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Abstract. This paper outlines a critique of the use of the genetic variance–covariance matrix (G), one
of the central concepts in the modern study of natural selection and evolution. Specifically, I argue
that for both conceptual and empirical reasons, studies of G cannot be used to elucidate so-called
constraints on natural selection, nor can they be employed to detect or to measure past selection in
natural populations – contrary to what assumed by most practicing biologists. I suggest that the
search for a general solution to the difficult problem of identifying causal structures given observed
correlation’s has led evolutionary quantitative geneticists to substitute statistical modeling for the
more difficult, but much more valuable, job of teasing apart the many possible causes underlying the
action of natural selection. Hence, the entire evolutionary quantitative genetics research program
may be in need of a fundamental reconsideration of its goals and how they correspond to the array of
mathematical and experimental techniques normally employed by its practitioners.

Introduction: the emergence of a new field?

Very little philosophy of biology has yet been focused on evolutionary quan-
titative genetics, despite the fact that the field has seen a renaissance during the
past decade, with several new textbooks (e.g., Falconer and Mackay 1996; Roff
1997; Pigliucci and Preston 2004) and a plethora of empirical papers in major
biological journals such as Evolution, Genetics, Journal of Evolutionary Biology,
etc. One concept in particular has emerged as crucial for the quantitative ge-
netic study of complex (multivariate) phenotypes: the so-called genetic vari-
ance–covariance matrix, G. This is thought of and calculated as an actual
matrix summarizing the genetic portion of the phenotypic variance of a series
of morphological, life history, or behavioral characteristics, as well as all
possible pairwise (genetic) covariances between said characteristics (Figure 1).

The basic idea is that G describes the degree to which the ‘genetic archi-
tecture’ (i.e., how traits are genetically connected to each other) determines the
response of a population to natural selection. Suppose, for example, that there
happens to be a positive genetic covariance between phenotypic traits X and Y
(Figure 2a). Theory (and intuition) then predict that, other things being equal,
if selection favors, say, an increase in trait X, trait Y will also be ‘lifted’
upwards as an indirect result of its covariance (or correlation, which is a
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standardized covariance) with X. On the contrary, should there be a negative
genetic covariance between X and Y (Figure 2c), any selection favoring an
increase in X’s mean would automatically decrease Y’s mean in the same
population. This, of course, may speed up or greatly hinder adaptation, since
the correlated response may or may not increase the average fitness of the
organisms in question. Finally, if the two traits happen to be weakly correlated
(a near-zero covariance, Figure 2b), then they are free to respond to selective
pressures independently of each other.1

What makes all of this interesting to philosophers is that many evolutionary
biologists have embraced the study of G with unabashed enthusiasm, despite
major conceptual problems lurking in the wings, potentially underlying the
whole research program. Steppan et al. (2002), for example, have declared the
study of G to be ‘a new emerging field’ which will ‘provide one of the most
promising frameworks with which to unify the fields of macroevolution and
microevolution.’ Similarly, Shaw et al. (1995) have claimed that ‘one motiva-
tion for estimating G matrices is that they will reveal the most likely paths of
evolution,’ and Roff (2000) has called the multivariate ‘breeder’s equation’ (see
below) – which features G – the ‘central equation of evolutionary quantitative
genetics.’ Nor are these isolated instances; the biological literature on G has
been copious for the last decade or so, and the pace is, if anything, quickening,

1 Of course, things are not really that simple even under the best circumstances, since any two traits
are then influenced by their joint covariance with any third trait; the trio is then influenced by how
it is related to any fourth character, and so on. However, mathematical analysis and conceptual
discussions of G rarely if ever step beyond the bivariate setting. I thank Lev Ginzburg (SUNY-
Stony Brook) for pointing this out to me.

Trait 1 Trait 2 Trait 3

Trait 1 genetic variance (or
heritability) of trait 1

Trait 2
genetic covariance

(or correlation)
between traits 1 & 2

genetic variance (or
heritability) of trait 2

Trait 3
genetic covariance

(or correlation)
between traits 1 & 3

genetic covariance
(or correlation)

between traits 2 & 3

genetic variance (or
heritability) of trait 3

Figure 1. The idea of a genetic variance–covariance matrix.
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with major reviews on empirical and statistical issues surrounding this topic
being published on top journals (e.g., Turelli 1988; Cowley and Atchley 1992;
Shaw et al. 1995; Pigliucci and Schlichting 1997; Phillips and Arnold 1999; Roff
2000; Johnson and Porter 2001; Steppan et al. 2002).

A philosophical analysis and critique of the uses and interpretations of
evolutionary quantitative genetics and G is important because not only are the
conceptual underpinnings of these ideas fundamental to modern biological
theory, but G is an especially problematic concept in many ways. It is, I will
argue, difficult to study empirically, and of limited value for conceptual rea-
sons, and I will here present the beginnings of a critique that will hopefully
stimulate future discussion. I will first attempt to explicate what evolutionary
biologists who study and make use of G mean by the concept. Next, I will
explore some of the practical problems faced in studying G; these problems will
point towards some of the conceptual limitations of G. Finally, I will address
what I consider to be perhaps the most important problem of all, namely the
ways in which concepts like G can be invoked to obscure more fundamental
issues in evolutionary quantitative genetics, and indeed, in evolutionary biol-
ogy at large. Claiming that an emerging field will permit us to address long-
standing problems, and interpreting the results of studies in ways that make it
seem that such problems are being address, is not, I will suggest, the same thing
as actually addressing such problems.

In a sense, the chief issue here is a particularly subtle and insidious one,
sometimes referred to as ‘reification.’ Once that biologists have given a name to a
certain concept (the genetic variance–covariance matrix, in this case), they pro-
ceed as if the label actually reflects a solid biological reality that can be mean-
ingfully measured and dissected. Instead, I think that G is much too similar to
other problematic concepts, such as the ‘general intelligence’ (also referred to
as g) allegedly underlying responses to IQ tests. Clearly, statistics are measuring
something, but the relationship between what they are measuring and most
biologists’ interpretationof it is farmore complex than generally thought, leading
tomuch less informative conclusions than are presented in the relevant literature.

