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Abstract

This paper provides an analysis of the intrinsic/extrinsic distinction, as applied both

to properties and to relations. In contrast to other accounts, the approach taken here

locates the source of a property’s intrinsicality or extrinsicality in the manner in which

that property is ‘logically constituted’, and thus—plausibly—in its nature or essence,

rather than in, e.g., its modal profile. Another respect in which the present proposal

differs from many extant analyses lies in the fact that it does not seek to analyse the

‘global’ distinction between intrinsic and extrinsic properties on the basis of the ‘local’

distinction between having a property intrinsically and having it extrinsically. Instead,

the latter distinction is explicated on the basis of the former.

Keywords: Properties; relations; intrinsicality

1 Introduction

The distinction between intrinsic and extrinsic properties has proven difficult to analyse,

but it is undeniably useful in analysing other notions. For instance, in explicating the

concept of an intrinsically valuable object, it is quite natural to appeal to that of an intrinsic

property, and to say (to a first approximation) that an object is intrinsically valuable iff

it is valuable ‘in virtue of’ its intrinsic properties.1 More generally, the same could be

said about the notion of an intrinsically F thing, where ‘F’ might be replaced with any

of a wide variety of adjectives, such as ‘beautiful’, ‘virtuous’, ‘funny’, etc.: for it will be

an at least initially promising hypothesis that a thing is intrinsically F iff it is F in virtue

of—or at least largely in virtue of—its intrinsic properties.2 Even if it were denied that the

intrinsic/extrinsic distinction can be applied in this way, one could still list numerous other

applications.3

1Though see Kagan (1998) for a contrasting view. For an overview of the issues involved in the distinction
between intrinsic and extrinsic value, see e.g. Zimmerman (2015) and Rønnow-Rasmussen (2015). Throughout
this paper, I shall use ‘extrinsic’ as synonymous with ‘non-intrinsic’.

2For a more detailed analysis, see Section 12. Several authors, especially in recent years, have taken the
‘local’ notion of an entity’s being intrinsically such-and-such to be more basic than the ‘global’ notion of
an intrinsic property. (Cf., e.g., Francescotti [1999; 2014b], Parsons [2001: 10], Witmer, Butchard & Trogdon
[2005: 333], Figdor [2008; 2014], Williams [2013: 435], Bader [2013: 554], and Marshall [2009; 2016a].) If the ana-
lysis provided in Section 12 is successful, it would suggest that the opposite view is at least equally defensible.

3For illustration, here is the third paragraph of Robert Francescotti’s introduction to his recent anthology:
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Given the philosophical importance of the distinction, the question of how, if at all,

one might formulate an informative analysis of the distinction is of corresponding interest.

This interest is impressively reflected in the number of proposals that have been published

in the decades since David Lewis’s (1983a) seminal paper on this topic.4 The main purpose

of the present paper is to add to this number of proposals, though the target of our analysis

will be the more general concept of an intrinsic property or relation.5 As a shorthand for

‘property or relation’, I shall use the term ‘attribute’.

Why another analysis of intrinsicality? One motivating factor lies in the fact that there

exists so far no generally accepted account. (A majority of the analyses that have been

proposed in the literature have eventually come under criticism, most notably in a series of

articles by Dan Marshall.6) But more pertinent to the present paper is the fact that no gen-

eral account of the intrinsic/extrinsic distinction has so far tried to locate the ‘source’ of an

attribute’s intrinsicality or extrinsicality in the attribute’s logical constitution, i.e. (roughly) in

In the philosophy of physics, there is the question of whether the causal powers of objects
supervene on their intrinsic features, whether the relational properties of physics require an in-
trinsic ground, and whether all or even any fundamental physical properties are intrinsic. And
assuming that fundamental physical items have an intrinsic nature, how can we ever have know-
ledge of that intrinsic nature given that we can only be aware of the effects? In metaphysics,
there is the question of what constitutes genuine change (which seems to require a change in in-
trinsic properties), and whether change in the intrinsic properties of an individual is compatible
with its enduring through time (being numerically identical at different times). Philosophers of
mind wonder whether the content of our mental states supervenes on our intrinsic features or
whether mental content is partly a function of the external items toward which our thoughts are
directed. There is also the issue of whether consciousness extends beyond the intrinsic features
of one’s brain or even the rest of one’s body. For the philosopher of art, there is the issue of
whether aesthetic value is an intrinsic feature of an object, and if not, what relations to which
external items ground aesthetic properties; and in epistemology, there is the long-standing ques-
tion of whether the justification of one’s beliefs is solely a function of one’s intrinsic features.
(Francescotti 2014a: 1; emphasis in the original)

A further potential application from metaphysics is the task of explicating the concept of a duplicate, as two
entities may be considered duplicates iff they share the same purely qualitative intrinsic properties. In addition,
Cian Dorr (2016a: 242) has recently proposed a definition of ‘determinism’ that makes use of the notion of an
intrinsic property. Still other applications can be found in Weatherson & Marshall (2017: §1.1).

4For an overview, see Weatherson & Marshall (2017: §3).

5The idea that the concept of intrinsicality is applicable not only to properties but also to relations can
be made plausible both by way of example and by generalising typical characterisations of what it is for a
property to be intrinsic. See, e.g., Lewis (1983b: 356n.), Langton & Lewis (1998: §8), Parsons (2001: §2.1.9),
Weatherson & Marshall (2017: §1.3), and Hoffmann-Kolss (2010: ch. 8). The characterisation relevant for the
present paper is given in Section 4 below.

6See Marshall (2012; 2013; 2014; 2015). Also see Weatherson & Marshall (2017) for (among other things) a
critique of a proposal by Francescotti (1999).
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the way the attribute is ‘constructed’ from other entities by way of logical operations.7 This

logical-constitution approach will be briefly outlined in Section 3. As for the rest of the paper,

Section 4 takes some first steps towards constructing an account of intrinsicality that imple-

ments this approach, and Sections 5 and 6 provide the formal framework that the account

will rely on. (In Section 6 we will also engage in some methodological considerations.) The

account itself is then developed in Sections 7–10, and a summary of the account is given

in Section 11. Finally, Section 12 offers a brief analysis of the ‘local distinction’ between

having a property intrinsically and having it extrinsically, and Section 13 concludes the

paper. To begin with, however, we have to take a look at two analyses of intrinsicality that

have recently been put forward by Dan Marshall.

2 Two Marshallian Proposals

2.1 Aboutness intrinsicality

In his ‘Varieties of Intrinsicality’ (2016b), Marshall has developed a taxonomy of several

forms of intrinsicality, one of which he refers to as ‘absolute aboutness intrinsicality’.8 He

finds this latter concept suggested in the following passage by Lewis:

A sentence or statement or proposition that ascribes intrinsic properties to
something is entirely about that thing; whereas an ascription of extrinsic prop-
erties to something is not entirely about that thing, though it may well be about
some larger whole which includes that thing as part. (1983a: 197)

In Marshall’s reading, this passage suggests that a property P is intrinsic iff, by metaphys-

ical necessity, for any entity x, the “ascription” of P to x is “intrinsically about x”. In his

terminology, an ‘ascription’ of a property P to an entity x is the state of affairs that might

be paraphrased as ‘x’s being F’ (where ‘F’ is replaced by an adjective signifying P). So,

e.g., the ascription of paleness to Socrates is Socrates’ being pale, or the state of affairs that

7A near-exception is Brad Skow’s (2007: 115) analysis of the intrinsic/extrinsic distinction for shape proper-
ties, according to which “a shape property Px is intrinsic just in case every quantifier in its analysis is restricted
to x and x’s parts”. (The “analysis” of the respective property P—or Px in Skow’s notation—is here supposed
to be in terms of “fundamental spatial relations”.)

8The ‘absolute’ is somewhat optional: Marshall adds it only for the purpose of distinguishing the notion in
question from what he calls ‘possession aboutness intrinsicality’.
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Socrates is pale. Marshall takes a state of affairs s to be intrinsically about an entity x iff

(roughly):

s (either truly or falsely) describes how x and its parts are and how they are
related to each other, as opposed to how x and its parts are related to other
things and how other things are. (2016b: 240)

What Marshall refers to as an ascription of a property P to an entity x, I shall refer to as

P’s instantiation by x, or alternatively, as x’s instantiation of P. By way of a more concise

expression, if ‘P’ names a property P and ‘x’ names some entity x, I will further write

‘P(x)’ to refer to x’s instantiation of P.9 Marshall’s definition of aboutness intrinsicality can

then be rephrased as follows:

(AI) A property P is intrinsic iff it holds by metaphysical necessity that, for any entity x,

the state of affairs P(x) is intrinsically about x.

This analysis yields in many cases intuitively correct results. For instance, on the (intuit-

ively plausible) assumption that, for at least one entity x, the state of affairs that x is a father

fails to be ‘intrinsically about’ x, the property of being a father is duly classified as extrinsic.

However, the analysis fares less well when we consider non-obtaining instantiations of the

parthood relation. For example, while the non-obtaining state of affairs that Italy has Paris

as a part may plausibly be identified with Italy’s instantiation of the property of having

Paris as a part, that state of affairs is not intrinsically about Italy, since it concerns how Italy

is related to something—viz., Paris—that is not a part of it. (This reasoning is borne out

by Marshall’s own account of intrinsic aboutness, as given in his [2016a]; cf. footnote 15

below.) Consequently, having Paris as a part is under (AI) classified as extrinsic, whereas

intuitively that property seems to be intrinsic.10 (AI) is thus intuitively inadequate.

9Note that, on the present conception of states of affairs, a state of affairs can exist without obtaining. Even
a false statement may thus express a state of affairs.

10At least as long as the relevant parthood relation is itself intrinsic, which I take to be plausible. A similar
example, viz., the property of being identical with Obama, has been used by Marshall (2015: 11n.) to argue
against an account of intrinsicality proposed by Rosen (2010: 112). (Also cf. Marshall [2016b: 246f.].)

To see why it is necessary to assume here that the relevant parthood relation is intrinsic, suppose, e.g., that
parthood is the relation whose instantiation by x and y (in this order) is the state of affairs that God cannot
think of y without thinking of x. I submit that in this case it would no longer be intuitively plausible to think
that having Paris as a part is intrinsic.
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2.2 Possession intrinsicality

Fortunately, the sort of counter-example just described can be avoided if one explicates

the concept of intrinsicality along the lines of another of Marshall’s notions, namely—most

plausibly—that of ‘possession aboutness intrinsicality’. This is the concept that Marshall,

in another recent paper, effectively identifies with the concept of intrinsicality tout court,

suggesting that it is “arguably the notion philosophers typically use ‘intrinsic’ to express”

(2016a: 704n.). Using the formalism adopted above, we can state the proposal as follows:

(PI) A property P is intrinsic iff it holds by metaphysical necessity that, for any entity x:

if x instantiates P, then the state of affairs P(x) is intrinsically about x.

The analysans of this proposal is evidently much weaker than that of (AI), and in this way

it manages to avoid the counter-example that renders the latter so implausible. There are,

however, several worries.

First, there is the worry that (PI) trivially classifies any uninstantiable property as in-

trinsic: that is, any property P that is such that, necessarily, no entity instantiates P. On

a suitably abundant ontology, coupled with a moderately fine-grained conception of at-

tributes, there will plausibly exist properties that are both extrinsic and uninstantiable; an

example would be that of being such that Socrates is non-self-identical. For any such property,

however, the right-hand side of (PI) will be vacuously true (since the antecedent of the em-

bedded conditional will always be false), and the property will consequently be classified

as intrinsic. By contrast, the same problem does not—or at least not obviously—arise for

(AI): e.g., Plato’s instantiation of the mentioned property does not appear to be intrinsically

about Plato.

An adherent of a starkly coarse-grained conception of properties might try to defend

(PI) by arguing that the property in question is really nothing else than that of being non-self-

identical (on the grounds, say, that the ‘two’ properties are necessarily coextensive). Since,

furthermore, being non-self-identical is plausibly intrinsic, we have here a situation where

common sense returns two contradictory verdicts on one and the same property, and so it
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might be said that the classification of that property can be left as ‘spoils to the victor’.11

However, at least in the present case this sort of response cuts no ice, since it relies on a

highly controversial assumption concerning the coarse-grainedness of properties.12 And it

would also be something of a shortcoming if, in order for (PI) to work, one would have to

assume the non-existence of uninstantiable properties.

A second and related worry has to do with the fact that (PI), like all other accounts

discussed by Marshall (2016b), makes the intrinsicality of a property a modal issue. To be

sure, there is ample precedent for this.13 But as can perhaps be seen from the previous

paragraph’s examples, we appear to have a tolerably good grasp of what makes a property

intrinsic or extrinsic even independently of whether we regard that property as instantiable.

