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Throughout the rest of
briefly examine the history
typic plasticity studies, to se
at the modern concepts of re
notypic plasticity. We will th
theoretical and empirical ad
research, with particular reg;
of plasticity for ecology an
A series of specitic example:
plasticity will be examined 1
flaver of what ongoing plast
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- Future:
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Notes

1. “Narrow-sense herita
ditive genetic to phenotypic
generally symbolized by 7.
ity,” the ratio of total genet
ances (Gg/G3), is symbolized

2. A quantitative trait lc
chromosome, defined by lin
cus, that has a significant e
trait. The phenotypic ettect:
detected through crosses bel
fering i1 average expression
trait.