Figure 2. How genetic covariation between two traits, X and Y, influences the potential response
to natural selection. From left to right, the value of the genetic covariance between the two traits
changes from positive to zero to negative. Arrows indicate direct selection on X (solid) and the
indirect (i.e., mediated by the covariance) response of Y (dotted).
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Background: what exactly is G?

G is a crucial component of the multivariate extension of the classical ‘bree-
der’s equation’ that has been the centerpiece of most analyses of phenotypic
responses to selection in both natural and artificial systems throughout the
20th century (Falconer and Mackay 1996). The univariate (i.e., applied to one
trait at a time) breeder’s equation reads as follows:

R ¼ h2S ð1Þ

where R is the response of a trait to selection applied with strength S, and h2 is
the heritability (i.e., the ratio between genetic and phenotypic variances) of that
trait. The derivation of this equation is straightforward from simple assump-
tions about Mendelian genetics and multilocus genetics (e.g., see Falconer and
Mackay 1996). What is important here is its conceptual underpinning: essen-
tially, the equation says that heritability is the ‘fuel’ for any response to
selection; if the heritability is close to one (100% of the phenotypic variance in
the population is statistically associated with the genetic variance existing in the
same population), then the population’s mean for the trait under selection will
shift by the quantity measuring the intensity of selection. In other words, with a
heritability close to one, if selection favors, say, an increase in the height of the
organism by 10 mm, the next generation will in fact have an average height of
about 10 mm higher than the previous generation. At the other extreme, if the
trait under selection has a heritability close to zero (i.e., there is no genetic
variance for that trait in the population), then there will be no response to
selection, regardless of how intense the selection pressure is: no fuel, no go. In
many cases, of course, the heritability value will be intermediate, and the
breeder’s equation predicts a proportionality between selection pressure and
response, with the exact value depending on the heritability. (Indeed, notice
that simple algebra shows that the heritability can be estimated simply as the
ratio between the selective response and the selective pressure – this method is
actually common in biological practice, and the resulting quantity is often
referred to as ‘realized’ heritability, because it is a direct measure of how much
genetic ‘fuel’ the population really had during the selective episode.)

As is well known (Layzer 1974; Lewontin 1974; Kempthorne 1978), there are
a number of problems with the idea of heritability (discussed for a philo-
sophical audience by Sarkar 1998 and Downes 2004). As these problems
translate to the multivariate level of G, it is worth briefly reiterating the pri-
mary difficulties. First, let us distinguish between the so-called ‘broad’ (often
symbolized as H2) and ‘narrow’ (often symbolized as h2) senses of heritability.
Mathematically, they are defined as:

H2 ¼ Vg

Vp
ð2Þ
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h2 ¼ Va

Vp
ð3Þ

where Vp is the total phenotypic variance for a given trait in a particular
population (in a specific environment), Vg is the fraction of that variance that is
statistically (not necessarily causally: see Kempthorne 1978) attributable to
differences among genotypes, and Va (referred to as the ‘additive’ genetic
variance) is a subset of Vg which depends only on those allelic effects that
actually contribute to a response to selection.2

Criticism of H2 are more severe than those of h2, because the latter measure
is statistically more refined and derived from more sophisticated experimental
designs (H2 is the only measure of heritability that can be obtained for human
populations, where controlled breeding is obviously unethical; which implies
that any claim as to the heritability of human traits is in fact highly dubious at
best, as remarked by all the authors cited above). Nonetheless, the following
limits apply to all measures of heritability, and a fortiori to its multivariate
extension, G:
(1) Heritability is a local measure, meaning that it can, and often does, change

with changes in the population’s gene frequencies and environments
encountered;

(2) heritabilities do not reveal the causal pathways acting through develop-
ment, nor, a fortiori, do they tell us anything about the extent of genotype-
environment interactions; and, therefore,

(3) heritabilities do not provide a useful measure of the long-term capability of
traits to respond to selection, nor are they of much use in determining the
likely long-term evolutionary trajectories of phenotypic traits.

All of these limitations emerge from the simple fact that heritabilities mea-
sure a co-variation (which is a statistical attribute) between phenotypes and
genotypes; as it is well known to any student of statistics, covariation does not
necessarily imply causation, and – worse – often several distinct causal
mechanisms can yield the same observable statistical pattern (Shipley 2000),
making any inference from pattern to process doubtful at best.3

2 Vg includes other statistical terms such as ‘dominance’ or ‘epistatic’ variance; these are portions of
the total phenotypic variance that can be attributed to non-additive genetic effects, and that
therefore do not contribute to the response to selection in sexually outbreeding organisms. As a
subtle caveat, it should be noted that in some organisms that reproduce asexually, or where
outbreeding is not complete, non-additive portions of Vg can also be expected to contribute to the
response to selection.
3 This, of course, does not imply that it is useless to obtain statistical summaries of the patterns of
phenotypic variation found in natural populations. As Shipley (2000) very clearly explains, the
question is what to do with those statistical descriptions, and the problem is that many biologists
seem to have a tendency to do the wrong thing with them (i.e., to use them directly to infer
underlying causal mechanisms).
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Be that as it may, evolutionary quantitative genetic theory has been built upon
a multivariate generalization of the breeder’s equation, first proposed by Lande
andArnold (1983), whose intent was to provide a general (empirically applicable
and theoretically sound) method to quantify natural selection on complex
ensembles of phenotypic traits. The interested reader is referred to Lande and
Arnold’s landmark paper for the relatively simplemathematical derivation of the
crucial formulas (which relate to the general statistical technique of multiple
regression analysis). For our purposes here, it suffices to examine one version of
the multivariate breeder’s equation that has striking formal and conceptual
similarities with the univariate version introduce above:4

DZ ¼ Gb ð4Þ

where DZ is a vector of phenotypic responses to selection for a set of phenotypic
traits (the delta sign indicates that the vector is made of the differences between
each phenotypic trait’s mean after and before the selection episode); b is a similar
vector (often called of selection ‘gradients’) that specifies the intensity of selection
on each phenotypic trait; and G is the above-mentioned genetic variance–
covariance matrix. The similarity with the univariate version of the same equa-
tion is striking:DZ is a vector that is in factmade of a columnof individualR’s;G
includes (unstandardized) measures of h2 (plus the off-diagonal covariances, see
Figure 1), and b is a vector made of individual values of S. Even at the multi-
variate level the intuition is that the response of a population to selection is
proportional to the product of the intensity of selection on the traits in question
and the ‘fuel’ available at the level of genetic architecture, this time in the extended
sense of genetic variance–covariances.