This observation in turn supports the claim (which strikes me as intuitively plausible) that

the question of whether a given property is intrinsic or not is determined by the property’s

‘essence’, rather than by its modal profile. We may refer to this as the essentiality intuition.

To borrow Yablo’s (1999) suggestive phrase, we want an account of intrinsicality that is

primarily sensitive to the de jure features of the respective properties, rather than to their

de facto features, even if these happen to be modal in character. Further, owing mainly to

the influence of Kit Fine (1994; 1995a; 1995b), it is now commonly assumed that an entity’s

essence does not simply boil down to modal issues. It would accordingly seem natural to

expect of an account of intrinsicality that the essence of the respective attribute should play

in it a prominent role.14 (PI) disappoints this expectation.

11Cf. Lewis (1986b). For some critical discussion of this manoeuvre, see Eddon (2011). For more sympath-
etic (albeit brief) discussion, see Section 6.1 below. The classification of being non-self-identical as intrinsic is
not entirely uncontroversial. For example, Josh Parsons (2001: 15) and Ralf Bader (2013: 555) both classify
uninstantiable properties as “neither intrinsic nor extrinsic”.

12It is worth noting here that Marshall himself (2016a: 713) finds it desirable to have an account of intrins-
icality that is “independent of which theory of the identity conditions of properties [is] correct”. Although
this statement would be grist for my mill in the present context, I would not unreservedly endorse it. If a
prima facie sensible account of some category of attributes produces counter-intuitive results when combined
with an unintuitive conception of attributes, the thing to blame might not be the account itself but rather that
conception of attributes. I will expand on this issue in Section 6.1 below.

13Cf., e.g., Moore (1922: 268f.) and Lewis (1983a). An early dissenting voice is Dunn (1990: 184).

14In this way intrinsicality differs markedly from essentiality. Cf. Figdor (2008: 694): “We think the definition
of a property determines whether the property is intrinsic or extrinsic, whereas the definition plays no such
role in whether a property is essential, accidental, innate, or acquired”. (By an ‘essential property’, Figdor here
means a property that is “had essentially by some individual”.)
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As far as extensional adequacy is concerned, our discussion so far has shown that (AI)

and (PI) have somewhat complementary shortcomings: intrinsic properties such as having

Paris as a part are classified as intrinsic by (PI) but not by (AI), and extrinsic uninstantiable

properties such as being such that Socrates is non-self-identical are classified as extrinsic by

(AI) but not by (PI). It would be desirable to have an account of intrinsicality that correctly

classifies both of these sorts of properties.

Before we move on, it will be worth flagging five further concerns that one might have

about the extensional adequacy of Marshall’s account of intrinsicality. In contrast to the

preceding worries, these additional concerns arise not from (PI) alone but rather only from

the conjunction of (PI) and Marshall’s account of intrinsic aboutness. Suppose we call a

property a haecceitistic inclusion property iff, for some entity x, it is the property of having x

as a part. Very briefly, these concerns may then be stated as follows (to save space, I have

delegated some of the justifications to footnotes):

1. Negations of haecceitistic inclusion properties, such as the property of not having Paris

as a part, may be considered intuitively intrinsic; but under Marshall’s account they

are classified as extrinsic.15

15According to Marshall, a state of affairs s is intrinsically about an entity x iff s is “a non-qualitative state of
affairs that is expressed by a sentence that is pre-intrinsically about x”. Here a state of affairs is ‘non-qualitative’
iff it “haecceitistically concerns” some entity (p. 707), in the sense in which, e.g., “the state of affairs expressed
by ‘Obama is an uncle’ haecceistically concerns Obama” (p. 706). Further, an expression e is pre-intrinsically
about an entity x iff it is such that:

for any Xs, IF

(i) for any expression f , if f contains at most brackets, commas, variables, names referring to
parts of x, predicates expressing perfectly natural relations, and operator expressions express-
ing perfectly natural operators, then f is one of the Xs;

(ii) for any expression f , if f is of the form p[Qv|φ]ψq, where Q is either a perfectly natural
two-place quantifier or a two-place correlate of a one-place perfectly natural quantifier, φ and
ψ are each one of the Xs, v is a variable, and for some set Π of names of all the parts of
x, under any assignment g to v and the free variables of φ, φ necessitates p

∨
{pv ≤ bq|b ∈

Π} ∨
∨
{pv ≤ uq|u is a free variable in φ other than v}q, then f is one of the Xs; and

(iii) for any expression f , if f is a concatenation of expressions that are among the Xs, then f is
one of the Xs;

THEN e is one of the Xs. (p. 727)

This is the first full version of Marshall’s account of intrinsic aboutness; he later on (p. 729f.) provides another
version that is purged of all references to ‘linguistic’ entities but is otherwise meant to be equivalent.

To see that not having Paris as a part is under Marshall’s account classified as extrinsic, it is enough to notice
that, under Marshall’s definition, a sentence cannot be pre-intrinsically about an entity x if it contains any
name of something that is not a part of x. (Predicates, of course, are not names in Marshall’s framework.) For
let P be the property of not having Paris as a part, and let x be Rome. Then x instantiates P, and hence, if P is
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2. Disjunctions of haecceitistic inclusion properties, such as the property of having either

Paris or Rome as a part, are (fairly clearly) intuitively intrinsic, but are classified as

extrinsic under Marshall’s account.16

3. The same goes for properties like having a part that is distinct from x (for some entity x).

These are classified as extrinsic under Marshall’s account, but intuitively they seem

to be intrinsic (although this may be controversial).17

4. His account also classifies as extrinsic any properties that—like being composed of cells

or having as many red parts as green parts—would have to be expressed, at a suitable

level of analysis, by quantifying over (possibly deeply nested) sets or pluralities that

are ultimately composed of parts of the respective property’s bearer.18

5. Finally, suppose that P is a perfectly natural property and that there exists a ‘perfectly

natural operator’ O that, when applied to some entity x, yields another entity (such

as x’s singleton) that is not a part of x.19 Let x be some entity, let n be a name of

x, let O be an ‘operator expression’ expressing O (such that pOnq is a composite

singular term denoting the result of applying O to x), and let F be some predicate

that signifies P. Then the sentence pF(On)q will express a state of affairs that, by

Marshall’s lights, is intrinsically about x, and the property that can be abstracted

to be classified as intrinsic, the state of affairs P(x) will have to be intrinsically about x, i.e. Rome. So there
has to exist some sentence that expresses P(x) and is pre-intrinsically about Rome. But now, unless we adopt
an absurdly coarse-grained conception of states of affairs, any sentence that expresses P(x) at the rather deep
level of analysis required by Marshall’s definition of pre-intrinsicality will have to contain a name of Paris; and
Paris is not a part of Rome. Hence there seems to be no sentence of the required sort, which would mean that
P is not classified as intrinsic under Marshall’s account.

16The justification for this is similar to the argument of the previous footnote. For instance, Italy’s instanti-
ation of the mentioned property will (arguably) not be intrinsically about Italy.

17For example, consider the property of having a part that is distinct from Dublin. Arguably, Italy’s instantiation
of this property is not intrinsically about Italy.

18For instance, if we opt for a set-theoretic analysis, the property of being composed of cells will have
to be expressed by something along the lines of, ‘λx ∃S (each member of S is a cell as well as a part of x ∧
each part of x has a part in common with some member of S)’. If P is this property and x any entity that has
P, then x’s instantiation of P will under Marshall’s analysis not be intrinsically about x. The basic reason for
this lies in the fact that the variable ‘S’ in the λ-expression just sketched is not restricted to the parts of the
respective bearer of P.

19For the sake of argument, I here follow Marshall in assuming that the predicate ‘perfectly natural’ is not
semantically defective and can be applied to both properties and ‘operators’ (where the latter are the semantic
values of what Marshall calls ‘operator expressions’).
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from this (and which might be denoted by pλx F(Ox)q) will accordingly be classified

as intrinsic. But intuitively, it is far from obvious that this classification is correct,

since the result of applying O to x is by hypothesis not a part of x.

Not all of these points are uncontroversial. I expect that there will be some disagreement

over the first and third items on this list, since properties like not having Paris as a part or

having a part that is distinct from Dublin may conceivably be regarded as extrinsic.20 Nor are

the other three concerns supposed to be fatal. Still, to address them all would require a

considerable amount of work, and would likely lead to a significantly more complicated

account of intrinsic aboutness than the one offered by Marshall. Apart from their relevance

for his analysis of intrinsicality, the first four worries are worth raising here also because

the underlying intuitions about the in- or extrinsicality of the mentioned properties (and

others like them) will inform the construction of our account in Sections 7–10. But unlike

the concerns about uninstantiable attributes and about the modal character of (PI), they

will not help to motivate our general approach as set out in the next two Sections.

3 The Logical-Constitution Approach

The defining characteristic of the logical-constitution approach lies in the fact that it locates

the ‘source’ of an attribute’s intrinsicality or extrinsicality in the attribute’s logical consti-

tution. By an attribute’s ‘logical constitution’, I roughly mean the way the attribute is ‘built

up’ from other entities, provided that the relevant operations are at least broadly speaking

logical. For instance, if a given property P is the conjunction of two other properties Q1

and Q2, then its being so will be part of P’s logical constitution, and hence (plausibly) of its

essence. And similarly, if P is, for some relation R and entity x, the property of bearing R

to x (e.g. if P is the relation of being a friend of Aristotle), then it will have R and x among its

20Fortunately, it would not be very difficult to accommodate conflicting intuitions (as far as these two points
are concerned) by suitable adjustments to the account developed below. Thus, to accommodate a possible
intuition to the effect that properties like not having Paris as a part are extrinsic, one could easily assimilate our
treatment of this sort of property to that of properties like being distinct from Paris. (Cf. Section 10.1. This move
would however have the probably undesirable effect that properties like having Paris or Rome as a part would
also be classified as extrinsic.) And to do justice to a possible intuition to the effect that properties like having a
part that is distinct from Dublin are extrinsic, one would only have to remove a certain complication that is (with
the aim of accommodating the contrary intuition) introduced in Section 10.3.

9



logical constituents. A convenient way of expressing an attribute’s logical constitution (at

a lesser or greater level of granularity) is by means of λ-expressions. For example, the con-

junction of two properties Q1 and Q2 could be represented by ‘λx (Q1(x)∧Q2(x))’, and the

property of being a friend of Aristotle could be represented by ‘λx friend-of(x, Aristotle)’.21

The general idea of an attribute’s being ‘constructed’ from other entities will already

be familiar from algebraic treatments of attributes, of the sort found in Bealer (1982; 1994),

Zalta (1983), Menzel (1993), and Swoyer (1998). A caveat, however: the present talk of

logical constitution should not be understood as implying that for any given attribute there

is only one way in which it is constituted from other entities. For example, if P is the

conjunction of two other properties Q and R, where Q is in turn the conjunction of two

properties Q1 and Q2, then P may at the same time be the conjunction of Q1 and a further

property S, namely if S is the conjunction of Q2 and R. Whether there are such cases

depends on the coarse-grainedness of the underlying conception of attributes, and our talk

of logical constitution should not be understood as committing us to any particular stance

on that issue.

The logical constitution of an attribute can plausibly be regarded as part of the attrib-

ute’s essence. Thus it is essential to a conjunction of two properties P and Q that it should

be the conjunction of these two properties; and likewise it is essential to the property of

21Readers of Marshall (2009) might suspect that, without the appeal to some extra-logical notions, the pursuit
of a logical-constitution approach will be a fool’s errand: for doesn’t his argument (which goes back to Parsons
[2001: 22f.] and is reminiscent of an earlier argument by Sider [1996: 23]) show that intrinsicality cannot be
“defined using only broadly logical notions”? The argument runs roughly as follows. Let E be the property of
being an electron, and let E∗ be that of being either a lonely positron or an accompanied electron, where something is
‘lonely’ iff it is the only thing there is, and ‘accompanied’ iff it is not lonely. Plausibly, E is intrinsic while E∗

is extrinsic. But E and E∗ satisfy the same “rigid broadly logical” formulas, where (i) a formula A with one
free variable is rigid iff we have ∀x (�A(x) ∨�¬A(x)) and (ii) a formula is broadly logical iff it is a formula of
a certain restricted language L. (I have reproduced Marshall’s description of this language at the beginning of
Appendix A.) Moreover, if ‘x is intrinsic’ were to abbreviate a broadly logical formula, the latter would have to
be rigid. Hence ‘x is intrinsic’ cannot abbreviate a broadly logical formula, or else E and E∗ would either both
count as intrinsic or both count as extrinsic. But that ‘x is intrinsic’ abbreviates a broadly logical formula is
precisely what it would mean for ‘intrinsic’ to be definable using only broadly logical notions; and so ‘intrinsic’
cannot be defined in this way.

