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Reviewed by Anthony F. Peressini†

Otávio Bueno and Steven French have produced a readable, informative, and
compelling account of mathematics as it is deployed in physical theory. �e book
is built on their previous work on the partial structures framework, mathematical
application, and philosophy of (quantum) physics.

It o�ers a compelling case for partial structures as a framework for under-
standing how mathematics is applied in physical theory. Further, it seeks to �nd a
“middle way” between seeing the “e�ectiveness of mathematics” as unreasonably
mysterious or unreasonably inevitable. By bringing insights based on Michael
Redhead’s notion of “surplus structure” to the partial structures approach—along
with historically a�entive work in philosophy of quantum physics—the authors
make the case for their middle way. Finally it forti�es the case against the e�cacy
of indispensability arguments, both traditional and enhanced.

Chapter 1, entitled “Just How Unreasonable is the E�ectiveness of Mathe-
matics”, sets the stage for their middle way by presenting and critiquing Mark
Steiner’s [1998] in�uential version of Wigner’s question. Steiner takes a Pythagorean
view of how signi�cant portions of mathematics function in physical theory,
namely, that scientists employ formal analogies between physically interpreted
portions of mathematics and distinct pure (not interpreted physically) mathemat-
ics to “guess” at the laws of nature. And of course, understood as bare guessing at
laws based on formal analogies (and other relationships) with in pure mathemat-
ics, the “methodology” does seem to have been mysteriously e�ective. In a clear
and historically informed few pages (3–9), the authors neatly show how Steiner’s
case, in the context of Schrödinger’s wave equation, depends crucially on con-
�ating the context of discovery with subsequent e�orts to interpret the theory,
and also on an historically unsustainable reconstruction of the discovery. �e
next two sections, entitled “Mathematical Optimism” and “Mathematical Oppor-
tunism,” �rst detail problems with an opposite extreme that expects any physical
phenomena to be straight forwardly isomorphic to a mathematical structure, and

∗Orcid.org/0000-0002-0251-3032
∗∗Orcid.org/0000-0003-2667-2350
†Department of Philosophy, Marque�e University, Milwaukee, Wisconsin. Orcid.org/0000-

0002-3448-4416. Email: anthony.peressini@marque�e.edu

1



Author’
s

cop
y—

ple
ase

do
n’t cit

e
then endorse a more historically sensitive, case-speci�c opportunistic approach
that recognizes the intermediary role of idealization and other physical repre-
sentations of the phenomena to the application of mathematics.

Chapters 2 and 3 present Bueno’s and French’s partial structures account of
application, and Chapters 4–7 concern how the account can be put to work in
the analysis of the development of aspects of quantum theory.

�e authors motivate and present their partial structures account on the tails
of the notion of surplus structure [Redhead, 1975], the idea that when connect-
ing a (pure) mathematical theory/structure to a physical system/model, only a
portion of the pure theory/structure is explicitly understood to correspond to an
aspect of the physical system/model. An important feature of the backdrop of
the partial structures account is that it begins with an “already mathematized”
physical domain whose (mathematical?) structure is mapped to a mathemati-
cal theory/structure (44). But importantly, “only some structure is brought from
mathematics to physics; in particular, those relations that help us �nd counter-
parts, at the empirical set-up, of relations that hold at the mathematical domain.”
In the mathematical domain “empirical problems can be be�er represented and
examined” (45). Typically not all of the information about which aspects of the
physical structure can be mapped to the mathematical are available, and more
information may accrue as the empirical theory evolves. �e “partial” aspect
of the account helps capture this incompleteness and, crucially, how it evolves
through scienti�c progress. A partial relationship, say R over domain of interest
D, is understood as an ordered triple 〈R1, R2, R3〉 in which R1, R2, and R3 are
exhaustive and mutually disjoint sets over D, where R1 is the set for which R is
known to hold, R2 is the set for which R is known to not hold, and R3 is the set
for which it is not known whether R holds.1 �us R1 and R2 represent what is
currently known about how the mathematical structure aligns with the physical,
and R3 is le� open, aligning with the “surplus structure” and capturing the open
and evolving aspect of scienti�c theory.

