Going nowhere and back: Is Trivialization the
same as Zero Execution? [preprint]

Ivo Pezlar

Abstract

In this paper I will explore the question whether the Trivialization
construction of transparent intensional logic (TIL) can be understood in
terms of the Execution construction, specifically, in terms of its degener-
ate case known as the 0-Execution. My answer will be positive and the
apparent contrast between intuitive understanding of Trivialization and
0-Execution will be explained as a matter of distinct yet related informal
perspectives, not as a matter of technical or conceptual differences.

keywords: transparent intensional logic, execution, trivialization,
construction, Tichy

1 Introduction and motivation

One of the most prominent features of transparent intensional logic (TIL, Tichy
(1988), Duzi et al. (2010), Raclavsky et al. (2015)), and simultaneously the
source of much puzzlement for TIL newcomers, is the Trivialization construction,
which more or less acts as a procedural analogue of a constant. For example,
an abstraction term Az.x + 1 of lambda calculus with constants corresponds to
a Closure construction Az[z '+ ’1] of TIL, where the prime symbol *’ indicates
Trivialization constructions, namely Trivializations of the addition function +
and of the number 1, respectively.! A lot has been already written about Trivial-
ization and its justification and I do not wish to add to that literature. Instead
I want the explore the question whether Trivialization can be understood in
terms of another TIL construction known as Execution, specifically, in terms
of its degenerate case known as the 0-Execution (read as “Zero Execution”).
Although it is not an issue of a great practical importance from the viewpoint
of natural language semantics, it touches on fundamental theoretical aspects of
TIL, which, I believe, make it a topic worthy of a closer look.

The goal of this paper, and I wish to emphasize this point, is not to argue
for the removal of Trivialization from TIL, but to examine whether it can be

n the literature, Trivialization is most commonly denoted by the superscript ‘9’ not by
In this paper, however, I reserve the symbol ‘O’ for denoting 0-Execution. To ensure
notational consistency I apply this convention to quotations as well.

(241

understood as Execution, specifically, 0-Execution.? Ideally, it might also help
TIL newcomers to more quickly grasp the main idea of the construction denoted
by the unnecessary-looking but crucially important symbol */’.

Finally, it is worth mentioning that the idea of treating Trivialization as
0-Execution is not new one and it has been floating around the TIL community
for some time (at least since Raclavsky (2003)) but only recently it gained more
attention (Jespersen (2019), Pezlar (2019), Raclavsky (2020)). In this paper, I
want to reopen this issue, revisit some of the previous arguments, and offer a
new perspective on the Trivialization vs. 0-Execution debate.

2 Trivialization vs. 0-Execution

Can we regard Trivialization construction in the terms of 0-Execution con-
struction? Or more bluntly put, is Trivialization the same construction as 0-
Execution or are they distinct? To get a better grasp of the issue, let us assume
that Trivialization and 0-Execution are indeed two distinct constructions. Let
us denote the instances of the former as X and of the latter as °X where X is
any entity whatsoever (within the scope of the ramified type hierarchy of TIL).

Our task will be to show that every role that is typically played by Trivial-
ization can also by played by 0-Execution. I will investigate this issue from two
aspects: technical and conceptual. From the technical aspect, we want to check
if every instance of ' X can be replaced by X (without affecting the procedural
behaviour of the construction in the sense that it still produces the same output
in the same way, i.e., that it is still the same construction). From the conceptual
aspect, we want to check if all the standard intuitions typically associated with
Trivialization can be preserved when dealing with 0-Execution. In other words,
do we lose something if we view Trivialization as 0-Execution?

If no fundamental discrepancies between Trivialization and 0-Execution of
this sort are found, I believe we are warranted in claiming that Trivialization
and 0-Execution can be understood as the same construction, just viewed from
different perspectives, namely from the destination perspective and the path
perspective, respectively (I will discuss these later).