A partial response to this argument on behalf of the present paper’s project would be to point out that the
language in which we will be formulating our account of intrinsicality differs in some crucial respects from
Marshall’s language L, but it takes some effort to work out what those crucial respects are. (See Appendix A.
Many thanks to an anonymous referee for pressing me on this issue.)

It is interesting to note that Marshall himself goes some way in the direction of a logical-constitution ap-
proach, not only in his own account of intrinsic aboutness but also already in his (2014) discussion of Yablo’s
(1999) account of intrinsicality. However, he there deals with the logical constitution not of attributes but rather
of states of affairs, and he goes beyond the broadly logical in employing a concept of perfect naturalness.
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being a friend of Aristotle that it should be in a suitable way composed from Aristotle and

the friendship relation. In this way, an attribute’s logical constitution can be said to reflect

its essence, and this in turn makes it plausible to say that the logical-constitution approach

preserves what I have in the previous Section called the ‘essentiality intuition’.22

4 Intrinsicality and Logical Complexity

Before we try to implement the logical-constitution approach and construct a formal ac-

count of intrinsicality, it will be useful to have an informal orienting characterisation to

serve as a guideline. According to a typical such characterisation, used by Marshall

(2012: 531), a property is intrinsic iff it is necessarily the case that any entity x that has

that property has it “in virtue of how it [i.e. x] is, as opposed to how it is related to things

wholly distinct from it or how things wholly distinct from it are”. This characterisation

largely conforms to the way in which I shall understand the term ‘intrinsic’ in the present

paper, though with a few qualifications. First, Marshall’s characterisation is concerned

only with the intrinsicality of properties, rather than with that of properties and relations,

though this is only a minor point.23 A more important point has to do with the fact that, by

employing the notion of metaphysical necessity, Marshall’s characterisation stacks the deck

in favour of a modal analysis of intrinsicality, as opposed to one that is framed in terms of

logical constitution. Moreover, in focusing on “how” a given entity x “is”, his character-

isation appears to set aside the question of which entities x has as a part, and thereby risks

giving the impression that a property like that of having Paris as a part is not intrinsic. For

these reasons, the orienting characterisation that I shall take as a guideline in this paper

deviates slightly from Marshall’s. It runs as follows:

22It might be objected that an attribute’s logical constitution need not always reflect its whole essence. For
example, given that it is essential to Socrates’ singleton to have Socrates as a member, it will plausibly also be
essential to the property of being identical with Socrates’ singleton to have a constituent that has Socrates as a
member. So the essence of an attribute can sometimes be said to ‘outstrip’ its logical constitution. However,
I am not aware of any case where this would uncontroversially affect the question of whether the respective
attribute is intrinsic. (Thanks here to Alex Skiles.)

23For a formulation that also applies to relations, see Weatherson & Marshall (2017: §1.3).
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(In0) A κ-adic attribute A is intrinsic iff to instantiate A is, for any entities x1, x2, . . .
︸ ︷︷ ︸

κ-many

, purely

a matter of which parts the xi have, what the xi and their parts are like, and how

the xi and their parts are related among each other, as opposed to what other entities

there are, or how any of the xi and their parts are related to any other entities.

To forestall misunderstanding, it should be noted that the use of the ‘any’ in “for any

entities x1, x2, . . .” is here best understood as a concession to English grammar. Ideally, the

variables ‘x1’, ‘x2’, etc.—or more precisely their occurrences—would in (In0) be bound not

by some quantifier but rather by the ‘is purely a matter of’ construction. More specifically,

the right-hand side of (In0) should be read as trying to articulate something about the logical

constitution of the respective attribute A.24

The interpretational problem that arises from the ‘any’ in (In0) appears to be somewhat

less acute if we limit the scope of the characterisation to properties and use a combination

of ‘something’ and ‘it’:

(In′
0) A property P is intrinsic iff for something to instantiate P is purely a matter of which

parts it has, what it and its parts are like, and how it and its parts are related among

each other, as opposed to what other entities there are or how it or any of its parts

are related to any other entities.

For here the ‘something’ seems to allow for a reading that is not simply quantificational.

Given that we have now set up an informal characterisation, it might be thought that in

order to construct an appropriately precise account, we only have to formalise the various

components of (In0). This might well be an instructive exercise, but there is also reason to

believe that it would lead us into some unnecessary detours.25 For a more direct approach,

24Compare: ‘To instantiate the sister-of relation is, for any x and y, to be such that x is a female sibling of
y.’ On a strict reading, the ‘any’ here has to be interpreted as a quantifier, but it would not be uncharitable
to understand the statement instead as trying to tell us what it is to instantiate the sister-of relation. Read in
this way, it could be regimented (as it would be in Rayo’s [2013] formalism) with the help of an operator ‘≡’
that takes the variables ‘x’ and ‘y’ as subscripts and thereby binds their occurrences, as in, ‘sister-of(x, y) ≡x,y

female(x) ∧ sibling-of(x, y)’. The ‘is purely a matter of’ construction might be regimented in a similar fashion,
as far as variable-binding is concerned. (Thanks to Fabrice Correia and an anonymous referee for pressing me
on this issue.)

25For example, the point of the ‘as opposed to’ clauses in (In0) and (In′
0) is to give an indication as to what

kinds of relation are supposed to be referred by the ‘how . . . are related among each other’. Namely, they are
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I propose to start instead with the question of whether intrinsicality or extrinsicality (or

neither) should be considered a ‘complex-making’ feature of attributes, where the relevant

sense of ‘complex’ is one of logical rather than, say, mereological complexity.26 In other

words: Must an attribute be (logically) complex in order to be intrinsic? Or must it be

complex in order to be extrinsic? At least prima facie, the correct answer to the first question

is ‘no’, for it appears plausible to say that all logically simple properties are intrinsic; and

one would thus expect that the same will be true for logically simple relations.27 But if this

is correct, then the answer to the second question will clearly be ‘yes’. That is, in order to

be extrinsic, an attribute has to be complex.

If an attribute has to be logically complex in order to be extrinsic, it stands to reason that

in order to be extrinsic it has to be logically complex in a certain way, since not all complex

attributes are extrinsic. (Having Paris as a part, for instance, is complex but intrinsic.) But

how are we to specify a “way” in which a given attribute is logically complex? Here λ-

expressions promise to be useful, since they allow us to express how a given attribute is

‘logically constituted’ from various other entities. What is less clear is whether, in order for

a given attribute to be extrinsic, there has to exist some λ-expression that (as we shall say)

denotes the attribute while expressing the requisite sort of complexity; or whether, instead,

it has to be the case that all λ-expressions by which the attribute is denoted express that

sort of complexity.28 A moment’s reflection suggests that the more plausible option is

supposed to be intrinsic relations. Accordingly, one of the challenges in constructing a formalisation of (In0)
(if one were to go this route) would be to formalise this point without running into circularity. A natural way
of doing so would be to give the formalisation a recursive character, which would immediately lead to the
question of what sort of attribute should be regarded as constituting the ‘base case’ of an intrinsic attribute,
and why. Here a promising answer would be to say that the base case is constituted by the logically simple
attributes (see below). However, if the intrinsicality of the logically simple attributes were to be hard-wired
into our account via an explicit declaration, it would fail to provide an answer as to what it is about the logically
simple attributes that makes them intrinsic.

26On a very straightforward approach, an attribute may be said to be logically simple iff it “is not itself
a negation, conjunction, disjunction, quantification, modalization, etc. of any other properties or relations”
(Menzel 2016). Unfortunately, under any but the most fine-grained conceptions of attributes, this analysis has
the consequence that no attribute at all is logically simple. In my (2016: §3.3) I have proposed an alternative
account that does not suffer from this defect. (Cf. footnote 96 below.)

27An argument for the thesis that all simple properties are intrinsic can be found in Marshall (2012: 535).

28To say that a λ-expression ‘denotes’ a given attribute will sound odd to someone who thinks of a λ-
expression as a kind of abbreviation of a natural-language predicate (since such predicates are not usually taken
to denote anything). In the present paper, however, λ-expressions are expressly used as names of attributes.
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the first. After all, if a given attribute is exhibited as extrinsic by even only a single λ-

expression, why should that not be enough? A potential problem arises (as we will see

in Section 8) in connection with making sure that the λ-expression in question does not

merely seem to exhibit the attribute as having the requisite sort of complexity. But for

now, there is little reason not to stick with the first option. We will therefore say that, to

a first approximation, an attribute is extrinsic iff it is denoted by some λ-expression that

satisfies certain conditions. However, there is a somewhat technical problem that should

be addressed right away.

The formulation just given (i.e. “an attribute is extrinsic iff it is denoted by . . . ”) would

be acceptable if it did not falsely suggest that the λ-expression in question belongs to some

language whose semantics fully settles which λ-expressions denote which attributes. While

it is true that we will be relying on a certain language (to be described in the next Section),

the semantics of that language will be extremely ‘gappy’, insofar as the only atomic ex-

pressions to have a fixed meaning will be a handful of operators and a single constant

denoting the identity relation. As a result, any λ-expression that contains occurrences of

one or more other constants will have a denotation only relative to a function (called ‘inter-

pretation’) that maps each of the respective constants to some entity. Similarly, if a given

λ-expression contains free occurrences of some variables, it will have a denotation only rel-

ative to a function that maps each one of those variables to some entity. In the general case,

we will thus have to speak of λ-expressions as having—or failing to have—a denotation

only relative to some interpretation and variable-assignment.

As it is often tedious to keep track of relativisations to interpretations and variable-

assignments, it might be thought convenient to fix on a particular interpretation I and

variable-assignment g and to declare that all further talk of denotation is to be understood

Some philosophers, wishing to avoid what Gilmore (2013) has in a different context called a ‘priority prob-
lem’, may prefer to give an account of intrinsicality not in terms of λ-expressions (or any other sort of ‘lin-
guistic’ entity), but rather exclusively in terms of ‘ways in which an attribute may be constituted from other
entities’, or modes of constitution for short. In principle this may be possible, but it is likely to run into some
practical difficulties. In particular, the linear structure of λ-expressions makes it easy to single out indi-
vidual occurrences of expressions, such as variables or quantifiers. Modes of constitution, by contrast, are
not naturally thought of as having a linear structure. (The importance of being able to single out term- and
operator-occurrences—or whatever the appropriate analogue would be if we were instead talking about modes
of constitution—will become apparent in Sections 7–10.)

14



as relativised to I and g. But this proposal suffers from a serious shortcoming. Since there

are too many things to form a set (if one counts the ordinals, for instance), there simply

does not exist any interpretation or variable-assignment that assigns a constant or variable

to every entity—at least not if interpretations and variable-assignments are conceived of as

functions and functions as sets of ordered pairs. To avoid the limitations that would result

from relativising to just a single interpretation and variable-assignment, we can instead

quantify over all interpretations I and variable-assignments g and then (in the scope of

such a quantification) relativise to the respective I and g. We will thus say that an attribute

A is extrinsic iff for some interpretation I, variable-assignment g, and λ-expression L: (i)

L denotes A relative to I and g, and (ii) L, together with I and g, satisfies such-and-such

further conditions. Conversely, since an attribute is intrinsic iff it fails to be extrinsic, our

account of intrinsicality will take the following form:

(In1) An attribute A is intrinsic iff, for any interpretation I, variable-assignment g, and

λ-expression L: if L denotes A relative to I and g, then . . . .

This is of course only a start. We still need to find a sensible way of filling in the ellipsis,

and in fact most of the rest of this paper will be taken up by this task. But first we have to

outline the formal framework that we will be operating in.

5 A Formal Language

We have to outline a system of expressions—a formal language—by which attributes and

states of affairs can be denoted. The language in question is essentially a version of the

familiar language of first-order logic, except for a few modifications.29

29More specifically, the system sketched below is for the most part identical to the one described in my
(2016: §2). The only substantial difference is that the present language admits infinitely ‘deep’ formulas, i.e.
formulas with an infinite number of levels of parentheses. (The existence of such formulas is a consequence of
the fact that the language allows for infinitary conjunctions. For suppose that ϕ1, ϕ2, . . . are countably many
formulas such that, for each n with 0 < n < ω, ϕn is of depth n. The infinitely long conjunction of the ϕi, i.e.
pϕ1 ∧ ϕ2 ∧ . . .q, will then be of infinite depth. The language of my [2016] also allows for infinitary conjunctions,
but one of the constraints that are there imposed on the syntax of formulas prohibits infinitely deep formulas,
thereby leading to inconsistency.)
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5.1 Syntax

The operators of the language are ‘¬’, ‘∧’, ‘∃’, and ‘λ’, to which the parentheses ‘(’ and ‘)’

and the comma are added as auxiliary symbols. Italicised letters (in upper or lower case,

and with or without sub- or superscripts) are used as variables, and unitalicised English

words or hyphenated phrases (again with or without sub- or superscripts) are used as

constants. We will be assuming that we have available proper-class many variables and

constants. The symbol ‘I’ will be employed as a special ‘logical constant’ to denote the

identity relation. We will count as a term anything that is a variable, constant, formula, or

λ-expression. This inclusiveness is motivated by the fact that formulas and λ-expressions

are intended to serve as names (of states of affairs and attributes, respectively). A term will

be said to be atomic iff it is either a variable or a constant.

