Uncommonly静teresting

Rntatinvaux

\author{

- By K. J. Gaston. Chapman and Yat: Isis4. Pp. 205. £17.95 (pbk).
}
'RARE' is a term usually used by collectors to mean "I have got one and you haven't". Rarity is thus desirable, as reflected in one of its definitions in the Oxford English Dictionary: "thing valued as being rare". Biologists are not immune to this human foible, rejoicing in a rare bird or an unexpected species in the collecting net.

But for Gaston, in what is apparently the first misugerigh biological rarity,
 of small trise, 50 the The are
 munity. This abundance, as it were, of the rare is what makes rare species interesting. Why are certain species rare? Do ecosystems need them? Are they successful as a species? Is rarity a sign of impending extinction?

Frank Preston made a fundamental observation in his paper "The Commonness and Rarity of Species" (Ecology 29, $254 ; 1948$) by showing that the distribution of relative abundance is log-normal. This implies underlying randomness. Subsequent attempts to find more subtle patterns of relative abundance have left few traces. Robert MacArthur's "broken stick" model, in which resources of a community are allocated as if by the random breaking of a stick into bits of unequal length, yields distributions of relative abundance that are themselves functions of the log-normal. Joel Cohen's variant of the broken stick theme, the "balls and buckets" model, in which population size is allocated by the random, sequential throwing of coloured balls into an army of buckets, yields a similar echo of the log-normal. No other models have fired the imaginations of ecologists as did the broken stick.

Gaston believes that interesting questions remain to be answered. He offers no new model or theory of rarity, nor is the history of the broken stick and its allies mentioned. Instead he begins a quest for properties of the rare that can be measured.
Definition is a major problem, and Gaston devotes his first chapter to it. He concludes that we have no alternative but to assign an arbitrary proportion of species present as rare, essentially the x per cent of species that have lowest abundance or smallest range. Five per cent of total abundance, biomass or range usually provides plenty of species in the 'rare' category.
With the rare so defined, Gaston takes a
population biologist's approach to measuring both the rare and the properties that might account for their rarity. Obstacles are formidable. The very rare almost cannot be counted, as when Eric Pianka noted that it takes a hundred person-days to find one specimen of a rare lizard. And to measure the area occupied by species with patchy distributions probably needs the use of fractals.

To investigate the causes of rarity by measurement, as the author wishes, without hypotheses of rarity to test, is more difficult still. Measuring arrays of environmental factors becomes uncomfortably reminiscent of older schools of plant-community analysis, where the aim was to explain plant distributions as consequences of physical parameters of environments alone.

Gaston describes several possible causes of rarity: endemism, individuals at range boundaries, vagrancy, the lows of fluctuating populations, restricted dispersal or establishment, as well as the pseudorarity that results from limits to our powers of detection. He dismisses the concept that some species remain rare because of restricted niche opportunities, because in the few examples where many resources have been measured, he is unable to find any correlation between resource and relative abundance.

As one who once tried to introduce Raymond Lindeman's concept of efficiency of energy transfer between trophic levels with an essay called "Why Big Fierce Animals are Rare", I remain convinced that tigers are rarer than sheep, and that I know why. But this monograph is about the rarity that remains after possible effects of food chains, functional niches, vagrants and sampling error are removed. This remainder is massive. Preston demonstrated the powerful influence of random process in bringing it about. Gaston suggests that experimental measures will find better answers. Perhaps. But it would be more fun to be given a new hypothesis of community-building over which we could argue with the passion ecologists once brought to the broken stick.

Paul Colinvaux is in the Smithsonian Tropical Research Institute, PO Box 2072, Balboa, Panama.

Correction

Aline of text mysteriously disappeared from Michael Jacobs' review of Environmental Politics and Greener Management International in this year's New Journals supplement (Nature 371, $458 ; 1994$). His full address is the Centre for the Study of Environmental Change, University of Lancaster, Lancaster LA1 4YN, UK.
It has also been brought to our attention that Glaucus atlanticus, the sea slug pictured on page 456 of the same issue, does not live on the sea bed, as stated. The organism is in fact an important inhabitant of the ocean surface film.

Natural selections

RayPercival

Realism Rescued. By Rome Harré, Jerrold Aronson and Eileen Cornell Way. Open Court/Duckworth: 1994. Pp. 203. \$42.95, £30 (hbk); \$18.95 (pbk).

How do you put both physicists and biologists on their guard? Answer: propound a philosophical theory that ignores Darwin's demolition of essentialism in species and brands any physicist who denies your theory of natural kinds as an anti-realist.
A traditional division in philosophy is between metaphysics (what sorts of things exist) and epistemology (what and how we know). Some think that the core of realism is the metaphysical assumption that there is a world independent of our minds. But this core assumption is sometimes clothed in other assumptions, such as theories of truth, truth-likeness, meaning and knowledge. Scornful of what they see as an unnecessary retreat from a fully clothed realism to the naked postulate of a mind-independent reality, Harré, Aronson and Way present a realism that also embraces truth and truth-likeness, as well as their own conception of scientific method and the structure of the world.
Informing their whole approach is a challenging view of scientific theories. Theories, they argue, are "essentially" models, or families of models, that constitute their "content". The idea that theories are sets of propositions is rejected. Well-constructed theories consist of a descriptive model, which portrays the phenomena, and an explanatory model, which portrays the unobservable substructure that causes the phenomena. Models are not simply dispensable aids to the construction and understanding of theories, as Duhem would have said. They expand a theory's explanatory power and help. us to explain how theories can be continuously revised and extended to new phenomena.