For the purposes of this paper, from now on I will distinguish between Triv-
ialization and Execution understood as different kinds of constructions, and
Trivialization and Execution understood as specific instances of these kinds of
constructions. I will write the former with capitalized first letters (Trivialization,
Execution, ...) and the letter without the capitalization (trivialization, execu-
tion, ...). We can think of this distinction as similar to the distinction between
axiom schemata and their particular instances. For example, we can say that
'5, " Alice, and '['5 '+ '7] are all trivialization constructions, or trivializations for
short. Or, alternatively, we can say that '5, 'Alice, and '['5 "4 '7] are specific

2] use this opportunity to revisit one of my earlier discussions with prof. Marie Duzi on
the same topic. In the past, she was firmly against viewing Trivialization as 0-Execution and
with this paper I would like to, if not to change her mind, at least to sow there a seed of
doubt.

instances of the Trivialization construction kind (distinct from other construc-
tion kinds such as Closure, Composition, etc.). Thus, when Jespersen (2015)
says that “Trivializations are the one-step or primitive or atomic constructions
of TIL” (p. 329) from our viewpoint he talks about Trivialization as a general
construction kind, but when Duzi et al. (2010) say phrases like “the meaning
of ‘cow’ (here the Trivialization 'Cow)” (p. 231), from our viewpoint they talk
about a specific instance of the Trivialization construction kind, namely 'Cow.
In short, in the first case we are talking about Trivialization understood as a
kind of a construction, in the second case, we are talking about specific instances
of thereof. This distinction might seem pedantic, but it will become useful later.
Specifically, it will help us to better unpack some conceptual issues surrounding
Trivialization and 0-Execution.

3 What is Trivialization?

Trivialization is an atomic construction, denoted as ' X, and its main role is to
pick definite objects that the compound constructions of TIL can operate on.
Specific trivializations can be compared to constants, as they fulfil a similar
role.

First, let us start by reviewing some of the standard specifications of Trivi-
alization found in the literature. Tichy (1988) originally specified it as follows:

Where X is any entity whatsoever, we can consider the trivial construction
whose starting point, as well as outcome, is X itself. Let us call this
rudimentary construction the trivialization of X and symbolize it as 'X.
To carry ‘X out, one starts with X and leaves it, so to speak, as it is.
(Tichy (1988), p. 63)

Compare with Duzi et al. (2010):
Trivializations match constants, by picking out definite entities in just one
step. (Duzi et al. (2010), p. 9)

When X is an object of any type (including a construction), the Trivi-
alization of X, denoted ’X’, constructs X without the mediation of any
other constructions. ' X is the unique atomic construction of X that does
not depend on valuation: it is a primitive, non-perspectival mode of pre-
sentation of X. (Duzi et al. (2010), p. 43)

It constructs X without any change. (Duzi et al. (2010), p. 45)
And also with Raclavsky (2020) (similarly in Raclavsky et al. (2015)):

Every construction is a mode of presentation of a certain object [.. .|
'X presents X as it is (without any change of X) (Raclavsky (2020),
p. 52)

Thus, we could say that the key aspect of Trivialization 'X is that it does
nothing with X, that it does not change X in any way.?

3Later, I will argue that this naturally leads to viewing Trivialization as a degenerate case
of Execution, specifically, 0-Execution.

Note. It is worth pointing out that Tichy (1988) considered even Trivializa-
tions and Executions of nonconstructions to have constituents (“Variables are
the only simple constructions; all other constructions have constituent parts.”
Tichy (1988), p. 63). This is not the case in Duzi et al. (2010) and later, where
even Trivialization and Execution of nonconstructions are considered “partless”,
i.e., atomic (Duzi et al. (2010)):

Definition 2.17 (atomic construction) A construction C' is atomic if
C' does not contain any other constituent but itself.

