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Abstract: In a recent paper by Tranchini (2019), an introduction rule for the
paradoxical proposition ρ∗ that can be simultaneously proven and disproven
is discussed. This rule is formalized in Martin-Löf’s constructive type theory
(CTT) and supplemented with an inferential explanation in the style of
Brouwer-Heyting-Kolmogorov semantics. I will, however, argue that the
provided formalization is problematic because what is paradoxical about ρ∗

from the viewpoint of CTT is not its provability, but whether it is a proposition
at all.
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1 Introduction

How do we define the meaning of logical constants? What does, e.g., the
conjunction ∧ mean? The standard answer put forward by the inferential-
ist (proof-theoretic) tradition is relatively simple: the meaning of logical
constants within a certain natural deduction system is specified by intro-
duction rules. These rules should effectively work as “ ‘definitions’ of the
symbols concerned” (Gentzen, 1969, p. 80, English translation). For exam-
ple, the meaning constituting introduction rule for the conjunction ∧ can be
schematized as follows:

A B ∧I
A ∧B

with the assumption that A and B are true, i.e., proven, propositions. It tells
us that if we want to prove the proposition A ∧B, first we have to prove the
propositions A and B. In other words, the proof of A ∧B consists of a pair

1Work on this paper was supported by Grant no. 19-12420S from the Czech Science Foun-
dation, GA ČR. I would also like to thank the anonymous reviewers for their most helpful
comments.
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of proofs of its conjuncts. Thus, the general idea is that we understand the
meaning of ∧ when we can properly use it, which in this case corresponds to
the ability to prove the proposition of the form A ∧B.

Where do introduction rules come from? The original Gentzen’s set of
introduction rules arose from analysing the structure of actual mathematical
proofs. He wanted to capture “the forms of deduction used in practice in
mathematical proofs” and develop a formal system that would come “as
close as possible to actual reasoning” (Gentzen, 1969, p. 68). From this
perspective, the origins of introduction rules were purely empirical. Hence,
there were no general restrictions on them, they were—or rather should have
been—just codifying the actual mathematical practice.

However, considering introduction rules should act as “definitions” of
the symbols appearing in their conclusions, it seems reasonable to assume
that the symbols to be defined should not appear among the premises of
the corresponding rules to avoid circularity.2 For example, assume that the
introduction rule for conjunction would look as follows:

A ∧B ∧I′
A ∧B

It would be difficult to see in what sense it constitutes or illuminates the
meaning of ∧.

Furthermore, if these “definitions” provided by introduction rules are
to be of any practical value, we have to know how to use them. In natural
deduction systems, this is a task for elimination rules, whose role is, simply
put, to enact those definitions. In Gentzen’s words: “[elimination rules] are
no more, in the final analysis, than the consequences of these definitions [i.e.,
of introduction rules]” (Gentzen, 1969, p. 80). For example, the elimination
rules for conjunction are as follows:

A ∧B ∧E1
A

A ∧B ∧E2
B

It seems unproblematic that if A ∧ B was “defined” using A and B, we
should be able to unpack this definition and get back its constituents, i.e., A
and B in this case.

The observation that we should not be able to infer from a derived propo-
sition more (or less) than what went into its derivation is crucial. It was this

2However, as we will see later, this is not always so straightforward, especially in the case of
inductive definitions.
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general concept—that later become known as the inversion principle (see
Lorenzen, 1955; Prawitz, 1965) or harmony (see Dummett, 1991; Tennant,
1978)—that was violated by the famous counterexample by Prior (1960)
to the idea that introduction and elimination rules alone can determine the
meaning of logical constants. He proposed a new logical constant tonk
governed by the following introduction and elimination rules:

A
tonkI

A tonk B
A tonk B

tonkE
B

With these rules it is easy to derive the paradoxical conclusion that ¬A is
true assuming that A is true:

A
tonkI

A tonk ¬A
tonkE¬A

What went wrong? It is the elimination rule that causes the paradoxical
behaviour. Specifically, the elimination rule is not sanctioned by the corre-
sponding introduction rule. As was said, elimination rules should not go
beyond what introduction rules stipulate. In this case, it is the derivation of
A tonk B from A. And since no B went into deriving A tonk B, we
should not be able to derive B back from it.3

