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Abstract

Harold Hodes in [1] introduces an extension of �rst-order modal logic

featuring a backtracking operator, and provides a possible worlds semantics,
according to which the operator is a kind of device for ‘world travel’; he

does not provide a proof theory. In this paper, I provide a natural deduction

system for modal logic featuring this operator, and argue that the system

can be motivated in terms of a reading of the backtracking operator whereby

it serves to indicate modal scope. I prove soundness and completeness

theorems with respect to Hodes’ semantics, as well as semantics with fewer

restrictions on the accessibility relation (Hodes restricts his attention to S5).

i. Introduction

Harold Hodes in [1] introduces an extension of �rst-order modal logic featuring

a backtracking operator ‘↓’. �e purpose of this operator is similar to that of an
actuality operator. But, instead of exempting what follows from the scope of all
enclosing modal operators, it exempts it only from the innermost modal operator.
Or, in terms of the possible worlds semantics, instead of causing a formula to

be evaluated at some speci�ed ‘actual’ world, the backtracking operator causes a

formula to be evaluated at the ‘last visited’ world, so to speak.

Hodes gives a semantics (which I give an overview of in section ii), but does

not supply a proof theory.1 �is semantics re�ects a reading of the operator as

∗
�is is a preprint of a paper due to appear in�e Journal of Philosophical Logic. �at journal

should be consulted for the de�nitive version.

1He does refer to an unpublishedmanuscript featuring a proof theory, but there is none published.
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one which allows more �exible ‘travel’ through worlds in evaluating the truth of a

formula. If the semantics of ◻ and ◊ are thought of as instructions to travel to an
accessible world in which the truth of a formula is evaluated, Hodes’ semantics

for ↓ gives instructions to travel back to the world most recently passed through,
to evaluate the truth of a formula there. A useful comparison is to the actuality

operator. �e usual semantics for an actuality operator gives directions to evaluate

the truth of a formula at a privileged possible world in the model—the actual world.
But, as mentioned, there is another—more syntactic—reading of the operator,

as a scope indicator. �at is, the operator simply indicates that what follows it is

to be exempt from the scope of the innermost modal operator. Again, compare

with the actuality operator; this may be taken to be an indicator that what follows

is to be evaluated as exempt from the scope of all enclosing modal operators. �us,
the role of ↓ is akin to that of parentheses, yet allowing for more nuanced scope
distinctions. �e aim of this paper is to provide a proof system for modal logics

featuring the operator, which I will claim does justice to this reading; the proof

theory gives rules for ‘looking inside’ the scope of a modal operator, and then,

when the ↓ operator is encountered, pulling the appended formula out of that
scope.

As well as explaining this alternative reading of the operator, such a proof

theory may be desirable from the point of view of certain philosophical or other

uses of modal logic. For example, extensions of modal logic may be desired to gain

expressive power without committing oneself to quantifying over possible worlds

(or their analogues) or to the members of domains of possible worlds. In some

cases, modal logic may be introduced speci�cally for the purposes of avoiding

quanti�cation over some entities or other. A proof theory would allow somebody

not to rely on the semantics to give sense to claims involving ↓.2
Nonetheless, even if one is not persuaded of the need for a proof theory for

such purposes, the fact that the operator appears to admit of the syntactic reading

should be motivation enough to develop a proof theory which represents such a

reading.

Before presenting the proof system, in section ii I will give an overview of

the semantics which Hodes provides for the operator, albeit with a few minor

2For recent examples of philosophical uses of the backtracking operator, or operators similar to

it, see [8, 3, 2, 7, 6]. For at least some of these uses, it would be desirable to explain the meaning of

the operator in terms of scope exemption rather than world travel.
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di�erences. In section iii I present a natural deduction system for the operator for

propositional modal logic featuring the operator, which makes uses of labelling

each line of a proof. In section iv, I motivate the natural deduction system in

terms of the scope exemption reading of the operator. In section v I prove that the

deduction system is sound and complete with respect to models whose accessibility

relation is serial. Finally, in section vi I discuss strengthening the logic and prove

corresponding soundness and completeness theorems for restricted classes of

models.

ii. Semantics

Let L↓ be a typical language for propositional modal logic; it consists of count-
ably many propositional variables p, q, r, . . ., connectives ∧ and ¬ and a necessity
operator ◻. In addition, it shall have an additional sentential operator ↓, called
the backtracking operator. �e intended e�ect of the backtracking operator will
be to exempt what follows it from the scope of the innermost modal operator

from which it is not already exempt (so, for example, p, ◻↓p and ◻◻↓↓p should
all be counted as equivalent). Other sentential connectives ∨,→ and a possibility
operator ◊ can be de�ned in the usual way.

�e semantics presented here is essentially that of [1], with the main di�erences

being: (a) Hodes’ semantics is for quanti�ed modal logic, whereas I will only

describe the case for propositional modal logic (I discuss extending to quanti�ed

modal logic brie�y in section vii). (b) Hodes’ logic is an extension of S5, so that

the accessibility relation is an equivalence, whereas the only restriction on the

equivalence relation here is that it is serial. (c) Hodes only de�nes satisfaction for

a certain class of formulas, whereas the semantics presented here places no such

restriction.

A model is a tripleM= ⟨W , R, a⟩, whereW is a set (of possible worlds), R ⊆
W ×W is the accessibility relation, and a is an assignment function which assigns
to each propositional variable p at a world w ∈W a truth value a(w , p) ∈ {T , F}.
Only one restraint will be placed on the accessibility relation for now, and that

is that it is serial. So, for any w ∈W there is a w′ ∈W such that wRw′.
�en, a satisfaction relation is de�ned, not for each world, but for each �-

nite sequence of worlds of the appropriate type. So, we �rst make the following

de�nition:
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De�nition 1. Given a modelM, a world sequence is a member of the following
set:

WSM = {⟨w1, . . . ,wk⟩ ∶ k ≥ 1,∀i ≤ k,wi ∈W and ∀i < k,wiRwi+1}

As a result of seriality, for every world sequence there will be a world sequence

extending it (and so there are world sequences of arbitrary length).

Some terminology for members of WSM will be useful. I shall write w⃗ for an
arbitrary member of WSM. Where w⃗ = ⟨w1, . . . ,wk⟩, then:

⟨w⃗ ,w′⟩ = ⟨w1, . . . ,wk ,w′⟩

w⃗− = { ⟨w1, . . . ,wk−1⟩, k > 1
⟨w1⟩, k = 1

t(w⃗) = wk

l(w⃗) = k

Finally, if w⃗ = ⟨w1, . . . ,wk⟩ and w⃗′ = ⟨w1, . . . ,wl⟩ for l < k, then I shall write that
w extends (or is an extension of ) w′, and that w′ truncates (or is a truncation of ) w.
Now, we can de�ne satisfaction of a formula at a world sequence as follows:

De�nition 2. Let ϕ be a formula ofL↓,M a model, and w⃗ ∈WSM. �en,M, w⃗ ⊧
ϕ is de�ned inductively as follows:

Where ϕ is a propositional variable p:

M, w⃗ ⊧ p i� a(t(w⃗), p) = T

For propositional connectives:

M, w⃗ ⊧ ¬ϕ i� M, w⃗ ⊭ ϕ
M, w⃗ ⊧ ϕ ∧ ψ i� M, w⃗ ⊧ ϕ andM, w⃗ ⊧ ψ

For modal operators (including ↓):

M, w⃗ ⊧ ◻ϕ i� for all w′
s.t. t(w⃗)Rw′

, M, ⟨w⃗ ,w′⟩ ⊧ ϕ
M, w⃗ ⊧ ↓ϕ i� M, w⃗− ⊧ ϕ
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Note that, although this de�nition is only given for when w⃗ ∈WSM, there is
nothing which requires this, rather than that w⃗ is any sequence of worlds. But,
given the clause for ◻, it will only ever be w⃗ ∈ WS which are relevant. Later on,
however (section vi), it will be necessary to consider such an extension.