Lande and Arnold (1983) proposed the use of the multivariate version of the
breeding equation to approach two long-standing problems in evolutionary
biology: predicting long-term multivariate responses to selection, and esti-
mating past selection. Their idea was that given G and a multivariate selection
regime, one could read off the likely response to selection from DZ, the phe-
notypic vector. Conversely, they reasoned, one could invert the equation to
derive estimates of past selection from knowledge of current phenotypic values
in the population and, again, the genetic variance–covariance matrix.5

Another conceptually important interpretation of G was then articulated by
Cheverud (1984, 1988), who pointed out that the set of variance–covariances

4 It is to be noted that several assumptions go into the derivation of both the uni- and the mul-
tivariate versions of the breeder’s equation, perhaps the most crucial of which is that the phenotypic
values in the population are normally distributed. These assumptions are summarized and dis-
cussed by Lande and Arnold (1983) among several others. However, what is of concern to me here
is the decoupling between the statistical representation of the data (even if accurate) and the
biological inferences that such representation allows. Accordingly, I will treat the equations as
sound from a purely statistical perspective and concentrate on the biological problems they pose.
5 It should be noted that Lande and Arnold are clearly pluralists when it comes to methods of
measuring selection, but their version of the breeder’s equation has in fact become the standard,
though not the exclusive, way of proceeding for evolutionary quantitative geneticists.
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can be thought of as a measure of genetic constraints on future evolution. In this
sense, in the same way that the diagonal elements of G measure the short-term
readiness of a character to respond to selection (just as heritability does in the
univariate breeder’s equation), the off-diagonal elements measure howmuch the
evolution of a given trait is slowed down (or accelerated) by the co-evolution of
another one (again, see Figure 2). In the same way that Lande and Arnold
suggested that the equation could be inverted to detect selection in the past, on
Cheverud’s interpretation one can invert the equation in order to detect the
constraints that have limited the effectiveness of past episodes of selection.

The many problems with G

The study of G and its related equations is often thought to provide insight into
long-standing important problems in evolutionary theory, and has accordingly
been actively embraced by practitioners of the field. But the rhetoric sur-
rounding G ought not blind us to the limitations intrinsic in the idea, both
practical and, especially, conceptual. Indeed, I will argue that if these problems
are taken as seriously as they deserve to be, many of the promises of G turn out
to be seriously overstated. In this central section, I will gradually build a case
that, when considered in its entirety, undermines the whole G-based research
program. I begin with a brief discussion of technical issues, such as the choice
of traits to characterize G and the artificiality of the experimental designs used.
I then move to more conceptual and philosophical issues, such as the conse-
quences of the locality and instability inherent in the definition of G, problems
related to the allegedly crucial role of G in inferring the existence of constraints,
the near-impossibility to distinguish between selection and drift acting on
covariance matrices, and the difficult issues related to the inferential move from
population-level patterns to individual-level processes.

While most of these problems could be individually discounted as only
partially undermining the usefulness of G in evolutionary quantitative genetics,
I maintain that – when taken seriously as a whole – they shake the foundations
of an entire research program. In the last section of this paper, then, I suggest
some alternative approaches that have in fact at times been discussed by
biologists, but that have curiously taken a back seat to the use of G.

Which traits make up G?

The first difficulty faced in studying G is finding a non-arbitrary way of
choosing the traits to be used to construct the variance–covariance matrices
themselves. Asking how a generic Gmatrix evolves (something that seems to be
on people’s minds, if one considers the titles and tone of most papers published
in this field) is close to meaningless, since empirically we will always be dealing
with specific matrices measured on a small subset of all possible or even all
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biologically meaningful traits; generally, in fact, we will be dealing with
matrices comprised of just a few traits because of logistic limitations. The
answer to how stable G is over time, in other words, can depend critically on
the traits actually used to empirically estimate the matrix, as well as on the
phenotypic plasticity (the responsiveness of the traits to changes in environ-
mental conditions: Pigliucci 2001) displayed by those traits in ecologically
relevant environments. These facts are obvious, but they are rarely discussed in
the biological literature on G.

To make the problem concrete, notice that some pair wise combinations of
traits will tend to show stable covariances not only within, but across species,
or even across higher taxonomic/phylogenetic levels of analysis; in these cases,
G will seem quite stable. For example, most of the species of the plant family
Brassicaceae have flowers characterized by two sets of stamens (the male sexual
organs), in which four stamens are longer than the remaining two. While the
reason for this is far from being clear (Karoly and Conner 2000; Conner 2002),
the size of the two sets of stamens will show covariation at the taxonomically
high level of an entire family of plants. On the other hand, it is well known that
many traits can be uncoupled not merely within a population or species, but
even within an individual organism! For example, many semi-aquatic plants
produce two distinct kinds of leaves in response to the particular environment
in which they find themselves in (below or above water, see Wells and Pigliucci
2000 for a review); parameters describing the shape of these two sets of leaves
are completely uncoupled by the phenotypic plasticity that allows the plant to
produce the two kinds of structures in an environment-dependent fashion; a G
matrix constructed using parameters describing leaf shape as some of the traits
would, therefore, be unstable not just over evolutionarily meaningful time
frames, but even within an individual’s developmental life-cycle.

The upshot of this is that quantitative geneticists who focus on stamens in
Brassicaceae are likely to reach completely different conclusions about the
stability of the genetic variance–covariance matrix from their colleagues who
instead study leaf evolution in semi-aquatic plants. Indeed, research by
Waldmann and Andersson (2000) in populations of Scabiosa columbaria and
S. canescens found, among other patterns, that ‘the magnitude of (co)variances
was more variable among characters than among populations,’ i.e., the results
of a given study of G depend more strongly on which traits the investigators
choose to focus on then it does on the species selected! Again, this ought to be
obvious, but much of the literature is written in a way that implies that the
evolution of G is a single kind of thing, and that it makes sense to think of G
itself, somewhat independently of the particular traits used to calculate it.

