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Abstract. There are writers in both metaphysics and algorithmic in-
formation theory (AIT) who seem to think that the latter could provide
a formal theory of the former. This paper is intended as a step in that
direction. It demonstrates how AIT might be used to define basic meta-
physical notions such as object and property for a simple, idealized world.
The extent to which these definitions capture intuitions about the meta-
physics of the simple world, times the extent to which we think the simple
world is analogous to our own, will determine a lower bound for basing
a metaphysics for our world on AIT.

Keywords: metaphysics, formal metaphysics, computational
metaphysics, algorithmic metaphysics, algorithmic information theory,
real patterns.

Both philosophers and mathematicians have flirted with the idea that algorith-
mic information theory (AIT) could provide some foundation for basic notions
in metaphysics. The main inspiration for this paper is one such hint from the
philosophy side: in Daniel Dennett’s sketch of a metaphysics based on “real
patterns”, he explicitly appeals to incompressibility, and offhandedly mentions
the work of AIT theorist Gregory Chaitin in this connection.1 Meanwhile AIT
theorists since Andrey Kolmogorov frequently speak about, for example, the
“information content” of objects generally, rather than of binary strings in par-
ticular. (Of course, “the original incentive to develop a theory of algorithmic
information content of individual objects was Ray Solomonoff’s invention of a
universal a priori probability . . . ”2)

This paper aims to help bridge this gap between metaphysics and AIT. As
befits a philosophy paper, it contains little in the way of technical results, but
some ruminations aiming to pave the way for technical results to come. And as
is typical of work bridging discipline X to discipline Y , X theorists are likely to
complain that the treatment of X is far too simplistic and sloppy, and that the
treatment of Y engages trivial details—while Y theorists complain conversely.

1 See [2] p. 32. Others have developed Dennett’s metaphysics more fully than I have,
most notably the “Rainforest Realism” of [9]. I think everything I say here is com-
patible with this work, while extending it to make more explicit the ties to AIT.

2 [11] p. 333, my emphasis. Solomonoff’s partially autobiographical (and posthumous)
publication [13] lists [12] as the paper that started it all.
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I happily undertake that risk, with hope for some indulgence and patience from
both.

My strategy is to construct an extremely simple toy world W , and give its
metaphysics in terms of AIT. That is, using AIT I’ll try to define key meta-
physical notions for W such as composite object and property. These basics of
synchronic metaphysics will be plenty to occupy this paper; in future work I hope
to build on this foundation in order to model important diachronic metaphysical
notions such as persisting object, change, and cause.

Eventually the goal is to connect these metaphysics to thriving programs in
algorithmic epistemology. Work such as [8] and [7] extend Solomonoff’s original
insights for formalizing inductive reasoning. The Bayesian approach of [16] is
closely related (as argued in [17]), and has demonstrated potential to characterize
approximate truth [4] and perhaps more elusive philosophical fruit [3].

But first, the metaphysics. The extent to which these definitions seem to
capture the intuitive metaphysics for the toy world W , times the extent to which
we think the metaphysics for W are analogous to our own world, will determine
an informal lower bound for the extent to which we think we might base a
metaphysics for our world on AIT.

1 The Toy World W

W is built out of a finite set of n “objects” {w1 . . . wn} that we will consider
unproblematically fundamental.3 We’ll need a fair number of them; one million
would be plenty. These fundamental objects cannot be created or destroyed from
one time to the next. In W there is one fundamental property, which each of
these objects either has or does not have at any time. We can think informally
of the wis at a time as a row of life-game-like cells that wraps into a circle, each
of which either possesses the fundamental property (represented as ‘�’ on the
cell, and encoded as ‘1’), or does not possess that property (represented as ‘�’
on the cell, and encoded as ‘0’).4 We can think of W at the next time step as
another circle of such cells just below. This W is, I hope, a very simple case for
the kind of important features we seem to need to construct a metaphysics in
our world: some unproblematically fundamental objects, one maximally simple
fundamental property, and a succession of times.