Models represent type-hierarchies and type-hierarchies are pyramidal representations of the ordered hierarchy of natural kinds that make up the world. Borrowed from artificial intelligence, a type-hierarchy analysis, the authors say, is more faithful to our natural use of language, including metaphor and analogy. This is the authors' "naturalistic" approach. But defining realism in this way poses several problems.
In the authors' picture of the structure of the world, natural kinds are ordered in a hierarchy. Thus diamonds are a subtype of crystals, crystals are subtypes of molecular combinations, molecules are subtypes of combinations of atoms, atoms are subtypes of combinations of sub-
 sone people lold as interedily mowwivinick (Molatic) new of muther that piotirvel each prosese aad neutros as made ef one anotrer. This was callod it Thear. strip theory" afie Iuron voo Mesels. havien, wheidiesed to have ifnod Nivent up by heres hooveupe. In this vic*, the bisrarcty ciowot he continoed bocases the owsitivest! af the hadroms ire io sowe clemealary this the given hisdross -they woeld be wilfypes of each orther. Thin thoory is now eufited, but woest might qublic in the rerpertion thut catertainicy swoh s theory in the time wis "ant-reallur". Defingtrellivel ianerma of tie ditall of a particular ontelogy meven ther the cotica of this partivelur casolops ave asti-realist by definibiot

Davial't thoory mindersines alk of matal kishe. The anowsly of locts a endes horua nod wa earlinecpes cas be paoed hack through nitermediune wacies 70 a suenines virun-bike asetiar. Hoe eveld this le if the viru-the anotstor wom os mifral kind, that is, had as everoee? Derwin's aveer was that the stops ep 19 and over tbe "boandary" beraets eve spocies ant asocher ave wilytit.

The anthon oover in a very reatahle wry masy prollem, indoding truch. truth-ilionem, Eetapter and enthor.
 and peimary and spoodary qualities. Trath itself is defised in turnt of their vive of the nerectiate of he world. Insinsd of detining rewlien is terms of a poopesi: tirnal netion of rubl is comvupondence, trud in dcfoed is Ieres of sualise the orlering of nobursl kisk), A model is tree if the chank of the lype terarchy is plick oet is sidentical to the section of the ondered relatiomlips beteven satank Mishe in be wolld. A roolel is chase so dhe
truth it there on a siniluricy beween these sro type-himirclich.
 the project are protiqeed by the nathons' acosptaso of is peep of refued dostrince, inclafing biterilios, indoction, esurviation lind smbopitien Minrsham is the idea flut se should aness phet osoptical doctrines is beren of shat peycholighth or irtibcial inelligence ppolalite flind out show the wiy we Bown onecrpts, somein net so on. A sureralatic appunach to the plibuegploy of wienef, hovever, werme a pedl dialisction hevies a devriptive malysis of wivace ind a peevariptive (methodetogical) andyes. Dime are ucerral daypers vith this. Apprainal of mothed and theory is
 Bext methof is undereood tacity is vhen scientids hoppee to do and thin huopiens te be unadvestarees, thon the crushot ned moceptance of thories that challonge the arthodaty ate ingrodet. Natandion aho han a tendency so wefeue the cogritive (peychologicaff Boclinvime that probase a heory will the surere of the thoory ownibernd in an otjertive prodect with asposomosen propertics asd is appoainal, juar as a procod carpenter nijptr omirvalos fies prodact becouse of the sass long buen he spest fachiosing it.
There is mesh to diaagree will here, but the avornurk pecientwiod of the model vere of sientic theories will prodoce seetul tibure.
 er mild ihaiman of tie Ansual Conternere oo the Avilosoply of Sir Karl Avour ine associaty efliter of the Pobper News letter and hompai of Social and Lielubionty 5ypers.

No stones left unturned

Jawes A. Tyburty
Introduction ts the Physice of Rocks. By Yies Gutgies and Vistor Palsanaskes Priscotion UNevelity Repse 1994 Pp. 235. 84269.65

A Geoprrwcar atadies Larth's whewfioe by weworligy helk propertics ioch is nemenk velowis, electical acedoctions. thernall ousdativicy of mugnetrution froe the wartsoe of is a hourhole. Thes. aing the toob of rook ployica, be er she extrich trow theve meparnmenti isformution aboet the phyikal stare of the rocka beoewh the seitiop. sack as mock rype, porosity, pertivahilicy and flad simiration. In thes swy. bet can explone flow ipdnacarteres, minerah and por-
 mal-made haranle seoh is qurthpake ferlth, groaadwater pollobios asd Eediras sterage whernes.

Covital rocks are beturogeseine mir-
 forfered asd omenolly partly to folly safernled loy ficide wach in waler and Brofrocentow. Ses the vooin of the sodk popseis. thovy. evestinas archarici, soct if forratiet and fractare mentumers for
 mochuvis'), bur ale choories of heteropmocies und perose modla, fuid the and peroblatiet ineory, werface dorb intry. sloctiv and derlectice theocy. beat transler ind the theory of mapoetas maticrish.
The tent 6.5 , weliper and pervionsly

Bownatieg Wioudlanden. Deven one oflitelitionith sentionien fientaced is EughedriNationof Nibirs lleserves ig Peter Wames Oindidhtakire Thebroyer Exil wis line froving untwe 69 eder ablest teplonet pewiben consprebumber leet aflinhindigeend andpailowplyy of the reverves mid fournle Blogpligit comervilioe and neventis

What + voc,37i + 20 OcTose 5304