Artificiality of estimates

The way in which quantitative geneticists study G empirically often involves
the creation of an artificial set of offspring derived from carefully designed
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crosses among individuals sampled at random from a natural population
(Falconer and Mackay 1996). The most effective breeding design to estimate
components of G is the half-sib approach, in which one compares the phe-
notypes of half sibs, i.e., of individuals that share only one of the two parents.
This design is better than alternative ones (such as the full sib design, or the
comparison of clones) because it allows a finer partitioning of the phenotypic
variance. For example, while comparing clones means that it is possible only to
estimate a gross genetic variance (as distinct from environmental, interaction,
and error variances), a half-sib design permits the experimenter to further
distinguish additive and non-additive genetic variances, and even maternal
effects.6

There are two major problems with this approach: first, one can reasonably
wonder if, in carrying out such experiments, one is really studying the genetic
(co)variance matrix of a natural population. What I am questioning here is
whether the G matrix derived from approaches using controlled crosses should
be thought of as the matrix of the natural population from which the crosses
were derived. The researchers in these cases are estimating genetic parameters
in an artificially created set of genotypes, one that was not actually found in
nature, and that had little chance of ever being there even if the population is
mostly outbreeding. This is because it is vanishingly unlikely that the indi-
viduals in the population in question would ever cross in even approximately
the same pattern as required by statistical tests and laboratory experiments.
This problem seems to be completely ignored by practicing biologists, who
happily go about discussing the relative merits of various breeding designs. But
breeding designs are experimental devices that make sense, as the name clearly
implies, when the goal is to breed certain characteristics in a population. The
problem that evolutionary quantitative geneticists are trying to solve, on the
other hand, is very different: it is to estimate a quantity allegedly characteristic
of natural populations. But this cannot be what they actually do, and the
problem of the resemblance, if any, between estimates of G obtained with
breeding designs vs. whatever G would be obtained by actually sampling a
natural population directly is rarely, if ever, addressed.7

6 In practice, though, this can be achieved only by the use of very large sample sizes, which still do
not provide much power for the complex statistical analyses necessary to make sense of these
breeding designs. Furthermore, these ‘variance components’ often turn out to be of difficult or
dubious biological interpretation.
7 A similar problem is well known to arise (and often is also merrily ignored) in the case of
estimates of heritability. This quantity can be estimated by using artificial breeding designs, or it
can be obtained by comparing the generation after selection to the one before selection (as men-
tioned above, the second method yields what is often referred to as the ‘realized’ heritability). It is
very often the case (Falconer and Mackay 1996) that realized heritabilities are much lower than
those estimated by breeding designs, precisely because these designs create artificially structured
populations with high level of outbreeding (and hence higher genetic variation), not generally found
in nature.

9



One way to understand the problem is this: imagine that we wish to know the
average height of individuals in a population of plants. What we do is to
sample individuals from the population, measure their height, and then cal-
culate the mean and some measure of dispersion (the variance, for example).
We do not pick some individuals, cross them in specific combinations, and then
measure the height of their progeny. The resemblance between the results
obtained with the first and the latter methods is a matter of empirical deter-
mination, but the further the breeding design is from the actual mating pattern
in nature, the less reliable the experimental approach will likely be.

Which brings us to a related problem: in what sense, if any, can one measure
G in non-outbreeding organisms? The fact is that for the many species of
organisms that are more or less inbred (which, outside of mammals and some
other groups of vertebrates, is by no means the exception) the effective pop-
ulation size may be closer to a dozen, sometime only two or three individuals.
But the statistical methods usually employed to estimate G require large sample
sizes, often of the order of 90 or more ‘families’ of genetically related indi-
viduals. This is more than the actual number of genotypes in many natural
populations of inbreeders (and of some outbreeders as well). What then? Does
that mean that G does not exist in those populations? Or, if it does, is it
possible to ‘sample’ it only by creating a highly artificial outbreed population
from the few naturally available (inbred) genotypes? If the latter is the case, G
is beginning to sound like something that may materialize with great effort and
expense in the biologist’s laboratory, but that has little to do with the natural
populations that were the supposed objects of study.

Locality and instability

Moving toward more conceptual difficulties, we come to the fact that G, like
heritability (h2), is a local measure; that is, any estimate of G applies only to the
particular population (with the particular genes and allelic frequencies actually
extant), in the particular environment, in which G is calculated. As with h2, if
the available genes or the gene frequencies in the population change, so too
might G; similarly, in a different range of environments (or if the population
becomes differently distributed among the environments encountered), G
might well change. Given this, if one wants to make use of G in simulations of
long-term evolution (e.g., Via 1987), one must assume that the matrix stays
constant (or at least proportional) to the ancestral state over the time period
one is investigating (generally thousands of generations). But several authors
(e.g., Turelli 1988; Pigliucci and Schlichting 1997) have pointed out that this is
highly unlikely on first principles, because evolution de facto changes gene
frequencies, and therefore G itself; nor is it unreasonable to suppose that over
such time periods the environment encountered by the population may change
as well. Therefore, while it is sensible to assume near-constancy of G for short-
term applications (e.g., crop or animal breeding, artificial selection experi-
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ments, or perhaps even evolution in wild populations over few generations), the
hypothesis of approximate constancy becomes less and less likely the more
widely separated the relevant populations are in time and/or space.

Ultimately, the question of the stability of G over long time periods and
across environments is of course empirical, and it has accordingly generated a
significant number of studies aimed at settling it. While a few authors have
found constancy of the elements of G (e.g., Brodie III 1993 for anti-predator
traits in two populations of garter snakes; Arnold and Phillips 1999, also in
garter snakes), several others have demonstrated evolutionary divergence be-
tween populations (Waldmann and Andersson 2000 in species of the plant
genus Scabiosa; Phillips et al. 2001 in Drosophila melanogaster), or species
(Paulsen 1996 in buckeye butterflies; Steppan 1997 in leaf-eared mice; Wald-
mann and Andersson 2000 between species of Scabiosa).