Corollary. A construction C' is atomic if C is

e a variable; or

e a Trivialization ‘X, where X is an entity of any type, even a con-
struction; or

e an Execution 'X or a Double Execution 2X, where X is an entity
of a type of order 1, i.e., a nonconstruction.

An atomic construction of kind (i) or (ii) is v-proper for any valuation
v. An atomic construction ‘X, 2X, of kind (iii), is v-improper for any
valuation v. In this case 'X or 2X does not v-construct anything, and
X = a, 2X — «, for any type a, would constitute a type-theoretic
mismatch. (Duzi et al. (2010), pp. 247-248)

At first, it might seem somewhat surprising that we can encounter executions
that are atomic constructions as well as executions that are nonatomic, i.e.,
compound constructions. I believe distinguishing between kinds of constructions
and their specific instances (as discussed above) can help us here. Being atomic
or compound construction is a property of executions understood as specific
constructions, not of Executions understood as construction kinds. Thus, there
is nothing extraordinary about the fact that we can have executions that are
atomic, but also executions that are compound.

4 What is 0-Execution?

0-Execution is an atomic construction, denoted as °X, and it is understood
as the limiting case of Execution construction kind which also includes Single
Execution* and Double Execution, denoted ' X, 2X, respectively. The main idea
is that while Single Execution tells us to execute X once, and Double Execution
tells us to execute X twice, or more precisely, to execute X and then execute
again the result we obtain (if any), 0-Execution tells us not to execute X, just to
leave it as it is. It is simply the degenerate case of Executions when the number

4Single Execution would be also an interesting topic for a further investigation as it seems
often overlooked for its apparent “simplicity”. In this paper, I will, however, not discuss it
further.

of consecutive executions equals 0. Its main role is to tell us what should not
be executed.’

In the literature, we can find the following specifications of 0-Execution. For
example, Jespersen (2019) introduces it as follows:

Since ' X and ?X are Single and Double Execution, respectively, it would
be natural if °X was known as Zero Ezecution. In fact, whereas ‘Trivial-
ization’ gives the wrong idea about Trivialization, which is anything but
trivial, ‘Zero Execution’ sums up what °X is all about: °X displays X.
If X is a procedure, then °X does not proceed to executing X. This is
in fact the gist of Tichy’s original definition that °X produces X without
any change of X. In this paper, however, I will stick to the original term
‘Trivialization’ for continuity. (Jespersen (2019), p. 1320)

Similarly Pezlar (2019):

If we should understand *X as ‘execute X’ (i.e., ‘*’ = one execution) and

2X as ‘execute X and then execute its result X’ (i.e., ‘’ = two executions),
then, arguably the most natural reading of °X—if we have never heard of
trivialization—is ‘do not execute X’ (i.e., ‘> = zero executions). (Pezlar
(2019), p. 203)

Thus, analogously to Trivialization, the key aspect of 0-Execution Y X is that
it does nothing with X.

5 Technical aspects

Assume that X is any entity whatsoever and that we have a trivialization of X,
denoted 'X, and a 0-execution of X, denoted °X. We want to show that the
procedural behaviour of /X and °X is the same. There are eight cases in total we
have to consider: first, whether X is a nonconstruction or a construction, second,
if it is a construction, what kind of a construction. Although it might seem as
unnecessary, 1 believe it will be instructive to present each case separately to
better understand the relationship between 0-Execution and Trivialization.

1. X is a nonconstruction: 'X produces X, analogously °X produces X,

2. X is a construction:

(a) X is a variable: 'z produces z, analogously °x produces ,
(b) X is a closure: '[Ax;...2,, X] produces [Az; ...z, X], analogously
O[Az1 ... 2, X] produces [Azy ... 2, X],

(¢) X is a composition: '[X X7 ...X,,] produces [XX;...X,,], analo-
gously Y[X X ... X,,] produces [X X7 ... X,,],

5Mind you, it does not mean that °X should not be executed, only that X itself should not
be executed. However, using the standard conceptual framework of TIL, the X itself is “in-
visible”, since 0-executions are considered to be atomic constructions (as are trivializations).