Next—and this is really the payo� for the approach with respect to application—
we see that these partial structures and morphisms help “establish inferential re-
lations between empirical phenomena and mathematical structures” (52), which
is the lynchpin in their general account of the applicability of mathematics:

1In order to facilitate comparing partial structures, the authors further introduce partial iso-
morphisms and partial homomorphisms, with the la�er being especially important because it
does not require the structures to be of the same cardinality, which of course is o�en not the case
between physical structures and mathematical ones (43–44).
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It is by embedding certain features of the empirical world into a
mathematical structure that it becomes possible to obtain inferences
that would otherwise be extraordinarily hard (if not impossible) to
obtain (51).

�is encapsulates their three-stage inferential conception of mathematical appli-
cation (IDI):

Immersion establishes a mapping (generally partial) from the phys-
ical system (model) to an appropriate mathematical structure.

Derivation draws consequences (makes inferences) within the math-
ematical formalism.

Interpretation maps the formal consequences back onto physical
system (model)—the interpretive mapping involved may or may
not be the inverse of the one involved in the Immersion step.

At this point (the end of Ch. 2), the authors have established their middle way be-
tween mystery mongering and undue optimism and their account of how math-
ematics is applied to a physical system/model already understood to be mathema-
tized to some degree. �at is, everything in the account so far has been predicated
upon already having a mathematized physical structure or model—more gener-
ally, a mathematized or readily mathematizable representation of the physical
phenomena of interest. Chapter 3 is thus an e�ort to defend their general ac-
count representation in science, which again is a formal one involving various
morphisms and structures, as described above. �e chapter is a helpful and plau-
sible defense of their formal account of scienti�c representation, especially for
those of us without �rm convictions on the issue(s).

We are now to what I found the most interesting and informative parts of the
book, the four chapters carefully engaging the development of quantum theory
with an eye toward their account of application. And while this may be partly due
to my particular position as a reader—someone trained in the mathematics but
not so much the physics, and especially not the history of the physics—these four
chapters have standalone value for all scholars thinking about the application of
mathematics. �ese chapters take the reader into the actual historical details of
application, rather than dealing with typical toy examples. And importantly, the
scienti�c work can be seen to be developing concurrently with the development
of the mathematical theory. It is precisely these actual instances of application
that must be considered in theorizing mathematical application. I will not try
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to fully summarize the chapters here, instead I will narrate brie�y their general
topics.

�e authors describe Chapters 4–7 as a series of case studies illustrating
how application crucially involves “constructing the special circumstances” via
idealizations that allow physical theory to be embedded in mathematical the-
ory. Chapter 4 looks at the introduction of group theory into quantum me-
chanics in the later 1920s and early 1930s and employs the (di�ering) details
of the Weyl and Wigner programs to argue that a�ention to the idealizing work
on the physics side demysti�es Steiner’s account of application. Chapter 5 is
concerned with the explanation of the super�uid behavior of liquid helium in
terms of Bose-Einstein statistics (by London); it vividly illustrates the Immersion
step of their account as a “bo�om-up” way of “preparing” the physical phenom-
ena for the more “top-down” step of applying the mathematical theory to it. In
Chapter 6 we get an exceptionally clear account of the development of von Neu-
mann’s algebras (of operators) as a supplement to the Hilbert space formulation
of quantum mechanics—important lessons from the episode include the theo-
retical uni�cation of quantum states, probability, and logic, and also the further
inter-relationships between pure mathematical structures (Hilbert space, func-
tional spaces in general, and once again, group theory, but in a distinct way from
Chapter 4).

