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Abstract

There are many reasons we might want to take the opinions of various individuals
and pool them to give the opinions of the group they constitute. If all the individuals
in the group have probabilistic opinions about the same propositions, there is a host of
pooling functions we might deploy, such as linear or geometric pooling. However, there
are also cases where different members of the group assign probabilities to different sets
of propositions, which might overlap a lot, a little, or not at all. There are far fewer pro-
posals for how to proceed in these cases, and those there are have undesirable features. I
begin by considering four proposals and arguing that they don’t work. Then I’ll describe
my own proposal, which is intended to cover the situation in which we want to pool the
individual opinions in order to ascribe an opinion to the group considered as an agent in
its own right.

1 Introduction

There are many reasons we might want to take the opinions of various individuals and
pool them to give the opinions of the group they constitute. They might be demographic
modellers, and we wish to summarise their views for policymakers. Or they might be ice
sheet modellers and we wish to pool the probabilities they assign to various future sea level
scenarios in order to include these in our global climate models (Bamber & Aspinall, 2013;
Bamber et al., 2019). We might be producing a textbook on the epidemiology of respiratory
viruses, and we wish to present something that we might legitimately call the view of the
scientific community (French, 1987, 2011). Or we might be the lead author on a scientific
paper with many co-authors and we wish to ensure that the conclusions presented in the
paper are genuinely those of the entire group of authors (Bright et al., 2017; Dang, 2019).
Outside science, the individuals whose opinions we wish to pool might be employees of a
company or institution whose collective opinion we wish to assess in order to determine lia-
bility for some harm, such as the board members of tobacco, oil, or social media companies,
or the senior management of a university or a police force (Lackey, 2020). Or they might be
superforecasters, renowned for the accuracy of their previous predictions of future political
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or sporting events, and we wish to learn what they, as a group, think about the outcome of a
forthcoming election or the next World Cup (Tetlock & Gardner, 2015). And so on.

If all the individuals in the group have probabilistic opinions about the same proposi-
tions, there is a host of pooling functions we might deploy. For instance, linear pooling takes
the group’s probability for a proposition to be the arithmetic mean of the probabilities that
its members assign to that proposition. Or, to calculate the group’s probabilities for the pos-
sible states of the world, geometric pooling takes, for each state, the geometric mean of the
probabilities that its members assign to that state, and then normalizes the results to ensure
the pooled probabilities for the possible states sum to one. And so on. Each of these meth-
ods has its own desirable and undesirable features, which have been explored extensively
(Genest & Zidek, 1986; Dietrich & List, 2015).

However, there are also cases where different members of the group assign probabili-
ties to different sets of propositions, and these sets might overlap a lot, a little, or not at all.
Indeed, unless the probabilities are elicited by asking the same roster of questions to each
individual in the group, this is the situation we are most likely to encounter in the wild. For
instance, if we glean the probabilities that academic experts assign by looking at what they
report in their scholarly publications, we will find that they do not all report probabilities in
the same propositions. One climate scientist might assign a probability to sea levels rising by
at least 60cm by 2100, but nothing more fine-grained, while another might assign probabili-
ties to it rising by 60-80cm, 80-100cm, and more than 100cm by that date. As they are usually
formulated, most pooling functions don’t cover these cases; more precisely, they don’t tell
us which credence the group assigns to a proposition to which some of its members fail to
assign a credence. In this paper, I explore how we might fill that gap.

In Section 2, I’ll introduce the formal framework in which we’ll explore our problem. In
Sections 3-6, I’ll consider four proposals and argue that they don’t work. Some of these exist
in the literature explicitly as an answer to our question; some exist as answers to different
questions, but are naturally repurposed to address ours; and some are simply occur to us
naturally when we consider the question. Because so little has been written on this question,
I begin with these four unsatisfactory proposals partly in order to clear the ground. But
we will also see that, by doing so, an alternative proposal suggests itself. This is described
in Section 8. It is designed to cover those situations in which our purpose in pooling the
opinions of the individuals in the group is to assign an opinion to the group itself, considered
as an agent in its own right.

2 The formal framework

Let me begin by laying out the formal framework we’ll be working within.

• Individuals Let’s assume that there are n ≥ 2 individuals whose opinions we wish to
pool.

• Propositions Let Fi be the set of propositions to which individual i assigns subjective
probabilities or degrees of belief, which we will call credences throughout. We might
call Fi their agenda. Let F =

⋃n
i=1 Fi be the union of all the individuals’ agendas.

Throughout, we assume that each Fi is finite, and therefore F is finite too.

• Possible states of the world LetW be the set of possible worlds grained just finely enough
to assign truth values to each proposition in F . We might represent W as the set of
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classically consistent assignments of truth values to the propositions in F . Since each
Fi is finite and therefore F is finite,W is also finite. If a proposition X in F is true at
world w inW , we write w |= X, and we represent X by the set {w ∈ W : w |= X} of
worlds at which it is true.

• Subjective probabilities/credences Let Pi record the credences that individual i assigns to
the propositions in Fi. We’ll call this their credence function. For X in Fi, Pi(X) is the
credence that individual i assigns to X. It is at least 0 and at most 1. We assume that
these credences functions are coherent: that is, ifF+

i is the smallest Boolean algebra that
includes Fi, then it is possible to extend each Pi to a credence function P+

i on F+
i that

satisfies the probability axioms—that is, P+
i assigns credence 1 to the tautology, 0 to

the contradiction, and the credence it assigns to a disjunction of pairwise incompatible
propositions is the sum of the credences it assigns to the disjuncts.

• Pooling functions A pooling function ∆ takes a sequence of n credence functions, P1, . . . , Pn,
where Pi assigns credences to the propositions in Fi, and returns a credence function
∆(P1, . . . , Pn), which assigns credences to the propositions in F =

⋃n
i=1 Fi. In this def-

inition, we don’t assume that a pooling function must give a coherent output for any
sequence of coherent inputs, but this is a desirable feature and in fact nearly all the
examples we consider boast it.

Existing accounts of probabilistic opinion pooling deal with the particular case in which
F1 = . . . = Fn = F . They often also assume that F is a Boolean algebra.1 In such cases, for
every world w in W , there is a proposition in F that is true at w and only at w—these are
sometimes called the atoms of the Boolean algebra F . We abuse notation and write w for that
proposition. We can then define linear and geometric pooling as follows:

Linear pooling Suppose P1, . . . , Pn are defined on the same agenda F . Then, if
X is in F , then

∆LP(P1, . . . , Pn)(X) =
1
n

n

∑
i=1

Pi(X)

That is, the credence that the linear pool of P1, . . . , Pn assigns to a possible world
is the arithmetic mean of the credences that each Pi assigns to it.