More formally the {wi} form a finite cyclic group with a successor-like func-
tion, and W at a time t, or wt, is a function wt : {wi} → {0, 1}. W , in turn,

3 This does not require that they be just-plain fundamental ; if Ladyman and Ross
are right that objects are always patterns, “all the way down”, they still allow for
fundamental objects in the context of a fixed resolution.

Also, the use of “build” here and elsewhere in the paper is meant to echo the wide
sense proposed by [1]; one of my many hopes for algorithmic metaphysics is that it
can characterize the important commonalities among the “building relations” she
discusses.

4 We want the cells to wrap into a circle basically because we do not want cells to the
“left” to be simpler, in the AIT sense, than cells to the “right”.
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can be seen as a function from discrete possible times (t ∈ N) to such functions;
we could write the composite function as wt,i. Let L, the locations, be the set of
intervals on {wi}.5

In W the wi gain or lose their properties by the action of a fixed universal
prefix Turing machine U . This machine has a unidirectional binary input tape,
a bidirectional read-write binary work tape (including a blank symbol), and a
write head on the wi. This head can add or remove the fundamental property
at its current cell or can move to the cell’s successor. We’ll abbreviate the first
operations as ‘�’ (for adding the property) and ‘�’ (for removing the property),
and the successor movement as ‘S’. So that U does not have an unfair bias, we can
suppose U is (or is one of) the “simplest” universal prefix Turing machine(s) to
meet these specifications (on whatever chosen measure of simplicity for Turing
machines); this is thought by AIT theorists to be the rough equivalent to a
maximally uninformative prior.

Now consider any interval (location) l ∈ L, and let xl represent the function
wt as restricted to that interval. An xl is thus an ordering of zeroes and ones—
in effect, a binary string.6 Let X be the set of all such binary strings up to the
maximal length n, and for x ∈ X let the standard notation KU (x) designate the
Kolmogorov complexity of x relative to U—that is to say, KU (x) is the length of
the shortest input required to cause our fixed U , when starting at the “left” end
of the interval, to output x and then halt. Finally, let the idiosyncratic notation
x� designate the length of the shortest program required to output x “literally”—
that is, the length of x plus some small constant for the computational overhead
to print any given string.

2 Things in W

One of the main potential advantages of Dennett’s “real patterns” approach to
metaphysics is that it can make sense of composition—that special, mysterious
way a bunch of things can come together to form a new thing, as when atoms
can make up a molecule, or molecules can make up a brick, or bricks can make
up a house. Peter van Inwagen calls this the special composition question: the
question of when it is true that some objects compose a new object—when it is
true that “∃y the xs compose y.”7 This is a classic philosophical question at least
in the sense that it looks like the answer should be obvious, but reflection shows
just about any consistent answer to be counterintuitive. At least for the simple
W , though, I think AIT can provide a relatively intuitive answer to this vexed

5 That is, given the cyclic ordering relation 〈x, y, z〉, the interval [a, b] is defined as all
x such that x = a or x = b or 〈a, x, b〉.

6 I will sometimes conflate the function wt over interval l, the set of ordered pairs
associated with that function, and the resulting ordered binary string. I think (and
hope) that nothing hangs on this conflation.

7 [15] p. 30. Note that, at least for W , I am happy to use ‘thing’ and ‘object’ inter-
changeably.
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question.8 This definition of composite objects will serve as a kind of lynchpin
for the synchronic metaphysics that follow.

In W , an object is composed of other objects when the objects together form
a “real pattern”—that is, the arrangement of the objects and their properties is
easier to specify, computationally, than simply giving the complete details at the
fundamental level. A simple, standard example (adapted for W ) is when many
of the fundamental objects (cells) in a row all possess the fundamental property.
If the string of �s is sufficiently long, a program equivalent to “for i = 1 to

10,000, �S” will be much shorter than the literal-print “�S�S ... �S.” It is
natural to see such a sufficiently long string of �s amidst an otherwise chaotic
jumble of squares as an object in its own right.