(d) X is a trivialization: "X produces ' X, analogously %’ X produces ' X,

(e) X is a 0-execution: %X produces °X, analogously °° X produces °X,

(f) X is a l-execution (single execution): "* X produces ! X; analogously
01X produces ' X,

(g) X is a 2-execution (double execution): "X produces 2X; analogously
02X produces 2X.

As we can see, both Trivialization and 0-Execution proceed in the same
manner for all entities X: it just takes them and returns them without any
change.

6 Conceptual aspects

So far it seems that the whole issue of Trivialization vs. 0-Execution is just a
terminological dispute based on personal preference. Trivialization seems to be
fully explainable, and thus replaceable, in terms of 0-Execution. This assessment
would be, however, too rushed as it does not tell the whole story. Despite the
considerations above, not all TIL researchers, prof. Marie Duzi included, would
agree that Trivialization can be viewed as 0-Execution.

What are the main objections against viewing Trivialization as 0-Execution?
The five most important objections are, I believe, the following:

Objection 1: Trivialization binds free variables, Executions do not.

Reply: 1t is true that 1-Executions and higher do not bind free variables, but
0-Execution is not just another Execution. As we said, it is not only a limiting
case but a degenerate case of Execution. And since degenerate cases exhibit
qualitative differences to non-generate ones (e.g., a point can be considered as
a degenerate case of a circle with radius 0), it should not be surprising that
0-Execution can have different properties than non-0-Executions. Especially,
if these properties are necessary side effects of its specification. Recall that 0-
Execution is essentially an instruction to “do nothing with X”, to not change
it in any way. If 0-Execution would not bind free variables, X might change
with respect to a valuation or a substitution. And if so, it would no longer be
0-Execution, since something was done with X, it was not left as it was (see
also Pezlar (2019), p. 205). Thus, the fact that 0-Execution binds free variables
is not only unsurprising but to be expected.

Objection 2: Trivialization is always proper, Executions are not.

Reply: Analogous reasoning as above applies. In short, 0-Execution is a degen-
erate case of Executions and as such it exhibits different qualitative properties.
The fact that 0-Execution is always proper construction can be explained with
respect to its specification. The construction cannot fail, because, simply put,
there is no possibility for it to do so: it just takes X and produces X back
without any change.

Objection 3: Trivializations are always atomic constructions, but Ex-
ecutions can be atomic as well as compound.

Reply: True, but if anything, this fact rather supports the idea that Trivial-
ization is a special case of Executions, since Executions appear to be a more
general notion from this viewpoint: we can have atomic executions (including
0-executions) and compound executions, but we cannot have compound trivial-
izations, only atomic ones.

Objection 4: Trivialization supplies entities for compound construc-
tions, Executions do not.°

Reply: Analogous to replies to objections 1 and 2. In short, there is no reason
why we cannot view the supplying of entities just as another degenerate aspect
of 0-Execution.”

Objection 5: Trivialization is a dual operation® to Double Execution:
Trivialization raises context, while Double Execution decreases it and
Trivialization cancels out Double Execution.’

Reply: Statements like “Double Execution suppresses the effect of Trivialization.
More generally, Double Execution decreases the level of a context.” (Duz et al.
(2010), p. 239) or “Unlike Trivialization, which is an operation of mentioning,
Execution and Double Execution are operations of using.” (Duzi et al. (2010),
p. 239) are not incorrect, but they are somewhat imprecise.