Geometric pooling Suppose P1, . . . , Pn are defined on the same agendaF , which
is a Boolean algebra. And suppose that there is w in W such that, for each Pi,
Pi(w) > 0. Then, if w is inW , then

∆GP(P1, . . . , Pn)(w) =
n
√

∏n
i=1 Pi(w)

∑w′∈W
n
√

∏n
i=1 Pi(w′)

And, for X in F ,

∆GP(P1, . . . , Pn)(X) = ∑
w|=X

∆GP(P1, . . . , Pn)(w)

That is, the credence that the geometric pool of P1, . . . , Pn assigns to a possible
world (or, more precisely, the corresponding atom of the algebra) is the normal-
ized geometric mean of the credences that each Pi assigns to it; and the credence

1For an exception, see (Dietrich & List, 2017).
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it assigns to a proposition is the sum of the credences it assigns to the worlds at
which the proposition is true (or, more precisely, the atoms that entail the propo-
sition).

A couple of things to note:

• Since we assume throughout that each Pi is coherent, so is their linear pool and so is
their geometric pool. In fact, we needn’t even assume that each Pi is coherent in order
to ensure that their geometric pool is coherent, but we do in order to ensure their linear
pool is.

• Linear pooling is defined directly for each proposition in F ; as a result, we need not
assume anything about the structure of F .

• Geometric pooling is defined first for the states of the world in W , and then for each
proposition in F ; as a result, we must assume that F contains the proposition {w} for
each w inW .

In this paper, we ask: how should we pool in other cases? That is, how should we pool when
two individuals have different agendas; that is, when Fi 6= Fj for some individuals i and j?

In the following four sections, I consider different answers to this question. None of
them work. I consider them partly to situate my proposal within the literature and clear the
ground, but also because solving the problem that rules out the first two proposals motivates
the account that I will go on to give in the remainder of the paper. The third proposal also
attempts to solve that problem. It fails for a different reason, but one that is equally illumi-
nating. Those impatient to hear the solution I propose for a particular important case can
skip to Section 8.

3 Extending linear and geometric pooling

As we saw in the previous section, linear and geometric pooling are only defined in the
special case in which F1 = . . . = Fn = F ; moreover, geometric pooling requires that F is a
Boolean algebra. But perhaps we might generalize them so that they apply when Fi 6= Fj
for some individuals i and j?

For instance, suppose {X, Y, Z} is a three-cell partition, and suppose the first of two in-
dividuals assigns credences to X, Y, and Z, so that F1 = {X, Y, Z}, while the second assigns
credences only to X and Y, so that F2 = {X, Y}. Suppose their probability assignments are
as follows:

X Y Z
P1 0.1 0.4 0.5
P2 0.2 0.6 −

Then extending linear pooling to this case and taking the arithmetic means of the credences
assigned to each gives:

X Y Z
∆LP′(P1, P2) 0.15 0.5 0.5

But that’s not coherent: the credences in X, Y, and Z sum to more than 1.
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On the other hand, extending geometric pooling to this case and taking the geometric
mean of the probabilities assigned to X, Y, and Z, and then normalizing, gives:

X Y Z
∆GP′(P1, P2) 0.125 0.433 0.442

Obviously that is coherent, because geometric pooling requires us to normalise the geometric
means; so the result will always be coherent.

Perhaps we should follow the lead of geometric pooling and do this for our extended
version of linear pooling in such cases as well? So first we take the arithmetic means, and
then we normalise the result. That would give:

X Y Z
∆LP′′(P1, P2) 0.1304 0.4347 0.4347

Unfortunately, both normalized extended linear pooling (∆LP′′) and extended geometric
pooling (∆GP′) violate a principle that I take to govern judgment pooling in the cases we are
considering, where the agendas of some of our individuals differ.

Extension Invariance (EI) If, for each individual i, there is a unique coherent cre-
dence function P?

i defined on F =
⋃n

i=1 Fi that extends Pi, then ∆(P1, . . . , Pn) =
∆(P?

1 , . . . , P?
n ).2

The point is well illustrated by the example we’ve been considering in this section. While
P2 does not assign a credence to Z, it does assign credences to X and Y and together those
determine the credence it would have to assign to Z in order to remain coherent—since X, Y,
Z form a partition, it must assign 0.2. Extension Invariance (EI) says that, in cases like this,
where the probabilities that an individual assigns to the propositions in Fi determine the
probabilities they must assign to the remaining propositions in F , the result of pooling the
original probability assignments on F1, . . . ,Fn should be the same as the result of pooling
the probability functions on F that are obtained by filling in the gaps in the way that coher-
ence requires. The idea is that, if the credences you have reported commit you to further
credences, then adding those further credences explicitly shouldn’t change the outcome of
pooling your credences with the credences of others. We will offer a partial accuracy-based
justification of the principle in Section 7 below.

Thus, return to our case above:

X Y Z
P1 0.3 0.4 0.3
P2 0.2 0.6 −
P?

2 0.2 0.6 0.2

So (EI) says that ∆(P1, P2) = ∆(P1, P?
2 ). But notice that neither normalized extended linear

pooling (∆LP′′) nor extended geometric pooling (∆GP′) deliver this:

X Y Z
∆LP′′(P1, P2) 0.1304 0.4347 0.4347
∆LP(P1, P?

2 ) 0.15 0.5 0.35
∆GP′(P1, P2) 0.125 0.433 0.442
∆GP(P1, P?

2 ) 0.149 0.517 0.333

2P?
i defined on F extends Pi defined on Fi ⊆ F if P?

i (X) = Pi(X) for all X in Fi. That is, if the restriction of
P?

i to Fi is just Pi.
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(EI) will cause problems for the proposal we consider in the following section as well.
But before we move on to that, there is another problem with our attempt to extend linear
and geometric pooling to the case in which Fi 6= Fj for some i, j. Suppose F1 = {X ∨Y} and
F2 = {Y ∨ Z}, where again X, Y, and Z form a partition. And suppose P1 assigns credences
only to the proposition in F1, while P2 assigns only to the proposition in F2. In particular,

X ∨Y Y ∨ Z
P1 0.2 −
P2 − 0.3

Now, first try to apply the extended linear pooling operator, ∆LP′′ . By averaging the cre-
dences in each proposition, we get:

X ∨Y Y ∨ Z
∆LP′ 0.2 0.3

But that is incoherent: the credences in X ∨ Y and Y ∨ Z must sum at least to 1. So now
we need to normalize. But how to do this? To normalize a credence function, we need to
know the credences it assigns to the possible worlds. But in this case, we don’t know that.
So ∆LP′′(P1, P2) is undefined. And of course the same fate befalls ∆GP′(P1, P2): indeed, it can’t
even get started, since it is defined initially on possible worlds, and then only at the second
stage on logically weaker propositions.

