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Abstract

We often learn the opinions of others without hearing the evidence
on which they’re based. The orthodox Bayesian response is to treat the
reported opinion as evidence itself and update on it by conditionaliz-
ing. But sometimes this isn’t feasible. In these situations, a simpler
way of combining one’s existing opinion with opinions reported by
others would be useful, especially if it yields the same results as con-
ditionalization. We will show that one method—upco, also known as
multiplicative pooling—is specially suited to this role when the opin-
ions you wish to pool concern hypotheses about chances. The result
has interesting consequences: it addresses the problem of disagree-
ment between experts; and it sheds light on the social argument for
the uniqueness thesis.

We often hear opinions without getting to hear the evidence behind
them. Researchers report conclusions without sharing the underlying data;
news stories omit testimony and statistics they relied on; and acquaintances
share impressions, the basis for which they’ve long since forgotten. How
should we modify our own opinions in these cases?

The orthodox Bayesian response is to treat the reported opinion as ev-
idence itself, and update in the usual way: simply conditionalize on the
fact that so-and-so holds such-and-such opinion. But sometimes this pol-
icy isn’t feasible. We might not have the requisite priors, or we might have
them but lack the cognitive wherewithal to calculate the corresponding
posteriors. Or, we might be designing software that can’t afford the time
for the full computation.

In these situations, a simpler way of combining one’s existing opin-
ion with opinions reported by others would be useful. Especially if that
method yields the same results conditionalization would.

We will show that one method—upco, also known as multiplicative
pooling—is specially suited to this role when the opinions you wish to
pool concern hypotheses about chances. Upco effectively aggregates the
evidence behind opinions about chances, at least in typical cases. So using
upco to fold someone else’s opinion into your own is equivalent to condi-
tionalizing on the evidence behind their opinion.
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Figure 1: When pooling over hypotheses about the bias of a coin, linear pooling (red) has
undesirable results, while upco (green) aggregates evidence.

This result has interesting consequences. It helps to address the prob-
lem of how to defer to experts who might disagree, as we show in Section 5.
And it sheds light on the social argument for the uniqueness thesis, as we
show in Section 6.

1 Background

If you assign to some proposition H the probability P(H), and someone
else reports a different probability Q(H), a natural thought is to split the
difference. That is, you might take the midpoint

P(H) + Q(H)
2

as your new probability for H. This is known as linear pooling. Linear pool-
ing is intuitive and simple, but often gives undesirable results.

To illustrate, suppose you and a friend are interested in a coin of un-
known bias. You both begin with a uniform prior over the [0,1] interval.
Then, separately, you each perform 20 flips of the coin in private. Sup-
pose you get 5 heads and they get 15. Then your posterior over the coin’s
bias will be the blue curve in the left panel of Figure 1, and theirs will be
the purple curve. Combining these posteriors by linear pooling gives the
camel shaped curve in red.

This is quite different from conditionalizing on the evidence behind
your friend’s posterior. That would yield the dotted curve in black instead.
That'’s the distribution you’d get by conditionalizing your prior on the ag-
gregate evidence, 5 + 15 = 20 heads out of 40 flips total.!

IWinkler (1968) also makes this point: see his Figure 2.



How can we combine the blue and purple curves to get the desired,
dotted curve? By multiplying instead of adding. Rather than add Q(H) to
your P(H) and divide by 2 to renormalize, multiply P(H) by Q(H), then
renormalize.

The renormalization step is a bit subtler now. It will depend on just
which opinions Q shares with you. If you only learn their opinion about H
and its negation H, then the total amount of pre-normalization probability
is P(H)Q(H) + P(H)Q(H). So you must divide by this sum to renormalize.
This makes your new opinion about H:

P(H)Q(H)

P(H)Q(H) + P(H)Q(H)

We will use the notation PQ(H) for this new opinion, as a mnemonic for
its multiplicative origin.

In general, when Q shares their opinions over a countable? partition
{H,}, your new opinion about each H; will be:

P(H;)Q(H;)

POUL) = &b ()

This way of combining opinions is known as multiplicative pooling, or upco.
We'll often write PQ for the distribution over {H;} that it generates.

Addition and multiplication are both simple, familiar functions that in-
crease with both arguments. But linear pooling ends up being simpler than
upco, because the denominator is always 2. Since the sum of probabili-
ties over a partition is always 1, summing the terms P(H;) + Q(H;) over
any partition {H;} always yields the same value, 2. Whereas the sum of
products P(H;)Q(H;) varies depending on the partition.

This might seem like a strike against upco. But upco turns out to have
many desirable properties, a number of which are laid out by Easwaran
et al. (2016).3 Our purpose in this section is to draw out another desirable
feature, one that emerges when the H; are chance hypotheses—about the
bias of a coin, for example.

In the right-hand panel of Figure 1, upco combines the blue and purple
curves to give the desired green curve. More generally, it effectively con-
ditionalizes P’s posterior on Q’s data no matter how many heads and tails
each has seen.* For example, in Figure 2, P’s posterior is based on only 10
flips, while Q’s is based on 20. The dashed curve is the posterior for their
aggregate evidence, and the upco curve in green coincides perfectly.