Finally, Chapter 7 is a study of Dirac’s delta function and its well known prob-
lematic role in quantum mechanics—in particular, establishing the equivalence
of matrix and wave mechanics, but also its (putative) role in the discovery of the
positron. In a turn that anticipates the remainder of the book, part of the chapter
concerns whether and in what sense the delta function was indispensable in these
two roles. �e authors present a careful case that it was not indispensable in ei-
ther case; by focusing on the Interpretation (of the inferred mathematical surplus
structure) stage, they neatly argue that—in part by paying careful a�ention to the
details of Dirac’s reasoning—it was not formalistic consideration of the surplus
math that led him to posit the positron, but rather physical considerations and
insight that eventually allowed him to come up with a physical interpretation
of the surplus mathematical structure (negative energy solutions). Indeed, “the
surplus structure in and of itself has no heuristic force—it is only when there
are the relevant grounds, or reasons, in play that the structure has signi�cance
(144),” and instead “the crucial work was done by interpreting the mathematical
formalism (without a physical interpretation, no empirical predictions could ever
be obtained from the la�er)” (147).

�e eighth chapter continues with indispensability issues, which have of
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course been at the center of cases for mathematical Platonism since �ine. �e
�rst part addresses the traditional indispensability argument (IA): that the indis-
pensable use of mathematics in physical theory commits us to the reality of the
mathematical objects involved as well as the physical. �e authors show how
the Dirac delta function case undercuts the immediate (and perhaps ultimate)
plausibility of IAs; they rehearse the more sweeping problems with it and move
on to the focus of the current debate, the “Enhanced Indispensability Argument”
(EIA), which focuses on examples of mathematical explanation playing an indis-
pensable role in science. �e discussion of the IA is a helpful pulling together
of consensus. �e extended discussion of the EIA is an important furthering
of the debate, in my opinion. In particular, by carefully distinguishing between
the representing/indexing role of math and its (putative) explanatory role and
by returning consideration to the actual (vexing) examples like the role of sym-
metry and the permutation group from Chapter 4, we are led to see that there
are at least six ways in which one can understand the explanatory work done
by invoking the permutation group as grounded in the physical world (causal or
structural), and need not “open any door to mathematical structure in the role of
explanans” (173). �e �nal eight pages consider the warrant for countenancing
physical entities with “hybrid” properties (having both abstract mathematical
and physical features), e.g., quantum spin. �e authors’ case against hybridity
involves a careful consideration of the possible motivations for this from cur-
rent physical theory (found lacking) and also the prospects for actually articu-
lating a metaphysical account of what it would mean to be both mathematical
and physical—pointing out that while not impossible to construe, there are al-
ternatives to hybridity (e.g., structural realism) that seem to do the job without
incurring the metaphysical costs.

In the �nal substantive chapter, Chapter 9, the authors undertake a defense
of their partial structures account against the claim that it cannot accommo-
date explanatorily ineliminable mathematical operations (due largely to Robert
Ba�erman). �e idea is that the partial structures account, with its focus on
mappings between physical and mathematical structures, is unable to capture
important applied mathematics examples in which some kind of mathematical
limiting operation plays the main role. �at is, operations that do not require one
to “associate a mathematical entity or its properties with some physical structure
had by the system of interest” [Ba�erman, 2010, 4]. And that in fact, “in some
important examples of explanations in physics, certain mathematical operations
feature ineliminably in the explanans” (193), and thereby resist being folded into
the partial structures IDI account.
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Bueno and French respond in two directions: they argue (1) that their account

can and does accommodate mathematical operations, and further that (2) the
onus is on the critic who claims that such mathematical operations explain the
physical phenomenon to provide an account of how they explain, and that no
plausible account has been o�ered or appears to be forthcoming. In the end (a�er
much helpful discussion), they boil down their disagreement with Ba�erman to
the following.