3.1 A concern about Extension Invariance

You might think it is not reasonable to demand that our pooling function satisfy (EI). Af-
ter all, it is easy to imagine cases in which, were an individual i to assign credences to all
the propositions in F , rather than merely those in Fi, the credences they would assign to
the propositions in Fi would be different from the ones they actually assign. Here are two
reasons this might happen. First, it might be the sort of case discussed in the literature on
awareness growth, in which the individual becomes aware of a possibility they hadn’t con-
sidered before and this leads them to reevaluate their opinions about the possibilities that
they had considered before (Karni & Vierø, 2013; Wenmackers & Romeijn, 2016; Bradley,
2017; Steele & Stefánsson, 2021; Mahtani, 2021). For instance, I might assign credences only
to the propositions It will rain tomorrow and It will be sunny tomorrow, and assign credence
50% to each, but then come to consider a third possibility, namely, It will be misty tomorrow,
and that might lead me to reduce my credence in the original two propositions in order to
assign some credence to this new one. Secondly, it might be a case in which, at the nearest
world in which individual i has agenda F rather than Fi, their evidence is different. For
instance, consider the example from the introduction in which one climate scientist assigns a
credence only to the possibility that sea levels will rise by at least 60cm by 2100, but nothing
more fine-grained, while another assigns credences to it rising by 60-80cm, 80-100cm, and
more than 100cm by that date. Now, it might be that it is only climate scientists who work
specifically on sea level modelling who assign credences to these more fine-grained possibil-
ities. And it might be that such modellers have substantially different evidence from others.
So, let’s suppose that, at the actual world, the first climate scientist, who assigns credences
only to the coarse-grained possibility, is not a sea level modeller. And now consider the near-
est possible world in which they assign credences to the more fine-grained possibilities. In
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that world, they are a sea level modeller and so their evidence is very different from what it
is in the actual world. And that might lead them, in that world, to assign different credences
to the coarse-grained possibility.

These situations are indeed possible. However, (EI) holds of the individuals in them all
the same. After all, it is not justified by saying that, whenever there is, for each individual
i, a unique coherent P?

i defined on F that extends Pi, this P?
i gives the credences that the

individual i would assign were there agenda F instead of Fi. It is not a counterfactual claim
at all. Rather, as I sketched the justification above, (EI) is justified by noting that the credences
that Pi assigns to the propositions inFi commit individual i to the credences that P?

i assigns to
the propositions in F . So it does not say that a pooling function should give the same result
whether applied to the individuals’ actual credence functions or the credence functions they
would have were they all to have F as their agenda; it says that a pooling function should
give the same result whether applied to the individuals’ actual credence functions or to the
credence functions on F to which their actual credences commit them.

Notice that this justification for (EI) applies equally whether we use our pooling function
to provide what Christian List (2014) calls aggregate or corporate group opinions. In List’s
terminology, an aggregate collective attitude provides a summary of the attitudes of the
members of the collective, while a corporate collective attitude treats the group as an agent
in its own right and ascribes to that agent the attitude in question. When we determine the
sort of summary that is encoded in an aggregate group opinion, we surely wish to include
not only the credences that the individuals have explicitly, but also those to which they
are committed by those they have explicitly. And we surely do not wish to include the
opinions they would have had in some nearby possible world in which they do explicitly
assign credences to these other propositions. After all, we are summarising the group’s
actual opinions, not their counterfactual ones. And when we treat the group as an agent,
we want to include in the supervenience basis for that group agent’s opinions not only the
credences the members have explicitly, but also those to which they are committed.

We will return to (EI) below. So far, we have appealed only to its intuitive plausibility.
In Section 7, we will compare the accuracy of the credences you obtain if you use it with the
accuracy of the credences you obtain if you violate it in various ways.

4 The Coherent Approximation Principle

In Section 3, we saw that it is difficult to extend linear and geometric pooling so that they
apply to the problem of pooling credence functions defined on different agendas—that is,
when Fi 6= Fj for some i, j. In this section, we turn to one of the few treatments of the
current problem from the literature. It is due to Daniel Osherson and Moshe Vardi (Osherson
& Vardi, 2006).

In fact, Osherson and Vardi treat two problems at once. Not only do they not assume
that the individuals to be pooled assign credences to the same propositions; they also do not
assume that those individuals assign coherent credences. So they seek a pooling function
that takes possibly incoherent credence functions over possibly different agendas and pools
them into a coherent credence function on the union of the agendas. Their approach, which
draws on the pioneering work of Sébastien Konieczny and Ramón Pino Pérez, is distance-
based (Konieczny & Pino Pérez, 1998, 1999). That is, we begin by identifying a measure of
distance from one credence to another. We then take the pool of a set of credence functions to
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be the credence function for which the average of the sum of the distances from the credences
that it assigns to the credences that the individuals assign is minimal. Osherson and Vardi
consider two such measures of distance:

Absolute deviation For credences 0 ≤ p, q ≤ 1,

AD(p, q) = |p− q|

Squared deviation For credences 0 ≤ p, q ≤ 1,

SD(p, q) = |p− q|2

And there are many others, including the popular Kullback-Leibler divergence:

Kullback-Leibler divergence For credences 0 ≤ p ≤ 1 and 0 < q ≤ 1,

KL(p, q) = p log
p
q
− p + q

We say that a measure d of distance from one credence to another is a divergence if (i) d(p, q) ≥
0 for all 0 ≤ p, q ≤ 1 and (ii) d(p, q) = 0 iff p = q. AD, SD, and KL are all divergences. Now,
given a divergence d, here is Osherson and Vardi’s pooling function, where PF is the set of
coherent credence functions on F =

⋃n
i=1 Fi:

Coherent Approximation Principled (CAPd) For Pi defined on Fi,

∆d
CAP(P1, . . . , Pn) = arg inf

P∈PF

n

∑
i=1

∑
X∈Fi

d(P(X), Pi(X))

That is, ∆d
CAP(P1, . . . , Pn) is the coherent credence function for which the average of the sums

of the divergences from its credences to the credences assigned by P1, . . . , Pn is minimal.3

In fact, if we wish the minimizer to be unique here, we must restrict the divergences that
we use. For instance, recall our example from the previous section:

X Y Z
P1 0.1 0.4 0.5
P2 0.2 0.6 −
P?

2 0.2 0.6 0.2

Then, if we use the absolute deviation to measure the distance from one credence to another—
that is, if d = AD—then, providing 0.1 ≤ P(X) ≤ 0.2, 0.4 ≤ P(Y) ≤ 0.6, and 0.2 ≤ P(Z) ≤
0.5, P minimises the average distance to P1 and P?