%In the continuous case, the sum becomes an integral and probabilities become densities.

3But see Mulligan (2021) for criticism, and an alternate approach drawing on Genest and
Schervish (1985).

4Winkler (1968, B64-5) and Morris (1983, Section 6) make similar observations; see also
Babic et al. (manuscript).
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Figure 2: Upco works even when one agent has more evidence, e.g. 20 observations vs. 10.

How general is this feature of upco? When can it be used to effectively
aggregate evidence? To a first approximation the answer is: when the H;
are chance hypotheses that render P’s evidence independent of Q’s. But
this answer needs to be developed and refined. The next three sections un-
dertake this development. Later sections then use the results to illuminate
further questions.

2 A First Result

Two features of the coin tossing example contribute to upco’s success. The
first is that Q had a uniform prior over {H;}. Though we’ll see how to do
without this assumption later. The second, more essential feature is that
tosses are independent once we specify the coin’s true bias.

In the general case, the evidence being aggregated can be anything. The
important thing is that we can think of the H; as chance hypotheses accord-
ing to which P’s evidence is independent of Q’s. That is, each H; posits a
chance function C; such that C;(EF) = C;(E)C;(F), where E and F are the
bodies of evidence gathered by P and Q, respecively. Assuming P and Q
defer to these chances per the Principal Principle (Lewis, 1980), the follow-
ing two conditions hold:

P(EF | H;) = P(E | H;)P(F | H;), 1)
P(F | H;) = Q(F | H;). 2)

When these conditions hold, and Q’s prior is uniform, P can use upco to
effectively conditionalize on Q’s evidence.

We'll use the shorthand Pr for P’s posterior. In other words, Pf is the
probability function defined by Pg(—) = P(— | E). Likewise Qr is Q’s
posterior: Qp(—) = Q(— | F). In this notation, the upco of P’s and Q’s



posteriors is denoted PEQr. The formal statement of our first result is then
the following (see the Appendix for all proofs):

Proposition 1. Let Q be uniform over a partition { H; } such that (1) and (2) hold
for all H;. Then for all H;, PeQr(H;) = P(H; | EF).

Informally speaking, using upco to combine P and Q’s posteriors is equiv-
alent to conditionalizing P’s posterior on Q’s evidence, assuming (i) a uni-
form prior for Q, and (ii) chance hypotheses that render P and Q’s data
independent.

If we think of E and F as the outcomes of separate experiments, then as-
sumption (ii) is natural, and common in actual practice. Chance hypotheses
typically posit independent and identically distributed data, as in the coin
tossing example we began with. But whether data are discrete or continu-
ous, i.i.d. outcomes are a standard modeling assumption.

Even when models don’t posit identically distributed data, they often
still posit independence. For example, a climate model might predict differ-
ent average observed temperatures from year to year. Still, conditional on a
tull specification of the model’s parameters, the data gathered by one team
of researchers measuring temperatures in one year will be independent of
the data gathered by another team measuring temperatures the following
year.

What about assumption (i) though? What if Q’s prior isn’t uniform over
{H,}? We'll generalize Proposition 1 to handle this case below. But first we
need to establish some useful properties of upco, which we’ll use repeat-
edly in the rest of the paper. The next section lays out these properties, then
the following section applies them to the case of a non-uniform prior for Q.

3 The Algebra of Upco

When we introduced upco, we chose the notation PQ to evoke multiplica-
tion. In this section we’ll push the multiplication analogy further. We'll see
that we really can think of upco as a product operation, multiplying one
distribution P by another Q, to give a new distribution PQ. This product
operation obeys the same algebraic laws as the familiar multiplication op-
eration on numbers, e.g. it is commutative and associative. And, crucially,
this same product operation also captures updating by conditionalization.

Looking at the definition of upco from earlier, it’s fairly straightfor-
ward to verify that PQ = QP for any P and Q. In other words, upco is
a commutative operation. With a bit more work, we can further verify that
upco is associative too. That is, whether we combine P with Q and then
with R, or first combine Q and R and then with P, the result is the same:
P(QR) = (PQ)R. (Again, see the Appendix for all proofs.)



When multiplying numbers, the value 1 has a special role: multiplying
by 1 has no effect, x - 1 = x. The® uniform distribution behaves similarly
under upco: pooling an arbitrary P with the uniform distribution just re-
turns P. That is, PU = P, where U is uniform over {HZ-}.6 In the terminol-
ogy of algebra, U is the identity element for the upco operation.

Another key fact about multiplying numbers is that, as long as x is
nonzero, it has an inverse. That is, there exists a number x ! = 1/x such
that x - x~! = 1. Again, something similar is true for upco. As long as
P is “regular,” it has an inverse. That is, if P assigns no zeros over {H,},
then there is another distribution P~! such that PP~! = U. In fact, this in-
verse is obtained by associating with each H; the value 1/P(H;), and then
renormalizing.”

