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I 
INTRODUCTION 

During the past few years, most of the largest companies in the world have started using 

various types of supervised machine learning algorithms in the sourcing, screening, 

interviewing and selection of candidates for a job.1 Despite being promoted as a reliable 

means to eliminate bias,2 these algorithmic decision-making tools have raised legal and moral 

questions because of their unlawful discriminatory effects in every step of the hiring process. 

The training phase of the machine learning systems used in these processes has been 

identified as the main source of bias. Algorithms tend to reproduce and even exacerbate the 

biases present in the trainer’s mind or encoded in the datasets used to train the system. Some 

of this training bias is intentional and some is not. The question of intention is central from a 

legal perspective. Intentional discrimination is usually analyzed using the doctrine of 

disparate treatment, while non-intentional but avoidable discrimination is treated using the 

doctrine of disparate impact.3 Proving that an algorithm has been intentionally trained to be 

biased is difficult. It requires either proving that an employer unlawfully classified 

individuals according to their membership in a protected class under Title VII of the 1964 

 
* Associate Professor of Philosophy and member of the Center for Research and Formation in Artificial 
Intelligence, Universidad de los Andes, Bogotá, Colombia. 
1 Jon Shields, Over 98% of Fortune 500 Companies Use Applicant Tracking Systems (ATS), JOBSCAN 
(June 20, 2018), https://www.jobscan.co/blog/fortune-500-use-applicant-tracking-systems/. 
2 Tomas Chamorro-Prezumic & Reece Akhtar, Should Companies Use AI to Assess Job Candidates? 
HARVARD BUSINESS REVIEW (May 17, 2019), https://hbr.org/2019/05/should-companies-use-ai-to-
assess-job-candidates. 
3 These terms were first introduced in Griggs v. Duke Power Co., 401 U.S. 424 (1971). 
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Civil Rights Act,4 or circumstantial evidence that discrimination was the main cause of an 

unfavorable employment decision. In the former case, part of the problem stems from the 

fact that vendors of algorithmic screening tools rarely disclose details about the construction 

and validation of the methods used, typically because they are proprietary and contain 

private, sensitive data.5 But even if vendors were required to provide full access to their 

datasets and algorithms, they have other means at their disposal to mask unlawful 

discrimination using lawful proxy labels to classify data.6 In the latter case, proving 

discriminatory intent from stray remarks or other circumstantial evidence is challenging even 

in hiring processes that do not use AI technology. 

Under the doctrine of disparate impact, a plaintiff must show that a given practice 

disproportionally excludes a group protected by the Civil Rights Act. The employer can retort 

that despite its discriminatory impact the hiring practice is necessary to the essential operation 

of a business. Even if this is established, the plaintiff may still be successful by showing that 

the employer could have used an “alternative employment practice” with less discriminatory 

results. It is at this stage that the plaintiff’s chances of success become slim in the context of 

AI given the black box nature of the algorithms employed. 

Given the probatory obstacles of establishing disparate treatment and disparate impact, 

this paper explores the possibility of approaching the problem of algorithmic discrimination 

as a case of negligence. Some authors have argued that employers have the duty to protect 

candidates and employees from discriminatory treatment, and that an employer’s failure to 

exercise due care in the manner of choosing employees is a violation of that duty. The issue 

turns on whether an employer can exercise due care in training the decision models used in 

the hiring process. The plaintiff must show that the breach of care caused the discriminatory 

effect and that this effect was reasonably foreseeable. Both of these requirements are a tall-

call in the context of black box models that are often opaque and are not easily understood 

 
4 42 U.S.C. §§ 2000e to -17 (1988). Title VII prohibits employers of 15 or more persons from 
discrimination in employment on the basis of race, color, religion, sex, or national origin. 
5 Manish Raghavan, Solon Barocas, Jon Kleinberg & Karen Levy, Mitigating Bias in Algorithmic Hiring: 
Evaluating Claims and Practices, PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, 
ACCOUNTABILITY, AND TRANSPARENCY (2020). 
6 Solon Barocas & Andrew D. Selbst, Big Data's Disparate Impact, 104 CALIF. L. REV. 671 (2016). 
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in causal terms. Nonetheless, a reinterpretation of the foreseeability condition might make 

this interpretation more plausible. 

I will begin by offering some recent examples of algorithmic discrimination in hiring 

decisions that have been documented in recent years. In Part III, I explain why the doctrines 

of disparate treatment and disparate impact are ineffective in the case of algorithmic 

discrimination. Part IV explains how discrimination generally can be understood as 

negligence and examines whether this approach can be transferred to the context of 

algorithmic discrimination. I conclude by suggesting another novel way of analyzing 

algorithmic discrimination. 

 
II 

RECENT CASES OF ALGORITHMIC DISCRIMINATION IN HIRING DECISIONS 

Machine learning algorithms are used in the sourcing, screening, interviewing, and 

selection of candidates. In this section I will provide specific examples of how these 

algorithms are used in each of these four stages and I will present recent studies that document 

their discriminatory effect. 