WhereM is clear from context, I will sometime write w⃗ ⊧ ϕ in place of
M, w⃗ ⊧ ϕ.

A consequence relation can then be de�ned:

De�nition 3. Where Γ is a set of formulas inL↓, and ϕ a formula ofL↓, then Γ ⊧ ϕ
i�:

For allM and w ∈WM, ifM, ⟨w⟩ ⊧ ψ for each ψ ∈ Γ, thenM, ⟨w⟩ ⊧ ϕ.

iii. Proof theory

In this section I shall describe a natural deduction system for the logic. �is will

consist of an introduction and elimination rule for each connective and operator,

and a de�nition of the notion of a deduction.

An important feature will be that deductions and inference rules will operate

on labelled formulas. A labelled formula is a pair ϕ; s⃗, where ϕ is a formula of L↓,
and s⃗ is a (possibly empty) �nite sequence of natural numbers. Where the label
is empty, I shall write ϕ ;−. �e same terminology as for world sequences will be
used, with the exception that for labels, where s⃗ = ⟨n1, . . . , nk⟩ I shall write:

s⃗− = { ⟨n1, . . . , nk−1⟩, k > 0
⟨⟩, k = 0

�e rules are as follows:

ϕ ; s⃗ ψ ; s⃗
(∧-I) ϕ ∧ ψ ; s⃗

ϕ ∧ ψ ; s⃗
(∧-E1) ϕ ; s⃗

ϕ ∧ ψ ; s⃗
(∧-E2) ψ ; s⃗

[ϕ ; s⃗]
⋮

q ∧ ¬q ; t⃗
(¬-I) ¬ϕ ; s⃗

[¬ϕ ; s⃗]
⋮

q ∧ ¬q ; t⃗
(¬-E) ϕ ; s⃗
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ϕ ; s⃗
(◻-I) ◻ϕ ; s⃗−

◻ϕ ; s⃗
(◻-E)

ϕ ; ⟨s⃗, n⟩

(With a restriction on the (◻-I) rule that ϕ ; s⃗ may only depend on assumptions
with labels t⃗ which are truncations of s⃗.)

ϕ ; s⃗
(↓-I) ↓ϕ ; ⟨s⃗, n⟩

↓ϕ ; s⃗
(↓-E) ϕ ; s⃗−

With these rules, rules for the de�ned connectives and operators can be de-

duced. In particular, rules for ◊ will be:

ϕ ; ⟨s⃗, n⟩
(◊-I) ◊ϕ ; s⃗

◊ϕ ; s⃗

[ϕ ; ⟨s⃗, n⟩]
⋮

ψ ; t⃗
(◊-E)

ψ ; t⃗

(with no restriction on the introduction rule, and a restriction on the elimination

rule that t⃗ is either s⃗ or a truncation of s⃗).
Since deductions in the system will involve discharging assumptions and re-

strictions on which assumptions are allowed, the notion of a deduction rule cor-
responding to each inference rule—which will specify how assumptions are to

be discharged—is needed (c.f. [4]). Deduction rules are n-tuples of the form
⟨⟨Γ1, θ1 ; s⃗1⟩, . . . , ⟨Γk , θk ; s⃗k⟩⟩, which say that when θ1 ; s⃗1, . . . θk−1 ; s⃗k−1 have been
derived using undischarged assumptions Γ1 . . . Γk−1 respectively, then ϕk ; s⃗k can
be derived with undischarged assumptions Γk . For example, the deduction rule

corresponding to (¬-I) will be ⟨⟨Γ, p∧¬p ; t⃗⟩, ⟨Γ/{ϕ},¬ϕ ; s⃗⟩⟩. �e deduction rules
can simply be read o� the rules as presented here.

Two notions of proof-theoretic consequence can then be de�ned—one for

labelled formulas, and one for unlabelled formulas. Since we are interested in

deductions between formulas of L↓, and since such formulas are unlabelled, then
strictly speaking, the relation between labelled formulas is not one of provabil-

ity. It is rather simply a stepping stone towards the provability relation between

(unlabelled) formulas. �is latter relation is what we are primarily interested in.
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De�nition 4. Let ∆ be a set of labelled formulas of L↓, and ϕ ; s⃗ a labelled formula
of L↓. �en ∆ ⊢ ϕ ; s⃗ i� there is some sequence of ordered pairs:

⟨⟨∆1, θ1 ; t⃗1⟩, . . . , ⟨∆n , θ ; t⃗n⟩⟩

such that:

• ∆n = ∆ and θn ; t⃗n is ϕ ; s⃗

• For i ≤ n, either:

– θ i ; t⃗i ∈ ∆i , or

– �ere are j, k < i such that ⟨⟨∆ j , θ j ; t⃗ j⟩, ⟨∆k , θk ; t⃗k⟩, ⟨∆i , θ i ; t⃗i⟩⟩ is an
instance of one of the deduction rules corresponding to the inference

rules.

De�nition 5. Where Γ is a set of (unlabelled) formulas of L↓, and ϕ a formula
of L↓, then Γ ⊢ ϕ i� Γ∗ ⊢ ϕ ;−, where Γ∗ is the set of labelled formulas resulting
from replacing each ψ ∈ Γ by ψ ;− (i.e. ψ together with an empty label).

iv. Motivation

Before proving that the inference rules given here are both sound and complete

with respect to the semantics, I would �rst like to say more about the motivation

behind the proof theory. �ere are two aims which I have. �e �rst concerns a

worry which may be had if the proof theory is wanted in order to avoid reliance

on the possible worlds semantics for more than pragmatic reasons. It might be

worried that, due to the presence of labels—which it is tempting to take as referring

to worlds or sequences of worlds—the proof theory does not succeed in avoiding

reliance on the possible worlds semantics. Secondly, I claimed before that the

natural deduction system can be seen as explaining the reading of the ↓ operator
as exempting formulas from the scope of other operators. Here I will argue for that

claim.

One way in which we may try to motivate the proof system is by reference to

the semantics. On this view, a labelled formula is a formula of a kind of extended

language, and the labels are something like variables referring to sequences of

worlds. �en, a formula (of the extended language) ϕ; s⃗ makes the claim that ϕ is
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true at the sequence of worlds s⃗. �e inference rules then aim to capture certain
valid inferences in this language. A soundness theorem will then be an essential

part of the motivation of the proof theory, in that it will show that the inference

rules are indeed valid inference rules—that is, they are truth preserving in the

sense of the semantics. (�is will also require an extension of the semantics given

in section ii so that labelled formulas are given satisfaction conditions.)

But given one motivation for developing a proof theory, this will not do. �ere

are potential philosophical applications of such a proof theory whose aim is to

avoid reference to, and quanti�cation over, worlds. �at is, they wish to relegate

the semantics to a purely secondary, pragmatic role. But if the proof theory is

ultimately motivated by the semantics, then this can not be the case. In any case,

such a motivation would fail to shed light on the scope exemption reading of the ↓
operator.