2 . Presumably for this reason, when Os-
herson writes about CAP again with different co-authors, they focus on squared deviation
(Predd et al., 2008). We’ll focus on squared deviation and Kullback-Leibler divergence for

3A more general definition would permit divergences between credence functions that are not generated by
summing the divergences between the credences they assign. The results I present in this paper concern the
less general definition, but this definition covers the vast majority of divergences that are actually considered in
the literature. The more general definition must await future work. Thanks to an anonymous reviewer for this
journal for this suggestion.
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the moment.4 Here are the results of pooling P1 and P2 using ∆SD
CAP and using ∆KL

CAP, and the
results of pooling P1 and P?

2 using ∆SD
CAP and using ∆KL

CAP.

X Y Z
∆SD

CAP(P1, P2) 0.113 0.462 0.425
∆SD

CAP(P1, P?
2 ) 0.15 0.5 0.35

∆KL
CAP(P1, P2) 0.32 0.204 0.475

∆KL
CAP(P1, P?

2 ) 0.148 0.389 0.463

Since the first and second row differ, ∆SD
CAP violates (EI); since the third and fourth row differ,

∆KL
CAP violates (EI).

Now, you might try to save the Coherent Approximation Principle in one of two ways.
First, you might seek a divergence d for which ∆d

CAP satisfies (EI). However, the following
fact shows that this is impossible:

Proposition 1. If d is differentiable in its first argument, ∆d
CAP violates (EI).

(The proof is given in the Appendix.)
Second, you might think that the problem arises because the single credence assigned to

Z is given exactly as much weight as the two credences assigned to X and the two credences
assigned to Y. But it’s easy to check that assigning twice as much weight to d(P(Z), P1(Z))
as to d(P(X), P1(X)) or d(P(Y), P1(Y)) doesn’t bring the Coherent Approximation Principle
into agreement with (EI). For instance,

(SD(P(X), 0.1) + SD(P(X), 0.2)) + (SD(P(Y), 0.4) + SD(P(Y), 0.6)) + 2× SD(P(Z), 0.5)

is minimized among coherent functions at P = (0.1, 0.45, 0.45), while

(SD(P(X), 0.1) + SD(P(X), 0.2))+
(SD(P(Y), 0.4) + SD(P(Y), 0.6))+

(SD(P(Z), 0.5) + SD(P(Z), 0.2))

is minimized among coherent credence functions at P = (0.15, 0.5, 0.35).

5 Pooling the sets of coherent credence functions that extend the
individuals’ credence functions

Like the Coherent Approximation Principle, the third proposal we’ll consider asks us to pool
by minimizing the average distance from some representation of the individuals’ opinions.
But whereas CAP represents individual i by the precise credences they implicitly assign to
the propositions in Fi, the third proposal represents them by the imprecise credences they
assign to the propositions in F . That is, instead of representing individual i by the single
credence function Pi, which is defined on Fi, we represent them by the following set of credence
functions, which are defined on F :

Ri = {P ∈ PF | (∀X ∈ Fi)[P(X) = Pi(X)]}
4Pettigrew (2019) makes the same choice.
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wherePF is the set of coherent credence functions onF , as above. So, Ri is the set of coherent
extensions of Pi to F . And we pool P1, . . . , Pn by pooling R1, . . . , Rn. And we pool R1, . . . , Rn
by finding a credence function P that minimizes the average distance from P to the Ris. Now,
there are two natural definition of the distance from P to Ri. On the first, it is the minimum
distance between P and a member of Ri; on the second, it is the maximum distance between
P and a member of Ri. I’ll consider both.

For many divergences and many P1, . . . , Pn, these minimization problems will have a
unique solution. In that case, we use the first definition of distance and define:

∆d,inf
MW(P1, . . . , Pn) = arg inf

P∈PF

n

∑
i=1

(
inf

Q∈Ri
∑

X∈F
d(P(X), Q(X))

)

And we use the second definition of distance and define:

∆d,sup
MW (P1, . . . , Pn) = arg inf

P∈PF

n

∑
i=1

(
sup
Q∈Ri

∑
X∈F

d(P(X), Q(X))

)

I use the subscript ‘MW’ for these pooling functions because this general method for
combining sets of probability functions is proposed by Martin Adamčı́k and George Wilmers
(Adamčı́k & Wilmers, 2014; Wilmers, 2015). Seamus Bradley (2019) criticizes it as a pooling
function for sets of probability functions that represent uncertainty in the imprecise credence
framework. But his criticisms are less worrying when it is used to pool sets of probability
functions that represent gaps in credal reporting, as we do here, so I won’t repeat them.

It is easy to see that these two pooling functions will satisfy (EI). After all, if there is a
unique coherent credence function P?

i , defined on F , that extends Pi, which is defined on Fi,
then the set of coherent probability functions that extends Pi is the same as the set of coherent
probability functions that extends P?

i —both contain only P?
i . That is:

Ri = {P : F → [0, 1] | P ∈ PF & (∀X ∈ Fi)[P(X) = Pi(X)]} =
{P?

i } = {P : F → [0, 1] | P ∈ PF & (∀X ∈ Fi)[P(X) = P?
i (X)]} = R?

i

So these proposals do not suffer from the same problem as the previous two. But they
do face a problem: they give implausible answers in reasonably straightforward cases. For
instance, suppose F = {X, Y, Z}, where X, Y, and Z form a partition, and F1 = {X} and
F2 = {Y}. And suppose

X Y Z
P1 0.8 − −
P2 − 0.8 −

So:

• R1 = {P ∈ PF : P(X) = 0.8}

• R2 = {P ∈ PF : P(Y) = 0.8}

We can illustrate these two sets of probabilities by plotting them within the three-dimensional
simplex on a barycentric plot (see Figure 1). The problem is that, if d is squared deviation
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X = (1, 0, 0) Y = (0, 1, 0)

Z = (0, 0, 1)

(0.8, 0.2, 0)

(0.8, 0, 0.2)

R1 R2

(0.2, 0.8, 0)

(0, 0.8, 0.2)

∆d,inf
MW(P1, P2)

∆d,sup
MW (P1, P2)

Figure 1: The barycentric plot of the 2-simplex with (1, 0, 0) at bottom left, (0, 1, 0) at bottom
right, and (0, 0, 1) at the top. The dotted lines represent R1 and R2, respectively. And the
result of applying ∆d,inf

MW and ∆d,sup
MW to P1 and P2 is plotted.