Job offers are promoted on the internet using advertisement platforms such as Google 

Ads and social media such as Facebook. Advertisers are forbidden by law to choose the target 

audience of their ads using categories such as race, religion, sex, or national origin. 

Nonetheless, these algorithms select the target audience of job offers using browsing histories 

and viewing preferences, resulting in an inequitable distribution of the offers.  A series of 21 

experiments performed by researchers at Carnegie Mellon using 17,370 artificial agents 

collected over 600,000 real ads. Several of the experiments revealed that Google Ads tends 

to show the best paying jobs to males in higher proportion than females.7 Ali et al.8 found 

 
7 Amit Datta, Michael Carl Tschantz & Anupam Datta, Automated Experiments on Ad Privacy Settings: 
A Tale of Opacity, Choice, and Discrimination. PROCEEDINGS ON PRIVACY ENHANCING TECHNOLOGIES 

2015 (2015). 
8 Muhammad Ali, Piotr Sapiezynski, Miranda Bogen, Aleksandra Korolova, Alan Mislove & Aaron Rieke, 
Discrimination through Optimization: How Facebook's Ad Delivery Can Lead to Skewed Outcomes. 
PROCEEDINGS OF THE ACM ON HUMAN-COMPUTER INTERACTION (2019). 
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similar results in an experiment consisting of three ads placed on Facebook following their 

non-discriminatory policy: “Ads must not discriminate or encourage discrimination against 

people based on personal attributes such as race, ethnicity, color, national origin, religion, 

age, sex, sexual orientation, gender identity, family status, disability, medical or genetic 

condition.”9 Nonetheless, the three ads were shown to users based on their race and gender. 

Companies also use resume search engines, which are tools that allow recruiters to 

search for candidates based on keywords and filters. Chen et al.10 examined the algorithms 

used by the firms Indeed, Monster and CareerBuilder.11 They ran queries on each site’s 

resume search engine for 35 job titles across 20 American cities. Their final dataset included 

over 855,000 job candidates. They found that these resume search engines produce rankings 

that exhibit individual-level and group-level gender-based inequalities. The authors define 

the “individual fairness” of an algorithm as its capacity to place candidates with similar 

features at similar ranks; and “group fairness” as the assignment of similar distributions of 

ranks to men and women. The search engines exhibited significant group unfairness, but the 

size of the gender effect was small in terms of individual fairness. Similar biases have been 

found in TaskRabbit y Fiverr,12 two resume search engines that focus on freelance workers.13 

It has become common for candidates to be initially interviewed by chatbots. Mya, 

Olivia, Myra and Yva are among the best-known bots.14 More sophisticated programs, such 

as the ones used by the firm HireVue,15 analyze the speech patterns and facial expressions of 

job seekers as they answer personal and job-related questions on camera. According to the 

firm, each minute of video provides up to half a million data points that are analyzed by a 

 
9 Facebook, Advertising Policies: 3. Discriminatory Practices (2020), https://www.facebook.com/ 
policies/ads/prohibited_content/discriminatory_practices# 
10 Le Chen, Ruijun Ma, Anikó Hannák & Christo Wilson, Investigating the Impact of Gender on Rank in 
Resume Search Engines, ANNUAL CONFERENCE OF THE ACM SPECIAL INTEREST GROUP ON COMPUTER 

HUMAN INTERACTION (2018). 
11 www.indeed.com, www.monsters.com, www.careerbuilder.com. 
12 www.taskrabbit.com, www.fiverr.com. 
13 Anikó Hannák, Claudia Wagner, David Garcia, Alan Mislove, Markus Strohmaier & Christo Wilson, 
Bias in Online Freelance Marketplaces: Evidence from Taskrabbit and Fiverr, PROCEEDINGS OF THE 2017 

ACM CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING (2017). 
14 hiremya.com, www.olivia.ai, www.myralabs.com, yva.ai. 
15 www.hirevue.com. 
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machine learning algorithm that detects traits such as emotional intelligence and social 

abilities. HireVue also requires cognitive and neurological tests, some of which have a 

videogame format. According to the firm, the results provide companies with information 

about the work style of the candidates, their willingness to learn, their ability to work with 

others, their personality and general cognitive abilities, their conscientiousness and 

responsibility, all of which are soft skills that cannot be easily deduced from a resume. 