Why is that? Because it is not the case that Double Execution always sup-
presses the effect of Trivialization or that Trivialization is always an operation
of mentioning. As a counterexample to the first statement, consider a construc-
tion 2X where X is a nonconstruction: here 2 cannot suppress ’, because if it
did, we would end up with just X which is a nonconstruction. In other words,
the “cancelling-out” process would transform a construction into a nonconstruc-
tion, which certainly cannot be correct.'® As a counterexample to the second
statement, consider a construction 'X where X is a nonconstruction. And since

6See, e.g., “There are two atomic constructions that supply entities (of any type) on which
complex constructions operate: Variables and Trivializations.” (Duzi et al. (2010), p. 42)
This, however, also brings up the question what is the purpose of the other atomic (although
improper) constructions such as 1X when X is a nonconstruction.

"Furthermore, we should not forget that we can have compound constructions that contain
no Trivialization, 0-Execution or Variable, e.g., a composition [15 14 17]. True, it is an im-
proper construction, but still a construction. So, even though 1-Execution of nonconstructions
and higher cannot supply entities on which compound constructions can operate, they can in
a way indirectly refer to them (e.g., 15 effectively tells us that “5 is not a construction”) and
be used to construct compound, albeit improper, constructions.

8] use the term “operatation” in the sense of Duzi et al. (2010), i.e., an operation understood
as a process, not in its more standard sense as a function/mapping.

9See, e.g., Jespersen (2019), p. 1320.

10The fact that 2/X is an improper construction does not change anything: improper con-
structions are still constructions.

mentioning is defined only for constructions (see Duzi et al. (2010), p. 234),
Trivialization cannot be here used for mentioning.

So, general statements like “Trivialization raises context” and similar are
slightly misleading as they do not present the whole picture. The duality applies
only to specific instances of Trivialization and Execution, namely to those of the
form 'C' and 2'C where C is a construction. But these cases do not exhaust all
possible instances of Trivialization and Execution. Hence, the raising/lowering
of context is not an inherent property of Trivialisation/0-Execution construction
kind, but only of their specific instances ' X /° X where X is a construction. Thus,
let us try to amend the original statements: trivializations of constructions raise
context, while double executions decrease it and trivializations of constructions
are cancelled by double executions.

Now, how can we explain this aspect of Trivialization, i.e., that it can men-
tion constructions and thus give rise to hyperintensional contexts, in terms of
0-Execution? Again, the strategy is analogous as above: since 0-Execution is
the degenerate case of Execution, special properties are to be expected. And,
arguably, 0-Execution offers even more intuitive explanation of its ability to
mention constructions than Trivialization does. Consider, e.g., a construction
AwAt[°Calculates,,; * Alice °[°5°+4-07]] presented as a result of a semantic anal-
ysis of the sentence “Alice calculates 5 + 7”7. Since Alice is engaged in the
calculation process itself and not in its result, the construction [°5%+ °7] corre-
sponding to this calculation should not be executed in the respective semantic
analysis. And that is precisely what “C[°5°+07]” stands for, i.e., it tells us to
“execute [°5°4-07] zero times”.

In short, it seems there is no property typically associated with Trivialization
that could not be associated with 0-Execution and explained by the fact that 0-
Execution is the degenerate case of Execution, hence it is bound to have different
properties from 1-Execution and higher. Moreover, we have shown that these
degenerate properties naturally arise from the specification of 0-Execution (e.g.,
binding of free variables as a necessary side effect of the fact that 0-execution
9X should not change X in any way).

So what is Trivialization? Is it just an alternative title for 0-Execution?
0-Execution definitely seems to have enough distinctive properties (binding,
properness, supplying objects, ...) that would warrant giving it a special name
such as “Trivialization”, similarly as, e.g., a set with a single element is also
given a special name of “singleton”. But if we choose to view Trivialization this
way, we have to keep in mind that there is still 0-Execution running (or rather,
Execution not running) under the hood of Trivialization, so to speak.