So upco induces a genuine algebra on probability distributions. Like
multiplication for numbers, upco “multiplies” distributions in a way that is
commutative, associative, possesses an identity element (the uniform dis-
tribution), and provides an inverse to every nonzero distribution.

This would all be just a neat bit of abstraction, but for one further fact.
Crucially, conditionalization is the very same product operation as upco.
Conditionalizing P on E is equivalent to taking the upco of P’s prior distri-
bution over { H;}, and another distribution corresponding to P’s likelihood
function, P(E | —).

We will write Ep for the normalized likelihood function of E according
to P. That is, Ep is the following probability distribution over {H,}:

P(E | Hi)

Ep(H;) = m

©)

Where P is the prior distribution over {H;}, and Pr the posterior, the cru-
cial equivalence between conditionalization and upco is captured by the
equation:®

Pr = PEp.

This tells us that P’s posterior over {H;} can be factored into a prior dis-
tribution and a likelihood distribution. Which is important, because these
factored terms can then be moved around thanks to commutativity and

SMany different probability functions can be uniform over {H;}, but they all share the
same distribution over { H; }. So we can speak of “the” uniform distribution. The Appendix
handles these matters more rigorously, but we allow ourselves some sloppiness in the main
text for readability.

6Technically PU is only defined over { H; }, while P may be defined over a larger algebra.
Again, we handle this rigorously in the Appendix, but permit some slack here to ease the
exposition.

7So P~1(H;) = P(H;)~'/ ¥ P(H;) .

8Strictly speaking, it’s the restriction of Pg to {H;} that’s equal to PEp. But again, we
permit ourselves some slack here, leaving a fully rigorous treatment for the Appendix.



associativity, and even canceled in some cases thanks to the existence of
inverses.
But first, let’s pause to summarize these properties of upco’s algebra.

Proposition 2. Fix a partition {H;} and write PQ for the upco of P and Q over
{H;}. Let U be uniform over { H;}, and let P, Q, and R be arbitrary. Then

(a) PQ = QP,

(b) P(QR) = (PQ)R,

(c) PU=P,

(d) PP~! = U, provided P(H;) > 0 for all H; so that P~ is well-defined, and
(e) Pg = PEp, where Ep is given by equation (3).

In the next section, we'll use these properties to solve the epistemological
problem that P faced at the end of Section 1.

4 When Q is Not Uniform

Recall where we left things at the end of Section 2. If Q’s prior was uni-
form over {H;}, then, when P pools their posterior with Q’s posterior using
upco, this is equivalent to conditionalizing on Q’s evidence, by Proposi-
tion 1. The problem we left off with was, what if Q’s prior wasn’t uniform?
Can P still use upco to acquire Q’s evidence?

There are two cases to consider. If P knows what Q’s prior was, then a
simple adjustment to the upco calculation used in Proposition 1 solves the
problem. But if P doesn’t know Q’s prior, things are trickier. P can still use
upco to acquire Q’s evidence, but only if they take Q’s prior seriously, in a
certain sense we'll explain below. But let’s handle the easy case first.

Suppose that P does know what Q’s prior was. Then all they have to
do is include its inverse Q7! in their upco calculation, to cancel out the
offending prior Q. That is, in addition to “multiplying” their posterior Pg
by Q’s posterior QF, they must also multiply by Q~!. Then the algebraic
properties developed in Section 3, together with assumptions (1) and (2),
deliver:’

PEQFQ_l = PEPQFQQ_1 = PEPFQ = PEpFp = Pgf.

In other words, taking the upco of P(— | E), Q(— | F), and Q! is equiva-
lent to conditionalizing P’s prior on the aggregate evidence EF.

9The first equality uses property (e) from Proposition 2; the second uses (a), (c), and (d);
the third uses assumption (2); and the last combines assumption (1) with property (e).



Theorem 3. Let {H;} be a partition such that, for all H;, conditions (1) and (2)
hold and Q(H;) > 0. Then for all H;,

PrQrQ~'(H;) = P(H; | EF).

Notice that this theorem has Proposition 1 as a special case. When Q is
uniform, so is Q~1, so the Q! term drops out.

This solution does require some extra computation, but much less than
it first appears. To obtain P(H; | EF), it looks like P must first take the
upco of their posterior with Q’s posterior, then calculate the inverse of Q’s
prior, and then upco with that. But actually, the following much simpler
calculation is equivalent:

Pe(H;)Qr(H;)/Q(H;)
Y Pe(H;)Qr(H;)/Q(H;)

So the only real cost is an extra division operation for each H;. Otherwise,
the computation is identical to the case where Q’s prior is uniform.

Now let’s turn to the more difficult case: suppose P does not know what
Q'’s prior was. Then, P can only apply upco to the posteriors P(— | E) and
Q(— | F). But if we re-run the same calculation we did in the case where Q
was known, just without the Q! term included, we find that this yields

PeQr = (PQ)(EF)p.