In 2019, the Electronic Privacy Information Center (EPIC), a rights group, filed an 

official complaint calling on the Federal Trade Commission to investigate HireVue’s 

business practices. They argued that the system’s “biased, unprovable and not replicable”16 

results constitute a major threat to American workers’ privacy and livelihoods. One of the 

complaints was related to the use of videogames, which puts older candidates at a 

disadvantage. But the main complaint was directed at the algorithm that analyzed the videos 

recorded by the candidates. According to HireVue, 29% of a candidate’s score was based on 

facial movements.17 EPIC found this inadmissible: “The eye movement tracking captured in 

video assessments could discriminate against candidates with neurological differences. Eye 

movement tracking technology can be used to diagnose autism, Parkinson’s, Alzheimer’s, 

and psychiatric conditions like depression. Individuals with Autism Spectrum Disorder tend 

to look at people’s mouths rather than making eye contact.”18 Furthermore, HireVue lacks a 

“reasonable basis” to support this technology and is therefore engaged in a deceptive trade 

practice in violation of the Federal Trade Commission Act.19 In fact, many scientists are 

highly skeptical that an algorithm can correctly infer emotions and an individual's personality 

from facial expressions.20 

 
16 Electronic Privacy Information Center, In Re HireVue (November 6, 2019), at 7. 
17 Drew Harwell, A Face-Scanning Algorithm Increasingly Decides whether You Deserve the Job, THE 
WASHINGTON POST (October 22, 2019), https://www.washingtonpost.com/technology/2019/10/22/ai-
hiring-face-scanning-algorithm-increasingly-decides-whether-you-deserve-job/. 
18 Electronic Privacy Information Center, supra note 16, at 7. 
19 Id. at 9. 
20 Lisa Feldman Barrett, Ralph Adolphs, Stacy Marsella, Aleix M. Martinez & Seth D. Pollak, Emotional 
Expressions Reconsidered: Challenges to Inferring Emotion from Human Facial Movements, 20 
PSYCHOLOGICAL SCIENCE IN THE PUBLIC INTEREST 1 (2019). 
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Finally, the most straightforward use of AI in labor selection is the use of resume-

reading algorithms. Famously, Amazon abandoned an AI recruiting tool it developed because 

of its gender bias. Its purpose was to give job candidates scores ranging from one to five 

stars, much like consumers rate products on Amazon. The system was trained using the 

resumes of the company’s employees over a 10-year period. As is well known, the tech 

industry has a notable gender imbalance that was reflected in the data set. In consequence, 

the system initially penalized resumes that included the word “women’s” and the names of 

two all-women’s colleges. After this glitch was corrected, the system found other ways to 

infer the applicant’s gender and the whole project was scratched.21 

This is just a small sample of discriminatory practices in labor decisions.22 It is a 

hodgepodge of different types of decision systems. Despite their heterogeneity, they share at 

least five features in common: (i) the training data set and the structure of the model are often 

industrial secrets or protected by privacy laws; (ii) most of these systems are black boxes 

whose decisions are not readily explainable; (iii) it is easy to mask discrimination against a 

protected class using proxy properties; (iv) in the US there are plenty of legal obstacles for 

conducting research on algorithmic discrimination in many of these platforms; and (v) 

conflicts between individual and group fairness may arise when the algorithms are deployed. 

I will address these obstacles in more detail in the following sections. 

 
III 

DISPARATE TREATMENT AND DISPARATE IMPACT 

When Congress enacted Title VII of the 1964 Civil Rights Act it did not establish the 

standard that courts should require for proof of discrimination. Two Supreme Court decisions 

filled the void. In one case, the Court permitted a strict liability test similar to that used in 

 
21 Jeffrey Dastin, Amazon Scraps Secret AI Recruiting Tool that Showed Bias against Women, REUTERS 
(October 9, 2018), https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-
scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G. 
22 Barocas & Selbst, supra note 6, and Pauline T. Kim, Data-Driven Discrimination at Work, 58 WM. & 

MARY L. REV. 857 (2016) present many other examples of algorithmic discrimination in labor decisions. 
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strict liability in tort;23 in the other, it required an intent test equivalent to the standard of 

proof for intentional torts.24 These decisions gave rise to the doctrines of disparate impact 

and disparate treatment, respectively. The subsequent complete “tortification” of 

employment discrimination law has been amply documented.25 

A strict liability test implies that a plaintiff must show that a given practice 

disproportionally excludes a group protected by the Civil Rights Act. To make a prima facie 

case of disparate impact, the Uniform Guidelines on Employment Selection Procedures26 

provide the so-called “four-fifths rule.” It states that the selection rate for a protected group 

cannot be less than four-fifths that of the group with the highest rate. Often, compiling the 

requisite statistics to show that the policy has a disparate impact is costly and difficult, which 

imposes on the plaintiff a technical and financial burden. If the plaintiff is successful in 

establishing disparate impact as an initial matter, Griggs provides an affirmative defense for 

the employer. If a practice or hiring method is necessary to the essential operation of a 

business, it can be used despite its discriminatory impact. The so-called “business necessity 

defense” imposes on the employer the burden of showing that any job requirement that has 

a differential impact must have a manifest relationship to the employment in question. Courts 

apply different standards of relevance to the job-relatedness of the job requirement, but in 

general “courts tend to accept most common business practices for which an employer has a 

plausible story.”27 Finally, if the business necessity defense is successful, the plaintiff can 

return with proof that there was an alternative employment practice that the employer refused 

to use, “but which was equally effective in the business objective and less discriminatory.”28 