So far I have only discussed reasons why we can regard Trivialization as
0-Execution, however, I have not said much about why should we, i.e., what
are the advantages of this approach. This is intentional, as my goal is not to
argue for getting rid of the notion of Trivialization and relying instead solely
on 0-Execution. I only wanted to show that Trivialization can be replaced by
0-Execution, that there is nothing that would prevent us from doing so, both
from the technical and the conceptual viewpoints. That being said, there are,

¢..) ‘..'.
o [

0-Execution Trivialization
Figure 1: Difference between 0-Execution and Trivialization perspectives

I believe, some advantages of using 0-Execution, which I will briefly discuss in
the concluding section.

7 Reconciliation

7.1 Two perspectives

In the previous section, we have seen that all the standard roles played by
Trivialization can be also played by 0-Execution. Yet, declaring flatly that
there is no difference between Trivialization and 0-Execution still does not seem
entirely accurate, at least as far as the involved intuitions are concerned. 1
believe there is a difference between them, but it is a difference of informal
perspectives that cannot be expressed within the conceptual framework of TIL.

To illustrate this difference, we will need to keep in mind two things: our
treatment of 0-Execution as a degenerate case of Execution and Tichy’s original
informal explanation of Trivialization. Recall that according to Tichy, Trivial-
ization is “the trivial construction whose starting point, as well as outcome, is
X itself.” (Tichy (1988), p. 63). So its construction “path” goes from X to
X. But going from X to X can be also understood as not going at all, i.e., as
starting from X and simply staying there. The following diagram (see fig. 1)
should make this distinction clearer.

Thus, we could perhaps best understand 0-Execution as giving us the fol-
lowing informal instruction:'! “start at A and go to B and A = B”. On the
other hand, Trivialization tells us: “start at A and do not go anywhere”, or
alternatively “stay at A”. In both cases we end up at A, but the ways of how
we got there are slightly different.

So, just as there is an intuitive difference between going out and returning
to the same spot and not going out at all, so there is a difference between 0-
Execution and Trivialization. It is not an important difference from a logical,
or even a procedural point of view, but it can help us to explain the clash of
intuitions associated with 0-Execution and Trivialization.

From this viewpoint, 0-Execution and Trivialization can be understood as

n the style of Tichy’s original informal explanation of Trivialization.

.y

0-Execution Trivialization
Figure 2: Transformation of the path perspective into the destination one

capturing two different perspectives of the corresponding underlying construc-
tion typically denoted as °X. Furthermore, these two perspectives are not
incompatible — we can easily imagine the “frivolous” path of 0-Execution as
shrinking into the trivial path of Trivialization, which is just the starting point
(similarly, as we can imagine a circle shrinking into a point). The following
diagram (see fig. 2) depicts this process. Therefore, the difference between
0-Execution and Trivialization does not seem to be a simple matter of ter-
minological preference but rather of a different conceptual perspectives, each
emphasizing different aspects of the construction known as both 0-Execution
and Trivialization. The former emphasizes its path, the latter its destination.
Are there some contexts where one perspective might be more suitable than
the other? I believe so, e.g., when investigating foundational aspects of con-
structions it might be more beneficial to think of Trivialization in terms of
0-Execution. On the other hand, when dealing with more applied aspects of
TIL, such as natural language analysis, opting for the Trivialization perspective
might be more advisable, as in these cases we are not primarily interested in the
inner workings of TIL constructions, they are mostly just a means to an end.

7.2 Pragmatic aspects

In this paper, I have focused on the technical and conceptual aspects but I have
left out, arguably, the most decisive aspects determining the fate of 0-Execution
— the pragmatic ones: habits, personal preferences, didactic considerations, and
continuity. To these concerns I have little to say. If we prefer to use Trivi-
alization instead of 0-Execution explicitly just for these pragmatic reasons, I
have no issues with that. I just wanted to show that there is no technical nor
conceptual reason that would justify this choice. Aside from the practical con-
siderations, we seem to be free in choosing and switching between 0-Execution
and Trivialization.

