraints in the �rst place. To

reiterate these, given a set, the reason it necessarily has the members that it does is that,

in some counterfactual situation where some set has di�erent members, this other set

can not be the same set, by extensionality. �us, it would be natural if these principles

were to follow from a principle of extensionality.

�ere may be additional reasons to favour a way of recovering rigidity from modali-

sations of the non-modal axioms, but which depend on more substantial background

commitments. For example, neo-Fregeans like Hale and Wright wish to claim that the

identity conditions for abstract terms such as ‘εF ’ can serve to �x the meaning of the

abstraction operator in question, with the appropriate properties of associated abstract

objects following. In this case, it would be desirable that the modal properties also follow

from the identity conditions, without having to resort to extra axioms.
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Necessitation Of Extensionality

�e obvious axiom to look to to provide rigidity is the extensionality axiom; the other

axioms just specify what sets exist, but not how they are related to each other. �e obvious

way to modalise extensionality is simply to take its necessitation:

(Ext◻) ◻∀F∀G(E!εF ∧ E!εG → (εF = εG ↔ ∀x(Fx ↔ Gx)))

A modelM = ⟨W ,D, I⟩ will satisfy (Ext◻) just in case, for every w, and every f , g ∶
W → P(D) where I(ε)(w , f ) and I(ε)(w , g) are de�ned,

(4) I(ε)(w , f ) = I(ε)(w , g) i� f (w) = g(w)

(making use of extensionality in the metatheory).

But it can be seen that this will not force I(ε) to satisfy the rigidity requirements.

Proposition v.1. (Ext◻) ⊭ (Rigid∈)

Proof. Let W = {w1 ,w2} and D be a transitive set. Let π ∶ D → D be a (non-trivial)

permutation of D, and de�ne I(ε) as follows:

(5) I(ε)(w , f ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

f (w) w = w1 , f (w) ∈ D
π( f (w) w = w2 , f (w) ∈ D
unde�ned f (w) ∉ D

It will then be the case thatM⊧ (Ext◻). Let f , g ∈ Dpr. At w1, I( f ,w) = I(g ,w) i�

f (w) = g(w), by (5), as required. At w2, I( f ,w) = I(g ,w) i� π( f (w)) = π(g(w)) (by

(5)), i� f (w) = g(w) (by injectivity of π), as required.
ButM⊭ (Rigid∈). �e aim is to �nd an assignment a such thatM, a ⊭ ◊x ∈ y →

◻x ∈ y. First, we can show thatM,w1 ⊧ x ∈ y i� a(x) ∈ a(y), andM,w2 ⊧ x ∈ y i�
a(x) ∈ π−1(a(y)). For the �rst,

M,w1 , a ⊧ x ∈ y i�M,w1 , a ⊧ ∃F(y = εF ∧ Fx)
i� ∃ f ∈ Dpr such that a(y) = f (w) and a(x) ∈ f (w)

i� a(x) ∈ a(y)

as required.

For the second,

M,w2 , a ⊧ x ∈ y i�M,w2 , a ⊧ ∃F(y = εF ∧ Fx)
i� ∃ f ∈ Dpr such that a(y) = π( f (w)) and a(x) ∈ f (w)

i� a(x) ∈ π−1(a(y))

as required.
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Now, let β ∈ D such that π−1(β) ≠ β. So, either (a) ∃α ∈ D such that α ∈ β but

α ∉ π−1(β), or (b) ∃α ∈ D such that α ∉ β and α ∈ π−1(β).
Suppose (a) is the case. �en let a(x) = α, and let a(y) = β. So,M,w1 , a ⊧ x ∈ y, so

M,w1 , a ⊧ ◊x ∈ y. ButM,w2 , a ⊭ x ∈ y, soM,w1 , a ⊭ ◻(x ∈ y). HenceM,w1 , a ⊭
(Rigid∈). A similar argument can be given in case (b).

Hence,M is a countermodel as required.

Trans-world Extensionality

�e considerations which told in favour of rigidity concerned what might be called

trans-world extensionality. �at is, they involved comparing the extension of a set at one

world, with the extension of a set in some counterfactual situation. �e problem with

(Ext◻) and its model-theoretic counterpart is that they do not give criteria of identity

across worlds, but rather always within one world. What is required instead is something

like the following. For any w1 ,w2 ∈W , and any f , g ∈ D2:

(6) I(ε)( f ,w1) = I(ε)(g ,w2) i� f (w1) = g(w2)

Any interpretation of ε which satis�es (6) will then satisfy (Rigid∈):

Proposition v.2. ForM= ⟨D,W , I⟩, if I satis�es (6) thenM⊧ (Rigid∈).

Proof. Consider a modelM and an assignment a. SupposeM satis�es ◊(x ∈ y), so, for
some w ∈ W and some f ∶W → P(D), a(y) = I(ε)(w , f ) and a(x) ∈ f (w). We need

to show that for everyw′ ∈W there is f ′ ∶W → P(D) such that a(y) = I(ε)(w′ , f ′) and
a(x) ∈ f ′(w′). We do this as follows. Let f ′ be de�ned by, for anyw′ ∈W , f ′(w′) = f (w)

(so f has the same extension at every world—namely the same one that it has at the

originally considered world).