I propose this definition for identifying the non-fundamental things in W .

Definition 1. xl is a composite object if and only if

1. KU (xl) < x�
l (the compressible clause)

2. There is no partition of l into intervals {l1 . . . ln} such that
∑

i KU (xli) ≤
KU (xl) (the minimal clause)

3. There is no interval l′ containing l such that KU (xl′ ) ≤ KU (xl) (the maxi-
mal clause)

Does this definition adequately capture what we might call (non-fundamental)
“objects” in W? Since none of us has any experience in W , it might be hard to
tell what we could reasonably call a composite object there. Still, this definition
has intuitive features in W that would, if they were carried over into our world,
provide some grip on major challenges in metaphysics.

2.1 Composition and Division

One central challenge for any account of composition is to negotiate both the
Scylla of universalism, according to which any mereological sum of objects is
another object, and the Charybdis of nihilism, according to which the only ob-
jects are the fundamental ones. Universalists implausibly claim that “my desk
plus the Eiffel tower” is a genuine object in its own right, while nihilists implau-
sibly claim that desks and towers do not literally exist. They are driven to these
extremes basically because it is hard to find a principled line to draw between
them. Dennett’s “real patterns” approach promises to provide just such a line.

The first clause of Definition 1 already implies that universalism is false for
W , for most binary strings are not compressible and thus not objects. Some of
the problem that motivated universalism remains, however. Let o1 be 10,000 �s
in a row, and let o2 be a binary representation of the first 10,000 decimal digits
of π at a location immediately adjacent, and finally let o3 = o1∪o2. This o3 looks
suspiciously like an arbitrary mereological sum such as “my desk plus the Eiffel
tower”, and yet it is easily compressible. It is not an object, though, because of
the minimal clause; it possesses a natural decomposition into o1 and o2, where

8 One I hope more intuitive than van Inwagen’s answer for our world; he claims that
no composite objects exist except for living beings.
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KU (o1) +KU (o2) ≤ KU (o3). In summary, there is no simplicity gain in treating
the two objects as one—and so, on the real patterns metaphysics, no ontological
gain either.

It may seem that the minimal clause will overgenerate, and likewise rule out o1
as a genuine object, since that long string of �s can apparently be decomposed
into other compressible objects. For example, split o1 into two longish substrings;
call them o1L and o1R (for “left” and “right”). Each would be compressible on
their own, and their union is just o1—so o1 seems to run afoul of the minimal
clause, and thus of objecthood. This would be W ’s analog to the Charybdis of
nihilism, since if anything is a composite object in W , surely o1 is!

But the unified o1 is different from the chimera o3 in an important respect.
The programs for each of o1L and o1R will look very like the program for o1, and
summing them will double the computational overhead. In this way o1 gains in
simplicity over the sum of its substrings, and so is a genuine object by Defini-
tion 1. Similar considerations presumably apply to any substrings of o2.

Still, substrings o1L and o1R seem to be objects in their own right; they
surely would be if they were “on their own.” If they are objects, though, we face
a dilemma. On the one hand, if we say that o1L and o1R compose o1, we must
also say the same for a great number of other such partitions into sufficiently
long substrings. o1 is thus “composed” of way more overlapping “objects” than
would be intuitive. On the other hand, if we say that o1L and o1R do not compose
o1, then we must say that o1 is identical to the union of two objects, but not
composed of those objects.

I think the best solution is simply to deny object status to substrings o1L
and o1R, as the maximal clause does. Both o1L and o1R are subsets of o1, and
KU (o1) = KU (o1L) = KU (o1R), so substrings o1L and o1R are not objects in
their own right.9

The maximal clause has a natural analog in our world, since it prohibits the
flipside of arbitrary summation—namely, arbitrary division. Just as in our world
it is intuitive to say there is no such “object” as the northern half, northern third,
or northern 3/17ths of my desk, so too in W our string o1 does not have its many
compressible substrings as genuine parts, according to Definition 1. The natural
motivation here is that a part that is more complex than its whole—because,
say, it depends in some way on a description of the whole to be specified—is not
an object in good standing on its own. (Definition 1 thus denies what [14] calls
the “Doctrine of Arbitrary Undetached Parts”.)