This says that taking the upco of the posteriors is still equivalent to con-
ditionalizing on the aggregate evidence EF. Except that the prior being
conditionalized isn’t P, but PQ—the upco of P’s prior with Q’s.10

Theorem 4. Let {H;} be a partition such that P and Q satisfy conditions (1)
and (2). Then for all H;,

PeQr(H;) = PQ(H; | EF).

Like Theorem 3, this theorem also has Proposition 1 as a special case. Now
the reason is that, if Q is uniform, then PQ = P.

Informally, this theorem says that upco and conditionalization com-
mute, given assumptions (1) and (2). Taking the upco of P’s and Q’s pos-
teriors is equivalent to first taking the upco of their priors, and then condi-
tionalizing on the aggregate evidence.

So when P doesn’t know Q’s prior, they must compromise with Q to
acquire their evidence via upco. Rather than conditionalizing their own

10Strictly speaking, PQ is only defined over the partition {H;}: it's only a partial proba-
bility function, which can’t be conditioned on EF. But it’s straightforward to extend it using
the Principal Principle. Each H; specifies a chance C;(EF), which serves as the likelihood
term PQ(EF | H;) in Bayes’ theorem. So we will talk as if PQ(H; | EF) is defined.



prior on the aggregate evidence, upco will first combine their prior with
Q’s, and then conditionalize on EF.

This compromise can be desirable, however. Often we aren’t just in-
terested in someone’s opinion because they have some evidence that we
don’t. We may also think their interpretation of the evidence applies some
insight, which our interpretation misses out. In Hall’s (2004) terminology,
P may partially defer to Q because they have some analyst expertise, not
merely database expertise.

For us the interesting case is where this partial deference takes the fol-
lowing form: P’s prior over {H;}, conditional on Q’s prior over {H,}, is
precisely PQ. In other words, if P had learned that Q initially assigned to
Hi,...,H, the values g1, ..., s, then P would have assigned to each H; the
value dictated by upco:

P(H; | Q(Hy) = q1,...,Q(Ha) = qx) = PQ(H;). 4)

If P’s prior was deferential in this way, then adopting PQ(H; | EF) is equiv-
alent to conditionalizing P(— | E) on two further pieces of information: F,
and the fact that Q’s prior over {H;} was {g;}. So upco again gives the
desired result, when P partially defers to Q in this way.

But when would P partially defer to Q’s judgment in this way? When is
equation (4) plausible? When P views Q’s analyst expertise as equivalent
to possessing some (perhaps tacit) knowledge P lacks. Suppose that Q’s
prior can be represented as the conditionalization of a uniform prior Qo on
some proposition Fy. Then, the upco of P and Q is the upco of P(— | Ep)
and Qo(— | Fo), where Ej is a tautology. And Proposition 1 tells us this is
equivalent to conditionalizing P on Fy. So if P thinks that Q’s analyst exper-
tise derive from knowledge of some such proposition F, they will partially
defer to Q as in equation (4). Because doing so amounts to learning what-
ever information Q (tacitly) knows that gives them their expertise.

Notice that Fy needn’t be actual evidence acquired by Q, in the tradi-
tional sense. It may describe observations that Q has never actually made.
It's enough that P thinks Q’s analyst expertise derive from reasoning as if
they had made those observations. For example, in our coin tossing ex-
ample from earlier, Q may have no actual experience with this particular
coin, but might have experience with other, similar coins, which leads them
to begin with a certain, non-uniform prior. For example, they might begin
with a fairly strong suspicion that this coin is fair. The resulting prior might
be equivalent to a uniform prior conditionalized on, say, 10 observed flips
evenly split between heads and tails.

* * *

Let’s take stock. We’ve been considering the virtues of upco, as a way of
responding to opinions about “models.” That is, we’ve been thinking of the



H; as chance hypotheses, according to which your evidence is independent
of your interlocutor’s.

We’ve seen that upco is equivalent to conditionalizing on your inter-
locutor’s evidence, in two cases. First, when their prior over the partition
was uniform, and second, when you know what their prior was and can
thus “cancel” it using its inverse. But if their prior isn’t uniform and you
don’t know what it was, you can’t correct for it in this way.

However, if you partially defer to their judgment, upco can still deliver
the desired result. Applying upco is equivalent to conditionalizing on both
your interlocutor’s prior and their evidence, provided your partial defer-
ence to their judgment has the right form. And, we’ve argued, this kind of
partial deference is plausible in a range of cases.

In the remainder of the paper, we apply these results to other areas:
expert disagreement in Section 5, and the uniqueness thesis in Section 6.

5 Serving Two Epistemic Masters

When experts differ, we laypeople face a conundrum. What opinion should
we adopt as our own, given that there is no consensus opinion among the
experts? It's tempting again to split the difference: to pool the experts’
opinions linearly. Surprisingly, this turns out to be untenable.