In brief, there is a significant burden of proof placed on the job candidate, and the data reflects 

this burden: Plaintiffs of disparate impact cases only had on average a 19.2% success rate in 

 
23 See, Griggs, 401 U.S. 424. Although the court did not use the term “strict liability,” the test was 
equivalent in practical terms. 
24 McDonnell Douglas Corp. v. Green, 411 U.S. 792 (1973). 
25 See, Charles A. Sullivan, Tortifying Employment Discrimination, 92 B. U. L. REV. 1431 (2012); Sandra 
F. Sperino, Let’s Pretend Discrimination Is a Tort, 75 OHIO ST. L. J. 1107 (2014). 
26 Uniform Guidelines on Employment Selection Procedures, 29 C.F.R. § 1607.4(D)(2015). 
27 Barocas & Selbst, supra note 6, at 707. 
28 42 U.S.C. § 2000e-2(k)(1)(A)(2018). 
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seven years between 1984-2001 for Court of Appeals decisions, and a 25.1% success rate in 

six years between 1983-2002 for District Court decisions.29 

While disparate impact focuses on systemic group discrimination, disparate treatment 

is used to establish whether an individual was discriminated. Disparate treatment comprises 

two different strains of discrimination: formal disparate treatment of similarly situated people 

and intent to discriminate. The former corresponds to an employer who unlawfully classifies 

individuals according to membership in a protected class, regardless of its reasons to do so; 

the latter is more closely associated with a conscious prejudiced attitude towards a protected 

class. Circumstantial evidence can be used to prove that discrimination was the main cause 

of an employment decision. Disparaging remarks made by the employer or procedural 

irregularities in promotion or hiring count as clear evidence of ill intent, but absent these 

elements, finding intent from stray remarks or other circumstantial evidence is challenging. 

Disparate treatment cases can also be tried under the mixed-motive framework, first 

recognized in Price Waterhouse v. Hopkins.30 A plaintiff need not demonstrate that he was 

intentionally discriminated, but only that discrimination was a “motivating factor.” This latter 

phrase has been interpreted by some to allow unconscious prejudice to be included under the 

disparate treatment regime.31 However, not everyone agrees that discrimination due to 

unconscious bias should be considered disparate treatment.32 

Now, proving disparate treatment in the case of algorithmic discrimination is 

unfeasible. Many of the decisions involved in training an algorithm are the result of the 

trainer’s implicit prejudices, which in turn may be a reflection of cultural stereotypes 

prevalent in his social environment. Most discrimination that arises in data mining is thus 

unintentional.33 In the few cases in which the trainer intentionally uses a discriminatory 

 
29 Michael Selmi, Was the Disparate Impact Theory a Mistake? 53 UCLA L. REV. 701, 738-739 (2005). 
30 Price Waterhouse v. Hopkins, 490 U.S. 228 (1989). 
31 See, Linda Hamilton Krieger, The Content of Our Categories: A Cognitive Bias Approach to 
Discrimination and Equal Employment Opportunity, 47 STAN. LAW REVIEW 1161 (1995). 
32 See, Charles A. Sullivan, Disparate Impact: Looking Past the Desert Palace Mirage, 47 WM. & MARY 

L. REV. 911 (2005). 
33 The question of the moral and legal responsibilities for implict biases has been the focus of much recent 
research both in philosophy and law. See, e.g., Angela M. Smith, Responsibility for Attitudes: Activity and 
Passivity in Mental Life, 115 ETHICS 236 (2005); Christine Jolls & Cass R. Sunstein, The Law of Implicit 
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predictive model, equal protection restrictions are easy to circumvent using proxy categories 

that represent race, color, religion, sex, or national origin. Proving that this masking was ill-

intentioned is difficult, if not impossible, because employers can always disclaim any 

knowledge of the proxy manipulation. In addition, Barocas and Selbst argue, “it is also 

possible to intentionally bias the data collection process, purposefully mislabel examples, or 

deliberately use an insufficiently rich set of features ... These methods of intentional 

discrimination will look, for all intents and purposes, identical to the unintentional 

discrimination that can result from data mining.”34 In sum, they conclude that “disparate 

treatment doctrine does not appear to do much to regulate discriminatory data mining.”35 

Turning now to disparate impact in the context of algorithmic discrimination, we find 

that some probatory challenges stay the same, but others become more difficult. Prima facie, 

the four-fifths rule that proves disparate impact remains unaltered by the change of context, 

as well as the business necessity defense. To prove that a job requirement that has a 

differential impact has a manifest relationship to the employment in question, it is indifferent 

whether the requirement was stated in a job ad or programed as a target variable in an AI 

decision model. Disparate impact liability can be found if the target variables are improperly 

chosen.36 

But now consider the probatory difficulties that arise from the plaintiff’s burden to 

prove that there was an alternative, less discriminatory, and equally effective employment 