The same locality issue, of course, applies to the environments experienced
by the populations whose traits we are measuring in order to estimate G.
Before the relatively recent resurgence of interest in the concept of phenotypic
plasticity, the genotype-specific property of producing distinct phenotypes in
different environments (e.g., Bradshaw 1965; Schlichting 1986; Sultan 1987;
Scheiner 1993; Pigliucci 2001; West-Eberhard 2003), it was customary for
quantitative geneticists to ignore environmental effects and assume that their
results would hold more or less regardless of what environments were used in
their experiments. There were always very good theoretical reasons not to do
so (Lewontin 1974), but there is now overwhelming empirical evidence that the
parameters important in statistical genetics can be highly sensitive (plastic) to
environmental conditions. I listed above some references concerning the special
case of heritability, but the literature is becoming clear also in the more general
situation of components of G matrices. For example, Begin and Roff (2001)
studied genetic (co)variances in two species of crickets, each reared in two
environments, concluding that ‘the expression of the genetic architecture can
vary with the environment’ and admonishing that ‘future studies should
compare G matrices across several environments.’

Laudable as the recommendation that G matrices be compared across
multiple environments might be, for a variety of reasons actually doing so will
not prove easy (and, in fact, is rarely done). First, it should be noted that
quantitative genetic experiments, by their very nature, already tend to be very
large (and, hence, expensive and time consuming). Since one is studying (often
subtle) differences among many traits, and because the statistical power of even
the best crossing designs is fairly limited (Mitchell-Olds and Shaw 1987), large
samples are needed if statistically significant results are to be obtained. In order
to study genetic (co)variances in multiple environments, the size of the
experiment increases by at least as many times as the number of distinct
environments one wishes to consider; the situation is even worse if more than
one kind of environmental factor (e.g., temperature and light quantity) is to be
explored. Expanding the already large-scale experiments designed to estimate
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G to include multiple environments presents very serious logistical and funding
difficulties.

Even if such difficulties could be solved in particular cases, however, it is
generally not at all clear what set of environments should be chosen for such
experiments. It goes without saying that one cannot test all possible environ-
ments, nor even all those environments a species is likely to have encountered
in its recent evolutionary history (of which we are often ignorant anyway). If
one wishes to carry out research in the field, the logistical challenges become
quickly very severe (e.g., Mitchell-Olds and Bergelson 1990); if one opts for
controlled conditions in the laboratory, growth chambers or greenhouse, then
a whole different set of problems is raised by the fact that these conditions
actually represent somewhat (although not entirely) ‘novel’ environments that
may alter the genetic parameters of interest in unpredictable fashions (e.g.,
Weigensberg and Roff 1996; Sgró and Partridge 2000; Hoffmann et al. 2001).
All of this may sound excessively negative, but these are serious difficulties that
ought to be dealt with explicitly. That ignoring these problems makes doing
quantitative evolutionary genetics easier is, in the end, no excuse at all.

Does G indicate constraints imposed by the genetic architecture?

More philosophically interesting are problems concerning G that cut to the
core of why biologists use the concept to begin with. Let us start with the
notion that the predictability of future phenotypic evolution is predicated on G
revealing ‘constraints’ on evolutionary change imposed by the ‘genetic archi-
tecture’ underlying complex phenotypes. The idea is that trade-offs between
traits to which an organism can allocate available resources (for example,
between survival and reproduction) should manifest themselves as observable
(negative) genetic covariances between the traits in question. If this were true,
studies of G matrices could reveal features of the underlying trade-offs that
influence the direction of phenotypic evolution, a major goal of evolutionary
biology. Unfortunately, work by Houle (1991) and Gromko (1995) has dealt
what should have been devastating blows to these uses of G in evolutionary
theory; oddly, despite these key papers being published in Evolution, the pre-
mier journal in the field, their arguments have scarcely made a dent in the
literature.

Let us begin by considering Houle’s contribution. He examined a simple
model of genetic architecture underlying a trade-off between two phenotypic
traits (Figure 3): the observed (genetic) covariance between traits z1 and z2 is
generated by the sum of effects due to two basic classes of genes. The A loci
influence the acquisition of resources: the more resources there are, the more
both z1 and z2 will increase in value; the R loci influence the partition of the
available resources, thereby determining a negative relationship between z1 and
z2. The standard quantitative genetics theory simply says that if there are R
loci, then one should observe a negative genetic correlation between z1 and z2,
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corresponding to the underlying trade-off imposed by the particular genetic
architecture. But Houle (1991) clearly showed that this is not necessarily the
case: if the variance generated by the A loci is large (e.g., because there are
many more A than R loci), then the observed genetic correlation between z1
and z2 will be positive, even though there is, in fact, an underlying trade-off.
Houle’s model implies that the goal of inferring trade-offs from observable
genetic correlations is problematic at best.

Can we at least conclude that there are no underlying constraints if there is no
observable genetic covariation between traits? Gromko’s (1995) model crushed
that expectation as well: even where there is no genetic covariation between two
traits, these can in fact severely constrain each other’s phenotypic evolution!
Gromko (1995) was interested in pleiotropy, the genetic phenomenon by which
the same gene (or set of genes) can affect multiple characters, some of which may
not necessarily be related in any ‘logical’ fashion (i.e., developmental or selec-
tive) to each other. Genetic covariances are often interpreted as the result
(mechanistically) of one of two phenomena: linkage (i.e., two genes are physi-
cally close to each other on the same chromosome, so their effects are statisti-
cally difficult to decouple because recombination is rare), or pleiotropy. Most
authors think that only the latter is interesting biologically, because – in out-
breeding organisms – linkage is eventually eliminated by continuous recombi-
nation. If indeed linkage is insignificant on evolutionary time scales, genetic
covariances become important indicators of pleiotropy, which is itself an entry
point into the developmental genetics of organisms that are not yet (nor likely to
be any time soon) amenable to detailed molecular studies.

The goal of Gromko’s work was to investigate the correlated responses to
selection of those characters tied to each other pleiotropically (i.e., through the
effect of the same genes on more than one character). He ran a series of
simulations in which virtual populations were characterized by different
combinations of pleiotropic effects. One of the results was that many different
patterns of pleiotropy produced the same genetic correlations – in other words,
the same G matrices could be produced by many different genetic mechanisms.