9 Actually this is complicated by the fact that, for example, the binary specification
of 10,000 in an instruction like “for i = 1 to 10,000” will take more bits than if it
were 1,000 instead. Thus strictly speaking the 1,000-length substrings are not part
of a longer string with equal or lower complexity; their minimal generating programs
will be slightly shorter. I do not think this is a deep problem, though I can only think
of a few kludgy fixes for it—for example, we could require the inequality not hold
within the logarithm of the length difference between the containing and contained
string, or perhaps set up the Turing machine so that it has typed registers for such
purposes that always take the maximal possible bits.
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But note that Definition 1 does allow for composing objects out of other
composites; there just needs to be some complexity savings in so composing. For
adjacent composite objects {oi} to compose o, we just need it to be the case that
KU (o) <

∑
i KU (oi), and that KU (oi) < KU (o) for each i. In other words, the

super-composite must be simpler than the sum of its parts, but not as simple
as any individual one. Suppose, for example, that wt has a streak of 5,000 �s,
followed by 3,000 �s, and then another 5,000 �s, followed by another 3,000 �s,
and so on, so that the black-white stripe alteration pattern is repeated (say)
six times. In this case we can write one loop around the loops required for each
stripe, and so we have a compressing program for the whole that is longer than
the compression for each natural part, but shorter than the sum of each. Each
stripe is an object on its own, and together those stripes compose the object
that is the larger stripe pattern. No two of those stripes taken together is an
object, though—and if we had only two stripes in a row like that, without the
repeating pattern, then they would each be a single object that do not compose
a new one together. This, I think, is an intuitively pleasing result.

2.2 Scattered Objects

The examples so far have concentrated on intuitively connected objects, but
notice that Definition 1 allows for something like scattered objects too. Just
as a cloud may count as one thing even without close bonds among the water
molecules, or a jigsaw puzzle might count as one thing even when it is in pieces,
so too a set of cells over an interval may count as one thing even when there is
a good deal of random noise over the interval, scattering the pattern. Consider,
for example, a large interval over which the odd-indexed cells are all �s, while it
is random whether the even-numbered cells in between have the property. Such
a string would count as an object despite a certain intuitive lack of internal
cohesion. Minimally interesting objects in W (but most common, in the sense of
most probable to occur) will be long-enough strings where the preponderance of
one property over another is just sufficient to allow compression. These objects
will be, in some sense, maximally scattered.10

10 One odd consequence of Definition 1 is that whether such scattered bits of order
in the chaos count as one object or not will depend on exactly how spread out
they are. At some point a slight preponderance of order mixed in a lot of chaos no
longer gains enough simplicity advantage to make up the overhead required for the
compressing calculation. In our world it’s fairly natural to say that a group of water
molecules with sufficient average distance no longer constitute a cloud, and jigsaw
pieces sufficiently removed from each other are no longer that original puzzle—if,
say, some pieces are in a box in the basement, and some in a landfill across town.
On the other hand it is not so intuitive that there is a precise boundary here; the
mere movement of one extra millimeter could hardly make the difference, but in W
just one extra bit of noise can be enough. Insisting on lack of such precision when
determining whether an object exists, however—insisting, in other words, that it is
vague whether some object exists or not—has its own very serious problems. See, for
example, [5] for a classic, one-page case against, and [19] for a much more extended
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Another consequence to consider is that scattered objects, in our world any-
way, allow for interpenetrability—a kite can fly through a cloud, but that does
not intuitively destroy the kite in favor of a kite-cloud, for example. This leads
us to the complicated topic of spatial overlap and coincidence for objects in W .