The syntax of non-atomic terms (i.e. of formulas and λ-expressions) can be specified in

the usual recursive manner. To begin with, a formula is any expression that conforms to

one of the following four patterns:

(i) pP(t1, t2, . . .)q, where P is a constant, variable, or λ-expression, and where t1, t2, . . .

are one or more terms.

(ii) p¬tq, where t is a constant, variable, or formula.

(iii) p(t1 ∧ t2 ∧ . . .)q, where the ti are two or more constants, variables, or formulas.

(iv) p∃v1, v2, . . . ϕq, where the vi are one or more pairwise distinct variables and ϕ is

a formula such that: each vi has at least one free occurrence in ϕ, and each free

occurrence of each vi in ϕ stands at subject-position.

To say that a term-occurrence stands at subject-position means here that it occurs as an

element of an argument-list, which is a list of one or more term-occurrences enclosed

in parentheses, delimited by commas, and immediately preceded by an occurrence of a

constant, variable, or λ-expression. Two examples would be the occurrences of ‘x’ and ‘y’

in ‘P(x, y)’. By contrast, we will say that a term-occurrence stands at predicate-position iff it

immediately precedes an argument-list. An example is the occurrence of ‘P’ in ‘P(x, y)’.
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Further, a λ-expression is any expression pλv1, v2, . . . ϕq, where the vi are one or more

pairwise distinct variables and ϕ is a formula such that: each of the vi has in ϕ at least one

free occurrence, and each free occurrence of each vi in ϕ stands at subject-position. These

restrictions, as also the parallel restrictions in (iv) above, are motivated by the need to avoid

semantic paradox.30 The distinction between free and bound occurrences can be drawn in

the usual way. (For formal definitions, see Appendix B.) In connection with λ-expressions,

we will also need to speak of the λ-variables and the matrix of such an expression. In

particular, for any λ-expression pλv1, v2, . . . ϕq, the vi will be said to be its λ-variables and

ϕ to be its matrix. We will say that a term-occurrence stands at sentence-position iff it is

either (a) the operand of some occurrence of ‘¬’ or ‘∧’ or (b) a formula-occurrence that,

for some variables v1, v2, . . ., is immediately preceded by an occurrence of pλv1, v2, . . .q or

p∃v1, v2, . . .q.

By way of abbreviation, we will write p(t = t′)q instead of pI(t, t′)q and p(t 6= t′)q

instead of p¬I(t, t′)q, where t and t′ may be any terms. In addition, p(ϕ1 ∨ ϕ2 ∨ . . .)q will

abbreviate p¬(¬ϕ1 ∧ ¬ϕ2 ∧ . . .)q, p(ϕ → ψ)q and p(ϕ ↔ ψ)q will respectively abbreviate

p¬(ϕ∧¬ψ)q and p¬(ϕ∧¬ψ)∧¬(ψ ∧¬ϕ)q, and we will write p∀v1, v2, . . . ϕq as shorthand

for p¬∃v1, v2, . . . ¬ϕq. Occasionally, we will also write p(t1 & t2 & . . .)q (where t1, t2, . . . are

atomic terms distinct from ‘x’) to abbreviate pλx (t1(x) ∧ t2(x)∧ . . .)q. As usual, outermost

parentheses may be omitted.

5.2 Semantics

In general, a term has or lacks a denotation only relative to some interpretation and

variable-assignment. An interpretation is here a partial function from constants to entit-

ies that maps the constant ‘I’ to the identity relation, and a variable-assignment is simply a

partial function from variables to entities. As usual, these functions will be treated as sets

of ordered pairs. (It will thus, e.g., make sense to speak of a superset of an interpretation.)

We will often write ‘a denotesI,g b’ as an abbreviation of ‘a denotes b relative to I and g’,

and we will say that two terms are coreferential relative to I and g—or coreferentialI,g for

30Cf. Plate (2016: 7n., 12n.).
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short—iff they both denoteI,g the same entity. (If two terms fail to denoteI,g anything, they

will thus not be coreferential relative to I and g.) We further say that a cardinality κ is

an adicity of an attribute A iff A has an instantiation by some κ-sequence of entities.31 An

attribute with an adicity κ will also be called κ-adic.

The semantics of formulas and λ-expressions can be recursively specified by the fol-

lowing six stipulations, where the relevant notions of instantiation, negation, conjunction,

and existential quantification are taken as primitive and where I and g may be any interpret-

ation and variable-assignment:

(S1) A constant or variable t has a denotation relative to I and g iff either I or g maps t to

some entity. In this case t denotesI,g that entity.

(S2) A formula pP(t1, t2, . . .)q has a denotation relative to I and g iff (i) each ti has a de-

notation relative to I and g and (ii) P denotesI,g some attribute whose adicity matches

the length of the argument-list. In this case pP(t1, t2, . . .)q denotesI,g the instantiation

of the attribute denotedI,g by P by the entities that are respectively denotedI,g by

t1, t2, . . . (in this order).

(S3) A formula p¬tq has a denotation relative to I and g iff t denotesI,g some state of

affairs s. In this case p¬tq denotesI,g the negation of s.

(S4) A formula pt1 ∧ t2 ∧ . . .q has a denotation relative to I and g iff each ti denotesI,g a

state of affairs. In this case pt1 ∧ t2 ∧ . . .q denotesI,g the conjunction of the states of

affairs respectively denotedI,g by the ti.

(S5) A formula p∃v1, v2, . . . ϕq has a denotation relative to I and g iff pλv1, v2, . . . ϕq

denotesI,g an attribute A. In this case p∃v1, v2, . . . ϕq denotesI,g the existential quan-

tification of A.

(S6) A λ-expression pλ v1, v2, . . .
︸ ︷︷ ︸

κ-many

ϕq has a denotation relative to I and g iff ϕ denotes a

31This talk of instantiation “by some κ-sequence of entities” should be understood as shorthand for talk of
instantiation by some entities x1, x2, . . .

︸ ︷︷ ︸

κ-many

. To say that an attribute ‘has’ such an instantiation means that there

exists such an instantiation, not that it obtains.
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state of affairs relative to I and some variable-assignment that differs from g at most

in what it assigns to the vi. In this case pλv1, v2, . . . ϕq denotesI,g an attribute A such

that, for any κ-sequence of entities x1, x2, . . .:32 the instantiation of A by x1, x2, . . . (in

this order) is the state of affairs that is denoted by ϕ relative to I and a variable-

assignment that differs from g at most insofar as, for each i ∈ {1, 2, . . .}, it assigns xi

to vi.

As can be seen from these stipulations, we are making use of a rather abundant ontology

of states of affairs (and relatedly of attributes), since we are assuming that every state of

affairs has a negation, that every set of states of affairs has a conjunction, and so on.

6 On the Individuation of Attributes

While it may seem desirable to have an account of intrinsicality that yields intuitively

correct results more or less independently of how attributes are individuated (e.g., whether

in a coarse- or fine-grained fashion), this desideratum should arguably not be regarded

as an absolute requirement.33 In this Section, I lay out some considerations that favour

a certain moderately coarse-grained way of individuating attributes. For brevity’s sake,

ways of individuating attributes will here be referred to as ‘conceptions’ of attributes. The

moderately coarse-grained conception at which we will arrive at the end of this Section

will form the background for the account of intrinsicality to be developed in Sections 7–10.

6.1 Two auxiliary principles

In order to eliminate a certain ambiguity in the semantics of λ-expressions, I propose to

adopt the following two auxiliary principles:34

32More precisely: for any sequence of entities x1, x2, . . . whose length exactly matches that of v1, v2, . . . (i.e.
the sequence of the λ-variables of pλv1, v2, . . . ϕq), so that for each vi in the latter sequence there is an xi in the
former, and vice versa. (This precisification is needed for the case of infinitely long sequences.)

33See the second half of Section 6.1 below. (Also cf. Appendix A, footnote 12.)

34Cf. Plate (2016: 10). The first of these principles will be controversial, as it is often held that some attributes
can be instantiated by variable numbers of entities. (E.g., see Yi [1999], MacBride [2005: §§2.2ff.], McKay
[2006: 13].) If there are such attributes, I will here have to ignore them to keep the exposition manageable.
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(P1) Every attribute has exactly one adicity.

(P2) If A and B are two κ-adic attributes, then there exists some κ-sequence of entities

x1, x2, . . . such that A’s instantiation by x1, x2, . . . (in this order) is distinct from B’s

instantiation by x1, x2, . . . (in this order).

Taken together, (P1) and (P2) entail that no attribute shares all of its instantiations with

any other. As already hinted at, these principles are motivated by considerations about

the semantics of λ-expressions. For what the above stipulation (S6) tells us about the

denotation of such expressions is only (i) under what conditions a given λ-expression L =

pλ v1, v2, . . .
︸ ︷︷ ︸

κ-many

ϕq has a denotation and (ii) that, if those conditions are satisfied, L denotes

an attribute whose instantiation by any given κ-sequence x1, x2, . . . is the state of affairs

denoted by ϕ relative to a certain interpretation and variable-assignment.35 With (P1) and

(P2) in place, that indefinite article can be replaced with a definite one, since there will then

be only one attribute that satisfies the description.

Given those two principles, and in particular (P2), attributes may in the present frame-

work be said to be individuated by their instantiations. It follows that the coarse-grainedness

of our conception of attributes will closely correspond to the coarse-grainedness of our con-

ception of states of affairs.36

Prima facie it is desirable to have an account of intrinsicality that correctly classifies

attributes as intrinsic or extrinsic regardless of how finely or coarsely they may be indi-

viduated. On reflection, however, this is not so clear. For suppose that a certain conception

of attributes is so coarse-grained as to identify a certain intuitively intrinsic property P with

a certain intuitively extrinsic property Q. (An example of such a conception is the familiar

view on which properties are functions from possible worlds to extensions. Assuming that

Socrates could not have failed to be a son of Phaenarete, the intuitively intrinsic property

35To reduce clutter, I am here largely suppressing references to interpretations and variable-assignments.

36This will become clearer in the next subsection. By and large, to say that a given conception of states
of affairs is more coarse-grained than another means, in the terms of our framework, that under the first
conception a state of affairs can typically be denoted by a broader range of formulas than under the second.
Correspondingly, to say that a given conception of attributes is more coarse-grained than another means that,
under the first conception, an attribute can typically be denoted by a broader range of λ-expressions than
under the second.
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of being Socrates is on this conception identical with the intuitively extrinsic property of

being Socrates and a son of Phaenarete.) Should we say that any account of intrinsicality, even

when combined with such a conception, ought still to yield the verdict that P is intrinsic

and Q extrinsic? On one possible view the answer is ‘yes’: the account has to classify P

and Q in this way in order to be extensionally adequate—even if this means that, under the

conception in question, one and the same property is classified as both intrinsic and extrinsic.

On another possible view, the answer is ‘no’: if the conception in question is correct, then

P and Q really are one and the same property, and on pain of contradiction we shouldn’t

classify one and the same property as both intrinsic and extrinsic. Rather we should clas-

sify it as either intrinsic or extrinsic, and we are free to do so in accordance with our account

(“spoils to the victor”).

Which of these two views is correct? That plausibly depends on the circumstances. If

one has better reasons to stick with that coarse-grained conception of attributes than to

accept the intuitive assessment according to which P is intrinsic and Q extrinsic, then the

second view may very well be the appropriate one to take.37 But what if one has better

reason to accept the intuitive assessment than to stick with the coarse-grained conception?

It is not obvious that in this case the first view would be the correct one to hold. For

if P is intrinsic and Q extrinsic, it immediately follows that any conception of attributes

that identifies the two is false; and it is far from clear that we should want our account

of intrinsicality to yield, when combined with such a conception, the “correct” but self-

contradictory verdict that one and the same property is both intrinsic and non-intrinsic.

After all, the overall theory that results from combining our account with such a conception

would in that case be not only false but inconsistent. Accordingly, if our aim is a correct

overall theory, it appears that we should simply reject that conception.