Suppose you regard Q and R as experts about some proposition H. That
is, if you learn Q’s opinion, you will adopt it as your own, and likewise for
R’s opinion. The following two conditions hold then, where Q and R are
now random variables representing these experts” opinions about H:

PH|Q=4q)=9, (5)
P(H|R=r)=r. (6)

If your policy is to split the difference should they differ, then we also have:
PH|Q=qR=r1)=(q+r)/2 (7)

But Dawid, DeGroot and Mortera (1995) show that these three conditions
together imply P(Q = R) = 1.1 Thus, to defer to Q and R individually, yet
resolve any differences by linear pooling, you must be certain there won'’t
be any differences to begin with.

In fact, Zhang (manuscript) shows that this result doesn’t just hold for
linear pooling, but for a large class of pooling rules. Assuming the domain
of P is finite, it holds for any strictly convex pooling rule, i.e. any rule that
always returns a value strictly between g and r (unless q = r). For example,
the red curve in Figure 1 always lies strictly in between the blue and purple
curves, because linear pooling is strictly convex.

Hgee also Bradley (2018) and Gallow (2018).

10



Formally, we are replacing (7) with the more general

P(H[Q=¢qR=r)=f(qr1), 8)

where f is any function that returns a number strictly between g and r when
q # r, and returns q otherwise. Zhang shows that equations (5), (6) and (8)
again imply P(Q = R) = 1, assuming P’s domain is finite. So you can only
plan to resolve any difference between Q and R by a strictly convex pooling
rule if you are certain no such difference will arise.'?

But upco is not strictly convex, as we can see from Figure 2: upco’s
green curve leaves the envelope enclosed by the blue and purple curves.
And, indeed, upco can “serve two epistemic masters,”!® reconciling the
opinions of differing experts. In fact it does so in a significant range of
cases, which we can identify using our earlier results.

Let’s start with an example. Suppose a coin has two possible biases,
described by the hypotheses H and H. And suppose three agents all begin
with the same prior P, which for now we'll assume is uniform over {H, H}.
One of these agents will flip the coin some number of times, and condition-
alize on the result to arrive at a posterior we'll label Q. Another agent will
perform a separate sequence of flips, arriving at R. The third agent, who so
far still holds P, will then learn Q’s and R’s opinions about H.

If P knows these are the circumstances, then equation (5) will hold. For
P, learning Q’s opinion is equivalent to learning how many heads and tails
they observed. And since P and Q share a common prior, P will draw the
same conclusion from this information that Q did, i.e. adopt Q’s opinion as
their own. For exactly parallel reasons, equation (6) will hold too.

What about when P learns both experts” opinions? This is equivalent
to learning how many heads and tails they observed between them. So P
is effectively conditionalizing on the aggregate evidence. And we know
from Proposition 1 that this is equivalent to taking the upco of Q’s and R’s
posterior opinions. Thus

P(H[Q=¢q,R=r) = QR(H). ©)

Now, crucially, it’s entirely possible that Q and R will get different numbers
of heads, and thus report different opinions. So P(Q = R) # 11in this exam-
ple. Thus upco is capable of serving two epistemic masters: equations (5),
(6) and (9) do not imply P(Q =R) = 1.

How general is this result? Quite general. The hypotheses and evidence
can be anything really. P doesn’t even need to be able to infer what Q’s and

12This rules out several popular alternatives to linear pooling, notably geometric and
harmonic pooling. While both of these alternatives are non-convex when pooling over a
partition with three or more elements, they are strictly convex in the present case, where
the partition {H, H} has only two elements.

13To borrow Gallow’s (2018) phrase.
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R’s evidence was exactly, only that they acquired some evidence that war-
rants the reported opinions. The main thing for upco to be appropriate is
the kind of conditional independence assumption we made in equation (1).
The hypotheses H and H need to render Q and R’s evidence independent.

For instance, continue to assume our three agents begin with a common
prior, P. One will learn the true element of some partition {E;}, another
the true element of a partition {F;}. The third agent, who still holds P,
knows all this, so they defer to Q and R as in (5) and (6). Now, for upco to
be appropriate, we must assume that Q’s evidence is independent of R’s,
conditional on each hypothesis. That is, for every E; and F;,

P(EiFj | H) = P(E; | H)P(F; | H),

and similarly given H. Then, if P is uniform over {H, H}, P will resolve
any differences according to upco, i.e. (9) holds.

We can drop the uniform prior assumption much as we did in Section 4,
by including its inverse. Somewhat ironically, this means that P must in-
clude the inverse of their own opinion, P!, in their upco calculation. This
is because P is also the prior behind both Q and R’s opinions, and we don’t
want it to be “double counted.” Combining Q’s and R’s posteriors in the
present case amounts to combining PEp with PFp:

PEpPFp = P?EpFp = P*(EF)p.

When P was uniform, we had P? = P so there was no issue. But if P is not
uniform, then P? # P and we need to include a P~! to cancel one of the P’s.