So, instead, we wish to have a motivation for the proof theory which derives

from this scope exemption reading of the operator. �en, a soundness theorem

will not play a role in motivating the proof theory in light of the semantics, but

will rather play the role—along with a completeness theorem—of motivating the

pragmatic value of the semantics. For, given a soundness theorem, one will be

able to use the semantics for useful ends, in proving that a certain formula is not

derivable from other formulas, and so on.

How might such a motivation look? Firstly, labels must not be thought of as

referring to worlds. Indeed, it should be borne in mind that they are not part of the

language at all. �ey are merely part of the proof theory, and can be explained as a

kind of bookkeeping device, not dissimilar to the use of line numbers, the lists of

undischarged assumptions which are common in many ways of laying out formal

proofs, or even to the various horizontal and vertical lines which appear in many

ways of laying out proofs. It is perhaps better to think, not of labelled formulas, but
of labelled lines (it just happens that it is simpler for metatheoretical purposes to
treat labels as attaching to formulas).

If labels are not part of the language, then there can be no danger that they refer

to anything in the semantics (just as line numbers and the like do not). Indeed,

labelled formulas are not the kind of thing that can be asserted, or the kind of thing

that have truth-conditions or satisfaction-conditions. Since labelled formulas are

not the kind of thing that can be true or false, and the inference rules are relations

between labelled formulas, it follows that the inference rules can not be motivated
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in terms of validity (i.e. necessary truth preservation). A di�erent motivation is

thus required.

�e main rules which need motivating are the ◻ and ↓ rules. �ese can be
motivated, not in terms of validity, but rather as rules for temporarily ignoring,

and then reinstating, modal operators, whilst the labels serve as a reminder as to

when a modal operator is being ignored.

Consider �rst the rules for ◻, and in particular ◻-E. �is says that, given a
formula◻ϕ, we may temporarily ignore the outermost◻, as long as wemake a note
that a necessity operator is being ignored, and that we must eventually reinstate it.

�is note is the label. So, we have the inference:

1. ◻ϕ

2. ϕ; 0

�e ◻-I rule then does the reverse. It tells us that, if we have a label signifying
that a necessity operator is being ignored (and that this label was not introduced

in an assumption), then we may reinstate the necessity operator at the same time

as removing the label. For example, the above proof could be continued as follows:

3. ◻ϕ

Getting us back to where we started.

�e rules for the ↓ operator tell us what we can do when we encounter that
operator within the scope of a necessity operator—i.e. when we encounter that

operator on a line with a label. In that case, the intended interpretation of the ↓
operator is that it exempts what follows from the scope of the necessity operator.

�us, we can remove the label at the same time as removing the ↓ operator. I.e., we
are permitted to permanently ignore the necessity operator, since the backtracking

operator cancels out the scope.

For example, if, in the above case, ϕ is ↓ψ, then we may continue the proof as
follows:

2. ↓ψ; 0

3. ψ
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Finally, the ↓-I rule allows us to do the reverse. �at is, we can append ↓ to
a formula, as long as we also make a note that we are required to encapsulate

the resulting formula in a necessity operator in order to cancel the backtracking

operator. Taken together with the ◻-I rule, this allows us to produce the converse
of the above proof that ◻↓ψ entails ψ.

�e rules for connectives, which do not alter the labels in any way, simply

tell us that we can manipulate these connectives in the usual way, even if we are

temporarily ignoring the scope of a necessity operator.

�ere is one �nal comment that is required in order to justify the proof theory,

and that concerns the speci�c form (or perhaps, the speci�c structure) that the

labels take. Labels must be able to carry information about how many modal

operators are being ignored, so as to deal with nested operators. So, for example,

comparable to the inference above from ◻↓ψ to ψ, we can give the following
inference from ◻◻↓↓ψ to ψ:

1) ◻◻↓↓ψ;− (Assumption )

2) ◻↓↓ψ ; 0 (◻-E )
3) ↓↓ψ ; 00 (◻-E )
4) ↓ψ ; 0 (↓-E )
5) ψ ;− (↓-E )
�e appearance of a label with length 2 on line 3 tells us that, at that point, we are

ignoring two nested modal operators.

So, the length of a label measures the number of operators currently being

ignored. But, if we just need to measure that, then why do we need to do it with a

sequence of natural numbers, rather than a single natural number (in which case it
would be the number itself, rather than the length of a sequence, which does the

measuring)? �e reason is that there may be need, considering the restriction on

the ◻-I rule, to introduce two assumptions with di�erent labels but of the same
length.

For example, consider the derived (◊-E) rule:

◊ϕ ; s⃗

[ϕ ; ⟨s⃗, n⟩]
⋮

ψ ; t⃗
(◊-E)

ψ ; t⃗
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where t⃗ is either s⃗ or a truncation of s⃗ (this restriction follows from the restriction
on the (◻-I) rule). Now, it must be possible to introduce separate labels of the
form ⟨s⃗, n⟩ if using this rule more than once at a time. For example, to prove
◊ϕ ∨ ◊ψ → ◊(ϕ ∨ ψ), two such subproofs are needed.3 To di�erentiate the two
subproofs, we must use distinct labels of length 1.

So, the proof theory can be motivated on purely syntactic grounds, without

reference to the semantics. Motivated in this way, the semantics may still however

by useful, but that is not because it it required to motivate the deduction system.
Rather, it is because a model of ϕ can be used to show that ϕ is consistent, or a
model of Γ ∪ {¬ϕ} can be used to show that we have no hope of proving ϕ from Γ.
Of course, for the semantics to be useful for such purposes, a soundness theorem

is required. �e aim of the next section is to prove such a theorem (along with a

completeness theorem).

v. Soundness and completeness

5.1. Soundness

In this section we shall prove the soundness of ⊢ with respect to ⊧. �at is, that for
any set of formulas Γ and formula ϕ, if Γ ⊢ ϕ then Γ ⊧ ϕ.

�is will go by way of de�ning a model-theoretic consequence relation for

labelled formulas, analogous to the corresponding proof-theoretic consequence

relation. Before de�ning this, we shall need to de�ne a certain type of mapping

from labels to (possibly empty) world sequences, which preserves certain parts of

the structure of the sequences.

3�e proof is:

◊ϕ ∨ ◊ψ

(1)
◊ϕ ;−

(2)
ϕ ; 0

ϕ ∨ ψ ; 0
◊(ϕ ∨ ψ) ;−

(2)
◊(ϕ ∨ ψ)

(1)
◊ψ ;−

(3)ψ ; 1
ϕ ∨ ψ ; 1

◊(ϕ ∨ ψ) ;−
(3)

◊(ϕ ∨ ψ)
(1)

◊(ϕ ∨ ψ)

(which makes use of derived rules for ∨ as well).
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De�nition 6. A function f ∶ N<ω →WSM ∪ {⟨⟩} is a homomorphism i�, for all
s⃗, t⃗ ∈ Nω:

• s⃗ properly extends t⃗⇔ f (s⃗) properly extends f (t⃗)

• l( f (s⃗)) = l(s⃗).

Denote the set of homomorphisms for a modelM by HomM.

�ere are a few important consequences of this de�nition:

Proposition 1.