Z1

Z2

citeneg devresbo
ecn airav oc

R
(allocation)

loci

A
(acquisition)

locus

A
(acquisition)

locus

A
(acquisition)

locus

Figure 3. A rendition of Houle’s model of trade-offs and genetic covariances (adapted from
Houle, 1991).
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To put it as Gromko (1995) did, therefore, ‘the genetic correlation does not
uniquely determine a set of pleiotropic effects.’ Further, the sign and magni-
tude of the genetic (co)variances could not be used to predict the way that the
pleiotropic effects would influence actual evolutionary outcomes. Some sets of
pleiotropic relationships allow correlated responses to selection that, if
observed in nature or the laboratory, would lead to the conclusion that there is
little or no pleiotropy connecting the traits in question. Indeed, in some cases,
the simulated correlated responses to selection were in the opposite direction to
that predicted on the basis of the observable genetic covariance. Again
Gromko (1995): ‘Whereas it has been previously established that genetic cor-
relations are not necessarily constraints (see Houle’s work discussed above),
the alternative is also true: correlated response can be strictly constrained
despite a genetic correlation of zero.’

In short, genetic (co)variance matrices do not reflect in a simple manner the
underlying genetic or developmental structures, and therefore cannot be used
to predict long-term evolutionary change, which depends on changes in the
genetic architecture underlying the traits of interest. Where the genetic
(co)variance matrix implies that the traits in question are independent (i.e.,
where there is no observable covariation), the traits can in fact be functionally
connected; conversely, where the genetic (co)variance matrix registers a strong
correlation between two characters, the latter can in fact be biologically
independent, or even functionally coupled in the opposite direction of that
implied by the genetic covariance. Genetic covariances, then, are not indicators
of trade-offs or constraints, and they cannot be reliably used to elucidate the
genetic architecture underlying a set of phenotypic characters.

There is an important note to add here. Whenever I have confronted some of
my colleagues with the implications of the work by Houle and Gromko, a
frequent response takes the form of an interesting conceptual maneuver: people
redefine ‘genetic architecture’ precisely as the observable pattern of genetic
(co)variances. This, by fiat, solves all problems, because one can verify the
presence or absence of constraints by definition simply by examining the
structure of G. But this is a very odd move indeed, for the real interest is in
using G to infer glimpses of the true underlying genetic architecture. To say
that one studies genetic covariances in order to study genetic covariances is
obviously circular and rather empty. The move, seems to me, underscores the
fragility of the whole G-based research program.

Selection vs. drift

Another major reason for the interest in studying G reflects an old problem in
quantitative evolutionary theory: distinguishing between the effects of selection
and drift in the phenotypic evolution of natural populations (a problem that
has been analyzed in depth from a philosophical perspective; for example see
Millstein 2002; Skipper 2002; Walsh et al. 2002 and references therein). This is
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part of what Shaw et al. (1995) were getting at when they wrote that ‘one
motivation for estimating G matrices is that they will reveal the most likely
paths of evolution.’ But there actually is no reason to think that this problem is
in general tractable, and good reasons to think that it may not be. The diffi-
culty, of course, is that evolutionary biology is by its very nature a historical
science (Cleland 2002), and hence one in which the problem of multiple pro-
cesses (e.g., selection and drift) yielding similar (and often empirically indis-
tinguishable) patterns is difficult to address because we often lack sufficient
information about actual historical paths (Shipley 2000). No statistical tech-
nique, no matter how sophisticated, is going to provide a silver bullet, despite
the hopes expressed by practitioners of the field, as we shall see soon.

The hope of distinguishing selection from drift in the case of multivariate
phenotypic evolution hangs on the idea that selection is expected to generate
patterns of change in (co)variance matrices that are qualitatively different from
those typically generated by drift. More precisely, the standard prediction (see
Roff 2000 for a review) is that drift should affect all elements of a (co)variance
matrix in the same way, thereby causing proportional changes in the matrix
over time, when compared to the ancestral G. Selection, on the other hand, is
expected to act on subsets of characters in different manners; this would
thereby alter the structure of G so to make the (co)variance matrix of
descendant populations (after selection) qualitatively different from (i.e., not
simply proportional to) that of their ancestors. If all this were true, one could
distinguish selection from drift by comparing (co)variance matrices over time,
or between different populations. Unfortunately, in a survey of available
studies, Roff (2000) concluded that ‘the null hypothesis that most of the var-
iation can be attributed to drift rather than selection cannot be rejected,’ even
when the action of selection was suspected. In other words, in many cases the
expected results of drift on a (co)variance matrix and the predicted effect of
selection on the same (co)variance matrix cannot be distinguished. Roff (2000)
concluded his review with the hope that ‘further development of statistical
tests’ would help ‘distinguish these two forces.’8

But the problem is not statistical in nature, and neither larger samples nor
fancier math will help. Work by Phillips et al. (2001) shows that, except in very
special situations, it will be impossible to use Gmatrices to distinguish selection
from drift, since in any particular case the patterns that emerge as changes in
the co(variance) matrix are consistent with both the action of selection and of
neutral drift. Phillips and coworkers demonstrated this very elegantly by
establishing several populations of the fruit fly Drosophila melanogaster and
subjecting them to genetic drift by severe bottlenecks in a selectively benign
(quasi-neutral) laboratory environment. They then compared the G matrices of

8 Incidentally, I do not subscribe to the commonplace idea among biologists (and some philoso-
phers: Sober 1984) that drift is an evolutionary ‘force.’ Rather, I tend to agree with analyses by
Matthen and Ariew (2002), Walsh et al. (2002), Walsh (2003) and Pigliucci and Kaplan (forth-
coming) that call into question the whole metaphor of ‘forces’ in biology.
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the resulting descendant populations with that of the founding stock. When
these authors considered the average G across populations (a statistically
useful, but biologically meaningless, construct), this did indeed follow Roff’s
expectations: the populations that had undergone drift had an average G that
was proportional to that of the founding population, as predicted by the theory
for a set of replicated populations (i.e., when one actually knows the historical
path of evolution). If these results had held for the individual populations that
underwent drift, rather than for the statistical construct created by averaging
them, this would have been good news indeed. But alas, when Phillips and
collaborators examined the Gs of individual populations that had undergone
drift, they found that most were not proportional to their control at all: i.e.,
these matrices appeared to have been produced by selection, not drift, even
though there was no significant selection going on!9