�e core of our disagreement with Ba�erman now becomes clear.
For us, the relevant [asymptotic limiting] techniques sketched above
involve signi�cant surplus structure. For Ba�erman, the claim that
they provide understanding and explanation means that the struc-
ture cannot be surplus. (206)

�ey spend Section 9.9 outlining four “basic requirements” that explanations in
general satisfy, and argue that Ba�erman’s asymptotic explanation proposal ap-
pears not to satisfy them, and thus need not be seen as a novel kind of math-
ematical explanation that proves intransigent to their account. Section 9.10 is
a critique of an account (from Ba�erman and Rice) of explanation that is more
supportive of asymptotic explanation.2

And now for a few critical remarks.
First, I wonder if the authors are not courting a kind of undue optimism of

their own. �ey write that their model theoretic version “e�ectively blurs the
pure/applied distinction” (158), but this distinction is important because, depend-
ing on the stage of the development of the mathematics and the science, a theory
may be best thought of as either an application of a pure theory, or simply as
mathematized physical theory. To capture this, a distinction between pure and
applied mathematical theories is needed [Peressini, 1997, 1999, 2003, 2008]. �e
authors have addressed the distinction as developed in Peressini [1997] in var-
ious places, resisting it because it presumes that the mathematics and physics
are already distinguished (158–159), a presumption which is of course highly
contentious, even doubtful, given modern physical theory.3 But this is wrong,

2�e last chapter, Chapter 10, is called a conclusion, but actually has an important discussion
of the discovery of the Ω− particle by Gell-Mann and Ne’eman.

3Bueno [2003, 31] puts the concern more explicitly:

“Peressini’s account assumes that the mathematical and the physical theories are
already distinguished. On this account, we apply group theory to quantum me-
chanics by assigning group-theoretic notions to quantum mechanical principles.
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though their reading is not unreasonable; there is more detail in the later pa-
pers (especially Peressini [2008]) that is important here. �ere the term “pure
mathematical theory” is employed to refer to the theories that occupy mathe-
maticians and whose (apparent) subject ma�er is a mathematical object/structure
(e.g., number theory, real analysis, functional analysis, group theory, set theory,
etc.), distinguishing them from “scienti�c theories which, to varying degrees,
make use of pure mathematical theories, that is, mathematical (or mathematized)
scienti�c theories.” Importantly, “the distinction between pure mathematical the-
ories and mathematical scienti�c theories is underwri�en by the la�er’s deploy-
ment of a physical interpretation of part of the mathematical vocabulary that
mathematical theories lack” [Peressini, 2008, 105]. �is is close to Bueno’s and
French’s development of surplus structure and the very important and compli-
cated role of the physical interpretation steps. An additional section of Peressini
[2008, Sec. 2.1] discusses the pure/applied relationship itself. �ere it is argued
that “neither the pure theory nor the applied theory is in all cases epistemically
prior” (106); the claim is supported by considering several historical episodes in
the history of mathematics and of science. �e pure/applied distinction is then
re�ned as follows:

Until now, I have been taking “applied mathematical theories” and
“mathematized scienti�c theories” to be the same thing; however,
they must be distinguished. Because not every mathematized scien-
ti�c theory is also an application of a (pure) mathematical theory.
�ere are mathematized scienti�c theories that do not bear the “ap-
plied” relationship to any pure mathematical theory, and so, strictly
speaking, should not be considered applied mathematical theories.
In these examples a scientist develops a technique in order to solve
certain physical problems by what appear to be mathematical meth-
ods (e.g. evaluating a certain type of integral, multiplying an in-
tegrand by a certain “function,” dividing by a certain mysteriously
small quantity, etc.). But in fact the new “mathematical” method
makes no sense mathematically, and hence is not a physically in-
terpreted version of a pure theory [Peressini, 2008, 106–107].4

�e two domains (of group theory and quantum mechanics) have already to be
clearly separated for this proposal to get o� the ground.”