Bottom line: even in the case of a non-uniform prior, P can still resolve
any difference between Q’s and R’s opinions by upco. They just have to
include the inverse of the shared prior, P~1. Our main result for this section
is then formally stated as follows:

Theorem 5. Let {E;} and {F;} be finite partitions. Let Q be a random variable
that takes the value P(H | E;) in the event that E;, and let R = P(H | F;) in the
event F;. Then (5) and (6) hold. If, furthermore, each pair E;, F; is conditionally
indepenent given the elements of {H, H}, then

P(H|Q=4q,R=r) =P 'QR(H). (10)
In the special case P(H) = P(H), then (10) reduces to (9).

This result generalizes straightforwardly to partitions { H; } with more than
two cells, as we show in the Appendix.

We could generalize further, dropping the assumption of a shared prior.
But this would no longer be a case where Q and R must be experts P defers
to in the sense of (5) and (6). While they would have strictly more evidence
than P, their interpretation isn’t necessarily one that P would endorse. P

12



might still defer to them partially, along the lines of equation (4). In which
case upco would still apply, similar to Theorem 4. But we won’t pursue the
details here. Instead, we turn to another application of our earlier results.

6 The Social Argument for Uniqueness

According to the uniqueness thesis, there is always just one correct way to
interpret a body of evidence (Feldman, 2006). No two agents with the same
total evidence should ever disagree. The alternative to this view is permis-
sivism, which holds that agents with the same evidence may have different
views, at least in some cases.

In the Bayesian framework, uniqueness is equivalent to there being a
privileged prior. Two conditionalizers who begin with the same prior and
get the same evidence must end up with the same posteriors. Bayesians
who believe in a privileged prior that all rational agents must begin with
are called objective Bayesians.

We’ve seen that there is a special relationship between upco and a cer-
tain prior: the uniform prior over chance hypotheses. And, indeed, this
prior has a long history in the objective Bayesian tradition. It was used by
Laplace (1774 [1986]) to derive the Rule of Succession in his classic response
to Hume’s problem of induction. And it recurs in more general forms in
other classic works by De Morgan, Johnson, and Carnap (see Zabell, 1989,
for an overview of the history).

Our results above thus suggest a kind of social argument for the unique-
ness thesis. A uniform prior over chance hypotheses is privileged, making
it possible to aggregate evidence easily, without having to share that evi-
dence explicitly. Instead, we can report the conclusions drawn from our
evidence, and apply upco. So each of the members of a community gains
an epistemic advantage if all members adopt that prior. They can glean one
another’s evidence from their conclusions, without having to know one an-
other’s evidence or priors.

In fact, an argument along the same basic lines is advanced by Dogra-
maci and Horowitz (2016), just without the Bayesian formal specifics. Do-
gramaci and Horowitz argue that uniqueness enables a division of epis-
temic labour. Assuming uniqueness, agents can gather and process evi-
dence in parallel, then come together to share their conclusions. If everyone
interprets evidence the same way, then they can just adopt one another’s
conclusions without having to hear the supporting evidence. But not if
interpretations differ. Then they can’t take one another’s conclusions on
board unquestioningly. Instead, they must either communicate all their ev-
idence, or do their best to guess what evidence lies behind one another’s
opinions.

Two key questions are left open by Dogramaci and Horowitz’s informal

13



presentation of their argument. We’ll explain how these questions are an-
swered by our results above. But we'll also see that these answers raise a
third issue, which may weaken the social argument for uniqueness.

The first question is how to deal with defeating evidence. To illustrate,
suppose you and a friend part ways to collect evidence. When you meet
back up, your friend believes H. Assuming uniqueness, you would be
obliged to believe H too, if you had their evidence. However, it might be
that their evidence, when combined with yours, no longer supports H. So,
even assuming uniqueness, you can’t just take someone’s testimony that
H on board on the grounds that they are rational. That would amount to
disregarding your own evidence in favour of theirs.

This problem is solved by upco in the Bayesian framework, assuming
the conditions of Proposition 1 are satisfied. Then, two agents who begin
with a uniform prior over { H, H} will effectively conditionalize on one an-
other’s evidence by applying upco. So even if your evidence favoured H
while theirs favoured H, you can take their testimony on board without
having to hear what their evidence was. Upco will ensure that your ulti-
mate conclusion reflects both bodies of evidence correctly.

The second question left open by the informal argument is: what is the
uniquely correct way of interpreting evidence? In Bayesian terms, what is
the uniquely privileged prior? The informal argument suggests only that
there is value in everyone using the same prior. But it leaves open the
possibility that any choice of a common prior is as good as any other—that
the choice of prior is a mere matter of convention, like choosing which side
of the road everyone will drive on.

But if upco is used to reintegrate the epistemic labour divided among
the members of the community, then one prior stands out as a particularly
good choice: the uniform prior over chance hypotheses. After all, as we
have seen, if the shared prior is the uniform one, we need only apply upco
to our posterior and our testifier’s; if the shared prior is something else, we
need to apply the inverse of that shared prior as well to undo the double
counting. So, in the Bayesian framework, Proposition 1 gives a definite
answer to the second question.