(SD) or Kullback-Leibler divergence (KL), then ∆d,inf
CAP(P1, P2) and ∆d,sup

CAP (P1, P2) are as follows:

X Y Z
∆d,inf

MW(P1, P2) 0.5 0.5 0

∆d,sup
MW (P1, P2) 0.4 0.4 0.2

These are plotted on the simplex as well. The problem here is that both seem too extreme.
∆d,inf

MW(P1, P2) assigns credence 0 to Z, even though nothing in the opinions of either agent
forces that. It is the same pool we would obtain if both agents were to assign credence 0 to
Z and fill in Y in such a way that they remained coherent. That is,

∆d,inf
MW(P1, P2) = ∆d

MW(P◦1 , P◦2 )

where
X Y Z

P◦1 0.8 0.2 0
P◦2 0.2 0.8 0

And ∆d,sup
MW (P1, P2) assigns credence 0.2 to Z, even though nothing in the opinions of either

agent forces that. It is the same pool we would obtain if agent 1 were to assign credence 0 to
Y and fill in Z in such a way that they remain coherent, and agent 2 were to assign credence
0 to X and fill in Z in such a way that they remain coherent. That is,

∆d,sup
MW (P1, P2) = ∆d

MW(P†
1 , P†

2 )

11



where
X Y Z

P†
1 0.8 0 0.2

P†
2 0 0.8 0.2

6 Maximising entropy within the set of possible pools

Here’s another proposal that arises naturally. Let

RLP = {∆LP(P′1, . . . , P′n) : P′1 ∈ R1, . . . , P′n ∈ Rn}

That is, RLP is the set of linear pools of coherent extensions of the individuals’ credence
functions. Then let the pool of P1, . . . , Pn be the credence function in RLP with maximum
entropy.5 First, define the Shannon entropy of a probability function P defined over a setW
of possible worlds as follows (Shannon, 1948):

H(P) = − ∑
w∈W

P(w) log P(w)

Then let
∆LP

ME(P1, . . . , Pn) := arg max
P∈RLP

H(P)

The problem with this approach is that it gives the same implausible answer as ∆d,sup
MW gave

in the case we considered in the previous section. That is, if

X Y Z
P1 0.8 − −
P2 − 0.8 −

Then
X Y Z

∆LP
ME(P1, P2) 0.4 0.4 0.2

Again, we illustrate this in a barycentric plot—see Figure 2.

7 Extension Invariance and the accuracy of pooling functions

In Sections 3 and 4, we criticized the extensions of linear and geometric pooling, ∆LP′′ and
∆GP′ , and the Coherent Approximation Principle, ∆d

CAP, because they both violate (EI), the
principle that says that, when there’s a unique coherent extension of each credence function
to the full algebra, pooling those extensions should give the same result as pooling the orig-
inal credence functions. At that point, I merely appealed to the intuitive force of (EI); I gave
no further argument in its favour. But there is something to be said for pooling functions
that satisfy it, at least when they are compared with CAP.

5Strictly speaking, this will only work if F =
⋃n

i=1 Fi contains W . It’s an interesting question how the
proposal might be extended beyond this, perhaps by considering the extensions of each Pi not only to F but
to F ∗, the smallest Boolean algebra that contains F . But, as we will see, the proposal doesn’t work, so I won’t
spend time on that.
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X = (1, 0, 0) Y = (0, 1, 0)

Z = (0, 0, 1)

(0.8, 0.2, 0)

(0.8, 0, 0.2)

R1 R2

(0.2, 0.8, 0)

(0, 0.8, 0.2)∆LP
ME(P1, P2)

Figure 2: The barycentric plot of the 2-simplex with (1, 0, 0) at bottom left, (0, 1, 0) at bottom
right, and (0, 0, 1) at the top. The dotted lines represent R1 and R2, respectively. And the
result of applying ∆LP

ME to P1 and P2 is plotted.

Let’s begin with a slight adaptation of the simple example from above:

X Y Z
P1 0.1 0.4 −
P2 0.2 0.6 −
P?

1 0.1 0.4 0.5
P?

2 0.2 0.6 0.2

(EI) says that pooling P1 and P2 should give the same result as pooling P1 and P?
2 , which

should give the same result as pooling P?
1 and P2, which should give the same result as

pooling P?
1 and P?

2 . That is, if ∆ is our pooling function,

∆(P1, P2) = ∆(P1, P?
2 ) = ∆(P?

1 , P2) = ∆(P?
1 , P?

2 )

But let’s apply CAP using the squared deviation:

X Y Z

∆SD
CAP(P1, P2)

12
80

40
80

28
80

∆SD
CAP(P1, P?

2 )
15
80

43
80

22
80

∆SD
CAP(P?

1 , P2)
9
80

37
80

34
80

∆SD
CAP(P?

1 , P?
2 )

12
80

40
80

28
80

13



Now, notice that ∆SD
CAP(P?

1 , P?
2 ) is the same as ∆SD

CAP(P1, P2), and both are the midpoint be-
tween ∆SD

CAP(P1, P?
2 ) and ∆SD

CAP(P?
1 , P2). That is,

∆SD
CAP(P?

1 , P?
2 ) = ∆SD

CAP(P1, P2) =

1
2 (∆

SD
CAP(P1, P?

2 ) + ∆SD
CAP(P?

1 , P2)) =

1
4 (∆

SD
CAP(P?

1 , P?
2 ) + ∆SD

CAP(P1, P2) + ∆SD
CAP(P1, P?

2 ) + ∆SD
CAP(P?

1 , P2))

That is, when we include the credal assignment to Z that P1 determines, but not the assign-
ment that P2 determines, ∆SD

CAP pulls the pool towards P1 and away from P2; and, mutatis
mutandis, if we include the credal assignment to Z that P2 determines, but not the one that
P1 determines. And, moreover, the pull is the same but in opposite directions in the two
cases. So, when we average them, we obtain what we would have obtained if we’d left out
both assignments to Z (and pooled P1 and P2) or if we’d included both assignments to Z
(and pooled P?

1 and P?
2 ).