These remarks straightforwardly generalise to a broad range of cases. For presumably

it does not matter very much why a given conception of attributes is rejected, as long

as it is rejected with good reason; and so we may draw the (tentative) conclusion that,

in constructing our account of intrinsicality, we should feel free to ignore conceptions of

37Another option might be to say that some, or all, properties are intrinsic or extrinsic only relative to a certain
description. But this would go against the way the intrinsic/extrinsic distinction is commonly applied.
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attributes that we have good reason to reject. In the following two subsections, I shall

identify (and then reject) two sorts of such conceptions: first, those that are in a certain

sense irregular, and second, those that on closer inspection turn out to be implausibly

coarse-grained.

6.2 A regularity assumption

Suppose that, on a certain view about properties, the property of being Socrates is identical

with being Socrates and someone’s son, on the grounds that Socrates is essentially a son of

Phaenarete. Apart from identifying an intuitively intrinsic property with one that is intu-

itively extrinsic, the view under consideration appears problematic also because it renders

the individuation of properties an ‘irregular’ affair: it takes the individuation of properties

to depend on questions that are strictly extraneous to the theory of properties per se, such

as the question of what properties Socrates has essentially. To be sure, questions of this

nature will be quite relevant and not at all extraneous if we think of properties as functions

from possible worlds to extensions, or as sets of possibilia. But as we have seen above, this

sort of conception should be rejected for being overly coarse-grained (if not already for its

commitment to possibilia).38

Similar remarks hold for the individuation of states of affairs: if we reject the possib-

ilist identification of states of affairs with sets of possible worlds (or with functions from

possible worlds to truth-values), there will be little reason to think that Socrates’ being self-

identical (in symbols: Socrates = Socrates) is the same as the state of affairs that Socrates

is self-identical and a son of Phaenarete. Instead, we will be free to individuate states of

affairs in a manner that depends only on their respective logical constitution, as expressed

by the formulas by which they can be denoted.

This is of course quite general and abstract. A natural way of formulating a fully specific

thesis about the individuation of states of affairs in accordance with this general idea would

be to take some concept of equivalence (where, under any such concept, the equivalence of

two formulas is solely a matter of their logical form), and to use it in framing a thesis along

38Also cf. the next subsection.
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the following lines:39

(CS) For any interpretation I and variable-assignment g, no two equivalent formulas de-

noteI,g distinct states of affairs.

The weaker the concept of equivalence that is here ‘plugged in’ as the relevant sense of

‘equivalent’, the more coarse-grained the individuation of states of affairs will have to

be in order for (CS) to be true. (Thus, weaker concepts of equivalence correspond to

more demanding readings of (CS).) Assuming that (CS) is true under a given concept of

equivalence, (P1) and (P2), together with (S6), can be seen to give rise to the following

thesis about the coarse-grainedness of the individuation of attributes (in which the term

‘equivalent’ is to be read in the same sense as in (CS)):

(CA) For any interpretation I and variable-assignment g, no two λ-expressions denoteI,g

distinct attributes if they have equivalent matrices and the same λ-variables in the

same order.

Now, for any given concept of equivalence, (CS) and (CA) only articulate a lower bound

on the coarse-grainedness of the individuation of (respectively) states of affairs and attrib-

utes. Thus they do not rule out such irregularities as the identity of being Socrates and being

Socrates and a son of Phaenarete. To enforce a ‘regular’ individuation of attributes and states

of affairs, one would in addition have to adopt a thesis that imposes an upper bound on

the coarse-grainedness of states of affairs. This might be done, to a first and very rough

approximation, by saying that only equivalent formulas can denote the same state of affairs.

But this would be a serious mistake, for if two formulas contain distinct sets of constants

denoting the same entities, they may easily fail to be equivalent and yet denote the same

state of affairs; and this need not have anything to do with the coarse-grainedness of states

of affairs.40 In order to account for such cases, it will be helpful to draw on the notion of a

‘reduction’ of a term. Roughly, a reduction of a term t can be understood as being simply

39The ‘C’ in the label stands for ‘coarse-grained’ and the ‘S’ for ‘state of affairs’. In the following we will also
use ‘F’ for ‘fine-grained’ and ‘A’ for ‘attribute’.

40For example, relative to an interpretation that maps the constant ‘bald’ to some property P and maps both
‘Cicero’ and ‘Tully’ to the same entity x, the two inequivalent formulas ‘bald(Cicero)’ and ‘bald(Tully)’ will
denote one and the same state of affairs, viz., P’s instantiation by x.
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the result of replacing in t zero or more occurrences of atomic terms with coreferential

other terms. More precisely:41

Definition 6.1. A term t′ is a reduction of a term t relative to an interpretation I and a

variable-assignment g iff t′ is the result of replacing in t zero or more occurrences of atomic

terms by occurrences of other terms, in such a way that the following three conditions are

satisfied:42

(i) Each replaced occurrence o is replaced with a term that is coreferentialI,g with the

term of which o is an occurrence.

(ii) No replaced occurrence is a bound variable-occurrence.

(iii) No replacing occurrence o contains a variable-occurrence that is bound by an operator-

occurrence not in o.

It is easy to check that any reduction of a formula is again a formula, and that any reduction

of a λ-expression is again a λ-expression. Moreover, any term is a reduction of itself

(relative to any given interpretation and variable-assignment). For the sake of brevity, we

will often write ‘reductionI,g’ instead of ‘reduction relative to I and g’.

With the help of the concept of reduction, we can impose an upper bound on the

coarse-grainedness of states of affairs (and consequently attributes) by adopting a thesis of

the following form:

(FS) For any interpretation I, variable-assignment g, and formulas ϕ and ψ: if ϕ and ψ

denoteI,g the same state of affairs, then there exist an interpretation I ′ ⊇ I and a

variable-assignment g′ ⊇ g such that some reductionI′,g′ of ϕ is equivalent to some

reductionI′,g′ of ψ.43

41Cf. Plate (2016: 24).

42Formal definitions relating to the notions of occurrence and containment may be found in Appendix B.

43To see the need for quantification over supersets of the respective interpretation I and/or the respective
variable-assignment g, suppose that ϕ = ‘a∧ b’, ψ = ‘c∧ d’, and that three states of affairs s1, s2, and s3 are such
that (i) ‘a’ denotesI,g s1 ∧ s2, (ii) ‘b’ denotesI,g s3, (iii) ‘c’ denotesI,g s1, (iv) ‘d’ denotesI,g s2 ∧ s3, and (v) no term
denotesI,g s2. Finally, suppose that, for any atomic terms or formulas t1, t2, and t3, the formula p(t1 ∧ t2) ∧ t3q

is in the relevant sense equivalent to pt1 ∧ (t2 ∧ t3)q. In this case, it may still turn out that no reductionI,g of
ϕ is equivalent to any reductionI,g of ψ. However, if g′ is a variable-assignment that maps each variable in g’s
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In the opposite way to (CS), weaker concepts of equivalence correspond to less demanding

versions of (FS). But analogously to (CS), under any particular reading, the truth of (FS)

will give rise to a corresponding thesis about the coarse-grainedness of attributes:

(FA) For any interpretation I, variable-assignment g, and λ-expressions L1 and L2: if L1

and L2 have the same λ-variables in the same order and denoteI,g the same attribute,

then there exist an interpretation I ′ ⊇ I and a variable-assignment g′ ⊇ g such that

the matrix of some reductionI′,g′ of L1 is equivalent to the matrix of some reductionI′,g′

of L2.

This thesis follows from (FS) by a relatively straightforward proof.44

Piggybacking (as it were) on (CS) and (FS), our regularity assumption can now be stated

as follows:

(R) There exists a concept of equivalence under which (CS) and (FS) are both true.

By the above observations, any concept of equivalence that renders both (CS) and (FS) true

will do the same for (CA) and (FA). Informally, we will say of a concept of equivalence that

it ‘captures’ the coarse-grainedness of a given conception of attributes iff, according to that

conception, the concept in question renders both (CA) and (FA) true.

domain to the same entity as g (which is to say that g′ ⊇ g) and in addition maps the variable ‘e’ to s2, then
‘(c ∧ e) ∧ b’ will be a reductionI,g′ of ϕ, and the formula ‘c ∧ (e ∧ b)’, which is equivalent to ‘(c ∧ e) ∧ b’, will
be a reductionI,g′ of ψ. By the corresponding version of (CS) and the semantics of formulas, it then follows
that ϕ and ψ denoteI,g the same state of affairs; for, by the semantics of formulas, ϕ and ψ are coreferentialI,g′

with their respective reductionsI,g′ ‘(c ∧ e) ∧ b’ and ‘c ∧ (e ∧ b)’, and by (CS), ‘(c ∧ e) ∧ b’ is coreferentialI,g′

with ‘c ∧ (e ∧ b)’. (Analogous considerations apply to any interpretation I ′ ⊇ I that maps some constant to
s2.) Hence, if (FS) did not quantify over supersets of either I or g, it would risk being false in a way that has
nothing to do with the coarse-grainedness of states of affairs.

44Suppose (FS) holds, and assume for reductio that (FA) doesn’t. The falsity of (FA) would mean that there
exist an interpretation I, a variable-assignment g, and λ-expressions L1 and L2 such that L1 and L2 have the
same λ-variable(s) in the same order and denoteI,g the same κ-adic attribute A, but do not have reductionsI ′,g′

(for any I ′ ⊇ I and g′ ⊇ g) with equivalent matrices. From this it follows that the matrices of L1 and L2

themselves do not have equivalent reductionsI ′,g′ (again, for any I ′ ⊇ I and g′ ⊇ g). Using (FS), one can then

infer that, for any κ-sequence of entities x1, x2, . . . and any variable-assignment g′: if g′ differs from g at most
insofar as it maps the λ-variables of L1 (and thus of L2) to x1, x2, . . ., respectively, then those matrices denoteI,g′

distinct states of affairs. But by the semantics of λ-expressions—i.e. (S6) of Section 5.2—those two states of
affairs would both have to be “the” instantiation of A by x1, x2, . . . (in this order), and that cannot be.
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6.3 Fineness of grain

How fine-grained would a correct conception of attributes have to be? Very generally

speaking, we have a defeasible reason to favour coarser-grained conceptions of attributes

over finer-grained ones, at least insofar as properties and relations are supposed to be

‘ways for things to be’, rather than ways in which things might be represented. A natural

way to spell this out is in modal terms: if P and Q are distinct properties, then it should

be possible for something to have P without having Q, or vice versa. But this is only a

rough guide. The properties of being non-self-identical and being such that Socrates is non-self-

identical, for instance, are both uninstantiable, and so it is trivially impossible for anything

to have the one without the other. Nonetheless, it is intuitively plausible to distinguish

them, on the grounds that they differ with respect to what it takes for them to exist. In

order for being non-self-identical to exist, we seem to need (under certain assumptions about

the combinatorial abundance of attributes) only the existence of the identity relation (and

it may well be doubted whether this is a substantial requirement, as opposed to one that is

trivially satisfied), while, for being such that Socrates is non-self-identical to exist, we also need

the existence of Socrates. A friend of a starkly coarse-grained conception of attributes, on

which these two properties are one and the same, may find ways of dismissing this line

of thought, but its intuitive pull seems rather strong.45 What it suggests is that the indi-

viduation of attributes is considerably more fine-grained than it would be under standard

possibilist construals (under which properties are either sets of possibilia or functions from

possible worlds to extensions). Of course the same is suggested, as we have seen above, by

such pairs of properties as being Socrates and being Socrates and a son of Phaenarete, of which

one is intuitively intrinsic and the other intuitively extrinsic.

Intuitions of this sort have to be treated with some suspicion, however, or else they

might quickly lead us to some overly fine-grained conception of attributes. It may for

instance be tempting to think that, for any property P, the property λx (P(x) ∧ ∃y P(y))

must be extrinsic, given that it can be denoted by this particular λ-expression (with that

45The issue is loosely related to the debate over what Plantinga (1983) calls ‘existentialism’, as well as to the
‘being constraint’ discussed in Williamson (2013: §4.1).
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unrestricted quantifier in the second conjunct!), and that it must therefore be distinct from

P if P is intrinsic. By this line of thought, a theorist may be swiftly led to an unusually

fine-grained conception of attributes that completely overturns the original conception of

properties as ‘ways for things to be’. The mistake here lies in a tendency to think that

a complex λ-expression can only denote an attribute that is at least equally complex. To

guard against this mistake, it will be well to keep in mind that λ-expressions are repres-

entations, and representations, like appearances, can be misleading.46 More particularly,

unless we have already embraced an extremely (and implausibly) fine-grained conception

of attributes, we should expect that some λ-expressions may exhibit a certain amount of

what might be called ‘redundant complexity’.47

What exactly counts as ‘redundant complexity’ will depend on the coarse-grainedness

of the conception in question. Somewhat more precisely, it will depend on what the weak-

est concept of equivalence is under which (CS) still comes out true. (Given the regularity

assumption, this will also be the strongest concept of equivalence under which (FS) comes

out true.48) Under a suitable such concept, the second conjunct of ‘λx (P(x)∧ ∃y P(y))’, for

instance, will constitute an instance of redundant complexity, in particular if the formula

‘P(x) ∧ ∃y P(y)’ is in the relevant sense equivalent to ‘P(x)’.