The problem can be summarized in this fashion: if evolutionary biologists
had access to neatly replicated historical events (as in the artificially con-
structed case of Phillips et al. 2001), then they could use the observed variation
among G matrices to distinguish between selection and drift. The problem is
that – except in very special cases – all biologists have access to is a series of
populations that evolved naturally, generally from a set of ancestors whose
phenotypic and genetic features are known only vaguely, if at all. Under these
conditions, it is entirely possible that what looks like the result of selection is in
fact the outcome of purely random processes. Once again, we run straight into
the problem that many possible causal paths may converge to the same ob-
servable pattern, so that backward inference from pattern to process cannot be
carried out in any straightforward way.

Individual vs. population levels

The last question I wish to raise in this section involves the way evolutionary
quantitative geneticists talk about the mechanics of the evolution of G. Genetic
variance–covariance matrices are often interpreted as the result of past

9 A posteriori, this result should not have been surprising at all. Consider the much simpler, and
better understood (see any population genetics textbook, such as Hartl and Clark 1989, e.g.,
chapter 2, and in particular Figure 1 on p. 63) case of drift affecting the changes in gene frequency
of two alleles at a single locus. Elementary population genetic theory (and empirical evidence)
shows that the two allele’s frequencies will fluctuate over time in each small population (if there is
no selection), following a random walk which will end up, eventually, in the fixation of one or the
other allele. Across populations, each allele is expected to be fixed by drift at a frequency pro-
portional to that allele’s initial frequency in the founding population. Now, on average, this is
exactly what happens. However, if one examines the actual evolutionary trajectory of either allele in
any particular sub-population, one will see a definite trend toward fixation, which one could
reasonably interpret as the result of directional selection! It is only because the investigator has
several replicated populations available that it is clear that it is drift, and not selection, that is
changing the allelic frequencies. Alas, such epistemic luxury is usually not available for studies of
actual natural populations.
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evolutionary ‘forces,’ such as selection and drift (see footnote 8 on the concept
of ‘forces’ in evolution). But surely biologists do not mean to say that selection
acts directly on the variance components; variance components are statistical
constructs that summarize individual attributes at the population level, and are
therefore not the sort of thing that discriminate physical processes can interact
with. The physical processes that are natural selection act on particular entities,
usually the individual organisms involved. While some physical processes are
discriminate with respect to groups, group selection has never – to my
knowledge – been invoked in discussions of G. I am forced to conclude that
what those biologists who refer to the evolution of G mean is that G provides a
summary indicator of the more complex and multifarious processes that occur
at the level of individuals.

The problem with the latter interpretation, of course, is that the inference
from observed patterns at the population level to underlying causes at the
individual level is anything but straightforward. One reason is provided by the
combined works of Houle (1991) and Gromko (1995) referred to above, but
there has also been recent and extensive debate bearing on this issue (in the case
of natural selection) in the philosophical literature (e.g., Matthen and Ariew
2002; Millstein 2002; Walsh et al. 2002; Pigliucci and Kaplan forthcoming).
When considering natural selection, it is clear that physical interactions at the
individual level may result in predictable statistical patterns at the population
level, and yet this does not imply that the reverse move (from population to
individual) is just as straightforward. The point has been made more generally
by Shipley (2000), who – in the context of discussing the relationship between
causation and correlation in biology – concluded that biologists can test
hypothesized causal models by comparing them with their predicted statistical
‘shadows,’ but cannot reasonably go from the latter to the former. Alas, that is
exactly what a great part of the research project in evolutionary quantitative
genetics10 is all about! To put it into another fashion, we can calculate the
statistics, but what sort of biological questions are they answering, if any?

What then? Getting over G

If the idea of G is so fraught with both conceptual and empirical problems, why
do evolutionary quantitative geneticists use G as the centerpiece of their re-
search program? Furthermore, assuming that evolutionary quantitative genet-
icists would be better off if they gave up on G, are there alternative approaches
to addressing the questions that G was supposed to, but cannot, answer?

The two issues are in effect somewhat linked. Quantitative geneticists may be
continuing to use G for the same reason that many of them keep using the
concept of heritability: on the one hand many practitioners (but by no means

10 As opposed to quantitative genetics for the purposes of plant and animal breeding, which has
much more modest practical goals.
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all) do not often pause to seriously consider the limitations inherent in these
tools, a professional hazard originated by the drive to ‘do’ things, rather than
‘speculate’ about them; on the other hand, it may not be clear to most prac-
titioners what alternatives, if any, are available at the moment. One of the roles
that philosophy of biology ought to pursue is of course that of providing
thorough criticism of the currently used tools, as I have began to do in this
paper in the case of genetic variance–covariance matrices. My hope is that if
these difficulties are clearly presented they will be taken seriously, and that the
biological community may become more interested in investigating what
alternatives may be available. Indeed, some possibilities can be sketched even
now, as they have been considered by some practicing biologists, on and off,
for the past two decades.

As I showed above, a careful reading of the literature reveals that even
staunch supporters of the current methods of evolutionary quantitative
genetics feel uncomfortable about the situation they now find themselves in:
remember Roff’s (2000) call for entirely new analytical tools to distinguish the
effects of drift from selection on G. Even earlier, in 1989, Barton and Turelli,
two of the most prominent theoreticians in the field, published a rather skep-
tical article entitled: ‘Evolutionary quantitative genetics: how little do we
know?’ The answer they arrived at – that in fact, we know very little about
what we would like to know – has not changed much in the intervening
15 years. Furthermore, Shaw et al. (1995) state: ‘Short-term predictions based
on sound estimates of genetic parameters are likely to be qualitatively infor-
mative (my emphasis). In contrast, both empirical results … and theoretical
considerations suggest that quantitative predictions for long-term selection and
retrospective analyses of selection should be interpreted with caution.’ This is
rather an understatement of the problem, though probably as frank an
admission as one can expect from scientists that have invested their career in
the field. Moreover, this position is hardly adequate if we have no guidelines
for how cautious we should be in any particular case, nor for what a ‘cautious
interpretation’ would involve to begin with.