What does this tell us? Well, suppose our favoured pooling function for those cases in
which all individuals have the same agenda is linear pooling; and suppose we extend that
pooling function in line with (EI). Then we can say that following in favour of our approach
and against CAP. First, we note the following corollary of the Diversity Prediction Theorem
(Galton, 1907; Page, 2007):

Theorem 2. For any F and credence functions Q, Q1, . . . , Qn defined on F ,

∑
X∈F

SD(∆LP(Q1, . . . , Qn)(X), Q(X)) <
1
n

n

∑
i=1

∑
X∈F

SD(Qi(X), Q(X))

This says that, for any credence function Q and any set of credence functions Q1, . . . , Qn all
defined on the same set of propositions, the distance of the linear pool of Q1, . . . , Qn from
Q is always less than the average distance of the Qis from Q, when the distance between
credences is measured using squared deviation.6

How does this help? Well, given a possible world w, let Vw be the credence function that
assigns maximal credence to all propositions that are true at w and minimal credence to all
propositions that are false at w: that is, Vw(X) = 1 if X is true at w, and Vw(X) = 0 if X
is false at w. We might call Vw the omniscient credence function. It is natural to say that
the ideal credence function for an individual to have at a world is the omniscient credence
function at that world, and that a credence function is more accurate the closer it lies to that
omniscient credence function. So we might say that the inaccuracy of a credence function
Qi at world w is the sum of the squared deviations between the credences it assigns and the
credences that Vw assigns: we call this the Brier score of inaccuracy. So, if P is defined on F ,

B(P, w) = ∑
X∈F

(P(X)−Vw(X))2

And we might think that a credence function is doing better, epistemically speaking, the
greater its inaccuracy and the lower its Brier score. That is, P is better than Q at w just in case
B(P, w) < B(Q, w) (Brier, 1950; Rosenkrantz, 1981; Pettigrew, 2016). Then, by Theorem 2,

6Indeed, this generalizes to any convex divergence, but I’ll focus on squared deviation here for the sake of
concreteness.
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Corollary 3. For any F , any world w, and any credence functions Q1, . . . , Qn defined on F ,

B(∆LP(Q1, . . . , Qn), w) <
1
n

n

∑
i=1

B (Qi, w)

That is, the inaccuracy of the linear pool of Q1, . . . , Qn is less than the average inaccuracy of
the Qis.

Now, recall that the linear pool of ∆SD
CAP(P?

1 , P?
2 ), ∆SD

CAP(P1, P2), ∆SD
CAP(P1, P?

2 ), and ∆SD
CAP(P?

1 , P2)
is just ∆LP(P?

1 , P?
2 ). Then it follows that, for any world, the inaccuracy of ∆LP(P?

1 , P?
2 ) at that

world is less than the average inaccuracy of ∆SD
CAP(P?

1 , P?
2 ), ∆SD

CAP(P1, P2), ∆SD
CAP(P1, P?

2 ), and
∆SD

CAP(P?
1 , P2) at that world. That is,

B (∆LP(P?
1 , P?

2 ), w) <

1
4

(
B
(
∆SD

CAP(P?
1 , P?

2 ), w
)
+B

(
∆SD

CAP(P?
1 , P?

2 ), w
)
+

B
(
∆SD

CAP(P?
1 , P?

2 ), w
)
+B

(
∆SD

CAP(P?
1 , P?

2 ), w
))

So pooling in line with (EI) is more accurate than pooling in line with CAP, at least in
expectation and if you are equally likely to find yourself pooling P1 and P2 as you are to find
yourself pooling P1 and P?

2 , or P?
1 and P2, or P?

1 and P?
2 .

Does this generalise beyond the specific case of P1 and P2? Yes, as the following theorem
shows:

Theorem 4. Suppose F ,F ′ are two sets of propositions and F ′ ⊆ F . Suppose P1 is a credence
function on F ′ and P?

1 is the unique coherent extension of P1 to F ; and suppose P2 is a credence
function on F ′ and P?

2 is the unique coherent extension of P2 to F . Then

∆LP(P?
1 , P?

2 ) =
1
4

(
∆SD

CAP(P1, P2) + ∆SD
CAP(P?

1 , P?
2 ) + ∆SD

CAP(P?
1 , P2) + ∆SD

CAP(P1, P?
2 )
)

Now, suppose you enter a pooling task knowing only that the individuals will assign
credences either to the propositions in F ′ or to the propositions in F , where F ′ ⊆ F . Then,
if we assume that there is no correlation between the particular credences the individuals
assign and whether they assign them only to the propositions in F ′ or to the propositions
in F , then it is as likely that the group whose opinions you wish to pool consists of P1 and
P?

2 as it is that it will consist of P?
1 and P2, and as likely that it consists of P1 and P2, and as

likely that it consists of P?
1 and P?

2 . And if that’s right then the expected inaccuracy of using
a rule that respects (EI) and thus sets ∆(P?

1 , P2) = ∆(P1, P?
2 ) = ∆LP(P?

1 , P?
2 ) is lower than

the expected inaccuracy of using CAP, which will give each of ∆SD
CAP(P1, P?

2 ), ∆SD
CAP(P1, P?

2 ),
∆SD

CAP(P1, P?
2 ), and ∆SD

CAP(P1, P?
2 ) a probability of 25%.

8 Beyond Extension Invariance

Extension Invariance (EI) tells us how our pooling function should work when, for each
individual i, there is a unique coherent extension P?

i of Pi from Fi to F . In such a case, (EI)
tells us, you pick the pooling function you favour for those cases in which all the credence
functions to be pooled are defined on the same set of propositions, and you apply it to the
extended credence functions P?

1 , . . . , P?
n , which are all defined on F . As it stands, however,

(EI) does not tell us how to proceed when, for some individual i, there is more than one
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coherent credence function that extends Pi from Fi to F . In this final section, I consider an
important sort of case in which we face this problem and propose a solution for that case.

In the case I want to consider, we pool credences in order to give what Christian List
(2014) calls a corporate collective attitude. Recall from above: in List’s terminology, when
we ascribe a corporate collective attitude, we assert first that the group counts as an agent
in its own right and second that this group agent has the attitude in question. From the ex-
amples given in the introduction, these are the ones I envisage falling into this category: the
epidemiologists of viruses whose views we wish to present as the view of the scientific com-
munity in our textbooks; the co-authors on a multi-authored scientific paper whose group
view as a collective author we wish to present to the scientific community; and the employ-
ees of a company or institution whose collective view we wish to identify in order to assess
liability for some harm. In all three cases, the group agents play a role in some normative
enterprise. In the first two, it is the enterprise of science, which has norms that govern the
assertions included in textbooks and scientific papers. In the third, it is the legal system, and
there are norms here that govern the beliefs we ascribe to an individual whose liability for
some harm we are assessing.

While these normative enterprises and the roles within them that the groups play are
quite different, I will argue that a similar norm governs how we should pool the credences
of the individuals in such a group to give the group’s credences. It is a conservative norm.
It says that we should first pick, for each individual i, a particular credence function P?

i that
extends Pi from Fi to F ; in particular, it says that we should pick P?

i in the most conservative
and unopinionated way possible; that is, we should introduce as little in the way of further
opinions as we can when we extend; and then, second, we should aggregate these extended
credence functions using whatever pooling function we favour for those cases in which all
credence functions are defined on the same agenda—perhaps linear pooling, perhaps geo-
metric pooling, perhaps something else.