To return to the main topic of this subsection, the answer to the question of how fine-

grained a correct conception of attributes would have to be would, in keeping with the

regularity assumption, have to be given by some concept of equivalence. To define such a

concept, we may in a first step introduce the notion of a ‘semantically well-formed term’:

Definition 6.2. A term t is semantically well-formed iff t has a denotation relative to at least

one interpretation and variable-assignment.

For example, under the assumption that no attribute is a state of affairs, the formula ‘P(x)∧

46For a possibly helpful analogy, consider the notion of a disjunctive property. Presumably one would not
think that any property that can be denoted by ‘λx (P(x)∨ P(x))’ must be disjunctive (despite that conspicuous
disjunction sign). Rather, the second disjunct in ‘λx (P(x) ∨ P(x))’ will be most reasonably treated as a case of
redundant complexity and any property P as identical with λx (P(x) ∨ P(x)).

47Cf. Plate (2016: 21).

48At least if equivalent concepts are treated as identical. To see this, note first that the strongest concept
under which (FS) is true cannot be stronger than the weakest concept under which (CS) is true. By (R), the
former must then be equivalent to the latter.
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P’ will not count as semantically well-formed. This concept is useful to delineate the class

of pairs of formulas that may properly be said to entail each other. (Of a contradictory

formula, such as ‘x 6= x’, it may be appropriate to say that it trivially entails every formula

whatsoever, but it would be very odd to say the same thing of a semantically ill-formed

formula such as ‘P(x) ∧ P’.) In the next step, we can now use this notion to define the

following concept of entailment:49

Definition 6.3. A formula ϕ entails a formula ψ iff ϕ is semantically well-formed and, for

any interpretation I and variable-assignment g, the following two conditions are satisfied:

(i) If ϕ has a denotation relative to I and g, then so does ψ.

(ii) If ϕ denotesI,g an obtaining state of affairs, then so does ψ.

On this basis, the corresponding concept of equivalence can be introduced in the usual

way, viz., by stipulating that two formulas are equivalent iff they entail each other.

An important characteristic of the present notion of entailment lies in the fact that a

formula will entail another only if the second contains no free occurrence of any variable or

non-logical constant that does not also have a free occurrence in the first. For instance, the

formulas ‘a = a’ and ‘b = b’ do not entail each other, despite being classically equivalent.

Hence, if the present concept of equivalence is such as to render (FS) true, it very plausibly

follows (given that Socrates is distinct from Plato) that the state of affairs (Socrates =

Socrates) is distinct from (Plato = Plato), and similarly, the property of being non-self-

identical will be distinct from that of being such that Socrates is non-self-identical. By what has

been said at the beginning of this subsection, these would be welcome consequences.

It can be argued, however, that the present concept of equivalence is not yet strong

enough. For example, let E be the property of being an electron, let S be the property of

being self-identical, and consider the property of being either an electron distinct from S or a

non-electron identical with S.50 Relative to a variable-assignment that maps ‘E’ to E, this

49Cf. Plate (2016: 13).

50This might be more concisely expressed as: being an electron iff distinct from S. The example is adapted from
Parsons’ (2001: 23) example of being either a lonely positron or an accompanied electron. (For a discussion of the
latter, see Appendix A.)
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latter property—call it ‘E∗’—is denoted by the following λ-expression:

λx
((

E(x) ∧ (x 6= λx(x = x))
)
∨
(
¬E(x) ∧ (x = λx(x = x))

))
. (1)

Further, if we individuate attributes in accordance with the present concept of equivalence,

then E itself can quite analogously be denoted (relative to a variable-assignment that maps

‘E∗’ to E∗) by the following:

λx
((

E∗(x) ∧ (x 6= λx(x = x))
)
∨
(
¬E∗(x) ∧ (x = λx(x = x))

))
. (2)

For if we replace the two occurrences of ‘E∗’ in (2) with (1), we obtain a λ-expression whose

matrix is equivalent to ‘E(x)’, whence it follows by (CA) that, relative to an assignment that

maps ‘E’ to E, (2) denotes λx E(x), which is to say, E.

Given the perfect analogy between (1) and (2), we can now see that the logical consti-

tution of E∗ and E must also be perfectly alike; and hence, if the logical constitution of E

is such as to render it intrinsic, the same must be true of E∗. Yet intuitively, whereas E (i.e.

the property of being an electron) may for all we know be logically simple and intrinsic, E∗

fairly clearly seems to be logically complex and extrinsic.

Assuming that it won’t do to accept E∗ as intrinsic, it might be concluded that attributes

are not rendered intrinsic or extrinsic by their respective logical constitutions alone (if at

all). In other words, it might be thought that it is time to give up on the logical-constitution

approach and to start enlisting the help of genuinely metaphysical notions, such as Lewis’s

concept of a perfectly natural attribute.51 But this sort of proposal, however tempting,

51This concept has notably been employed in Lewis’s own (1983b; 1986a) accounts of intrinsicality as well as
in those of Langton & Lewis (1998) and Marshall (2016a). What makes this concept a natural choice is perhaps
the fact that it is in some suitable sense a concept of fundamentality and thus gives rise to the hope that, once
E∗ is represented in perfectly natural terms, its true extrinsic character will be evident from the representation
in question. If this is the rough idea, one might implement it by replacing the ‘top level’ of our account (as
developed so far), i.e. (In1), with the following:

(In′
1) An attribute A is intrinsic iff there exist an interpretation I, a variable-assignment g, and a λ-expression

L such that the following three conditions are satisfied:

(i) L denotesI,g A.

(ii) Each atomic term that occurs in L at predicate-position denotesI,g a perfectly natural attribute.

(iii) . . . .
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is in the present context clearly too narrow. For, just as it is intuitively hard to swallow

that E∗ will be intrinsic if E is, it is likewise difficult to accept that E and E∗ should be

perfectly alike in their logical constitution. Moreover, if we were to accept it in this case,

we would, more generally, have to say that every logically simple property P is as it were

surrounded by a halo of other simple properties that are related to P just like E∗ is to E. This

point obviously generalises to logically simple relations. And as if this were not enough,

those additional attributes, being themselves logically simple, would all have their own

halos. While we might learn to live with this consequence, it is certainly counter-intuitive.

Possibly it might be suggested that we have to revise our notions of logical constitution

and logical simplicity, but how to do so? Enlisting ‘genuinely metaphysical’ notions for

this purpose would appear both ad hoc and inappropriate.

This apparently leaves us with only one remaining option, viz., to move towards a

less coarse-grained conception of attributes. In other words, we have to assume that the

weakest concept of equivalence under which (CS) and (CA) still hold true is stronger than

the one defined above. To solve our problem, this new concept has to be chosen in such a

way that the matrix of the reduction of (2) that results from replacing the two occurrences

of ‘E’ with (1) will no longer be equivalent to ‘E(x)’; for only then will it no longer follow

from some true reading of (CA) that E is denoted by (2).52

This manoeuvre would spare us some of the complications that we will get into in Section 8.1 below. However,
the appeal to perfect naturalness is itself not unproblematic. For example, in Lewis’s own explications of the
concept, he makes use of some descriptions that are not obviously all satisfied by a single kind of attribute (cf.
Schaffer [2004] and Dorr & Hawthorne [2013]), which lends some credence to the view that the notion is simply
too obscure to be useful. (Cf., e.g., Taylor [1993: 88], Bealer & Mönnich [2003: 195], Witmer et al. [2005: 329].) As
a way out, it might be suggested that we reconceive the perfectly natural attributes as those that are “invoked
in the scientific understanding of the world” (to borrow Schaffer’s [2004: 92] phrase). However, while this
promises to reduce the obscurity, it would also burden our analysis with questions as to what attributes are or
are not invoked in the scientific understanding of the world, and one would not normally have thought that
such questions have anything to do with intrinsicality. (Cf. also Yablo [1999: 480].) Another alternative, which I
have suggested in my (2016: 37), would be to identify the perfectly natural properties with “those that are both
logically simple and ‘positive’ ”, where the ‘positive’ properties are those that are “more restrictive than their
respective negations as to what other attributes they can—within the bounds of nomological necessity—be
coinstantiated with” (p. 30). But in the present context, this proposal would arguably not be helpful, either,
since E∗ appears to be no less ‘positive’ than E.

52At this point it would be desirable to have a thesis that is able to express the fine-grainedness of a given
conception of attributes more fully than (FA) does. For in the absence of an assumption to the effect that E
is denoted by such-and-such a λ-expression other than ‘λx E(x)’, (FA) will always allow E to be denoted by
(2) (or any other λ-expression, even ‘λx ¬E(x)’), as long as the ‘equivalent’ in (FA) is understood in the sense
of a reflexive relation. The task of devising a more complete alternative to (FA) will be best left for another
occasion, however.
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I can here offer only a very tentative and provisional solution to the problem. In a first

step we may introduce the notion of ‘S-entailment’, as follows:53

Definition 6.4. A formula ϕ S-entails a formula ψ iff the following three conditions are

satisfied:

(i) ϕ entails ψ.

(ii) For any atomic term t: if ψ contains a free occurrence of t at subject-position, then so

does ϕ.

(iii) If ψ contains an occurrence of a complex term at subject-position, then so does ϕ.

The ‘entails’ in condition (i) should be read in the sense of Definition 6.3 above. Let us fur-

ther say that two formulas are S-equivalent just in case they S-entail each other. Under a con-

ception of attributes whose coarse-grainedness is captured by the concept of S-equivalence

thus defined, we are free to hold that E fails to be denoted by (2), since no reduction of (2)

will have a matrix that is S-equivalent to ‘E(x)’.54 Individuating attributes in accordance

with the concept of S-equivalence thus solves at least part of our problem. Friends of a

very fine-grained approach, e.g. along the lines of Menzel (1993), will of course wish to go

even further, but for the purposes of this paper there will be no need to determine just how

much more fine-grained our conception of attributes ought to be.

7 A First Condition

7.1 Quantifier-restriction

Returning now to the concept of intrinsicality, let us start by recalling the rough character-

isation given in Section 4:

53The ‘S’ may be read as mnemonic for ‘strict’.

54To produce this result, the second clause of Definition 6.4 is in fact not needed. However, without the
second clause, an analogous problem would arise for properties like λx (E(x) ↔ (x 6= E)) and λx (E(x) ↔
E(E)). Even with all three clauses in place, there are still going to be ‘halos’ around logically simple relations.
For example, if R is a simple dyadic relation, then the relations λx, y (R(x, y) ↔ R(x, x)) and λx, y (R(x, y) ↔
R(y, x)) will also count as simple. This may not be particularly palatable, but at least it does not appear to lead
to the result that intuitively extrinsic attributes will on the present approach be misclassified as intrinsic.
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(In0) A κ-adic attribute A is intrinsic iff to instantiate A is, for any entities x1, x2, . . .
︸ ︷︷ ︸

κ-many

, purely

a matter of which parts the xi have, what the xi and their parts are like, and how

the xi and their parts are related among each other, as opposed to what other entities

there are, or how any of the xi and their parts are related to any other entities.

In addition, recall the preliminary sketch of a formal analysis at which we arrived at the

end of that Section:

(In1) An attribute A is intrinsic iff, for any interpretation I, variable-assignment g, and

λ-expression L: if L denotes A relative to I and g, then . . . .

Given (In0), it may at first be natural to think that at least one of the conditions that have to

take the place of the ellipsis in (In1) will require that any quantification in L be restricted

in its range to parts of the respective relata of A.55 However, this would go a little too far.

Arguably it would be a mistake to require that all quantification in L be restricted in the

mentioned way, for this would also extend to quantifier-occurrences that are contained in

term-occurrences at subject-position, such as the ‘∃’ in ‘λx part(∃y horse(y), x)’. Relative to

a suitable interpretation and variable-assignment, this expression denotes the (admittedly

unusual) property of having the state of affairs that there are horses as a part. I submit that this

property is intuitively intrinsic, despite the fact that the ‘∃’ in ‘λx part(∃y horse(y), x)’ is

not restricted in its range to parts of the property’s respective bearer. If this assessment is

correct, then our condition should be concerned with only those occurrences of quantified

formulas that stand in L at primary sentence-position, i.e. at sentence-position but not con-

tained in any term-occurrence at subject-position.56 Taking this restriction into account, we

can provisionally formalise the desired condition as follows:

(C1) For any formula ϕ and any variables v1, v2, . . .: if L contains at primary sentence-

position an occurrence o of p∃v1, v2, . . . ϕq, then, for any variable v ∈ {v1, v2, . . .},

55Cf., e.g., Skow’s (2007: 151) analysis of intrinsicality for shape properties or Marshall’s (2016a) definition
of ‘intrinsically about’, reproduced in footnote 15 above. (In the case in which A is a property, the respective
‘relatum’ of A would more appropriately be called a ‘bearer’ of A.)