4Examples given there are Newton’s �uxions/di�erential calculus, Dirac’s delta function,
and Feynman’s path integrals. Peressini [2003, 221–222] also contains a similar argument in the
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So articulated, it does not require that the mathematical and the physical theo-
ries be “already clearly separated.” It requires only that the pure mathematical
theory (if and when there is one) is distinguishable from the mathematized sci-
enti�c theory. Surely this is not problematic. �e theory of groups o�ered in an
abstract algebra text is distinct from the fragments of group theory present in
quantum mechanics: the former lacks the very physical interpretation that the
authors make such compelling use of in resisting IA and EIA theorists.5

�e potential “undue optimism” I am leading up to is the view that for any
mathematized scienti�c theory, there corresponds a pure mathematical theory
of which it is an application. Dirac’s formal operations with his delta function
embedded within a quantum mechanics theory was a mathematized scienti�c
theory, and as it turned out, a pure theory was developed (Schwartz’s distribu-
tion theory) that could render a di�erent version of the Dirac quantum account
an applied mathematical theory. But it is not obvious that any such mathema-
tized scienti�c theory can be seen as an applied pure theory, that is, there is no
reason to think that for any scienti�cally embedded formal operations there is
a pure mathematical theory to be had for which it is an application. But the
authors’ model theoretic account seems to run contrary to this point in that on
it, what is happening is that the physical QM model/structure is embedded in a
mathematical structure involving vector spaces of complex integrable functions
and linear operators but that also include the delta function. Is this structure a
pure mathematical theory? It may be as close as we get on their account, but this
(notoriously) is not a legitimate mathematical theory—there is no such function
in the context of the mathematical theories employed.6 It would seem then that
any such set of formal techniques is going to end up being a pure mathematical
theory. Or at the very least, the possibility of asking the question is eliminated,
since again, the authors’ account “e�ectively blurs the pure/applied distinction
(158).”7

context of con�rmational holism and IAs.
5Back then I unfortunately also used the notion of “empirical bridge principles” in addition

to “physical interpretation,” which I believe helped engender such misunderstanding.
6Dirac was in need of a particular linear functional, F , that mapped a given function to its

value at zero, but he was also constrained because in the context of his account he needed F
to be expressible as an integral, i.e., F (f) =

∫ +∞
−∞ f(x)δ(x)dx = f(0) for some δ(x), and of

course it turns out that there is no such δ(x), though there is such a functional to be had in more
the generalized se�ing of distributions or by generalizing from Riemann integrals to integrals
de�ned over di�erent measures, etc.

7Perhaps the �ip side of such optimism would be individuating mathematical theories so
loosely (or blurrily) that any formal structure that “embeds” (in the authors’ sense) the mathe-
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Interestingly, Bueno and French (136–137) have a very nice discussion of

whether the delta function is ultimately a distribution, maintaining that it is not.
�ey speculate that their “framework of partial homomorphisms could quite nat-
urally capture both the open-ended nature of Dirac’s theory and the manner in
which it can be related to Schwartz’s.” I am not as optimistic. For as Jesper Lützen
[1982, 164] carefully argues in his philosophically fascinating “pre-history” of
distributions:

�e theory of distributions is not structural mathematics in this sense.
To be sure the theory of distributions is built on the highly axioma-
tized mathematical �eld of functional analysis, but it is not axiomatic
in its construction. It unites di�erent mathematical methods and the-
ories not by imbedding them in an axiomatic structure in which the
nature of the elements is irrelevant, but precisely by constructing
new mathematical objects: the distributions.

As I take it, Lützen’s point is that in at least some historical threads in the devel-
opment of pure mathematical theory, it is the mathematical objects themselves—
not some formal structure in which they may be embedded—that is the key to
understanding the relationship between mathematical techniques (e.g., employ-
ing an impossible function in an integral to de�ne a linear functional) and their
rigorization in pure mathematics (distribution theory).