 
Bias, 94 CALIF. L. REV. 969 (2006); Linda Hamilton Krieger & Susan T. Fiske, Behavioral Realism in 
Employment Discrimination Law: Implicit Bias and Disparate Treatment, 94 CALIF. L. REV. 997 (2006); 
Jules Holroyd, Robin Scaife & Tom Stafford, Responsibility for Implicit Bias, 43 JOURNAL OF SOCIAL 

PHILOSOPHY 274 (2012); Neil Levy, Implicit Bias and Moral Responsibility: Probing the Data, 94 
PHILOSOPHY AND PHENOMENOLOGICAL RESEARCH 3 (2017). The discussion of this issue would take us 
too far afield. 
34 Barocas & Selbst, supra note 6, at 712. 
35 Id. at 701. 
36 Some vendors make sure that their models comply with the 4/5 rule so their clients do not have to 
demonstrate business necessity. But complying with the rule does not guarantee that the model does not 
have discriminatory effects. Vendors also have to take into account differences in model accuracy across 
the population. If the quality of its predictions differs dramatically between groups—a phenomenon known 
as differential validity—the model sets a group of people up to fail, reinforcing negative stereotypes. See, 
Raghavan et al., supra note 5, at 13. 
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practice that the employer refused to use. An alternative in this context would be a better 

decision model. This would be an unsolvable problem in the case of third-party models, like 

the ones used by Facebook or HireVue, because the employer who hires these firms does not 

have the possibility of tinkering with their models. This obstacle is removed if the company 

uses its own model,37 but even in that case it is not obvious that the plaintiff will be able to 

show that a better alternative exists. Barocas and Selbst are skeptical that this is feasible in 

algorithmic discrimination cases. Most of the algorithms considered in the previous section 

are black boxes, so it is not possible to know with any degree of certainty whether a different 

or larger dataset, or the choice of different labels, would produce a less discriminatory 

outcome. The probatory obstacles are the same as in the case of masking. In the end, they 

conclude, “disparate treatment and disparate impact become essentially the same thing from 

an evidentiary perspective.”38 

Given the plaintiff’s apparently insurmountable barriers in proving that there was an 

alternative employment practice under the disparate impact doctrine, a new alternative has to 

be found to provide relief to discriminated members of protected classes. In the remaining 

pages of this paper, I explore whether it is viable for a plaintiff to prove that a company 

breached its duty not to harm others, which is an essential element of a negligence claim. The 

doctrine of negligence might be better suited than disparate impact to address the recent 

advances in algorithmic hiring tools. 

 
IV 

ALGORITHMIC DISCRIMINATION AS NEGLIGENCE 

As we saw in the previous section, the Supreme Court has often invoked tort common 

law to interpret federal discrimination statutes, a trend that has intensified in recent years. 

Although the trend to “tortify” federal anti-discrimination law is interpreted by some as an 

 
37 To simplify the analysis of employer liability, this is the only option I will consider from here onwards. 
Whether there can be and should be Title VII liability for vendors is left as an open question. 
38 Barocas & Selbst, supra note 6, at 713. Kim, supra note 27, at 910 argues that these two doctrines do 
not exhaust the options for demonstrating the discrimination forbidden by Title VII, as Barocas and Selbst 
seem to assume. 
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attempt to restrict it “by tightening causal standards,”39 it also opens possible alternatives to 

explore algorithmic discrimination, especially since the doctrines of disparate treatment and 

disparate impact seem to be ineffective in this case. In this section I will explain why 

discrimination can be understood as negligence, and I will examine whether this analysis can 

be transferred to the context of algorithmic discrimination. 

Oppenheimer40 argues that Title VII discrimination can be interpreted according to a 

theory analogous to the third major doctrine of tort law, the doctrine of negligence.41 

Negligence is a breach of our duty to protect others, and in his view an employer’s failure to 

exercise due care in the manner of choosing employees, or maintaining or terminating their 

employment, is a breach of that duty. In particular, an employer who does not make sure to 

use the least discriminatory employment practice available is acting negligently: 
 

Liability is established because the employer could have provided greater 
protection against discrimination without sacrificing its legitimate and 
necessary business interests. If a less discriminatory alternative exists, the 
employer has failed to act reasonably—it has breached its duty of care—by 
engaging in avoidable discrimination.42 
 

Liability thus turns on what the employer knows or should have known about the risk of 

harm—the discriminatory effects—of its practice and on in its ability to prevent it. The 

employer's liability is not the result of an intent to discriminate, as in disparate treatment, 

nor is the employer strictly liable, as in disparate impact. Negligence thus offers a third 

possible analysis of discrimination. 