1. For any modelM, HomM ≠ ∅.

2. For any f ∈ HomM, s⃗ and n, f (⟨s⃗, n⟩) = ⟨ f (s⃗),w′⟩ for some w′ such that
wRw′.

3. If l(s⃗) > 0 then ⟨w , f (s⃗)⟩− = ⟨w , f (s⃗−)⟩.

Proof.

1. Since models are serial, there is an in�nite sequence of worlds ⟨w1,w2, . . .⟩
such that wiRwi+1 for all i ∈ N. Now, simply de�ne f (s⃗) = ⟨w1, . . . ,wl(s⃗)⟩.
It is simple to check that this satis�es the required properties.

2. First, note that l( f (s⃗, n)) = l(s⃗, n) = l(s⃗) + 1 = l( f (s⃗)) + 1 by the second
condition. Moreover, by the �rst condition, f (s⃗, n) extends f (s⃗). Hence, we
must have some w such that f (s⃗, n) = ⟨ f (s⃗),w⟩. �e accessibility require-
ment follows from the fact that f (s⃗, n) ∈WSM.

3. Suppose l(s⃗) > 0, so that s⃗ = ⟨n1, . . . , nk⟩ for some k > 0, and so f (s⃗) =
⟨w1, . . . ,wk⟩ ∈WS (by the second condition).
Now, f (s⃗−) = ⟨w1, . . . ,wk−1⟩, since l( f (s⃗−)) = k − 1 and f (s⃗) extends
f (s⃗−). (Note: ⟨w1, . . . ,wk−1⟩may not be the same as f (s⃗)−. In particular,
this would not be the case when k = 1.)
�us, ⟨w , f (s⃗−)⟩ = ⟨w ,w1, . . . ,wk−1⟩ = ⟨w , f (s⃗)⟩− as required.

12



We are now in a position to de�ne an analogue of consequence for labelled

formulas. But �rst, we need to de�ne a notion of satisfaction for labelled formulas:

De�nition 7. LetM be a model, w ∈W a world, f ∈ HomM a homomorphism
and ϕ; s⃗ a labelled formula. �enM,w , f ⊧ ϕ; s⃗ i�M, ⟨w , f (s⃗)⟩ ⊧ ϕ.

�is can then be extended to sets of labelled formulas in the obvious way:

De�nition 8. LetM be a model, w ∈W a world, f ∈ HomM a homomorphism
and ∆ a set of labelled formulas. �enM,w , f ⊧ ∆ i� for all ϕ; s⃗ ∈ ∆, M,w , f ⊧
ϕ; s⃗.

We can then put these together to de�ne consequence for labelled formulas:

De�nition 9. Let ∆ be a set of labelled formulas, ϕ; s⃗ a labelled formula. �en,
∆ ⊧ ϕ; s⃗ i� for everyM,w ∈WM and homomorphism f ∈ HomM,

ifM,w , f ⊧ ∆ thenM,w , f ⊧ ϕ; s⃗

We can now state and prove a soundness theorem with respect to this notion

of consequence, and use this to prove a soundness theorem with respect to the

notion of consequence for unlabelled formulas (De�nition 3).

Proposition 2. Let ∆ be a set of labelled formulas and ϕ ; s⃗ a labelled formula. �en

If ∆ ⊢ ϕ ; s⃗ then ∆ ⊧ ϕ ; s⃗

Proof. First, it needs to be checked that each deduction rule is sound. �at is, when
⟨⟨Γ1, θ1 ; s⃗1⟩, . . . , ⟨Γk , θk ; s⃗k⟩⟩ is an instance of a deduction rule, then if Γi ⊧ θ i ; s⃗i
for each i < k, then Γk ⊧ θk ; s⃗k .

�at this is so for the propositional connectives is standard (since the labels do

not really play a role). It can be proved for the rules for operators as follows:

(↓-I):�e deduction rule for (↓-I) is ⟨⟨Γ, ϕ ; s⃗⟩, ⟨Γ, ↓ϕ ; s⃗, n⟩⟩. Suppose that Γ ⊧ ϕ ; s⃗,
so that for any w , f , if w , f ⊧ Γ, then w , f (s⃗) ⊧ ϕ. Now, consider w , f such that
w , f ⊧ Γ, and we wish to show that w , f (s⃗, n) ⊧ ↓ϕ. Since f is a homomorphism,
f (s⃗, n) = f (s⃗),w′ for some w′ such that t( f (s⃗))Rw′. So, w , f (s⃗, n) ⊧ ↓ϕ i�
w , f (s⃗),w′ ⊧ ↓ϕ i� w , f (s⃗) ⊧ ϕ, which we already have.
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(↓-E): �e deduction rule is ⟨⟨Γ, ↓ϕ ; s⃗⟩, ⟨Γ, ϕ, ; s⃗−⟩⟩. �ere are two cases to con-
sider: �rstly, when s⃗ is empty, so that s⃗− is also empty, and secondly when s⃗ is not
empty.

Consider the �rst case. Suppose that Γ ⊧ ↓ϕ ;− so that for any w , f , if w , f ⊧ Γ
then ⟨w⟩ ⊧ ↓ϕ (since s⃗ is empty, f can be safely ignored). Now consider some w , f
such that w , f ⊧ Γ and so ⟨w⟩ ⊧ ↓ϕ. So, by the de�nition of ↓, ⟨w⟩ ⊧ ϕ, which is as
required.

Suppose that s⃗ is not empty. Suppose Γ ⊧ ↓ϕ ; s⃗ so that for all w , f , if w , f ⊧ Γ
then w , f (s⃗) ⊧ ↓ϕ. Now consider w , f such that w , f ⊧ Γ, so w , f (s⃗) ⊧ ↓ϕ. By
de�nition of ↓, (w , f (s⃗))− ⊧ ϕ. But, since l(s⃗) > 0, (w , f (s⃗))− = w , f (s⃗−). So
w , f (s⃗−) ⊧ ϕ which is what is required.

(◻-E): �e deduction rule is ⟨⟨Γ,◻ϕ ; s⃗⟩, ⟨Γ, ϕ ; s⃗, n⟩⟩. Suppose that Γ ⊧ ◻ϕ ; s⃗,
so that for all w , f , if w , f ⊧ Γ then w , f (s⃗) ⊧ ◻ϕ. Now consider w , f such
that w , f ⊧ Γ, and we wish to show that w , f (s⃗, n) ⊧ ϕ. By the properties of f ,
f (s⃗, n) = f (s⃗),w′ for some w′ such that wRw′. But, since w , f (s⃗) ⊧ ◻ϕ and by
the de�nition of ◻, for any w′ such that wRw′, w , f (s⃗),w′ ⊧ ϕ. So, w , f (s⃗, n) ⊧ ϕ
as required.

(◻-I): �e deduction rule is ⟨⟨Γ, ϕ ; s⃗⟩, ⟨Γ,◻ϕ ; s⃗−⟩⟩ with the restriction that if
ψ ; t⃗ ∈ Γ then s⃗ properly extends t⃗. Suppose that Γ ⊧ ◻ϕ ; s⃗ for such a Γ. So, for any
w , f , if w , f ⊧ Γ then w , f (s⃗) ⊧ ϕ.
Now, consider w , f such that w , f ⊧ Γ. We wish to show that w , f (s⃗−) ⊧ ◻ϕ.