However, as was already observed by Prawitz (1965, Appendix B), there
are scenarios in which introduction and elimination rules are harmonious,
yet paradoxical behaviour still arises. In these cases, the culprit is not the
elimination rules as was the case with tonk, but the introduction rules.4

It is these problematic introduction rules, namely those that exhibit para-
doxical behaviour due to some form of circularity, that will be the main topic
of this paper. Specifically, I will examine an introduction rule discussed by
Tranchini (2019) determining the meaning of the paradoxical proposition ρ∗

that can be simultaneously proven and disproven, i.e., we can have proofs for
both ρ∗ and its negation. In the same paper, this rule is then formalized in
the framework of Martin-Löf’s constructive type theory (CTT) and supplied
with a corresponding clause to the Brouwer-Heyting-Kolmogorov (BHK)

3See (Tranchini, 2014) for a more thorough discussion of tonk and its difference from other
paradoxical connectives.

4I would like to thank the reviewer for this remark. See also (Schroeder-Heister, 2012) for
a discussion of paradoxical behaviour in the sequent calculus setting, i.e., in an environment
without introduction and elimination rules but with left and right rules.
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semantics. I will, however, argue that the provided formalization is problem-
atic because what is paradoxical about ρ∗ from the viewpoint of CTT is not
its provability, but whether it is a proposition at all.

The introduction and elimination rules and BHK clause for the paradoxi-
cal proposition ρ∗ proposed by Tranchini (2019) are based on the introduction
and elimination rules and BHK clause for implication ⊃. So we begin by
examining the latter, then we discuss the former.

2 Implication

According to the BHK semantics, the proof, and hence the meaning of the
proposition A ⊃ B consists of a method (procedure, function, program)
which takes any proof of A and returns a proof of B. The standard introduc-
tion and elimination rules are as follows:

[A]

B ⊃I
A ⊃ B

A ⊃ B A ⊃E
B

The introduction rule tells us that if we want to prove proposition A ⊃ B, we
first have to be able to derive proposition B from assumption A which should
then be discharged.5 In other words, it tells us how to construct (canonical)
proofs of the proposition A ⊃ B. The elimination rule then tells us how we
can use this proposition in proofs: if we derive A ⊃ B together with A, we
can then proceed to B alone.

Note that if we apply the ⊃E rule immediately after the ⊃I rule, i.e.,
construct A ⊃ B and then remove it right away, we are making an unneces-
sary detour in a derivation. To get rid of these detours we use the following
reduction meta rule (see Prawitz, 1965):

[A]n

D
B ⊃In

A ⊃ B
D′
A

B

⇒

D′
[A]

D
B

If a closed derivation, i.e., a derivation with no open assumptions, contains
no detours, it is said to be in normal form.

5Hence, the assumptionA is essentially just a placeholder to be withdrawn. For an alternative
approach to assumptions, see (Pezlar, 2020).
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Utilizing the propositions-as-types principle6, which is fully adopted by
Martin-Löf’s constructive type theory (CTT), we can make the BHK clause
as well as the rules for implication more explicit and precise:

[x : A]

b(x) : B
⊃I

λx.b(x) : A ⊃ B

c : A ⊃ B a : A ⊃E
app(c, a) : B

assuming that A : prop, B : prop, and A ⊃ B : prop, i.e., that A, B, and
A ⊃ B are propositions. The meta rule for detour reduction can then be
captured as the following computation rule (also known as reduction rule or
equality rule):

[x : A]

t(x) : B s : A
⊃C

app(λx.t(x), s) = t(s/x) : B

where t(s/x) is the result of substituting s for x in t. Informally, the rule
states that a derivation with a detour is equal to the derivation we obtain by
removing this detour.

In what sense are these rules more explicit and precise? Regarding the
explicitness, note that the premises and conclusions of these rules are no
longer propositions but judgments of the form a : A which can be read as “a
is a proof of A”. Hence, the proofs themselves are internalized in the object
language and coded as terms. As for the precision, note that the informal
statement of the corresponding BHK clause “a proof of A ⊃ B consists of
a method that takes any proof of A and returns a proof of B” is made more
exact by the judgment λx.b(x) : A ⊃ B where the unspecified notion of a
method is replaced by a specific lambda term, namely abstraction.