56For definitions of the terms ‘subject-position’ and ‘sentence-position’, see Section 5.1 above.
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there exists a non-empty index set J together with a set of variables {ui | i ∈ J} and

a set of terms {Pi | i ∈ J} such that the following five conditions are satisfied:

(i) Each ui is a λ-variable of L.

(ii) Each Pi denotesI,g a parthood relation.

(iii) ϕ entails p
∨

i∈J Pi(v, ui)q.

(iv) Each occurrence of each ui that is free in o is bound by the initial occurrence of

‘λ’ in L.57

(v) Each occurrence of each Pi that is free in o is free simpliciter.

One of the things that are achieved by the combination of (In1) and this condition—i.e. by

the account of intrinsicality that results from letting (C1) take the place of the ellipsis in

(In1)—is that, whenever a given property P is denoted by ‘λx ∃y R(y, x)’, relative to some

interpretation I and variable-assignment g, then P will not be classified as intrinsic, unless

‘R’ denotesI,g a parthood relation. So, e.g., the property of being a father will be correctly

classified as extrinsic, because it will be denotedI,g by ‘λx ∃y R(y, x)’ if ‘R’ denotesI,g the

converse of the father-of relation, which is plausibly not a parthood relation.

In Section 9 we will see that (C1) has to be considerably strengthened. First, however,

we will need to add two clarifications, and in Section 8 turn to the task of revising (In1).

7.2 Parthood relations

At least two aspects of (C1) call for clarification. First, in talking in condition (ii) of “a

parthood relation” rather than ‘the’ parthood relation, we are deliberately leaving room

for mereological pluralism, different versions of which have been endorsed by Armstrong

(1997), McDaniel (2004; 2009; 2014), and Fine (2010). For our purposes there will be no

57To see the need for this condition, it may be helpful to reflect, e.g., on the λ-expression ‘λx ((x = x) ∧
∃x, y (P(y, x) ∧ Q(x) ∧ Q(y)))’, where ‘P’ denotesI,g a parthood relation. (Note that the occurrences of ‘x’
within that of ‘P(y, x) ∧ Q(x) ∧ Q(y)’ are bound by the occurrence of ‘∃’ rather than by the initial ‘λ’.)

Similarly, to see the need for condition (v), consider the expression L := ‘λx ∃y, z ((λu, w R(u, w, z)) (y, x) ∧
Q(y))’, supposing that ‘λu, w R(u, w, z)’ denotesI,g a parthood relation. The problem in this latter case is that
the second occurrence of ‘z’ in L is not free but rather bound by the occurrence of ‘∃’.
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need to take a stance on exactly what a parthood relation is, though we will impose the

following two (relatively weak) constraints:58

(PR1) Any parthood relation is a dyadic relation whose instantiation by any entities x and

y, in this order, is the state of affairs that x is (in the relevant sense) a part of y.

(PR2) The relation of identity is a parthood relation.

The first constraint is only intended to establish the adicity and ‘direction’ of parthood

relations. The purpose of the second constraint is similarly straightforward: its aim is to

allow our analysis to accommodate the intuition that ‘identity properties’ such as λx (x =

Socrates) are intrinsic, without having to treat identity separately from parthood.59

7.3 Entailment

The second aspect of (C1) that stands in need of clarification is the notion of entailment

that is supposed to be operative in condition (iii). A natural choice may be the concept

introduced in Definition 6.3 (p. 28 above). However, that concept is arguably not the

one to be used in interpreting (C1), for its definition has the consequence that, e.g., the

formula ‘part(y, x)’ is entailed by any contradictory formula that contains free occur-

rences of ‘part’, ‘x’, and ‘y’.60,61 This would afford an easy way for a λ-expression like

58For some discussion of what it is to be a parthood relation, or for one thing to be a part of another, see, e.g.,
Skiles (2014: §2.2) and Yablo (2016). Skiles suggests that intrinsicality cannot be analysed in terms of parthood
(at least not in such a way that the resulting analysis satisfies his criteria for being a reductive analysis), and
explores ways of analysing parthood in terms of various notions in the vicinity of intrinsicality, such as that of
a property’s being ‘intrinsic to’ a given entity. Suppose that such an analysis is forthcoming and that parthood
can be adequately analysed in terms of some intrinsicality-related notion X. If, in addition, it is possible to
analyse X in terms of intrinsicality, then this would mean that parthood can indeed be analysed in terms of
intrinsicality. But as far as I can see, this would not give us a reason to think that intrinsicality cannot also be
analysed in terms of parthood.

59In taking λx (x = Socrates) to be intuitively intrinsic, I am assuming that the identity relation is itself
intrinsic. In the following, this assumption will be left implicit. The identity relation would arguably not be
intrinsic if it were, e.g., analysable in terms of quantification over properties (along the lines of a proposal to the
effect that for an entity x to be identical with an entity y is for x to have each one of its properties in common
with y and vice versa), given that this quantification would not be restricted to the parts of the respective relata.

On a related note, I will be tacitly assuming that no unexpected ‘sources of extrinsicality’ are lurking in
our primitive notions of instantiation, negation, conjunction, and existential quantification. For example, the
negation of a state of affairs s should not be thought of (roughly à la Church [1951: 9]) as some state of affairs
to the effect that, if s obtains, then every state of affairs obtains.

60For a formal definition of ‘contradictory’, see Definition 7.1 below.

61The constant ‘part’ will in the following serve as our default way of denoting parthood relations within
formulas or λ-expressions. More particularly, I shall take it to be understood that—relative to whatever in-
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‘λx ∃y (part(x, x) ∧ (y 6= y))’ to pass the requirement expressed by (C1). But this is un-

desirable, since the λ-expression just mentioned denotes a property (namely, that of having

oneself as a part and being such that something is non-self-identical) that, on a suitably fine-

grained conception of attributes, will plausibly be regarded as extrinsic. We therefore need

a concept of entailment under which it is not the case that any contradictory formula will

(more or less indiscriminately) entail any other formula. More specifically, we need a

concept of relevant entailment.

In contrast to the usual practice of relevance logic, we will here take a purely semantic

approach, insofar as we will not be primarily concerned with proof theory and inference

rules. At the same time, our approach will also differ from ordinary treatments of the

semantics of relevance logic, since we will not be operating with model-theoretic structures

or possible worlds. Instead, the general idea will be as follows: What separates relevant

entailment in our sense from ‘normal’ entailment is a constraint requiring that one of the

two relata (which are formulas) should not contain any subformulas that are not needed to

produce the entailment; and according as this requirement (or some version of it) is imposed

on the entailing or on the entailed formula, we obtain a corresponding concept of ‘L-

relevant’ or of ‘R-relevant’ entailment.62

To formalise the notion of a subformula’s being “not needed to produce the entailment”,

we will rely on the familiar concept of substitution, together with the following notions of

tautology and contradiction:

Definition 7.1. A formula ϕ is tautologous (contradictory) iff ϕ is semantically well-formed

and, for any interpretation I and variable-assignment g: if ϕ has a denotation relative to I

and g, then ϕ denotesI,g an obtaining (non-obtaining) state of affairs.

As usual, tautologous formulas will also be referred to as ‘tautologies’ and contradictory

formulas as ‘contradictions’. On this basis we next define a concept of ‘pruning’:

terpretation is relevant in the respective context—‘part’ denotes an intrinsic parthood relation that is correctly
paraphrasable by the English predicate ‘is a part of’.

62The prefixes ‘L’ and ‘R’ stand for ‘left’ and ‘right’, respectively.
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Definition 7.2. A formula ϕ′ is a pruning of a formula ϕ iff either ϕ′ itself is a tautology or

contradiction or there exists a non-empty set S of term-occurrences in ϕ that satisfies the

following three conditions:

(i) Each term-occurrence o ∈ S stands at primary sentence-position.

(ii) ϕ′ results from ϕ by replacing each member of S with some formula.63

(iii) Each term-occurrence o ∈ S is in ϕ′ replaced with a tautology or contradiction.

In other words, a formula ϕ′ is a pruning of a formula ϕ iff ϕ′ is a tautology or a contra-

diction or results from ϕ by replacing one or more subformulas (i.e. term-occurrences at

primary sentence-position) with tautologies or contradictions.

On the basis of this concept, together with the concept of entailment introduced in

Definition 6.3, we can now define two notions of ‘strictly relevant’ entailment:

Definition 7.3. A formula ϕ strictly L-relevantly entails (for short: strictly L-entails) a formula

ψ iff ϕ entails ψ, and no non-contradictory pruning of ϕ entails ψ.

Definition 7.4. A formula ϕ strictly R-relevantly entails (for short: strictly R-entails) a for-

mula ψ iff ϕ entails ψ but entails no non-tautologous pruning of ψ.

These concepts are rather narrow. For instance, a disjunction ϕ will not strictly L-entail

any formula at all unless ϕ is a contradiction; and similarly, no formula strictly R-entails

any non-tautologous conjunction.64 The concept of strict L-entailment will turn out to be

useful in Section 12 below, and a welcome feature of strict R-entailment, for our present

purposes, lies in the fatct that no formula is strictly R-entailed by a contradiction. However,

as a result of the fact that no formula strictly R-entails any non-tautologous conjunction,

this notion is unfortunately too restrictive: as we will see in Section 10.2, we need a concept

63N.B.: The replacing formulas need not be distinct from the terms whose occurrences they are used to
replace.

64To prove the first claim, let ϕ be any non-contradictory disjunction. It is clear that ϕ has then at least one
non-contradictory disjunct. By replacing one or more of the other disjuncts with contradictions, one can thus
obtain a non-contradictory pruning of ϕ that entails whatever ϕ entails. Hence, ϕ entails no formula that is not
also entailed by some non-contradictory pruning of ϕ. So, as claimed, ϕ does not strictly L-entail any formula
at all. The second claim can be proved along similar lines.
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of entailment under which there is no general obstacle to a non-tautologous conjunction’s

being entailed by some formula.

To define such a concept, we will first need two more specific notions of pruning:

Definition 7.5. A formula ϕ′ is a ⊤-pruning (⊥-pruning) of a formula ϕ iff either ϕ′ itself is

a tautology (contradiction) or there exists a non-empty set S of term-occurrences in ϕ that

satisfies the following three conditions:

(i) Each term-occurrence o ∈ S stands at primary sentence-position.

(ii) ϕ′ results from ϕ by replacing each member of S with some formula.

(iii) For each term-occurrence o ∈ S: if o stands in the scope of an even (odd) number

of occurrences of ‘¬’, then o is in ϕ′ replaced with a tautology, and otherwise with a

contradiction.65

For example, given that ‘x = x’ a tautology, ‘(x = x)∧ q’ and ‘(x = x)∨ q’ are ⊤-prunings of

‘p ∧ q’ and ‘p ∨ q’, respectively. Care has to be taken with conditionals: e.g., ‘(x = x) → q’

is not a ⊤-pruning of ‘p → q’, since the latter is an abbreviation of ‘¬(p ∧ ¬q)’, so that

the replaced occurrence of ‘p’ stands in an odd (rather than the required even) number

of occurrences of ‘¬’. In general, ⊤-pruning can be thought of as a weakening and ⊥-

pruning as a strengthening of formulas: the former effectively shortens conjunctions (by

‘eliminating’ conjuncts) and turns disjunctions into tautologies, while the latter effectively

shortens disjunctions and turns conjunctions into contradictions.

Using the concepts of ⊤-pruning and ⊥-pruning, we can now define two corresponding

notions of non-strictly relevant entailment:

Definition 7.6. A formula ϕ L-relevantly entails (for short: L-entails) a formula ψ iff ϕ entails

ψ, and no ⊤-pruning of ϕ entails ψ.

Definition 7.7. A formula ϕ R-relevantly entails (for short: R-entails) a formula ψ iff ϕ entails

ψ but does not entail any ⊥-pruning of ψ.