Of course the authors’ approach does provide, via partial-morphisms be-
tween the theories understood structurally, a way in which Dirac’s theory can be
related to Schwartz’s, but this relationship misses most of the interesting theoret-
ical dynamics that Lützen spends a book discussing. Something like the partial-
morphism relationship is certainly a part of the meta-level background frame-
work that Lützen implicitly employs in his (provisional) answers to questions
like, who invented distributions and when? (“Sobolev in 1936 and Schwartz in
1950,” Lützen [1982, v, but see also 159�].)8 But in this context, this meta-level

matical techniques in question counts as the same pure mathematical theory.
8�e authors themselves recognize the potential need for other meta-level frameworks, as

will come up below.
Also, the authors’ framework is perhaps more clearly at play in Lüzen’s more philosophical

claims, like “who was the �rst to use distributions in mathematics?” (Fourier in 1822) and “where
do we �rst �nd them implicitly in a rigorous theory” (Bochner in 1932). It is also impossible
not to mention a whimsical (though not irrelevant) parallel between one of the author’s (French)
“Viking” approach to analytic metaphysics [French, 2014, Sec. 3.2] and Lützen’s case for Schwartz
rather than Sobolev as the “true” discoverer of distributions, namely, that it is in same sense that
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framework seems to play much the same role that mathematical logic’s frame-
work of set theoretic foundations and formal deductions plays with respect to
proving results in other areas of mathematics—i.e., not much of one.9 �e point
here is to understand how Schwartz’ theory of distributions is related to a “fusion
of several tricks, methods, notions and ideas” [Lützen, 1982, 163] out of which
it arose, and that is why Lützen engages the conceptual connections between a
broad swath of concrete mathematical analysis, and a bit of functional analysis—
but nothing from model theory or its ilk in mathematical logic.10

Another provocative challenge to such applications of the authors’ account
comes from Browder [1975, 585] (quoted in Lützen [1982, 162]), who argued that
the theory of distributions lack their own “speci�c power” (unlike, for example,
spectral theory), but do have an “important organizing role”, like a “language
rather than a methodology.” Again, an analysis of the di�erent roles for dis-
tribution and spectral theory—both of which are applied to other pure mathe-
matics (e.g., linear partial di�erential equations, di�erential operators, Fourier
transformations)—would not seem to gain much from a model-theoretic treat-
ment.11

My second thought concerns a di�erent but related aspect of the model the-
oretic approach. �e authors write that, in a certain sense, theirs is a “modest”
conclusion: they do not take the partial structures IDI account as constitutive (in
any sense) of scienti�c theories, but rather as “meta-level devices” pragmatically
justi�ed based on “whether they help us, philosophers of science, achieve our
aims, whatever they may be” (233). In the spirit of this pragmatic meta-project,
I would suggest that when considering application (more) from philosophy of
mathematics than philosophy of science, we might well need additional, di�er-
ently oriented meta-level devices—especially in the context of (1) actual mathe-
matical practice itself and also (2) the application of mathematical theory within
mathematics itself.

Regarding (1), formal model theoretic approaches to mathematical theories
are limited in their utility when analyzing mathematical application as social

Columbus “discovered [encountered!] America,” not the Vikings, despite their arriving earlier—
and interestingly, it was Schwartz himself who pointed out this Viking argument to Lützen (159).

9See for example Azzouni [2013, esp. 326-327] and Carter [2019, esp. Sec. 3.1.1].
10I owe thanks to Otávio Bueno for pushing me to make this point clear.
11And yet, Lützen’s Appendix, “Alternative De�nitions of Generalized Functions,” considers