The success of plant and animal breeding reveals the adequacy of quanti-
tative genetic theory for making short-term predictions. But, as Shaw and
colleagues note, even within that restricted (and evolutionarily rather insig-
nificant) time frame, the predictions are mostly ‘qualitative’ – fortunately, for
plant and animal breeding, that is all that is ever necessary. However, over
evolutionary time spans even the qualitative predictions are likely to fail
because of the problems of locality and environmental-sensitivity of compo-
nents of G. We do not have a theory of how G changes during long-term
evolution, though we know that it does change. Developing such theory has
been an elusive goal of theoretical evolutionary biology for a long time, but at
the moment at least there is no sign of anybody coming even close to it
(S. Gavrilets, University of Tennessee, pers. comm.).

Be that as it may, by now it should be clear that quantitative evolutionary
biologists ought not to think of these statistical constructs as ‘first
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approximations’ to be refined by further research; the difficulty with these
constructs is not that they are imprecise (and, therefore, amenable to ‘refine-
ment’), but that they do not answer the questions we wish answered. For
example, recall the above-mentioned peculiar shift in focus from using G
matrices to infer the genetic architecture underlying certain traits to the much
less interesting ‘solution’ of defining genetic architecture as the observed pat-
tern of genetic variance–covariances.11 In any event, ‘further research’ has been
conducted in quantitative genetics for more than a century, and we still have
not gotten much past the first steps. While the 1980s saw the formulation of the
multivariate extension of the breeders’ equation and some related refinements,
the fundamental problems have remained the same. In fact, many of the dif-
ficulties have worsened now that we have empirical demonstration of the
environmental liability and phylogenetic variation of genetic (co)variances.

Alternative approaches and ingenuous solutions to the problems outlined in
this paper have, in fact, been proposed and occasionally pursued by biolo-
gists.12 Even Lande and Arnold (1983), as well as Mitchell-Olds and Shaw
(1987) pointed out that the broader goal is really to understand the mechanics
and causality of natural selection and response to it in natural populations.
They frankly admitted that the multivariate breeder’s equation should truly be
used only as a preliminary step to gain some insight into a particular system.
That insight should then be combined with as much knowledge of the biology
of the species in question to propose specific hypotheses about the causes of the
observed patterns (for example, as done by Johnson 2002 in his study of the
selective factors affecting life history in populations of a Poecilid fish). These
hypotheses can then be tested by a variety of approaches, ranging from more
sophisticated statistical techniques like path analysis and structural equation
modeling (Shipley 2000), to experimental approaches using a variety of
manipulations of the phenotype and environment of the organisms under study
(Schmitt et al. 1999). Neither of these suggestions has gained widespread favor
among biologists (though they have been used occasionally throughout the
past two decades), and I suspect this is chiefly for two reasons, one practical the
other conceptual.

The practical reason is less of interest to philosophers, though it may be
worth documenting and pursuing by sociologists of science: it is simply much
easier to measure a bunch of phenotypic traits in a single (or few) field season
in a single (or few) location, run the appropriate multiple regression analyses,

11 This is somewhat similar to avoiding to deal with what exactly is the relationship between IQ
scores and intelligence by defining intelligence as whatever property is measured by IQ tests. One
would seem to be justified in smelling question begging.
12 I will not discuss here molecularly based approaches such as Quantitative Trait Loci mapping, or
the whole field of evolutionary developmental biology. These are areas of research large enough to
deserve their own treatment. Also, while these other approaches can in some way interact with
evolutionary quantitative genetics, I do maintain that the latter is characterized by a sufficient
degree of intellectual and methodological independence to warrant a more narrow focus at this
stage of analysis.
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and claim that one has ‘studied natural selection.’ To move from there (the
supposed ‘preliminary’ step) to an extended series of field and laboratory
studies that include repeated observations, manipulations of environmental
circumstances, as well as manipulation of crucial aspects of the phenotype (by
mutation, or cleverly exploiting the organism’s phenotypic plasticity) requires
much more time, sophistication, and money. The conceptual reason, of more
philosophical interest, can be traced back to the rationale that went into the
publication of Lande and Arnold’s (1983) paper: the main goal there was to
provide not just a way to statistically quantify natural selection in action, but
to do so while obtaining coefficients of selection that could be directly plugged
into the standard quantitative genetics equations for the prediction (or post-
diction) of phenotypic evolution. It turns out that, until now, nobody has
figured out a way to use path coefficients for the same purpose (but see
Scheiner et al. 2000 for the beginning of such an attempt). This implies that a
theoretical goal has been for all effective purposes overriding serious concep-
tual and methodological limitations of the techniques used. What makes this a
possible dead end for the entire field is that there are good reasons to believe
that the theoretical goal in question – the long-term prediction of evolutionary
trajectories – is simply not achievable because of the problems of locality and
liability of G discussed above.

What, then, is an evolutionary quantitative geneticist to do? I suggest that
practitioners should take seriously the limitations outlined here and re-evaluate
their goals in light of what not only the available techniques, but nature itself,
will allow them to do. If it turns out that the problem of long-term prediction
of evolution is not tractable, people should not be too bothered by it. Plenty of
good science can be done without having to engage at that level of predict-
ability. As Sober (1984, pp. 137–138) put it when referring to studies of natural
selection: ‘The world we live in may simply be such that certain questions are
very hard to answer … It is not the scientist’s fault that nature has made some
of its secrets relatively opaque to human scrutiny.’ But the scientist can surely
be faulted for insisting in banging his head against nature’s staunchest walls
when it ought to be clear that other strategies circumventing such walls can be
pursued and be much more productive. The alternative, at least equally
interesting, research program of developing a mechanistic understanding of
natural selection and how it acts in populations of animals and plants, has been
lagging behind despite the availability of sound empirical and analytical ap-
proaches to pursue it. This implies that much could be gained by a re-assess-
ment and re-alignment of evolutionary quantitative genetics’ goals and
practices.
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