However, I would like to briefly discuss the last mentioned concern, the
continuity. It is true that most of the TIL literature talks about “Trivialization”,
on the other hand, the notation itself does not change with the adoption of 0-
Execution, it is just a matter of an informal retroactive interpretation whether
we will read °X as 0-Execution or Trivialization. And most importantly, we

10

do not need to get rid of Trivialization. We can keep it as it is — only with
the added understanding that it is just a “disguised” Execution, specifically, its
degenerate case of 0-Execution, and not a construction of its own kind. This
newly acquired conceptual simplicity could lead to a system of TIL that is easier
to learn (for example, TIL, as presented in Pezlar (2021), relies only on four
basic constructions, namely, Variable, Closure, Composition, and n-Execution,
instead of the standard six, i.e., Variable, Closure, Composition, Trivialization,
Single Execution, and Double Execution). However, it might also have the
opposite effect and produce a system that is more confusing, just as axiomatic
systems with less axioms are not necessarily easier to understand and work
with than systems with more axioms. Either way, this would be a matter for
an empirical investigation.

8 Final remarks

Is Trivialization the same as 0-Execution? Based on the reasons given here, my
answer is positive: yes, it is. There do not seem to be any convincing technical
or conceptual reasons why Trivialization cannot be considered as a degenerate
case of Execution. Of course, whether it is also a good idea to present it as
such from a practical standpoint is another matter entirely. But if they are the
same construction (i.e., given the same input, they produce the same output
in the same way), how do we explain the fact that different intuitions seem to
be associated with them? This, I believe, can be resolved by recognizing the
two possible perspectives we can take in regards to 0-Execution/Trivialization,
i.e., the path perspective and the destination perspective, with the former per-
spective being transformable into the latter: the “path” of 0-Execution can be
contracted into a starting/ending point of Trivialization.

Acknowledgments. This work was supported by the Lumina quaeruntur
fellowship awarded by the Czech Academy of Sciences (registration number:
LQ300092101).

References

Marie Duzi, Bjorn Jespersen, and Pavel Materna. Procedural Semantics for
Hyperintensional Logic: Foundations and Applications of Transparent In-
tensional Logic. Springer, Dordrecht, 2010. doi: https://doi.org/10.1007/
978-90-481-8812-3.

Bjgrn Jespersen. Structured Lexical Concepts, Property Modifiers, and Trans-
parent Intensional Logic. Philosophical Studies, 172(2):321-345, 2015. doi:
10.1007/511098-014-0305-0.

Bjorn Jespersen. Anatomy of a Proposition. Synthese, 196(4):1285-1324, 2019.
doi: https://doi.org/10.1007/s11229-017-1512-y.

11

Ivo Pezlar. On Two Notions of Computation in Transparent Intensional Logic.
Aziomathes, 29(2), 2019. doi: 10.1007/s10516-018-9401-7.

Ivo Pezlar. Type Polymorphism, Natural Language Semantics, and TIL (ms.).
2021.

Jiti Raclavsky. Executions vs. Constructions. Logica et Methodologica, 7:63-72,
2003.

Jiti Raclavsky. Belief Attitudes, Fine-Grained Hyperintensionality and Type-
Theoretic Logic. College Publications, London, 2020.

Jitfi Raclavsky, Petr Kuchynka, and Ivo Pezlar. Transparentni intenziondlni
logika jako characteristica universalis a calculus ratiocinator. Masaryk Uni-
versity Press (Munipress), Brno, 2015.

Pavel Tichy. The Foundations of Frege’s Logic. de Gruyter, Berlin, 1988.

Ivo Pezlar

Czech Academy of Sciences
Institute of Philosophy
Jilska 1, Prague 110 00
The Czech Republic

E-mail: pezlar@flu.cas.cz

12

	Introduction and motivation
	Trivialization vs. 0-Execution
	What is Trivialization?
	What is 0-Execution?
	Technical aspects
	Conceptual aspects
	Reconciliation
	Two perspectives
	Pragmatic aspects

	Final remarks