Suppose not, then for some w′ such that t( f (s⃗−))Rw′, w , f (s⃗−),w′ ⊭ ϕ.
Now, it is clear that a homomorphism f ′ can be de�ned such that:

• f ′(t⃗) = f (t⃗) for all t⃗ which s⃗ properly extends

• f ′(s⃗) = f (t⃗−),w′

and allowed to take any other permitted value elsewhere.

So, w , f ′(s⃗) ⊭ ϕ. So, w , f ′ ⊭ Γ. So, there is ψ ; t⃗ ∈ Γ such that w , f ′(t⃗) ⊧ ¬ψ.
Now, by the restriction on the deduction rule, s⃗ properly extends t⃗. But then,
f ′(t⃗) = f (t⃗), but w , f (t⃗) ⊧ ψ.
Now, since each deduction rule is sound, it is simple to show the result by

induction on lengths of deductions.
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Finally, a soundness result can be given for the kind of entailments which are

of principal importance—those between unlabelled formulas (since entailment

between labelled formulas is supposed to be purely instrumental):

Proposition 3. Let Γ be a set of formulas of L↓ and ϕ a formula of L↓. �en:

If Γ ⊢ ϕ then Γ ⊧ ϕ

Proof. All that is needed for the proof is that if Γ∗ ⊧ ϕ ;−, then Γ ⊧ ϕ (where Γ∗
is as in De�nition 5). Suppose that Γ∗ ⊧ ϕ ;−. Consider some w ∈WM such that
⟨w⟩ ⊧ ψ for each ψ ∈ Γ. �en clearly w , f (s⃗) ⊧ ψ for each ψ, s⃗ ∈ Γ∗, since s⃗, and so
f (s⃗) is empty in each case. So w , f (⟨⟩) ⊧ ϕ. I.e. ⟨w⟩ ⊧ ϕ as required.

�e soundness result then follows easily.

5.2. Completeness

�e completeness of the basic logic for serial frames is relatively simple and can be

proved along familiar lines. It needs to be shown that for any set of formulas Γ, if

Γ is consistent (i.e. Γ ⊬ �) then it is satis�able (i.e. there areM,w ∈WM such that
M, ⟨w⟩ ⊧ Γ).
By the usual reasoning, there is a maximally consistent set of labelled formulas

Γ′ such that Γ∗ ⊆ Γ′ (where, recall, Γ∗ = {ϕ;− ∶ ϕ ∈ Γ}). As in the proofs of
completeness for predicate logic, some care is needed in the construction of Γ′

so that if ◊ϕ; s⃗ ∈ Γ′, then for some n ∈ N, ϕ; ⟨s⃗, n⟩ ∈ Γ′. �is is analogous to the
care needed in �rst-order logic to ensure that if ∃xϕ appears in the maximally
consistent set, then a witness appears as well.

Γ′ is then satis�able in the sense that there areM,w ∈ WM and f ∈ HomM
such thatM,w , f ⊧ Γ′. LetM= ⟨W , R, a⟩ such thatW = N<ω, s⃗Rt⃗ i� t⃗ = ⟨s⃗, n⟩
for some n ∈ N, and a(p, s⃗) = T i� p; s⃗ ∈ Γ′. Now let f ∈ HomM be such that
f (⟨n1, . . . , nk⟩) = ⟨⟨n1⟩, ⟨n1, n2⟩, . . . , ⟨n1, . . . , nk⟩⟩.

�en, it is easy to check thatM, ⟨⟩, f ⊧ Γ′. From this it is easy to see that
M, ⟨⟨⟩⟩ ⊧ Γ.
Now, from the result that consistent sets of formulas are satis�able, it is simple

to prove (in the usual way) that if Γ ⊧ ϕ, then Γ ⊢ ϕ.
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vi. Strengthenings

In this section, I will consider how the logic may be strengthened by the addition

of rules which correspond to usual restrictions on the accessibility relation. So, I

will consider extensions to the systems T, S4 and S5, which model theoretically

correspond to restricting consideration to models whose accessibility relation is

re�exive, transitive and re�exive, and an equivalence relation, respectively.

In terms of the semantics, we can make restrictions on allowable accessibility

relations in the usual way. So, for example, we can require that the relation is

re�exive (resulting in the system T), transitive and re�exive (resulting in the
system S4), or restrict attention to equivalence relations (resulting in S5, which
could also be achieved by doing away with the relation altogether). �e latter of

these brings us much closer to the kind of system which Hodes considered when

introducing the backtracking operator. Other restrictions on the relation could

also be considered, but I will restrict attention to these three here.

�e standard way of re�ecting these restrictions in the proof theory are not,

however, suitable in the presence of the backtracking operator. At least, not without

modi�cation. So, for example, suppose that we add the following schema:

(4) ◻ϕ → ◻◻ϕ

Or, alternatively, strengthen the inference rules so that (4) is provable (cf. [4, ch. iv],

[5]).

�en we can instantiate ϕ with ↓ψ, for any formula ψ. �e result is:

◻↓ψ → ◻◻↓ψ.

But then, from this, it clearly follows that:

ψ → ◻ψ,

resulting in a modal collapse.

Likewise, the usual (T) schema:

(T) ◻ϕ → ϕ,

will also cause problems. If we add its necessitation to the system, or strengthen

the rules so that it is provable, then we will have as an instance:

◻(◻↓ψ → ↓ψ),
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which can be seen to entail

◊ψ → ψ,

again resulting in a modal collapse.

Finally, the usual (5) schema:

(5) ◊◻ϕ → ◻ϕ

has as an instance:

◊◻↓ψ → ◻↓ψ

which clearly entails:

◊ψ → ψ.

In order to add such axioms or strengthened rules, restrictions must be added

on the kind of formulas which de�ne instances.4

First, we de�ne the degree of a formula, which measures the depth of nested
backtracking operators which have not been cancelled by a modal operator. �e

resulting de�nition is equivalent to one given by [1, p. 426]5 but we shall go via a

more general de�nition (which will be useful later on).

De�nition 10. Let ϕ be a formula of L↓. �en degs(ϕ) ⊂ N is de�ned inductively
as follows:

• For atomic p, degs(p) = {0}

• degs(¬ϕ) = degs(ϕ)

• degs(ϕ ∧ ψ) = degs(ϕ) ∪ degs(ψ)

• degs(◻ϕ) = {n .− 1 ∶ n ∈ degs(ϕ)}

• degs(↓ϕ) = {n + 1 ∶ n ∈ degs(ϕ)}

4Another approach to restricting these axioms is given by [3, Appendix 1.2] for a slightly di�erent

language. Parsons’ approach is not however readily applicable to the language featuring ↓. His

language features scoping operators which, instead of exempting a subformula from some �xed
number of modal operators, signify that some subformula falls under the scope of some �xed number

of modal operators.

5Hodes uses his de�nition to restrict the de�nition of logical consequence, rather than for the

purposes of restricting axioms and rules.
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where n .−m = max(n−m, 0). �ende�ne the degree of ϕ, deg(ϕ) = max(degs(ϕ)).