Why is this the appropriate norm in the scientific case? In particular, why does the norm
require us to extend Pi to P?

i in the most conservative way possible. In fact, I think there are
two reasons. The first reason is the duty of the textbook’s author or the paper’s lead author
to represent fairly the views of the individuals on behalf of whom they write. The textbook’s
author presents the views of that part of the scientific community; the lead author presents
the views of their fellow co-authors. In both cases, they have a duty not to impute to those
individuals any further opinions beyond what is necessary to extend their credences to the
full set F . The second reason is the duty of scientific authors to their audience. Now, I don’t
think it is the duty of each scientist not to form opinions beyond what is strictly implied by
their evidence. Over years of training and experience in their field, scientists gain an ability
to form opinions on the basis of the evidence that sometimes seems to go beyond what the
non-expert might conclude, and yet which it is legitimate to report in a scientific publication
because of the expertise of the scientist. Nonetheless, when the scientist hasn’t formed any
opinion about a proposition and when we must nonetheless ascribe an opinion to them
in order to carry out the pooling, we are obliged to make that opinion as conservative as
possible. In other words, deviations from a sort of Cliffordian conservatism about opinion
are permitted, but only when they are made explicitly by the scientist, and not when they
are made by a textbook author or lead author on a paper who is filling in the gaps in another
scientist’s opinions.

Why is conservatism the appropriate norm in the legal case? Here, I think the key lies
in the legal notion of the ‘reasonable person’. Often this abstract individual is invoked to
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personify a certain standard of proof that is required in order to find a defendant liable
or guilty. On the websites of many US police departments, you will find a definition of
‘probable cause’ in terms of what a ‘reasonable person’ would believe on the basis of the
evidence in hand. But it is also used to determine when a defendant’s actions are reasonable.
For instance, in Brown vs. Kendall, Chief Justice Shaw determined that the ‘ordinary care’
that is necessary for the defendant to avoid liability is “that kind and degree of care, which
prudent and cautious men would use”.7 And in Commonwealth vs. Horsfall, Chief Justice
Rugg declared that “every traveller upon a highway is bound to exercise the care of the
ordinarily prudent and cautious person under all circumstances”.8 In both of these cases, we
see that the ‘reasonable person’ is identified with the ‘prudent and cautious person’. In the
cases cited, the prudence and caution relate to the individual’s practical choices about their
actions; but it seems reasonable to infer that the same condition is placed on the individual’s
beliefs. Take the case of Commonwealth vs. Horsfall, where a car on a public highway hit an
individual, who then died from their injuries. The individual who was killed was stationary,
and the driver had seen them from some distance off and sounded their horn. While there
was plenty of room to pass, the driver didn’t take it, presumably thinking that the person
would move out of the way at the sound of the horn. Even if it might have been rationally
permissible to have a high credence that the person would move out of the way, given the
driver’s evidence, if that high credence is unusually high or incautious or unreasonable, it
seems that its rationality would not exculpate them. Rather, when they are assessed for
liability, their action is assessed from the point of view of a person who is cautious in both
their beliefs and the actions they perform on the basis of those beliefs.

Now let me explain how we might respect these conservative norms formally. If we wish
to extend a credence function in the most conservative way possible, it’s natural to appeal to
the Principle of Maximum Entropy (Jaynes, 2003; Paris & Vencovská, 1990, 1997; Williamson,
2010). Typically, that principle applies to an individual whose evidence constrains their
credences to some extent, but still permits a range of different credence functions. It is then
used to pick out a single credence function from among those: it picks the one that has
maximal Shannon entropy.9 The idea is this: Shannon entropy measures how unopinionated
a probability distribution is. The higher its entropy, the less opinionated it is. Thus, a uniform
distribution over a finite partition, which is maximally unopinionated, receives the highest
entropy among probability functions over that partition, while a probability function that
places all of its mass on a single possible world, and is therefore maximally opinionated,
receives the lowest entropy. The idea is that your credence function should respect your
evidence; but among credence functions that do this, it should be the least opinionated. In
this sense, it should not go beyond the evidence; it should not encode opinions that aren’t
demanded by the evidence.10

In our case, the situation is a little different. It is not only the individual’s evidence that
constrains how we might extend their credences to the propositions that lie in F but not in
Fi. It is also the credences that they assign to the propositions in Fi. So we might imagine

7Brown vs. Kendall, 60 Mass. 292 (1850).
8Commonwealth vs. Horsfall, 213 Mass. 232 (1913).
9It is typically used only when it is guaranteed that there will be just one such credence function.

10It is worth noting that there are other notions of entropy available, and you might prefer to take one of those
to measure the unopinionatedness of a probability function instead. I focus here on Shannon entropy, partly
because it is the most commonly used, but also because there are persuasive axiomatizations of it, including
Shannon’s own (Shannon, 1948; Paris & Vencovská, 1990, 1997).
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that each individual has their own body of evidence Ei, and we might model this as the set of
credence functions on F that respect that evidence. Thus, for instance, if among individual
i’s body of evidence is the fact that the coin in their pocket is fair, then each credence function
in Ei should assign credence 50% to that coin landing heads if tossed; and so on. Now, just
as we are supposing that all individuals have coherent credence functions, so we might
suppose that they all have credence functions that respect their evidence. Thus, for all i, Ri
and Ei overlap. Then we might say: when we extend individual i’s credence function from
Fi to F , we should ascribe the credence function PME

i , which is defined on F as follows:

PME
i = arg sup

P∈Ei∩Ri

H(P)

where, recall:

• Ei is the set of credence functions on F that respect the evidence that individual i has;

• Ri is the set of coherent credence functions on F that extend Pi; and

• H(P) is the Shannon entropy of P.

The motivation is the same as in the standard application of maximal entropy reasoning,
where an individual’s credences are constrained only by their evidence, and we demand that
they pick among those that satisfy the constrains the one that is least opinionated. Similarly
here, where both the individual’s evidence and their existing credences impose constraints,
we ascribe to them the credence function among those that satisfies both constraints that is
least opinionated. Thus, we define

∆ME∗(P1, P2) = ∆(PME
1 , PME

2 )

where ∆ is our favoured pooling function for credence functions defined on the same set of
propositions—e.g., linear pooling (∆LP) or geometric pooling (∆GP).