 Hart and Honoré’s characterize negligence in the following terms: “A defendant is 

responsible for and only for such harm as he could reasonably have foreseen and 

prevented.”43 The plaintiff must show that the breach of care caused the discriminatory 

 
39 Sperino, supra note 25, at 1107. 
40 David Benjamin Oppenheimer, Negligent Discrimination, 141 U. PA. L. REV. 899 (1993). 
41 Oppenheimer’s ideas have been further developed in Noah D. Zatz, Managing the Macaw: Third-Party 
Harassers, Accommodation, and the Disaggregation of Discriminatory Intent, 109 COLUM. L. REV. 1357 
(2009); and Richard Thompson Ford, Bias in the Air: Rethinking Employment Discrimination Law, 66 
STAN. L. REV. 1381 (2014). The title of the present paper is a nod to Oppenheimer’s influential paper. 
42 Oppenheimer, supra note 40, at 933. 
43 H. L. A. HART & TONY HONORÉ, CAUSATION IN THE LAW (1985), at 255. 



 12 

effect—and was thus preventable—and that this effect was reasonably foreseeable. The 

question is whether these two elements are applicable to the context of algorithmic 

discrimination.   

Prime facie, the opaqueness of machine learning algorithms makes the causal and 

foreseeability clauses of negligence inapplicable. The plaintiff must prove that the defendant 

is aware of the particular causal mechanism that produces the discriminatory effect. 

Otherwise, the harm was neither preventable nor foreseeable. However, according to Selbst, 

“without interpretable or explainable AI, it is essentially impossible to claim that an AI error 

should have been foreseen ahead of time.”44 Another option for the plaintiff would be to 

prove that a richer or different set of input features would have generated a different output. 

Recent advances in post-hoc interpretability45 would lend some plausibility to that strategy, 

which does not require any information about the causal structure of the model. However, it 

is not possible to know a priori what changes in the input features would generate a better 

outcome and it is unlikely that a court will force a defendant to undertake a costly and time-

consuming revision of the model to compare different possible outcomes. Any procedure in 

that direction would open the gates to a wave of litigation that would overwhelm the industry. 

It seems, therefore, that there is no demonstrable level of care that a person can adhere to that 

would have prevented the harm. 

Two alternatives present themselves at this juncture: either we abandon the idea of 

interpreting discrimination as negligence in the context of AI, or we reinterpret the notion of 

foreseeability in this new context and push for new legislation. I will argue that we should 

adopt the second prong of the dilemma and reinterpret what is foreseeable and reasonable 

within the limitations of black box algorithms. An effective legal response will require 

developing the doctrine of negligence to meet the particular challenges posed by data-driven 

discrimination. 

 
44 Andrew D. Selbst, Negligence and AI’s Human Users, 100 B. U. L. REV. 1315, 1362 (2020). 
45 See, e.g., Marco Tulio Ribeiro, Sameer Singh & Carlos Guestrin, “Why Should I Trust You?”: 
Explaining the Predictions of any Classifier, PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL 

CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (2016). 
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The first point to consider is that we are discussing algorithmic discrimination in 

2021, not in 2012. By now, there is plenty of evidence, some of it presented in Part II, that 

the models used in the different stages of hiring decisions are very likely to be biased. In a 

sense, discrimination has become foreseeable by default. The initial enthusiasm for hiring 

algorithms must give way to a modicum of prudence and caution. The fact that the probability 

that a new hiring model will be biased is high should put in motion anti-biasing protocols 

that become part of the duty of care of an employer. Instead of expecting the plaintiff in a 

disparate impact case to present evidence that there was an alternative, less discriminatory, 

and equally effective employment practice that the employer refused to use, the burden of 

proof ought to shift to the employer. Since most employment practices are discriminatory, it 

is the employer who must present evidence of its efforts to avoid bias. To prove a breach of 

the duty of care, the plaintiff need only show the absence of any precautionary measures. The 

harm only becomes unforeseeable when such measures have been implemented. 

The second fact to consider is that there is a lack of transparency in the industry, 

which includes the non-disclosure of the models that have been discarded because of their 

discriminatory effects. The Amazon fiasco was discovered only because someone inside the 

company revealed the story to Reuters, but this is the exception that confirms the rule. An 

analogy with the pharmaceutical industry will be useful. Phase 1 trials provide the foundation 

for assessing the potential harm to humans of new experimental molecules. Such evidence is 

relevant not only to the harm profile of the particular molecule under investigation, but also 

to the harm profile of the class of molecules to which the particular molecule belongs.46 

Unfortunately, the vast majority of unsuccessful Phase 1 studies are not published, a 

phenomenon known as publication bias:47  
 

This publication bias of Phase 1 trials is wasteful. Future scientists who are 
unaware of the harm profile of x or other molecules of class T, for which prior 
Phase 1 trials have been performed, and who want to know the harm profile of 
x or another member of T, are liable to perform wasteful subsequent Phase 1 
trials.48 