So far we’ve seen how Proposition 1 strengthens the social argument
for uniqueness. Now for the bad news: even with a uniform prior, upco
has undesirable results when pooling repeatedly.

To see the problem, suppose two agents begin with a uniform prior over
{H,} and part ways to gather evidence. One learns E, the other learns F,
and they meet to upco their posteriors. Assuming the conditions of Propo-
sition 1 hold, the result for both agents is

UEpFg = EpFp = (EF)p.
Now suppose our two agents part ways again, this time learning E’ and F/,

respectively. Then they meet up once more. Before they meet, one agent
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has (EF)pE} and the other has (EF)pF(,. So when they upco, the result will
be
(EF)pEp(EF)pF, = (EF)3(E'F')p.

Notice, the evidence EF from the first round of investigation has been double-
counted! In terms of coin tossing, it’s as if each agent had done twice as
many flips in their first experiment as they actually did. The sample size
from the first round has been inflated to twice its true size.

Now, we know how to correct for double-counting from Section 5. We
can include (EF);' in the second round of pooling, to cancel one of the
extra (EF)p terms. But there’s a significant cost to this solution. It doesn’t
just entail some extra computation, it also requires agents to keep track of
what they’ve learned from one another. For example, P needs to remember
that, the last time they pooled with Q, Q walked away “carrying a copy”
of (EF)p with them. Only then will P know to include (EF)," the next
time, to avoid double-counting. So this solution makes significant storage
demands.

Is it unduly demanding though? We aren’t sure. Plausibly, we do keep
track of the information we learn from one another, in some form or other.
When someone expresses an opinion on one occasion, we don’t treat it as
fresh news when we hear them express the same opinion later. So it may
be plausible that humans do something like what this account demands.

But even so, we suspect this weakens the social argument for unique-
ness significantly. It suggests that the division of epistemic labour isn’t as
efficient as it first seems. If the uniform-over-chances prior enables a di-
vision of epistemic labour that is more efficient than what we would have
otherwise, but not that much more efficient, its rational privilege is less
stark.

7 Conclusion

Upco is well-suited to pooling opinions about chance hypotheses. When
the chances render your evidence independent of your interlocutor’s, you
can use upco to effectively acquire their evidence. Since chance theories
often render data independent, this result has broad application. Inquirers
who gather data separately can effectively communicate their observations
just by reporting their conclusions.

This result is also useful for reconciling disagreements beetween ex-
perts. As Zhang shows, neither linear pooling nor any other strictly convex
rule can be used to combine the opinions of differing experts. But we've
seen that upco can be used, when the experts’ opinions concern chance hy-
potheses that, again, render their data independent.

Finally, the social argument for the uniqueness thesis is simultaneously
bolstered and challenged by these results. Upco works especially well as a
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way to aggregate evidence when the prior over chance hypotheses is uni-
form. This suggests that the classic, objective Bayesian approach initiated
by Laplace serves an important social-epistemic function. At the same time
though, upco is liable to double-count evidence when pooling repeatedly
with the same person. This effect can be corrected for using inverses, but
at the cost of a significant storage burden.

So upco has broad application for learning from the opinions of others,
and it delivers unexpected insights in related areas. We conclude that upco
is a valuable and illuminating pooling rule, meriting equal consideration
alongside more standard options like linear pooling.

8 Appendix

Here we give formal statements and proofs of the results in the main text.
For simplicity we state all results concerning only two agents, but all gen-
eralize to larger groups in the natural way.

Throughout, let {H;} be a finite partition of size n, and let P, Q, and
R be probability functions. Associate with P the vector p = (p1,...,pn)
whose entries are p; = P(H;). Likewise let q have entries q; = Q(H;), and r
the entries r; = R(H,). Note that p, q, and r are probability vectors, i.e. their
entries are nonnegative and sum to 1.

We'll write pr for the probability vector with entries P(H; | E), pgr for
the vector with entries P(H; | EF), and so on. We'll also write ep for the
normalized likelihoods of E according to probability function P:

P(E | Hi)
Y, P(E| Hj)
Similarly, f( is the normalized likelihood distribution of F according to Q.

Finally, we'll let G be a shorthand for EF, so that gp denotes the normalized
likelihood distribution of EF according to P:

(ep)i =

_P(EF | Hj)
(gp)i = T P(EF | Hy)

The upco of two probability functions can be viewed as a product oper-
ation on the associated vectors.

Definition 1 (Upco product). The upco product of p and q is defined

pa = (P191,---,Pnqn)/P " Q-

This operation is defined as long as p - q > 0, in which case it always
returns another probability vector. If p and q are regular, meaning their
entries are all positive, then pq is also regular.

We now give a formal statement and proof of Proposition 2.
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Proposition 2 (formal). Suppose p - q -t > 0, so that pq, (pq)r, and p(qr) are
defined. Let u = (1/n,...,1/n), and if p is reqular let

pl= > ;/pi (1/p1,....1/py).
Then
(@) pq = qp,
(b) p(qr) = (pa)r,
(c) pu=p,

(d) pp ! = uifpis reqular, and

(e) P = pep.