Figure 3 illustrates the result of this process in the case we’ve considered before where:

• each individual has no evidence, so that E1 = E2 = PF ; and

• the propositions X, Y, and Z form a partition and the individuals’ credences are as
follows:

X Y Z
P1 0.8 − −
P2 − 0.8 −

Then
X Y Z

PME
1 0.8 0.1 0.1

PME
2 0.1 0.8 0.1

Then, if ∆LP is linear pooling, then

X Y Z
∆LP

ME∗(P1, P2) 0.45 0.45 0.1

It’s worth noting that, when we combine this with the illustration from above, we see that
taking the credence function that maximises entropy among all linear pools of the possible
extensions of P1 and P2 is not the same as taking the linear pool of the extensions of P1 and
P2 that maximise entropy. That is, ∆LP

ME(P1, P2) 6= ∆LP
ME∗(P1, P2). And, it seems to me at least,

the latter gives the more sensible result.
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X = (1, 0, 0) Y = (0, 1, 0)

Z = (0, 0, 1)

(0.8, 0.2, 0)

(0.8, 0, 0.2)

PME
1 = MaxEnt(R1) MaxEnt(R2) = PME

2
R1 R2

(0.2, 0.8, 0)

(0, 0.8, 0.2)

∆LP
ME∗(P1, P2)

Figure 3: The barycentric plot of the simplex with (1, 0, 0) at bottom right, (0, 1, 0) at bottom
left, and (0, 0, 1) at the top.

9 Conclusion

We’ve met a lot of different pooling functions that purport to cover those cases in which the
individuals in the group in question have different agendas. I have argued that they all fail
except ∆ME∗ , which I introduced in the previous section. There, I argued that it is the pooling
function we ought to use when we wish to determine the corporate credences of a scientific
community in order to present them in a textbook, or the corporate credences of a company
or institution we are assessing for liability.

Perhaps there are other situations in which it is the pooling function we ought to use, or
at least one of the pooling functions we are permitted to use? I think that may well be true
when our purpose is not to determine the corporate credences of a group but to determine
its aggregate credences. Recall, in Christian List’s terminology, the aggregate credences of a
group provide a condensed summary of the credences of the individuals that make it up. In
this case, there is no suggestion that the group is an agent in its own right. It seems right to
say that, when we summarise the credences of a group of individuals, and we need to fill
in a particular individual’s credence in some proposition in order to perform the summary,
we should add as little by way of new opinion as we can. But I don’t think this mere appeal
to intuition is as convincing as an argument, so I leave this case to future work, when more
compelling considerations might be adduced.

10 Appendix: proofs

Proposition 1 If d is differentiable in its first argument, CAPd violates (EI).

Proof. Suppose W = {w1, w2} and F1 = {w1, w2} and F2 = {w2}. Then (EI) says that, for
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any P1 defined on F1 and P2 defined on F2,

d(x, P1(w1)) + d(1− x, P1(w2)) + d(1− x, P2(w2))

is minimized as a function of x at x = p iff

d(x, P1(w1)) + d(1− x, P1(w2)) + d(x, P2(w1)) + d(1− x, 1− P2(w1))

is minimized as a function of x at x = p. Now, differentiate each with respect to x and
evaluate at p, where it will take value 0:[

d
dx

[d(x, P1(w1)) + d(1− x, P1(w2)) + d(1− x, P2(w2))]

]
(p) =

d′(p, P1(w1))− d′(1− p, P1(w2))− d′(1− p, P2(w2)) = 0

And[
d

dx
[d(x, P1(w1)) + d(1− x, P1(w2)) + d(x, P2(w1)) + d(1− x, P2(w2))]

]
(p) =

d′(p, P1(w1))− d′(1− p, P1(w2)) + d′(p, P2(w1))− d′(1− p, P2(w1)) = 0

But subtracting the first from the second, we get:

d′(p, P2(w1)) = 0

But, since d is a divergence, d(x, P2(w1)) is minimized, as a function of x, uniquely at x =
P2(w1). So p = P2(w1). But by similar reasoning, we can also establish:

d′(p, P1(w1)) = 0

So it is minimized at p = P1(w1). But if P1(w1) 6= P2(w1), then this gives a contradiction.

Theorem 4 is a corollary of this:

Theorem 5. Suppose f1, . . . , fm, g1, . . . , gm are linear functions in n variables. That is, for each
1 ≤ j ≤ m, there are αj1, . . . , αjn, β j1, . . . , β jn such that

f j(x1, . . . , xn) = αj1x1 + . . . + αjnxn + k j

and
gj(x1, . . . , xn) = β j1x1 + . . . + β jnxn + lj

And suppose x = x1, . . . , xn minimizes

∑
j
( f j(x)− f j(p))2 + ∑

j
( f j(x)− f j(q))2 + ∑

j
(gj(x)− gj(p))2 (1)

and y = y1, . . . , yn minimizes

∑
j
( f j(y)− f j(p))2 + ∑

j
( f j(y)− f j(q))2 + ∑

j
(gj(y)− gj(q))2 (2)

Then, for 1 ≤ i ≤ n, let zi =
xi+yi

2 . Then z = z1, . . . , zn minimizes

∑
j
( f j(x)− f j(p))2 + ∑

j
( f j(x)− f j(q))2 + ∑

j
(gj(x)− gj(p))2 + ∑

j
(gj(x)− gj(p))2 (3)
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Proof. Suppose x minimizes (1). Then, for all 1 ≤ k ≤ n,

∑
j

2αjk

(
∑

i
αji(xi − pi)

)
+ ∑

j
2αjk

(
∑

i
αji(xi − qi)

)
+

∑
j

2β jk

(
∑

i
β ji(xi − pi)

)
= 0

And suppose y minimizes (2). Then, for all 1 ≤ k ≤ n,

∑
j

2αjk

(
∑

i
αji(yi − pi)

)
+ ∑

j
2αjk

(
∑

i
αji(yi − qi)

)
+

∑
j

2β jk

(
∑

i
β ji(yi − qi)

)
= 0

Now, it’s easy to check that, if we let zi =
pi+qi

2 , then z minimizes (3). So now we need only
show that xi+yi

2 = pi+qi
2 . That is, xi = pi + qi − yi. So, let x∗i = pi + qi − yi. Then

∑
j

2αjk

(
∑

i
αji(x∗i − pi)

)
+ ∑

j
2αjk

(
∑

i
αji(x∗i − qi)

)
+

∑
j

2β jk

(
∑

i
β ji(x∗i − pi)

)
=

∑
j

2αjk

(
∑

i
αji((pi + qi − yi)− pi)

)
+ ∑

j
2αjk

(
∑

i
αji((pi + qi − yi)− qi)

)
+

∑
j

2β jk

(
∑

i
β ji((pi + qi − yi)− pi)

)
=

∑
j

2αjk

(
∑

i
αji(qi − yi)

)
+ ∑

j
2αjk

(
∑

i
αji(pi − yi)

)
+

∑
j

2β jk

(
∑

i
β ji(qi − yi)

)
= 0

Since y minimizes (2). So x∗ minimizes (1). So x∗ = x, and xi = x∗i = pi + qi − yi, as
required.
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