It is important to mention that from the perspective of CTT, the function
λx.b(x) appearing in the conclusion of ⊃I is a function in a secondary
sense, the more basic notion of a function appears in the premise of this
rule, i.e., it is captured by the hypothetical derivation of b(x) : B under the
assumption x : A (see, e.g., Klev, 2019a). We can liken this difference to
Frege’s distinction between functions as course-of-values and functions as
unsaturated entities, respectively (see Frege, 1893).

6Also known as the Curry-Howard correspondence (see Curry & Feys, 1958; Howard, 1980).
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One last note. So far we have presupposed that A ⊃ B is a proposition,
assuming A and B are propositions. In CTT, however, this is a judgment
that can and should be demonstrated as well by using a special kind of rules
called formation rules. These rules tell us how to form new propositions from
other propositions. For example, A ⊃ B receives the following formation
rule:7

A : prop B : prop
⊃F

A ⊃ B : prop

Note that this rule tells us how to form the proposition A ⊃ B, i.e., how
to derive the judgment A ⊃ B : prop. However, the rule itself requires
further justification. Generally, in CTT, we can judge that A is a proposition
if we know what counts as a canonical proof of A, i.e., if we can recognize
a canonical proof of A when we are presented with one (the same goes for
equal canonical proofs). And to tell us what counts as canonical proofs is the
purpose of the introduction rules. Therefore, formation rules are justified by
the corresponding introduction rules. Thus, we can judge that A ⊃ B : prop
since we know (via the ⊃I rule) what should the canonical proofs of A ⊃ B
look like.

Consequently, this means that the rule ⊃I takes, if we want to be fully
explicit, three premises, including those of the corresponding formation rules.
The rule then should look as follows:

A : prop B : prop

[x : A]

b(x) : B
⊃I′

λx.b(x) : A ⊃ B

Note In CTT, there are four basic kinds of rules: introduction rules, elimi-
nation rules, formation rules, and computation rules. Introduction rules are
considered self-justifying, elimination rules correspond to introduction rules
and are justified by computation rules (analogous to Prawitz’s reduction rules,
see Prawitz, 1965), formation rules are justified by introduction rules, and
computation rules relate elimination rules to introduction rules. For more,
see (Martin-Löf, 1984).

Now, let us finally proceed to the paradoxical proposition ρ∗.

7I am omitting the variant for showing how to form equal implicational propositions.
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3 Paradoxical proposition ρ∗

To incorporate the paradoxical proposition ρ∗ that can be simultaneously
proven and disproven, Tranchini (2019) suggests the following extension to
the BHK semantics. The informal clause explaining the corresponding proof
condition for ρ∗ goes as follows, where ⊥ denotes absurdity:

a proof of ρ∗ is the result of applying a self-referential abstraction-like
operation to a function (as an unsaturated entity) from proofs of ρ∗ to
proofs of ⊥. The result of this operation are objects whose nature is
similar to that of the functions as courses-of-value that constitute proofs
of sentences of the form A ⊃ B, with the crucial difference that proofs
of ρ∗ take proofs of ρ∗ as arguments and yield proofs of ⊥ as values.
(Tranchini, 2019, p. 601)

The clause for the paradoxical proposition ρ∗ is given formalization in the
framework of Martin-Löf’s constructive type theory (CTT). Specifically, its
inferential behaviour is specified by the following introduction and elimina-
tion rules (see also Read, 2010):

[x : ρ∗]

t(x) : ⊥
ρ∗Iλ

x.t(x) : ρ∗

s : ρ∗ t : ρ∗
ρ∗Eapp(s, t) : ⊥

which are then related by the following computation rule:

[x : ρ∗]

t(x) : ⊥ s : ρ∗
ρ∗Capp(

λ
x.t(x), s) = t(s/x) : ⊥

The ρ∗C rule shows how the function app, defined by the rule ρ∗E, operates
on the canonical proofs of the proposition ρ∗ generated by the rule ρ∗I, and
thus in turn justifies the ρ∗E rule.