2.3 Object Overlap and Coincidence

The possibility of building new objects out of more fundamental ones gives rise to
another standard metaphysical puzzle: that of constitution. For (worn) example,
a sculptor forms a lump of clay into an elegant statue. Intuitively, the lump of
clay has not disappeared; it has just been reshaped. And intuitively, the statue
did not exist before the lump gained that shape. Thus many are tempted to
say there are now two things (the lump of clay and the statue) where there was
once one—two material things that occupy exactly the same location, so are
coincident in at least this sense. The fairly neutral description of the case is that
the lump of clay constitutes the statue, and the puzzle is in explaining just what
this relation of “constitution” amounts to.11 Our toy world W has an analogous
puzzle, I think, and AIT provides at least some leverage against it.

As a warmup, consider first the issue of object overlap, without exact spatial
coincidence. Suppose Lafayette Avenue and Grant Street intersect. That inter-
section is intuitively part of both streets; after all, you do not suddenly abandon
Lafayette while crossing Grant, nor vice-versa. If so, that rough square of pave-
ment belongs to both Lafayette Avenue and Grant Street, even though the two
roadways are not the same thing. The two roads overlap.

Here is what I take to be an analogous situation in our one-dimensional W :
consider a long string in wt that represents the first 11,806 binary digits in the
decimal expansion of π; call it oπ. As it happens, this string ends in sixteen �s.12

But now suppose that those sixteen �s are also followed by a great many more
�s in a row, to make 10,000 overall, and call that string o0. Of course oπ and
o0 overlap, in the sense that their location intervals on wt intersect. To see that
both are objects, consider each clause of Definition 1:

Compressible. Each is clearly compressible to shorter than their literal
printings.

Minimal. Neither is decomposable into substrings that would save in complex-
ity over the whole. Though oπ might look like it has a natural division, there
is no complexity savings in so doing; it is better to have a π-calculating loop
for 11,806 rounds then to have the same π calculation for 11,790 rounds and
then a separate “repeat � 16 times” loop.

Maximal. Neither object is part of a bigger object on a containing interval.
The union of oπ and o0 would have two reasonable compressing programs
(into “π for 11,806, then � for 9,984” or “π for 11,790, then � for 10,000”)

treatment of problems associated with vagueness at the metaphysical level. For a
defense of vague identity, see [15].

11 See [18].
12 Thank you, http://www.befria.nu/elias/pi/binpi.html !

http://www.befria.nu/elias/pi/binpi.html
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but neither such program would be shorter than those for oπ or o0 on their
own.

Thus it seems W can have overlapping objects. Perhaps now it is clear that it is
also possible in W to have one object entirely contained by another, as a yolk is
contained by an egg in our world. Consider, for example, the first compressible
stretch of 0’s in a very long expansion of π. Again, I think this captures intuitions.

Object coincidence, however, appears to be a different matter; while the story
of the statue and the clay makes it seem at least an open possibility in our world,
Definition 1 in effect stipulates against it for W , since it individuates objects by
their locations. This is a problem, and I have two possible responses to it.

Here, I think, is a rough equivalent in W to the story of the clay and the
statue: oc (the “clay”) is a long string built out of a random mix of the short
strings ‘111’, ‘0010’, and ‘011010’. This fact makes oc compressible. The string os
(the “statue”), on the other hand, is made out of the same substrings, but their
succession follows some identifiable (if somewhat arcane) pattern. This string is
compressible in the same way oc was, but also in an even more efficient way that
encodes the pattern of the component strings. In this sense, the “clay” of oc is
still there, but with a further pattern layered on top of it. (Note it is not a case
of object composition, though, since the short substrings are not objects.)

One way to capture our metaphysical intuitions for such a case would be to
alter our definition slightly: identify objects in W not with (the equivalent of)
compressible binary strings, but instead with the compressing programs for U
that could generate such strings. Very roughly speaking, we might say objects
are individuated by their Aristotelian formal causes, and not their material ones.
Since (at least) either of two different compressing programs could potentially
produce the same string os over the same interval, there are then (at least) two
objects in that location.