 
46 JACOB STEGENGA, MEDICAL NIHILISM 138 (2018). 
47 Evelyne Decullier, An-Wen Chan & François Chapuis, Inadequate Dissemination of Phase I Trials: A 
Retrospective Cohort Study, 6 PLOS MED e1000034 (2009). 
48 STEGENGA, supra note 46, at 138. 
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The most important consequence of publication bias, according to Stegenga, is that if one is 

unaware of the harm profile of a type of molecule, one’s initial probability of its harm will 

be lower than it should, and so will its posterior probability, to speak in Bayesian terms. If 

molecules that appear safer than they should move on to phases 2 and 3, which do not focus 

on harm but on beneficial effects, the overall risk of harm in the general population 

increases.49 

Transparency in the pharmaceutical industry would not only prevent much harm; it 

would also make it easier to determine civil liability when a company has been negligent in 

Phase 1 trials. A pharmaceutical company has a duty of care towards participants in an 

experimental trial, and failure to take into account similar Phase 1 studies with molecules of 

the same class would be a breach of care.50 In a similar vein, transparency in the software 

industry is likely to have a beneficial effect by allowing engineers to learn from the mistakes 

of others. However, a recent study of how hiring algorithms are built, validated, and 

examined for bias reveals that most models and datasets are inaccessible to the public. 

Industry practices have to be gleaned or inferred from what companies publicly disclose.51 

Several authors have insisted on the need for independent audits of training data and model 

structure.52 Perhaps the most elaborate proposal in that direction is the one by Langenkamp 

et al.,53 of which I can only present an outline here. The authors introduce the idea of 

 
49 Id. at 139. 
50 Admitedly, establishing causation may be problematic, particularly for a research subject who is also a 
patient. In general, litigation for negligence in the investigator-subject relationship has not been very 
successful. See, Larry D. Scott, Research Related Injury: Problems and Solutions, 31 THE JOURNAL OF 

LAW, MEDICINE & ETHICS 419 (2003). 
51 See, Raghavan et al., supra note 5. 
52 See, e.g., Pauline T. Kim, Auditing Algorithms for Discrimination, 166 U. PA. L. REV. 189 (2017); Julie 
E. Cohen, The Regulatory State in the Information Age, 17 THEORETICAL INQUIRIES IN LAW 369 (2016); 
Ifeoma Ajunwa, The Auditing Imperative for Automated Hiring, 34 Harv. J. L. & Tech. __ (forthcoming). 
53 Max Langenkamp, Allan Costa & Chris Cheung, Hiring Fairly in the Age of Algorithms, ARXIV 

PREPRINT arXiv:2004.07132 (2020). Other important work in that direction is Timnit Gebru, Jamie 
Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach, Hal Daumé III & Kate 
Crawford, Datasheets for Datasets, ARXIV PREPRINT arXiv:1803.09010 (2018); and Margaret Mitchell, 
Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena Spitzer, Inioluwa 
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“algorithmic transparency reports” that cover four categories: Intent (addresses the purpose 

of the model), Dataset (information about demographics, labels, and test sets), Metrics 

(measures of model performance, thresholds and definitions of “fairness”), and Applications 

(uses of the model in decision-making).54 I would add that such reports should include a 

History category under which the employer must present the limitations and potential risks 

of previous versions of the model, and the measures taken to correct them. 

These reports have a double function. On the one hand, they would be the factual basis 

for any claim about the existence or absence of precautionary measures that fulfill or breach 

the employer’s duty of care, respectively.55 On the other, access to the algorithmic 

transparency reports of a family of machine learning models would help prevent 

discriminatory effects. They have the same function as the reports of the failed Phase 1 trials 

of a new drug. Not taking them into account is a breach of reasonable care in both cases. 

The causal element of negligence presents a bigger challenge. Tort law usually requires 

that a defendant's conduct was both the actual cause—but for which the harm would not have 

occurred—and the proximate cause—a reasonably foreseeable and not insignificant cause—

of the harm. In the case of algorithmic negligence, the actual cause is an algorithm that has 

not been adequately tested for harmful effects. But for the omission to validate the non-

discriminatory effects of the algorithm, the harm would probably not have occurred. 

Regarding the proximate cause, there is plenty of evidence that an algorithm that has not been 

subject to precautionary measures is very likely to produce a discriminatory effect. Thus, as 

I argued above, proving that the algorithm is not the proximate cause is part of the shift in 

the burden of proof from the plaintiff to the employer. The latter must show that it has taken 

every possible measure to eliminate the harmful, foreseeable effects of the model. 