With these rules we can both prove ρ∗ and disprove ρ∗, i.e., prove ¬ρ∗
understood as ρ∗ ⊃ ⊥:

[x : ρ∗]1 [x : ρ∗]1
ρ∗Eapp(x, x) : ⊥

ρ∗I1λ
x.app(x, x) : ρ∗

[x : ρ∗]1 [x : ρ∗]1
ρ∗Eapp(x, x) : ⊥
⊃I1

λx.app(x, x) : ρ∗ ⊃ ⊥
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If we combine these two derivations via the ⊃E rule, we obtain the
following derivation:

[x : ρ∗]1 [x : ρ∗]1
ρ∗Eapp(x, x) : ⊥

ρ∗I1λ
x.app(x, x) : ρ∗

[x : ρ∗]1 [x : ρ∗]1
ρ∗Eapp(x, x) : ⊥
⊃I1

λx.app(x, x) : ρ∗ ⊃ ⊥
⊃E

app(λx.app(x, x),
λ
x.app(x, x)) : ⊥

Note that there is a redundancy on the right side of the tree: we derived
ρ∗ ⊃ ⊥ via the ⊃I rule and then immediately eliminated it by an application
of the ⊃E rule.

If we remove this detour using the ⊃C rule (i.e., essentially compute the
term app(λx.app(x, x),

λ
x.app(x, x))), we get the following derivation:8

[x : ρ∗]1 [x : ρ∗]1
ρ∗Eapp(x, x) : ⊥

ρ∗I1λ
x.app(x, x) : ρ∗

[x : ρ∗]1 [x : ρ∗]1
ρ∗Eapp(x, x) : ⊥

ρ∗I1λ
x.app(x, x) : ρ∗

ρ∗Eapp(
λ
x.app(x, x),

λ
x.app(x, x)) : ⊥

with yet another detour. But if we try to remove it, we discover that this
derivation reduces to itself via the ρ∗C rule, and thus we get caught in what
Neil Tennant called a loop: “the normalisation sequence never terminating
with a proof in normal form” (Tennant, 1982, p. 270).

As was already mentioned before, note that the rule ρ∗I is essentially
assembled as a self-referential variant of the implication introduction rule
⊃I, which, as we discussed above, takes, in its fully explicit version, three
premises, not just one. So, analogously, the fully revealed version of the ρ∗I
rule for the proposition ρ∗ should be:

ρ∗ : prop ⊥ : prop

[x : ρ∗]

t(x) : ⊥
ρ∗I′λ

x.t(x) : ρ∗

Now, let us examine more closely the object
λ
x.t(x) of type ρ∗, i.e., the

object constructed by the ρ∗I rule. Analogously to λx.b(x), it is supposed to
be a coding (a name) of the function t(x). Note, however, that the domain of
t(x) is also ρ∗, i.e.,

λ
x.t(x) itself belongs to the domain ρ∗ of the function

8Alternatively, we could construct this derivation directly from the two copies of the initial
closed derivation of ρ∗, as does Tranchini (2019).
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t(x) it is supposed to be coding. But that is a problem: we are forming a
canonical object of type ρ∗ from a function whose domain is ρ∗ itself. In
other words, we are generating an object of type ρ∗ from itself (see Dyckhoff,
2016 for analogous observations).9

But is this really problematic in general? For example, the type N of
natural numbers seems to be defined also with some degree of circularity but
everything works just fine. Specifically, it has the following two introduction
rules:

NI1
0 : N

n : N NI2
succ(n) : N

The first rule simply stipulates that 0 is a natural number, so there is no
issue. However, in the case of the second rule it seems like we are trying
to generate an object of type N from itself: note that the premise of the
successor rule NI2 seems to presuppose that we already understand what it
means for some n to be a natural number.

Why is this case unproblematic as opposed to ρ∗I? Is it perhaps because
with the type N we have the base object 0 : N which is missing in the case of
the type ρ∗? Unfortunately no, because then we would have to conclude that
the type of well-founded trees (W -types) has also problematic introduction
rules, since they also do not have such base cases.10

The answer to this question can be found, if we examine the premises
of the involved rules. Specifically, note that the rule ρ∗ tells us that we can
construct a canonical proof of ρ∗ assuming we have a function that takes an
arbitrary proof of ρ∗ and returns a proof of ⊥ (recall the BHK explanation of
implication).

In contrast, the premise of the successor rule for N does require us to be
in a possession of an arbitrary object of this type, we just need an object of
this type. Or as Dyckhoff (2016, p. 82) put it: “we don’t need to grasp all
elements of N to construct a canonical element by means of the rule, just one
of them, namely n.”