Another possible option is to keep our definition and say that there is indeed at
most one object in any location, but the object has two compatible properties :
in our W example, the object both has the property of being a mix of three
certain substrings, and has the property of having those substrings arranged in
such-a-way. In the real world analog, there is one thing on the table, and it has
both the relatively important property of being a statue, and the compatible
property of being a lump of clay.

This approach worries many, because it requires the lump and statue to be
identical, but only contingently; the clay lump might not have been a statue,
even though the clay lump had to have been a clay lump. In other words the
lump and statue have different modal properties, and that is at least odd if the
lump is the same thing as the statue. How problematic this is depends on how we
construe modal properties, but I suspect AIT has good prospects for modeling
the “counterpart theory” approach of [10].

At least when it comes to AIT metaphysics in W , my working hunch is that
not much hangs on the difference between these two options. To see why, though,
we need to discuss how AIT might pick out properties in W , and their relation
to algorithmic sufficient statistics.
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3 Properties in W

Properties in W built out of the fundamental are most naturally thought of as
sets of possible objects for W ; they are in this sense intensional rather than
extensional. This allows for the possibility of uninstantiated properties; it may
be that for some P no object in P ever actually appears in W . I am okay with
this if the serious metaphysicians are. (Are they?) Since we want to be able to
talk about real patterns of such “abstract” sets that might not be realized in
wi concreta, programs causing U to output to cells in W will not be sufficient.
Instead, we treat the objects in question as functions from l ∈ L to {0, 1}, encode
such functions into binary strings in a standard way, and encode sets of such
strings into a new binary string in a standard way.13 Thus we can speak of the
Kolmogorov complexity of such a set as the program required to output the
string encoding the set on U ’s work tape.

It may be tempting to consider any such set of objects S that is compressible
(that is, a set where KU (S) < S�) a property. This is no good, however; for
example, a set of m-length blocks at various locations (for sufficiently large m)
plus one long representation of π digits will count as a property, on this view,
even though this set seems unnaturally gerrymandered. The challenge, then, is to
carve the total set of possible objects into its natural joints, whatever “natural”
means here.

I think—with somewhat less confidence than before—that the best approach
is to follow the same technique that was used for defining objects. Just as we
want “real” objects to be simple relative to the sum of their parts, and not
arbitrary sums or divisions, so we want “real” properties to be simple relative
to the sum of their objects, and not arbitrary disjunctions or conjunctions.

Definition 2. Let O be the set of all possible objects in W . Then P ⊆ O is a
property if and only if

1. KU (P ) <
∑

o∈P KU (o) (compressible)
2. There is no partition of P into {P1 . . . Pn} where

∑
i KU (Pi) ≤ KU (P )

(minimal)
3. There is no P ′ ⊆ O such that P ⊂ P ′ and KU (P

′) ≤ KU (P ) (maximal)

I think Definition 2 does a respectable job capturing intuitions about properties.
First, any P satisfying it must have a relatively short program to generate

it, and thus a relatively short description—which seems to imply a relative nat-
uralness to it. The minimal clause rules out arbitrary disjunctive properties;
generating the set of all objects that are either solid blocks or π representations
is no more simple than generating the set of blocks and then the set of π repre-
sentations. The maximal clause rules out arbitrary conjunctive properties; the
set of all sufficiently long blocks that terminate before w55,510 is not a proper

13 In some sense the set of possible objects should include ones bigger than those possi-
ble in W , including (perhaps) infinite ones, or ones with more than one fundamental
property, etc. I don’t consider possibility in this sense here.
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property, I think, though I think the set of all sufficiently long blocks is, and
maybe the set of all objects that terminate before w55,510 is too.14

One intriguing feature of Definition 2 I have only begun to explore is its tie
to algorithmic sufficient statistics.15 An algorithmic sufficient statistic for x is a
finite set S such that

KU (x) = KU (S) + log |S|+ c

The c is a fixed constant—namely, the length of the program U requires, when
given any set-generating program and index, to output the set element at that
index. The idea is that generating a set containing x and then locating x in that
set is as efficient as the minimal program for x. Note that for any S containing
x, KU (x) will always be less than or equal to KU (S) + log |S| + c, since once
given S one can always find x by simply enumerating its elements. Sets that are
algorithmic sufficient statistics for x are “optimal” for x in the intuitive sense
that important information about x is already captured by its membership in
set S, so that no further point of substance can then identify x within S. It is
thus natural to think of S as a model for x, while providing its index in S is like
setting the parameters of the model.