�e following lemma will then be useful:

Lemma 1. Let ϕ be any formula andM a model. �en for any �nite sequences of
worlds ⟨wn , . . . ,w0⟩, ⟨w′

m , . . . ,w′
0⟩ (not necessarily inWSM) such that:

• n,m ≥ deg(ϕ) and

• wi = w′
i for all i ∈ degs(ϕ),

then:
⟨wn , . . . ,w0⟩ ⊧ ϕ i� ⟨w′

n , . . . ,w
′
0⟩ ⊧ ϕ

Proof. By induction on formula complexity.
�e base case, where ϕ = p is an atomic formula, is simple. �en degs(p) = {0},

and:

⟨wn , . . . ,w0⟩ ⊧ p⇔ a(w0, p) = T (De�nition 2)

⇔ a(w′
0, p) = T (Since w0 = w′

0)

⇔ ⟨w′
m , . . . ,w

′
0⟩ ⊧ p (De�nition 2)

Now, suppose that ϕ is ψ ∧ θ, so that degs(ϕ) = degs(ψ) ∪ degs(θ). �en:

⟨wn , . . . ,w0⟩ ⊧ ψ ∧ θ
⇔⟨wn , . . . ,w0⟩ ⊧ ψ and ⟨wn , . . . ,w0⟩ ⊧ θ
⇔⟨w′

m , . . . ,w
′
0⟩ ⊧ ψ and ⟨w′

m , . . . ,w
′
0⟩ ⊧ θ (since

degs(ψ), degs(θ) ⊆ degs(ϕ) and
by the inductive hypothesis.)

⇔⟨w′
m , . . . ,w

′
0⟩ ⊧ ψ ∧ θ

�e proof is similar when ϕ is ¬ψ.
Suppose that ϕ is ◻ψ. First, note tat, if i + 1 ∈ degs(ψ), then i ∈ degs(◻ϕ), and

thus that wi = w′
i . We then have that:

⟨wn , . . . ,w0⟩ ⊧ ◻ϕ
⇔ For all u s.t. w0Ru, ⟨wn , . . . ,w0, u⟩ ⊧ ϕ (De�nition 2)

⇔ For all u s.t. w0Ru, ⟨w′
m , . . . ,w

′
0, u⟩ ⊧ ϕ (Inductive hypothesis and the above observation)
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We then need to show that this last line is equivalent to:

For all u′ s.t. w′
0Ru

′
, ⟨w′

m , . . . ,w
′
0, u

′⟩ ⊧ ϕ

If 0 ∉ degs(ϕ), this follows from the inductive hypothesis. If 0 ∈ degs(ϕ), then
w0 = w′

0, and so this trivially follows.

Finally, suppose that ϕ is ↓ψ. Note that if i ∈ degs(ψ) then i + 1 ∈ degs(↓ψ).
�en:

⟨wn , . . . ,w0⟩ ⊧ ↓ψ
⇒ ⟨wn , . . . ,w1⟩ ⊧ ψ
⇒ ⟨w′

n , . . . ,w
′
q⟩ ⊧ ψ (Inductive hypothesis and the above observation)

⇒ ⟨w′
n , . . . ,w

′
0⟩ ⊧ ↓ψ

as required.

We are now in a position to strengthen the logic. �is could either be done by

adding axioms, or by strengthening rules. Since it �ts in better with the natural

deduction style of the proof theory so far, I will consider strengthening rules,

though not much hangs on this.6

To strengthen the logic to (T), we strengthen the (◻-E) rule to:

◻ϕ ; s⃗
(◻-E′) ϕ ; s⃗

with a restriction that deg(ϕ) = 0.
�ere will also be a corresponding derived rule for ◊:

ϕ ; s⃗
(◊-I′) ◊ϕ ; s⃗

again, with a restriction to degree 0 formulas. It is easy to check that this is derivable

from ◻-E. It is also simple to prove the (T) axiom (restricted to formulas with
degree 0) from this rule.

To strengthen the logic to S4, we add another rule for necessitation, called

necessitation reiteration:
6�ese strengthenings of rules are all closely related to the rules in [5], albeit using labels in place

of strict subproofs, and with restrictions related to degrees.
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◻ϕ ; s⃗
(◻-R) ◻ϕ ; ⟨s⃗, n⟩

with a restriction that deg(ϕ) = 0.
Again, there is a corresponding derived rule for ◊:

◊ϕ ; s⃗
(◊-R−) ◊ϕ ; s⃗−

with the same restriction. (�e superscript on the rule namewill become apparent.)

And from this rule, we can easily prove the (4) axiom (restricted to formulas with

degree 0).

Finally, we can add another reiteration rule to strengthen the logic to S5:

◊ϕ ; s⃗
(◊-R+) ◊ϕ ; ⟨s⃗, n⟩

with the same restriction again. From this we can derive the usual (5) axiom schema

(again, restricted).

6.1. Soundness

�ese rules are sound with respect to models whose equivalence relations are

re�exive, transitive and re�exive, and equivalence relations, respectively. In each

case, the proof proceeds by use of Lemma 1.

Proposition 4. Suppose thatM is such that RM is re�exive, f is a homomorphism,
and w ∈ WM a world. �en, for any ϕ with deg(ϕ) = 0, ifM,w , f ⊧ ◻ϕ; s⃗, then
M,w , f ⊧ ϕ; s⃗.

Proof. Suppose that w , f ⊧ ◻ϕ; s⃗, so that ⟨w , f (s⃗)⟩ ⊧ ◻ϕ. Let w′ = t( f (s⃗)). �en,
by Lemma 1, ⟨w′⟩ ⊧ ◻ϕ.
By the semantic clause for ◻, for any w′′ such that w′Rw′′, ⟨w′,w′′⟩ ⊧ ϕ. Since

R is re�exive w′Rw′, and so ⟨w′,w′⟩ ⊧ ϕ. �en, by Lemma 1, ⟨w , f (s⃗)⟩ ⊧ ϕ, as
required.

Proposition 5. Suppose thatM is such that RM is transitive, f is a homomorphism,
and w ∈ WM a world. �en, for any ϕ with deg(ϕ) = 0, ifM,w , f ⊧ ◻ϕ; s⃗, then
M,w , f ⊧ ◻ϕ; ⟨s⃗, n⟩.
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Proof. Assume that ⟨w , f (s⃗)⟩ ⊧ ◻ϕ, and we aim to show that for any n ∈ N,
⟨w , f (⟨s⃗, n⟩)⟩ ⊧ ◻ϕ. By Proposition 1.1, and the de�nition of ◻, we are required to
show that, for anyw′,w′′ such that t( f (s⃗))Rw′ andw′Rw′′, ⟨w , f (s⃗),w′,w′′⟩ ⊧ ϕ.
But, since deg(ϕ) = 0, and by Lemma 1, this is equivalent to ⟨w , f (s⃗),w′′⟩ ⊧ ϕ.

By transitivity, t( f (s⃗))Rw′′, so ⟨w , f (s⃗),w′′⟩ ⊧ ϕ by our original assumption and
the de�nition of ◻, as required.

Proposition 6. Suppose thatM is such that RM is transitive and symmetric, f
is a homomorphism, and w ∈ WM a world. �en, for any ϕ with deg(ϕ) = 0, if
M,w , f ⊧ ◊ϕ; s⃗, thenM,w , f ⊧ ◊ϕ; ⟨s⃗, n⟩.

Proof. Assume that w , f ⊧ ◊ϕ; s⃗. So, there is u ∈ W such that t( f (s⃗))Ru and
⟨w , f (s⃗), u⟩ ⊧ ϕ. By Lemma 1, ⟨u⟩ ⊧ ϕ (since deg(ϕ) = 0).