To make these observations more general and precise, we can borrow a
few notions from the literature on inductive types and then carry them over
to the logical side in accordance with the Curry-Howard correspondence.11

9I thank one of the reviewers for pointing this out to me and invite the reader to consult
Dyckhoff’s paper as well, specifically pp. 81–83. Furthermore, the elimination rule ρ∗E is also
of some interest, however, in this paper I will be focused primarily on introduction rules.

10I thank an anonymous reviewer for this remark. Although W -types would deserve a closer
examination, they are beyond the scope of this paper.

11As noted, e.g., by Dyckhoff (2016), whose simplified presentation we follow below.
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Inductive types are often formally treated as the least fixed point of an opera-
tor Φ defined via type variables X,Y, . . ., constants, and type constructors +
(addition), × (product), and→ (function space). For example, the type of
natural numbers N can be generated by the definition Φ(X) = X + 1.12

Furthermore, a definition of a unary operator Φ is said to be positive if
and only if only occurrences of X in it are positive.

1. An occurrence of X in X is positive.

2. An occurrence of X in A → B is positive if and only if it is (i) a
positive occurrence in B or (ii) a negative occurrence in A

3. An occurrence of X in A → B is negative if and only if it is (i) a
negative occurrence in B or (ii) a positive occurrence in A

4. An occurrence of X in A+B and A×B is positive if and only if it is
a positive occurrence in A or B

5. An occurrence of X in A+B and A×B is negative if and only if it
is a negative occurrence in A or B

A definition of a type as the least fixed point of an operator can then be
said to be positive if and only if the operator definition is positive. Further-
more, a definition can be said to be strictly positive, if only occurrences of
the type variable X in the definition are strictly positive.

6. An occurrence of X in X is strictly positive.

7. An occurrence of X in A→ B is strictly positive if and only if it is a
strictly positive occurrence in B

8. An occurrence of X in A + B and A × B is strictly positive if and
only if it is a strictly positive occurrence in A or B

For example, in A→ B, B occurs positively and A occurs negatively. Also
note that if X does not occur positively in A then either X does not occur in
A or X occurs negatively in A.

Now, the type ρ∗ can be then defined as the least fixed point of the operator
Φ(X) = X → ⊥ (see Dyckhoff, 2016, p. 83). Note that this is not a positive
definition, sinceX has a negative occurrence in the definition (see the clause 3

12See, e.g., (Dybjer, 1997), (Mendler, 1987).
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above). Definitions with negative occurrences such as this are generally
avoided (so called “strict positivity condition”) for the unsurprising reason
that they allow us to construct looping terms, analogous to our non-normal-
izable looping proofs (see, e.g., Bertot & Castéran, 2004; Chlipala, 2013).

Intuitively, we can think of these type definitions as corresponding to
introduction rules under the Curry-Howard correspondence.13 Analogously,
we can also carry over the notions of positive/negative occurrence. For
example, in the case of ρ∗, the negative occurrence of ρ∗ in the corresponding
type definition then coincides with the fact that on the logical side ρ∗ appeared
as an assumption. Similarly, we can also adopt the notions of (strictly)
positive/negation definitions, e.g., we can say that an introduction rule for a
proposition A is strictly positive if and only if A does not appear among its
premises as an assumption/antecedent.14

Now, if we return to the difference between ρ∗I and NI2, we can then say
that the reason why the former is problematic, but the latter is not, is because
ρ∗ occurs negatively in a premise of ρ∗I, which is not the case for N in NI2.
Thus, we can say that ρ∗I is a negative introduction rule.

So, to conclude, the problem with ρ∗I is not just that ρ∗ itself appears
in the premise (as we have seen, e.g., N also appears in the premise of the
corresponding rule NI2 but causes no issues) but that it occurs negatively in
the premise. Why is this problematic from the viewpoint of CTT? Recall that
the premise of ρ∗I is a hypothetical judgment stating that t(x) is a function
from ρ∗ to ⊥. In order to fully understand this function, however, we have to
understand what an arbitrary proof of ρ∗ is. But to achieve this, we first need
to understand what a canonical proof of ρ∗ is. And to understand this, we
need to understand the corresponding introduction rule. Thus, understanding
the premise of this rule presupposes that we already understand the rule
as a whole.15 More generally put, the rule invites us to assume we know
something (what does the canonical proof object of ρ∗ look like) which is
unknowable at that point. For these reasons, the rule ρ∗I cannot be considered
as properly constituting the meaning of ρ∗.