Theorem. If S ⊂ O is an algorithmic sufficient statistic for some o ∈ S, and
if it is maximal in the sense of Definition 2 ( i.e. there is no S′ ⊆ O such that
S ⊂ S′ and KU (S

′) < KU (S)), then S is a property.

Proof. Compressible clause: Since S is optimal for o, we know KU (S) < KU (o)
(by log |S|+ c), and KU (o) <

∑
x∈S KU (x), so KU (S) <

∑
x∈S KU (x).

Minimal clause: Suppose for contradiction that there is some partition {Si}
of S such that

∑
iKU (Si) ≤ KU (S), and consider Sj 	 o. Then as for any set

containing o,

KU (o) ≤ KU (Sj) + log |Sj|+ c

And since S is optimal for o, that means in turn that

KU (S) + log |S|+ c ≤ KU (Sj) + log |Sj |+ c

By supposition
∑

i KU (Si) ≤ KU (S), so in particular KU (Sj) < KU (S). Thus

KU (Sj) + log |S|+ c < KU (Sj) + log |Sj |+ c

This implies log |S| < log |Sj |, where Sj ⊂ S—a contradiction.
Maximal clause: By supposition. 
�

14 I confess whether “objects terminating before wi” is a property by this definition
has stumped me, for now; it is certainly difficult to generate all objects so placed,
since that would require a way to recognize objects, and that would in turn require
computing Kolmogorov complexity. But generating such a set given O is, I think,
pretty straightforward, and maybe that’s the proper standard.

15 See [11] p. 406, or [6] p. 29.
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I suspect the connection between Definition 2 and algorithmic sufficient statistics
may run deeper, though I have been unable to demonstrate as much in time
to complete this paper. For example, I thought perhaps all minimal sufficient
statistics for all o ∈ O would be properties, but haven’t been able to prove it, and
now doubt it. I also cannot yet prove anything interesting in the other direction.

At any rate, sufficient statistics are about summarizing the “meaningful in-
formation” in data; they provide as much information as the data set itself for
picking the best model out of a given model class. (In AIT this model class is
very wide—the set of all computable models.) This notion of separating out the
meaningful information from the happenstance details has natural connections
to the notion of a real property of an object, since we can think of properties
as fundamentally a matter of abstraction; to say that two non-identical objects
share a property is to neglect some information in each in order to highlight
substantive information they share.

Intuitively one can abstract from an abstraction to get another genuine prop-
erty, and Definition 2 allows for these more abstract properties in the same way
that Definition 1 allows for super-composed objects. If P ⊂ O has a partition
into properties {Pi} where all KU (Pi) < KU (P ), and KU (P ) <

∑
i KU (Pi), then

intuitively P summarizes something important that the Pi have in common.
Thus consider for example these three sets:

– All blocks of �s exactly 1,017 long (abstracting only from the location of
the object)

– All blocks of �s long enough to compress (abstracting from both location
and block length)

– All blocks repeating any pattern short enough to be repeated often enough
to be compressed (abstracting from location, length, and pattern to repeat)

The program to generate each of these sets will be short, but longer than the
one before, and so each will (I think) meet both their minimal and maximal
requirements.16

Thus our “statue” os from section 2.3 has two properties that are both—if I un-
derstand correctly—algorithmic sufficient statistics. We could identify an object
with its sufficient statistic and index (the abstract specification and its “realiza-
tion”?), or we could simply think of these as interesting properties of one object.
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