 
Deborah Raji &Timnit Gebru, Model Cards for Model Reporting, PROCEEDINGS OF THE CONFERENCE ON 

FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY (2019). 
54 Incidentally, these reports could be regarded as “explanations” of the model. 
55 As noted by Raghavan et al., supra note 5, at 15, it might be impossible to apply any de-biasing 
methodology without using sensitive information about the protected classes to which people in the 
training data belong, but doing so can put employers in legal jeopardy for disparate treatment. A pressing 
challenge for algorithmic hiring is to find ways to solve the trade-off between protecting sensitive and 
private information and developing less discriminatory algorithms. 
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There have been similar proposals in the literature. Ifeoma Ajunwa has recently offered 

a theory of liability, which she calls the doctrine of “discrimination per se,” to hold 

corporations accountable for algorithmic bias under Title VII. The basic idea is that “an 

employer’s failure to audit and correct its automated hiring platforms for disparate impact 

should serve as prima facie evidence of discriminatory intent.”56 The theory reverses the 

American legal tradition of deference to employers by shifting the burden of proof: 
 

A plaintiff can assert that a hiring practice (for example, the use of proxy variables 
resulting in or with the potential to result in adverse impact to protected categories) 
is so egregious as to amount to discrimination per se, and this would shift the burden 
of proof from the plaintiff to the defendant (employer) to show that its practice is 
non-discriminatory.57 
 

Inspired by a paper by Stephanie Bornstein on recklessness.58 Ajunwa suggests that 

negligence per se should be the model for creating this new legal framework.59 The 

introduction of a statutory auditing imperative imposed on the employer would be the basis 

for negligence per se liability.60 However, Ajunwa’s proposal runs against the grain of the 

current trend to move away from strict liability to a standard of reasonable care,61 like the 

one presented in this paper. The path forward in my opinion is the adoption of non-mandatory 

industry standards established by an independent certifying entity. The standards adopted 

cannot be something akin to a checklist of formal requirements. New machine learning models 

are more akin to new molecular compounds whose harmful effects have to be detected 

experimentally. Without the evidence provided by something akin to a Phase 1 trial for machine 

learning models, and by algorithmic transparency reports, there is little that a certifying board 

would be able to assert with confidence about the model. 

 
 
 

 
56 Ifeoma Ajunwa, The Paradox of Automation as Anti-Bias Intervention, 41 CARDOZO L. REV. 1671, 
1672 (2019). 
57 Id. at 1728. 
58 Stephanie Bornstein, Reckless Discrimination, 105 CAL. L. REV. 1055 (2017). 
59 Ajunwa, supra note 56, at 1730. 
60 Ajunwa, supra note 52. 
61 Peter M. Gerhart, The Death of Strict Liability, 56 BUFF. L. REV. 245 (2008). 
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V 
CONCLUSION 

The use of algorithms in hiring decisions offers a well-defined setting to discuss 

algorithmic discrimination, but the foregoing analysis can be easily extended to other areas 

where algorithmic discrimination has been detected, such as racist ad targeting on Google 

Search62 or sexist word associations in language models.63 If any of these cases is to be treated 

as a case of negligence, it will require a legislative change in the law of torts that has not even 

been contemplated. This paper hopes to open that discussion at least at a theoretical level. 

The paper also joins the call for transparency in machine learning and adds an 

additional call for experimental evidence about the safety of the models that affect people’s 

lives, in the same way that we demand proof of the safety of drugs that have the potential to 

harm human subjects. Vendors of snake oil also fought to keep their proprietary formulas 

wrapped in secrecy until the public’s interest prevailed. Vendors of hiring algorithms should 

be held to the same standard. 

An even more radical possibility will be analyzed in future work. One way to hold a 

company accountable for algorithmic discrimination is to attribute some sort of personhood 

to the model and regard it as a negligently trained employee exhibiting implicit bias.64 

Negligent training claims arise when the employer incorrectly trains an employee and the 

employee’s actions harm another individual. So far, harms generated by AI systems such as 

self-driving cars are usually analyzed in terms of product liability, instead of negligence, 

because there is no person who was negligently trained. But if we are willing to stretch our 

 
62 Latanya Sweeney, Discrimination in Online Ad Delivery, 11 QUEUE 10 (2013). 
63 Aylin Caliskan, Joanna J. Bryson & Arvind Narayanan, Semantics Derived Automatically from 
Language Corpora Contain Human-Like Biases, 356 SCIENCE 183 (2017). 
64 See, Barocas and Selbst, supra note 6, at 699 (“Another option is to imagine the model as the decision 
maker exhibiting implicit bias. That is, because of biases hidden to the predictive model such as 
nonrepresentative data or mislabeled examples, the model reaches a discriminatory result.”); Karni 
Chagal-Feferkorn, The Reasonable Algorithm, 1 J. L. TECH. & POL'Y 111 (2018) (identifies and addresses 
the conceptual difficulties stemming from applying a “reasonableness” standard on non-humans and the 
question of whether there is any practical meaning in analyzing the reasonableness of an algorithm 
separately from the reasonableness of its programmer). 
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concepts, liability for negligently trained or negligently supervised models becomes a 

possibility. 