Furthermore, recall that in CTT, formation rules are justified by intro-
duction rules. In practice, this means that to be able to make the judgment

13The type constructor→ can be roughly understood as corresponding to the implication
operator ⊃ on the logical side.

14As observed by Klev (2019b), negative occurrences of propositions in their own introduction
rules are already banned implicitly by Martin-Löf (1971), explicitly by Dybjer (1994).

15For an analogous observation, see also (Klev, 2019b). I thank one of the reviewers for
pointing this out.
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that ρ∗ is a proposition, i.e., ρ∗ : prop, we first have to be able to show how
its canonical proofs are constructed. But, as we just showed, this cannot be
done, since the rule ρ∗I fails in its task to explain properly the meaning of
ρ∗, i.e., of its canonical proofs. Consequently, we are not in a position to
justifiably make the judgment ρ∗ : prop.

Therefore, if there is a paradox from the viewpoint of CTT, it is rather
about the formability of ρ∗. In other words, what can perhaps be viewed as
paradoxical is the justifiability and explainability of the judgment ρ∗ : prop.
Utilizing the rules above we can provide some form of an “explanation”
but simultaneously it cannot really be considered as a proper explanation
due to its circular nature and the negative occurrence of ρ∗ in the premise
of its introduction rule can be understood as an indication of this. Thus,
what seems to be in question is not the provability of ρ∗, but whether it is a
proposition at all.16

4 Variants of ρ∗

The other variants of ρ∗ discussed by Tranchini (2019) seem to suffer from
analogous issues and, in the remaining place, I will try to briefly sketch
why. These variants are: 1) a paradoxical proposition ρ with a negative self-
reference operator ! and its inverse

!
and 2) semi-paradoxical propositions

σ and τ whose paradoxical nature does not come from self-reference, or
negative self-reference, but from their circular meaning-dependencies.

First, we consider the paradoxical proposition ρ with a negative self-
reference operator. It is governed by the following introduction and elimina-
tion rules:

t : ¬ρ
ρI

!t : ρ

t : ρ
ρE!

t : ¬ρ

The corresponding computation rule is as follows:

t : ¬ρ
ρC!

!t = t : ¬ρ

Analogously to ρ∗, with these rules we can construct proofs for ρ as well as
¬ρ, i.e., ρ ⊃ ⊥, and combine them into a looping derivation:

16That is, of course, not to say that Russell-like self-referential paradoxes cannot be recreated
in CTT at all (see, e.g., Coquand, 1992).
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[x : ρ]1
ρE!

x : ¬ρ [x : ρ]1
⊃E

app(
!
x, x) : ⊥

⊃I1
λx.app(

!
x, x) : ¬ρ

[x : ρ]1
ρE!

x : ¬ρ [x : ρ]1
⊃E

app(
!
x, x) : ⊥

⊃I1
λx.app(

!
x, x) : ¬ρ

ρI
!λx.app(

!
x, x) : ρ

⊃E
app(λx.app(

!
x, x), !λx.app(

!
x, x)) : ⊥

Now, returning to the rule ρI, if we make it fully explicit, we obtain:

ρ : prop t : ρ ⊃ ⊥
ρI′

!t : ρ

which commits the same violation as the rule ρ∗I. Simply put, the rule ρI′,
which should act as a meaning explanation for ρ, presupposes that we already
understand ρ. Here again it is indicated by the negative occurrence of ρ in the
premise of the ρI rule, analogously to ρ∗I. Consequently, we are not justified
in making the judgment ρ : prop.

Now, let us consider the case involving the propositions σ and τ with
circular meaning-dependencies. They are specified by the following intro-
duction and elimination rules:17

[x : τ ]

t(x) : ⊥
σIλ′x.t(x) : σ

s : σ t : τ
σE

app′(s, t) : ⊥
s : σ

τ I
!′s : τ

t : τ
τE!′t : σ

Although Tranchini does not supplant them with computation rules, I
assume they might look as follows:

[x : τ ]

t(x) : ⊥ s : σ
σC

app′(
λ′x.t(x), s) = t(s/x) : ⊥

t : τ
τC!′!′t = t : τ

Finally, Tranchini hints at the end of his paper that with these rules we can
recreate Jourdain’s paradox. To test it out, consider the following derivation:

17Tranchini (2019) presents these rules without the corresponding proof terms. Here we
assume that the operators marked with ‘′’ behave analogously to their unmarked variants with
the exceptions generated by different typing (e.g., ! expects ¬ρ, while !′ expects σ).
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[x : τ ]1
τE!′x : σ [x : τ ]1

σE
app′(

!′x, x) : ⊥
σI1λ′x.app

′
(
!′x, x) : σ

[x : τ ]1
τE!′x : σ [x : τ ]1

σE
app′(

!′x, x) : ⊥
σI1λ′x.app

′
(
!′x, x) : σ

τ I
!′
λ′x.app

′
(
!′x, x) : τ

σE
app′(

λ′x.app
′
(
!′x, x), !′

λ′x.app
′
(
!′x, x)) : ⊥

Again, if we try to reduce this derivation to a normal form, it enters into a loop
(compare this with the derivation of app(λx.app(

!
x, x), !λx.app(

!
x, x)) :

⊥ from earlier).
Now, let us return to the introduction rules σI and τ I. It is clear that the

respective introduction rules are dependent on each other. Specifically, σI
presupposes that we already understand what τ means and τ I presupposes
that we already understand what σ means. Again, let us begin by considering
their fully explicit versions. We start with the rule σI:

τ : prop ⊥ : prop

[x : τ ]

t(x) : ⊥
σI′λ′x.t(x) : σ

First, note that there is no apparent circularity, as the corresponding type
definition Φ(X) = Y → ⊥ suggests. But also note that σI′ is in a way an
incompletely specified rule since it refers to τ which we do not yet know
to be a proposition. More specifically, we do not yet know how to prove it,
i.e., how to construct its canonical proofs. For that, we need to consider an
additional introduction rule τ I (recall that the meanings of σ and τ should be
interdependent). Once again, let us consider its explicit version:

σ : prop s : σ
τ I′

!′s : τ

Again, at this stage, still no circularity appears, as the corresponding type
definition Φ(Y ) = X shows us. Note, however, that if we put these two
definitions together, once again we obtain a negative definition of the form
Φ(X) = X → ⊥ (either if we substitute X for Y in the type definition
corresponding to σI′ or Y → ⊥ for X in the type definition corresponding
to τ I′). Thus, a complete specification of these introduction rules seems to
come at a price of negativity.
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Note The Liar-like paradoxes considered in this paper can be generalized to
a Curry-like paradox. For example, Read (2010) considers a proof-theoretic
variant of a Curry paradox specified by the following introduction and elimi-
nation rules:

[curry A]

A curry I
curry A

curry A curry A
curry E

A

where curry is a unary logical connective. To obtain the original paradoxical
rules ρ∗I and ρ∗E, all we need to do is replace in these rules the arbitrary A
with ⊥ and curry A with ρ∗.18

5 Conclusion

In this paper I tried to show that the analysis of the paradoxical proposition ρ∗

utilizing constructive type theory (CTT) suggested by Tranchini (2019) is
problematic because this proposition cannot be correctly formed in CTT, let
alone proven. In other words, in CTT we are not able to properly justify the
judgment ρ∗ : prop. The same seems to apply to the other discussed variants
of ρ∗, namely ρ, σ and τ .

The main issue with ρ∗ lies in the circular nature of its introduction rule,
more specifically, in the fact that there is a negative occurrence of ρ∗ in its
premise. This clashes with the general justification scheme of constructive
type theory: formation rules, which tell us how to form new propositions,
should be justified by the corresponding introduction rules, which tell us
what these propositions mean, i.e., how to prove them. In the case of the
proposition ρ∗, this justification requirement is, however, not met, since the
introduction rule that should explain the meaning of ρ∗ presupposes that
we already understand it. Consequently, the formation rules cannot, strictly
speaking, be understood as justified.

Therefore, we reached the conclusion that what is paradoxical about ρ∗

from the perspective of CTT is rather whether or not it is a proposition at all,
not that it can be proven and disproven at the same time.

Although some of the issues we have dealt with here might seem rather
technical, from a more general point of view this paper is meant as a contri-
bution to the general discussion concerning the nature of introduction rules.
And even though at this time I am not yet ready to open the fundamental

18I thank one of the reviewers for this remark.
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question “What is an introduction rule?”, whatever the answer will be, it will
have to take into account the matters discussed in this paper, i.e., how to
deal with circularity, or more specifically, with negative occurrences within
premises of introduction rules.
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