�en to show that w , f ⊧ ◊ϕ; ⟨s⃗, n⟩, we need to show that there is u′ ∈W such

that t( f (⟨s⃗, n⟩))Ru′ and ⟨w , f (⟨s⃗, n⟩), u′⟩ ⊧ ϕ. By Lemma 1, for the latter of these
it is su�cient to show that ⟨u′⟩ ⊧ ϕ.
But then u is such a u′. We already have that ⟨u⟩ ⊧ ϕ. �e accessibility

properties follow from the transitivity and symmetry of R, together with the fact
that f (⟨s⃗, n⟩) = ⟨ f (s⃗), u′′⟩ where t( f (s⃗))Ru′′.

Soundness theorems for appropriately restricted notions of logical consequence

follow easily.

6.2. Normal Forms and degree separation

Before proving completeness for these strengthenings, it will be useful to prove

that any formula is equivalent to one in which the degrees are ‘separated’, in a

certain sense. To make this more precise, we have the following de�nition:

De�nition 11. A formula ϕ is in degree-separated normal form (DSNF) i� it has
the form:

n
⋀
i=0

ϕi

where for each i ≤ n, we have one of the following:

• degs(ϕi) = {0},

• 0 ∉ degs(ϕi), or
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• ϕi is of the form ψ ∨ θ where degs(ψ) = {0} and 0 ∉ degs(θ).

So, a formula in DSNF is a conjuction of disjuctions, none of the disjuncts of

which have both 0 and n > 0 in their degrees. �is is thus similar in some ways to
conjunctive normal form in non-modal propositional logic, but where the role of

atoms is played by formulas ϕ where either deg(ϕ) = 0 or 0 ∉ degs(ϕ). �ere is
no need to have more than two disjuncts in each disjunction, since the disjuction

of formulas of degree 0 will still be of degree 0, and the disjunction of formulas

with degree not including 0 will still not include degree 0.

We wish to prove that each formula is equivalent to one in DSNF, and we can

do so for a stronger notion of equivalence than we currently have. So, we de�ne:

De�nition 12. Two formulas ϕ and ψ are equivalent, ϕ ≡ ψ, i� for all modelsM
and all non-empty w⃗ ∈W<ω

M (and not just in WSM):

M, w⃗ ⊧ ϕ⇔M, w⃗ ⊧ ψ

(Note that here we are appealing to the extended notion of satisfaction alluded to

in De�nition 2.)

Note that this is a stronger condition than ⊧ ϕ ↔ ψ, since, for example,
⊧ p↔ ↓p but p /≡ ↓p.
Before proving that every formula is equivalent to a DSNF formula, a couple

of Lemmas will be useful:

Lemma 2. Suppose that 0 ∉ degs(ϕ). �en ◊ϕ ≡ ◻ϕ.

Proof. �e right to le� direction follows from the assumption that the accessibility
relation is serial.

For the le� to right direction, suppose that w⃗ ⊧ ◊ϕ. �en, for some u with
t(w⃗)Ru, ⟨w⃗ , u⟩ ⊧ ϕ. But then, by Lemma 1, for any u with t(w⃗)Ru, ⟨w⃗ , u⟩ ⊧ ϕ,
and thus w⃗ ⊧ ◻ϕ as required.

Lemma 3. Suppose that degs(ϕ) = {0} and 0 ∉ degs(ψ). �en◻(ϕ∨ψ) ≡ ◻ϕ∨◻ψ.

Proof. �e right to le� direction is trivial.
For the le� to right direction of the equivalence, suppose that w⃗ ⊧ ◻(ϕ ∨ ψ).

Suppose that w⃗ ⊭ ◻ϕ, then there is u with t(w⃗)Ru such that ⟨w⃗ , u⟩ ⊭ ϕ but
⟨w⃗ , u⟩ ⊧ ϕ ∨ ψ, and thus ⟨w⃗ , u⟩ ⊧ ψ. �us, w⃗ ⊧ ◊ψ. �en, by Lemma 2, ⟨w⃗⟩ ⊧ ◻ψ.
Hence ⟨w⃗⟩ ⊧ ◻ϕ ∨ ◻ψ as required.

22



We can now prove that every formula is equivalent to one in DSNF:

Proposition 7. Every formula ϕ is a equivalent to a DSNF formula ϕ′ such that
degs(ϕ) = degs(ϕ′).
Proof. By induction on formula complexity. �e base case is trivial since atomic
propositions are already in DSNF. Likewise, the inductive step for ∧ is trivial.

�e inductive step for ¬ is simple, following from basic applications of de
Morgan’s laws and the distributivity of conjunction and disjunction, and a simple

observation that the resulting formula has the right form.

�e inductive step for ↓ follows from the fact that ↓ distributes over both
conjunction and disjunction.

For the case where ϕ is ◻ψ:

ϕ = ◻ψ
≡ ◻⋀ψi (By the inductive hypothesis)

≡ ⋀◻ψi

When ψ is a disjunction of a formula of degree 0 and a formula of degree not
including 0, then ◻ will distribute over this, resulting in a formula of the correct
form.

6.3. Completeness

We are now in a position to prove completeness theorems corresponding to the

soundness theorems above. We will do so by showing that the models constructed

in the completeness proof for the unstrengthened system can be extended tomodels

which satisfy the required restrictions on the accessibility relation.

Re�exive models

So, for the case of re�exivity, we need to prove the following theorem:

Proposition 8. Suppose thatM = ⟨W , R, a⟩ ⊧ T, but R is not re�exive. Let
M′ = ⟨W , R′, a⟩, where R′ is such that, for all w ,w′ ∈ W, wR′w′ i� wRw′ or
w = w′.

�en, for any formula ϕ, and any w⃗ ∈WSM:

M, w⃗ ⊧ ϕ i�M′
, w⃗ ⊧ ϕ.
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�e proof will be by induction on formula complexity. Since the only di�er-

ence between the two models is the accessibility relation, the base case (atomic

propositions) and all the inductive steps other than for necessity are trivial.

�e inductive step for formulas of the form ◻ϕ is more tricky. What we will
need to show is that, on the assumption that Proposition 8 holds for ϕ, then for
any w⃗ ∈WSM:

M, w⃗ ⊧ ◻ϕ i�M′
, w⃗ ⊧ ◻ϕ.

Since R is a subrelation of R′, the right to le� direction is trivial, and it is easy to
see that for the le� to right direction it is su�cient to show that:

IfM, w⃗ ⊧ ◻ϕ thenM′
, ⟨w⃗ , t(w⃗)⟩ ⊧ ϕ.

We will show this �rst for DSNF formulas, and then use Proposition 7 to prove

it in general. In fact, we shall prove a slightly modi�ed version of the result, which

does not require assuming the inductive hypothesis.

Proposition 9. Suppose thatM⊧ T, and that ϕ is in DSNF.�en, for all w⃗ ∈WSM:

IfM, w⃗ ⊧ ◻ϕ thenM, ⟨w⃗ , t(w⃗)⟩ ⊧ ϕ.

(Note that it isM, and notM′, which appears in the consequent, and that there is
no guarantee that ⟨w⃗ , t(w⃗)⟩ ∈WSM.)