three distinct ways to de�ne distributions and then three further mathematical theories that,
in some sense, contain distributions (or something like them), but are not quite equivalent—
analyzing such claims might well bene�t from the authors’ treatment. Interesting work awaits!
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practice; additionally, they o�en do not match up very well with how (non-
logician) mathematicians think about mathematical entities, concepts, con�r-
mation, and theories.12 Regarding (2), Bueno’s and French’s (convincing) case
that the mathematics itself (without physical interpretation) never need be ex-
planatory (contra Ba�erman and others), does not obviously carry over to the
application of mathematical theory to mathematics itself, since it is the physical
interpretation of the pure mathematical structure that “insulates” it (as it were)
from being explanatory within physical structures to which it is applied. While
the issue of explanatory value within mathematics is complex and far from set-
tled, as long as mathematicians’ senses of it are taken seriously, then at least the
possibility of math-on-math application being explanatory (in addition to justi�-
catory) must remain open. To mention one example, Christopher Pincock [2015,
3] explicitly argues for the explanatory value of the theory being applied in a
proof that brings together “two distinct mathematical domains where one do-
main is judged to illuminate the other” in the context of a Galois �eory proof
that applies algebra techniques to number theory.

Finally, to revisit the question of “hybridity” in a di�erent way: there may
also be examples of the application of pure mathematical theory that are hybrids
between being physical and mathematical. Consider, for example, the branch
of mathematics known as numerical analysis (NA). Fundamentally, NA involves
using mathematical techniques to generate numerical solutions to mathematical
expressions. It has been argued that numerical methods can play instrumental,
essential, and even explanatory/exploratory roles [Peressini, 2010]. In particular,
the exploratory use of NA is rather pronounced in general relativity.

Einstein’s �eld equations are notoriously di�cult to solve for large veloci-
ties with small separations of similar masses in the presence of strong �eld phe-
nomena; it was as recent as 2005 that breakthroughs were made in achieving
stable solutions to such problems (e.g., binary black holes). Numerically solv-
ing Einstein’s equations is known as “numerical relativity” (NR) [Cardoso et al.,
2015, 7]. �e NA being done in NR is rather singular as it is does not involve
the standard approach of bracketing the physics and simply applying the pure
mathematics (numerical analysis) to another pure mathematical problem (e.g.,
nonlinear system of PDEs). Rather, (1) the science is being reconsidered in the
hope of discovering some physically motivated insight or simpli�cation or reduc-
tion that will render the numerical problem tractable, and (2) the application of

12See references in Note 9 and also Azzouni [2006, Ch. 7–8], Azzouni [2009], and Wagner
[2017, Ch. 3] for more extensive discussions.
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the (unsuccessful) numerical methods to the actual problem are being simulated
on related but simpler and be�er understood problems in order to gain insight
into why the method goes fails on the actual problem.13 �us, “. . .NR is a gray
area which could lie at the intersection between numerical analysis, general rel-
ativity (GR) and high-energy physics” [Cardoso et al., 2015, 7, emphasis added].
While I agree wholeheartedly with Bueno’s and French’s point that “no ma�er
the strength of one’s naturalistic inclinations, some caution must be exercised in
taking scientists’ own re�ections on their practice at face value” (203, note 29;
226, note 6), this does seem to be a distinct kind of application that calls out for
sustained a�ention by philosophers of science and math.

In Peressini [2010, 344–347], it is argued that in NR “the relationship between
the formal theory and the physical world is richly mediated by the numerical
analysis” and that in such cases where “the formal theory’s numerical behavior
is not fully understood . . . it requires the explanatory and exploratory machinery
of numerical analysis to shed light on it in order for the model to make tractable
predictions. Similarly, numerical insights can motivate mathematically equiva-
lent ways of decomposing or understanding the formal model that can in turn
shed light on the physical system itself.” �is quotation is not particularly clear
regarding “explanatory” and “exploratory,” and might (fairly) be interpreted as
making a Ba�erman-like point about the mathematics being a necessary part of
a physical explanation. I suspect now, however, that the authors’ case against the
explanatory role of pure mathematical theory for physical phenomena could be
extended to the case of NR, though NR is still awaiting sustained philosophical
a�ention like that given by the authors to QM.

In closing let me say clearly that you will want to have this book around
to refer to if you do any work in the philosophy of math/physics/science. And
if you work on mathematical application and explanation, you should read and
carefully consider the book in its entirety.
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