Now consider an arbitrary world w′. f ′(w′) = f (w), so by the trans-world identity

condition, I(ε)(w′ , f ′) = I(ε)(w , f ) = a(y) and so a(x) ∈ f ′(w′), henceM satis�es

◻(x ∈ y) and soM satis�es (Rigid∈).

So, since (Ext◻) does not achieve the goal of giving trans-world extensionality con-

ditions, is there another principle which does? If we are prepared to introduce a few

more expressive devices into the modal language, then there will be. What we want to

be able to do is answer questions along the lines of ‘had things been di�erent from how

they actually are, would F have had the same extension that it actually has?’, or, more

generally, ‘had things been di�erent, would F have had the same extension as G actually

has?’. �is makes use of an actuality operator in order to bring some part of the claim out

of the scope of a modal operator. So, we may be able to express trans-world extensionality

by introducing an actuality operator @ to the language. However, as well as acting as

an operator on formulas, as is usual, it will be required that @ can act as an operator on

terms, having the e�ect that in ‘@t ’, the term t must be evaluated as if it were exempt

from the scope of modal operators. �e reason is that we want to express terms such as

‘the actual set of F ’. �is is a natural use of the actuality operator if we are to consider

languages that may feature non-rigid designators.
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�en, the following principle can be laid down as an improvement of (Ext◻):

(Ext@) ◻∀F∀G[E!(@εF) ∧ E!εG → @εF = εG ↔ ∀x(@Fx ↔ Gx)]

�e semantics of an actuality operator will depend on designating an actual world w@

as part of a model. �en it can be easily be seen that (Ext@) would have the following

e�ect. A modelM with designated actual world w@ will satisfy (Ext◻) just in case, for

any w ∈W ,

I(ε)(w@ , f ) = I(ε)(w , g) i� f (w@) = g(w)

Now, this comes close as a solution, but is still not quite acceptable. What (Ext@)

allows one to do is evaluate questions of identity between the extension that a concept

actually has and extensions that concepts may have had. But it is does not allow one

to evaluate identity claims between an extension that a concept may have had in one

situation with the extension that another concept may have had in another situation.

To attain the required level of generality, we can introduce more nuanced scoping

operators into the language. So, for example, Hodes, 1984 develops a modal logic which

contains an operator ‘↓’. �is has the e�ect that what follows it is to be exempt from

just the innermost modal operator.16 Again, it will be required to extend the use of ↓

somewhat so that it may apply to terms as well as to formulas. �en, we may express

trans-world extensionality as follows:

(Ext↓) ◻◻∀F∀G[E!↓εF ∧ E!εG → (↓εF = εG ↔ ∀x(↓Fx ↔ Gx))]

Now (although I shall not go into detail of the semantics of ‘↓’ here), it can be seen that

the e�ect of (Ext↓) is precisely (6), as required. �e two necessity operators mean that

two worlds w1 and w2 must be considered, and the use of ↓ ensures that the evaluation of

εF and Fx occurs at w1, whilst the evaluation of εG and Gx occur at w2.

vi. Conclusions

What then are we tomake of this? Mymain aimwas to show that, if one wishes to develop

an abstractionist set theory, there is nomore reason—or at least, none arising frommodal

considerations—to see sets as arising from pluralities than there is to see sets as arising

from intensional entities. �ere need be no general requirement that abstraction operators

themselves be extensional, and this allows for a natural way in which intensional second-

order entities may result in purely extensional abstracts. �is conclusion is supported

further by the observation that a trans-world principle of extensionality can secure just

the appropriate extensionalising behaviour of the abstraction operator.

But the conclusions can go further than just abstractionist set theory, either to the

theory of abstraction in general (as plays a key role in neo-Fregean philosophy), or to

modal set theory in general. I will brie�y consider these in turn, and hint at how similar

considerations at work here may also play a role.

16See also Parsons, 1983, Appendix for similar scoping devices, which instead indicate within how many

modal scopes a formula is contained.
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Neo-Fregeans want to make use of operators similar to ε to build a logicist foundation
of mathematics, and, more generally, to explain reference to abstract objects. One key

example is that of the number of operator, which is said to be governed by a criterion of

identity known as Hume’s principle. �is says that, for concepts F and G, the number of

Fs = the number of Gs i� there is a relation which puts the Fs and Gs into one to one
correspondence. Like set abstract terms, number terms such as ‘the number of Fs’ will
in general be non-rigid. For example, the term ‘the number of human inhabitants of

Earth’ refers to a natural number in the vicinity of 7 billion, but it might have referred to

a di�erent natural number. A similar treatment of the trans-world identity conditions

would likewise be required in order to capture this.17

�e approach here is also likely to be of use in motivating modal principles of sets in

general; the method of expressing trans-world extensionality by use of a scoping device

is not speci�c to the abstractionist approach. Discussions of modal set theory, such as

Fine, 1981 and Parsons, 1983 typically assert that rigidity principles such as (Rigid∈) and

(RigidSet) hold of sets, and also typically informally motivate these with considerations

of extensionality. By adopting a modal principle of extensionality along similar lines to

(Ext↓), these motivations could be internalised to the theory. �en, instead of being an

addition to the theory, (Rigid∈) and (RigidSet) will become theorems of the theory. 18
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