Proof. First, we can prove the result for when degs(ϕ) = {0}. Suppose that
M, w⃗ ⊧ ◻ϕ. �en, sinceM⊧ T and deg(ϕ) = 0,M, w⃗ ⊧ ϕ. �en, by Lemma 1,
M, ⟨w⃗ , t(w⃗)⟩ ⊧ ϕ as required.
Secondly, we can prove when 0 ∉ degs(ϕ). Suppose thatM, w⃗ ⊧ ◻ϕ. �en,

for all u with t(w⃗)Ru,M, ⟨w⃗ , u⟩ ⊧ ϕ, and by seriality there is such a u. Hence, by
Lemma 1, and since 0 ∉ degs(ϕ),M, ⟨w⃗ , t(w⃗)⟩ ⊧ ϕ as required.

�en, we can prove it for when ϕ is of the form ψ ∨ θ, where degs(ψ) = {0}
and 0 ∉ degs(θ). Suppose thatM, w⃗ ⊧ ◻(ϕ1 ∨ ϕ2). �en, by Lemma 3,M, w⃗ ⊧
◻ϕ1 ∨ ◻ϕ2. �en, by the previous two results, we get thatM, ⟨w⃗ , t(w⃗)⟩ ⊧ ϕ as
required.

Finally, this extends to all formulas in DSNF, since necessity distributes over

conjunctions.

Finally, we can prove Proposition 8:
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of Proposition 8. As mentioned, the base case and all inductive steps are trivial
except for necessity.

So, suppose that the proposition holds for ϕ and we wish to show it for ◻ϕ.
We need to show that:

IfM, w⃗ ⊧ ◻ϕ thenM′
, ⟨w⃗ , t(w⃗)⟩ ⊧ ϕ

By Proposition 7, we have that there is ϕ′ ≡ ϕ which is in DSNF. �en:

M, w⃗ ⊧ ◻ϕ⇒M, w⃗ ⊧ ◻ϕ′ (ϕ ≡ ϕ′)
⇒M, ⟨w⃗ , t(w⃗)⟩ ⊧ ϕ′ (Lemma 9)

⇒M, ⟨w⃗ , t(w⃗)⟩ ⊧ ϕ (ϕ ≡ ϕ′)
⇒M′

, ⟨w⃗ , t(w⃗)⟩ ⊧ ϕ (Inductive hypothesis)

as required. �e proposition then follows.

Completeness is then trivial. Given a consistent set of formulas, we can con-

struct a model as in section v, and then allow its accessibility relation to be re�exive.

�is will then be a model of Γ, by Proposition 8.

Transitive models and equivalence relation models

�e argument for transitive models and equivalence relation models is much the

same. In both cases, we again replace the accessibility relation of a model with

one which is transitive or an equivalence relation in the same kind of way. So, to

get a transitive model, we take the transitive closure of the relation, and to get an

equivalence relation, we let w1R′w2 i� w1 = w2, w1R∗w2 or w2R∗w1, where R∗ is
the transitive closure of R.
In each case, it is again only the step corresponding to necessity in a proof by

induction which is problematic. Note that, in the previous case, the only point at

which we appealed to the features of the new accessibility relation (rather than

appealing to Lemma 1, which is general), is in proving the step for formulas with

degree 0. �at can be done again here.

Proposition 10. Suppose thatM = ⟨W , R, a⟩ ⊧ 4, ϕ ∈ L↓ such that deg(ϕ) = 0
and let R′ be the transitive closure of R. �en, for all w⃗ ∈WSM, ifM, w⃗ ⊧ ◻ϕ, then
for all u ∈W such that t(w⃗)R′u,M, ⟨w⃗ , u⟩ ⊧ ϕ.
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Proof. Suppose that w⃗ ⊧ ◻ϕ, and let u be such that t(w⃗)R′u. �en, there are
u1, . . . , un such that t(w⃗)Ru1, u1Ru2,. . . ,unRu.
We then have:

w⃗ ⊧ ◻ϕ⇒ w⃗ ⊧ ◻ . . .◻
´¹¹¹¹¹¸¹¹¹¹¹¶

n+1
ϕ (SinceM⊧ 4)

⇒ ⟨w⃗ , u1, . . . , un , u⟩ ⊧ ϕ (De�nition 2)

⇒ ⟨w⃗ , u⟩ ⊧ ϕ (Lemma 1)

as required.

Proposition 11. Suppose thatM = ⟨W , R, a⟩ ⊧ S5, ϕ ∈ L↓ such that deg(ϕ) = 0
and let R′ be the smallest equivalence relation including R.

�en, for all w⃗ ∈WSM, ifM, w⃗ ⊧ ◻ϕ, then for all u ∈ W such that t(w⃗)R′u,
M, ⟨w⃗ , u⟩ ⊧ ϕ.

Proof. First note that for any w1,w2, w1Rw2 i� one of the following holds:

• w1 = w2

• w1R∗w2

• w2R∗w1

where R∗ is the transitive closure of R.
Suppose that w⃗ ⊧ ◻ϕ, and let u be such that t(w⃗)R′u. We want to show that

⟨w⃗ , u⟩ ⊧ ϕ. We have already proved this in the cases where u = t(w⃗) and where
t(w⃗)R∗u.

�e only case le� is where uR∗t(w⃗). So, there are u1, . . . , un ∈WM such that
uRu1, u1Ru2, . . . , unRt(w⃗).
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Suppose for contradiction that ⟨w⃗ , u⟩ ⊭ ϕ. �en:

⟨w⃗ , u⟩ ⊧ ¬ϕ (De�nition 2)

⇒ ⟨u⟩ ⊧ ¬ϕ (Lemma 1)

⇒ ⟨u⟩ ⊧ ◊¬ϕ (SinceM⊧ T)
⇒ ⟨u⟩ ⊧ ◻ . . .◻

´¹¹¹¹¹¸¹¹¹¹¹¶
n+1

◊¬ϕ (SinceM⊧ 4 andM⊧ 5)

⇒ ⟨u, u1, . . . , un , t(w⃗)⟩ ⊧ ◊¬ϕ (De�nition 2)

⇒ w⃗ ⊧ ◊¬ϕ (Lemma 1)

But this contradicts our assumption that w⃗ ⊧ ◻ϕ. Hence ⟨w⃗ , u⟩ ⊧ ϕ, as required.

�e additional steps for the completeness proof can then be carried out in just

the same way as for transitive models.

vii. Conclusion

I hope that a proof theory of the sort presented in this paper will be useful to those

who would like to understand backtracking operators in a way which does not

essentially involve possible worlds.

�e proof system is motivated, not by possible worlds semantics, but rather by

the interpretation of the operator as indicating scope. �e proof theory is sound

and complete with respect to the semantics. �is means that the proof theory

is acceptable to those who would rather interpret the operator semantically—so

that the proof theory plays a useful role in showing that certain formulas follow

(semantically) from others. It also means that the semantics can play a useful

pragmatic role for those who interpret the operator more syntactically—so that

model-theoretic arguments can be given to show that certain inferences can or can

not be made in the proof system.

Most philosophical uses of a backtracking operator—and in particular those

uses to which a proof theory would be most useful—are in the context of quanti�ed
modal logic. But, although the approach here concerns only propositional logic,

much of what I have said can readily be applied to the quanti�ed case. For example,

rules for the quanti�ers can be added in the obvious way—simply take the usual
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rules for quanti�ers, with the addition that they preserve the label on a formula (in

just the same way as the rules for connectives here). �en the soundness proofs

simply need an additional check for these rules, and the completeness proof will

combine the completeness proof here with a typical proof of the completeness of

predicate logic.
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