Proof. Part (a) follows immediately from the commutativity of scalar mul-
tiplication and of dot products.
For part (b), compare the ih entries:

) — pl% - piqiti
Pl =5 Tar) ~ p-ar)(a o’

o b _ piqiti
((pa)r); = (pa)-r  (p-q)(pq-1)

In both cases the it entry is proportional to p;q;r;. Since probability distri-
butions with identical proportions are identical, p(qr) = (pq)r, as desired.
For (c), the ih entry of pu is:

_ pi/m) _ pi
P = /) ~ By P

For (d), first observe that p~! is a probability vector because

1 1 1

Zi:PiZjl/Pj Zjl/leZpi

Moreover, the i" entry of pp~! is proportional to

1 1
P i/p Ll

So the entries of pp~! are constant, hence must be 1/n.

Finally, for (e), by definition p; = P(H;) and (ep); « P(E | H;). So
(pep); « P(H;)P(E | H;). By Bayes’ theorem, q; « P(H;)P(E | H;) as well.
So q and pep have the same proportions, hence must be identical. |
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We will have several occasions to use the fact that conditional indepen-
dence implies gp = epfp.

Proposition 6. If condition (1) holds for all H;, then gp = epfp.

Proof. The entries of ep are proportional to the P(E | H;), and the entries of
fp are proportional to the P(F | H;). So the entries of epfp are proportional
to P(E | H;)P(F | H;) = P(EF | H;), hence to gp. [ |

Next we prove Theorem 3, which we restate here for convenience.

Theorem 3 (restatement). Suppose that for all H;, conditions (1) and (2) hold
and Q(H;) > 0. Then for all H;,

PeQrQ ' (H;) = P(H; | EF).
Proof. By condition (1), epfp = gp. And by (2), fo = fp. So

(per)(afo)q ' = (pqq ') (erfo) = p(erfr) = pgr = per.

Since the distribution on the left gives the PrQrQ~!(H;) values, and the
entries of pgr are the P(H; | EF) values, this completes the proof. [ |

Now we prove Theorem 4, which we also restate for convenience.

Theorem 4 (restatement). Suppose that for all H;, conditions (1) and (2) hold.
Then for all H;,
PeQr(H;) = PQ(H; | EF).

Proof. By condition (1), epfp = gp. And by (2), fo = fp. So
(per)(afo) = (pq)(erfo) = (pq)(erfr) = (pq)(ef)p.

The left hand side gives the values of PrQr(H;), and the right gives the
PQ(H; | EF) values. So this completes the proof. [ |

We now turn to Theorem 5, which we'll prove in the more general form
of Theorem 8. The proof really has two separate pieces, one that depends
on the specifics of upco and a second which has nothing to do with upco.
The first is quick using upco’s algebra.

Lemma 7. Let Q(—) = P(— | E) and R(—) = P(— | F). If (1) holds and
P(H;) > 0 for all H;, then

P(H; | EF) = P"'QR(H;).
Proof. By hypothesis, q = pep, r = pfp, gp = epfp, and p_1 exists. So,
pgr = perfp = (p~'p)perfr = p~" (pep) (pfr) = p~'qr.
Since the left hand side gives the P(H; | EF) values, and the right gives the
P~'QR(H;) values, the proof is complete. [ |
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In the main text we stated Theorem 5 in terms of a two-cell partition
{H, H}. Theorem 8 addresses the more general case, where { H;} may have
more than two elements.

Theorem 8. Let {H;}, {E;}, and {F} be finite partitions. Let Q be a random
vector, whose i™" value when Ej obtains is P(H; | E j), and let R be a random vector
whose i'" value when Fy obtains is P(H; | F). Then

P(H;|Q=q) = (11)
P(Hi|R—r)_"z (12)

If, furthermore, P(E;F; | H;) = P(E; | H;)P(Fy | H;) for all i, j, k, then
P(H;|Q=qR =1) = P"'QR(H,). (13)

Proof. Note that, with Lemma 7 proved, the remaining work has nothing to
do with upco. The operative idea is just that P can infer Q and R’s evidence
from their opinions, or near enough.

Let Eq be the union of all E;’s such that P(H; | E;) = g; for all i. And let
F; be the union of all F’s such that P(H; | F) = r;:

Eq=EqU...UE,,,
Fo=EyU...UE,,.

Since Q = q is equivalent to Eq, and R = r to F;, we have for all i:

P(H; | Q =q) = P(H; | Eq) = P(H: | Eq)) = i,
P(H; | R =x) = P(H; | F) = P(H; | Fy) = 7

establishing (11) and (12).
Now observe that Q = q, R = r is equivalent to Uy, (Eq, N F, ). So

P(H;|Q=qR=1) HIUE NF,)) = P(H; | Eq, N Fy,).

By conditional independence then, Lemma 7 implies that for all H;,
P(H; | Q=q,R=r) =P 'QR(H,),
as desired. ]
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