65We say that a term-occurrence stands in the scope of an even or odd number of occurrences of ‘¬’ according
as the number of all occurrences of ‘¬’ in whose scope that term-occurrence stands is even or odd. If the term-
occurrence stands in the scope of no occurrences of ‘¬’ at all, then that number is zero, and hence even.
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The concept that we need for interpreting the ‘entails’ in condition (iii) of (C1) is that of

R-relevant entailment, given that a contradictory formula does not R-entail any formula at

all, and a fortiori does not R-entail any formula like ‘part(y, x)’. Let this, then, be the sense

of the ‘entails’ in (C1).66

8 Revising the Top Level

Our account of intrinsicality, as developed so far, consists of two parts: the ‘top level’,

given by (In1) (p. 32), and what might be called its ‘core condition’, given by (C1). Both

parts still have to be extensively revised in order to yield an adequate account. The present

Section will be devoted to revising (In1), and in Sections 9 and 10 we will take up the task

of improving (C1).

8.1 Trivialisation troubles

Suppose we adopt a conception of attributes whose coarse-grainedness is ‘captured’ by the

concept of S-equivalence defined at the end of Section 6.3 above. Under such a conception,

any property P is identical with λx (P(x) ∧ ∃y P(y)). The property of being a carbon atom,

for instance, will be identical with the property of being a carbon atom and such that there

exists at least one carbon atom. This identification is hardly absurd, since for an entity to

be a carbon atom and such that there exists at least one carbon atom imposes for all intents

and purposes exactly the same requirements on the world (and on that entity) as for it to

be a carbon atom. Meanwhile, however, the combination of (In1) and (C1) classifies any

property P as extrinsic if there exists some interpretation I and variable-assignment g such

that P is denotedI,g by ‘λx (P(x)∧∃y P(y))’. The present conception of attributes thus leads

to the result that any property whatsoever—and, by parallel considerations, any relation

whatsoever—is classified as extrinsic. This consequence is obviously undesirable. One

66For some illustration of the two concepts just defined, let A and B be two non-empty sets of variables
and/or non-logical constants, such that B is a proper subset of A. It can then be seen that the conjunction of
the members of A will R-entail but not L-entail the conjunction of the members of B, whereas the disjunction
of the members of B will L-entail but not R-entail the disjunction of the members of A. (In the special case in
which B has only one member, ‘the conjunction of the members of B’ should be read as referring to that single
member, and likewise for ‘the disjunction of the members of B’.)
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possible way to avoid it is to move towards a finer-grained conception of attributes under

which it is no longer the case that any property P is identical with λx (P(x) ∧ ∃y P(y)).

But this would arguably be an overreaction, for it is possible to modify our account in a

way that avoids the trivialising consequence just noted without requiring a finer-grained

conception of attributes. All that is needed is that we enable the account to ignore any

instances of what we have in Section 6.3 called ‘redundant complexity’.

As a first step in this direction, we may insert into (In1) an existential quantification over

λ-expressions M whose matrices are equivalent to the matrix of the respective λ-expression

L, where the relevant notion of equivalence is the one that captures the coarse-grainedness

of our conception of attributes:67

(In2) An attribute A is intrinsic iff, for any interpretation I, variable-assignment g, and λ-

expression L: if L denotesI,g A, then there exists some λ-expression M that has the

same λ-variables as L and whose matrix is equivalent to that of L, such that . . . .

Having replaced (In1) with (In2), corresponding changes have to be made to our ‘core

condition’ (C1): in particular, each occurrence of ‘L’ has to be replaced with ‘M’. To form

an intuitive gloss of (In2), one may think of L as ‘trying’ to exhibit A as extrinsic, whereas

M tries to reveal that L at best only seems to exhibit A as extrinsic.68 Here the particular way

in which L would seem to exhibit A as extrinsic is by denoting A while failing to satisfy

the core condition, where this failure would be due to some complex-making feature of

L (such as the quantification in ‘λx (P(x) ∧ ∃y P(y))’); and the particular way in which M

would reveal that A merely seems to exhibit A as extrinsic is by being equivalent to L while

nonetheless satisfying the core condition. For in this way M would reveal that, if L does

in fact fail to satisfy the core condition, it does so only due to some redundant complexity.

What (In2) accordingly tells us is, in a nutshell, that an attribute is intrinsic iff any given

67The steps that we will be taking in this subsection in order to deal with the trivialisation problem are
essentially analogous to those I have taken in my (2016: §3.3) to solve a similar problem that arises in connection
with the analysis of the concept of logical simplicity (as applied to attributes).

68In a typical game-semantic approach, one would here speak of two players A and B that respectively choose
L and M with the goal of producing an assignment of entities to variables under which the core condition is
either true or false. (In particular, A wants it to come out false, while B wants it to come out true. Along with
L, A also chooses I and g.) For the sake of conciseness, I am in the main text talking of L and M as if they were
themselves those players. (For more on game semantics, see Hodges [2013].)
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λ-expression at best only seems to exhibit it as extrinsic.

We can now immediately see, however, that (In2) does not yet address the full breadth of

our problem. For suppose that I and g are an interpretation and a variable-assignment such

that the variables ‘P’ and ‘Q’ both denoteI,g a certain property P. Under the present concep-

tion of attributes (whose coarse-grainedness is captured by the concept of S-equivalence),

the expression ‘λx P(x)’ will then of course be coreferentialI,g not only with ‘λx (P(x) ∧

∃y P(y))’ but also with ‘λx (P(x)∧ ∃y Q(y))’; yet clearly the matrix of this latter expression

is not in the relevant sense equivalent to either ‘P(x)’ or ‘Q(x)’. And so we are still faced

with the undesirable consequence that any property P is under our account classified as

extrinsic, simply because it can be denoted by ‘λx (P(x) ∧ ∃y Q(y))’.

Fortunately, there is a natural way to address this issue: rather than to quantify over

λ-expressions whose matrices are equivalent to the matrix of L itself, we should quantify,

more broadly, over λ-expressions whose matrices are equivalent to the matrix of some

reduction of L:69

(In3) An attribute A is intrinsic iff, for any interpretation I, variable-assignment g, and

λ-expression L: if L denotesI,g A, then there exist an interpretation I ′ ⊇ I and a

variable-assignment g′ ⊇ g such that, for some λ-expression M that has the same

λ-variables as L and whose matrix is equivalent to that of some reductionI′,g′ of L:

. . . .

This revision again calls for some changes in (C1). As before, all occurrences of ‘L’ in

(C1) have to be replaced with ‘M’, and in addition all occurrences of ‘I’ and ‘g’ have to be

replaced with, respectively, ‘I ′’ and ‘g′’. Let (C1′) be the result of these modifications. The

combination of (In3) and (C1′) avoids the threat of trivialisation, since it no longer has the

consequence that any property that can be denoted by ‘λx (P(x) ∧ ∃y Q(y))’ is classified as

extrinsic.70 We now only have to add one last complication.

69The relevant concept of reduction has been introduced in Definition 6.1 (p. 24 above).

70The reason why (In3) has to quantify over supersets of I and/or g is similar to the reason for the analogous
feature of (FS) and (FA) in Section 6.2 above (cf. in particular footnote 43). Thus, suppose that P1, P2, and P3

are three properties whose conjunction P1 & P2 & P3 is intrinsic, and let Q1, Q2, and Q3 be, respectively, the
properties P1 & P2, P2 & P3, and P1 & P3. Further, let I be some interpretation, let g be some variable-assignment
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8.2 Redundant predications of parthood

Let us assume that the property of being an electron is intrinsic. The property of having an

electron as a part will then be intrinsic as well,71 and so will its negation, i.e. the property of

not having an electron as a part. The disjunction of the latter two properties—i.e. either having

an electron as a part or not having an electron as a part—can be denoted by the following:

λx
(
∃y (E(y) ∧ part(y, x)) ∨ ¬∃y (E(y) ∧ part(y, x))

)
, (1)

where ‘E’ denotes being an electron. Notice that (1) satisfies the current ‘core condition’

of our account, viz., (C1′). But now, under the moderately coarse-grained conception of

attributes that we have been working with so far, the property denoted by (1) turns out to

be identical with that of being such that every electron is an electron and, for any entity z, every

part of z is a part of z, or in symbols:

λx
(
(x = x) ∧ ∀y

(
E(y) → E(y)

)
∧ ∀y, z

(
part(y, z) → part(y, z)

))
. (2)

Plausibly, this latter property is extrinsic, for to instantiate it does not seem to be “purely

a matter of which parts [something] has, what it and its parts are like, and how it and

its parts are related among each other”.72 Yet, due to the fact that the matrix of (2) is

S-equivalent to that of (1), our account threatens to classify this property as intrinsic.

We could accommodate the intuition that the property in question is extrinsic by mov-

ing once more to a finer-grained conception of attributes, whose coarse-grainedness is

captured by a concept of equivalence that is strong enough to render the matrix of (2) in-

equivalent to that of (1). However, while the coreferentiality of (1) and (2) may perhaps be

that maps the variables ‘Q1’, ‘Q2’, and ‘Q3’ to, respectively, Q1, Q2, and Q3, and suppose that (as may be the
case) no term at all denotesI,g P1, P2, or P3. Under our moderately coarse-grained conception of attributes, the
ex hypothesi intrinsic property P1 & P2 & P3 will then be denotedI,g not only by ‘λx (Q1(x) ∧ Q2(x))’ but also by
‘λx (Q1(x)∧ Q2(x) ∧ ∃y Q3(y))’. Let L be this latter expression. Since no term denotesI,g the properties P1 and
P3 of which Q3 is the conjunction, it can now easily turn out that there exists no λ-expression M that has the
same λ-variables as L and whose matrix is equivalent to that of some reductionI,g of L such that (C1) (with
‘L’ replaced by ‘M’) is satisfied. To ensure that P1 & P2 & P3 is classified as intrinsic, we thus have to consider
reductions of L relative to supersets of either I or g.

71Cf. Sider (2007) on the “inheritance of intrinsicality”.

72Cf. (In′
0), p. 12 above.

41



unexpected, I think it is far from absurd. And if we do accept that (1) and (2) denote one

and the same property P, then the intuitively correct classification of this property seems to

be the one that classifies it as extrinsic. For there is a tolerably good sense in which the two

disjuncts in the matrix of (1) may be said to ‘cancel each other out’, leaving behind only

a tautology not especially concerned with the parts of x. Accordingly, the better course

of action seems to be to revise instead our account of intrinsicality, so as to ensure that

properties like P are classified as extrinsic.73

The “tolerably good sense” in which the two disjuncts in (1)’s matrix cancel each other

out may be captured by saying that those two disjuncts can be replaced by tautologies or

contradictions in such a way as to yield a formula that is equivalent to the original matrix of

(1), where the relevant notion of equivalence is the one that captures the coarse-grainedness

of our conception of attributes (that is to say, the concept of S-equivalence).74 So I propose

to modify our account in such a way that it effectively ignores any λ-expression M whose

matrix is ‘simplifiable’ in this sense. More formally, we can define this notion of simplifi-

ability as follows:

Definition 8.1. A formula ϕ is simplifiable iff it is equivalent to some formula ϕ′ that, for

some non-empty set S of term-occurrences, satisfies the following three conditions:

(i) Each term-occurrence o ∈ S stands in ϕ at primary sentence-position.

(ii) ϕ′ results from ϕ by replacing each member of S with a tautology or contradiction.

(iii) No term-occurrence o ∈ S is an occurrence of a tautology or contradiction.

Let us further say that a formula ψ is unsimplifiably equivalent to a formula ϕ just in case

ψ is equivalent to ϕ and fails to be simplifiable. To put this concept to use, we may now

replace the ‘equivalent’ in (In3) with ‘unsimplifiably equivalent’:

73It is sometimes assumed (as in Sider [1996: 15] or Weatherson [2001: 370]) that all disjunctions of intrinsic
properties must again be intrinsic. The case considered here would be a counter-example to that assumption.
(Also cf. Parsons [2001: 14f.] and Marshall [2016b: 258].)

74In particular, the two occurrences of ‘∃y (E(y) ∧ part(y, x))’ in (1) can be replaced with the tautologous
matrix of (2) to produce a formula that is S-equivalent to the matrix of (1).
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(In4) An attribute A is intrinsic iff, for any interpretation I, variable-assignment g, and λ-

expression L: if L denotesI,g A, then there exist an interpretation I ′ ⊇ I and a variable-

assignment g′ ⊇ g such that, for some λ-expression M that has the same λ-variables

as L and whose matrix is unsimplifiably equivalent to that of some reductionI′,g′ of L:

. . . .

This solves our problem, since it renders irrelevant the fact that the matrix of (2) is equival-

ent to that of (1), given that the latter is simplifiable.

In the following, (In4) will serve as the ‘top level’ of our account. The main task ahead

is now the revision of (C1′).

9 Strengthening the Core Condition

9.1 Free term-occurrences

In constructing (C1′), we have been ignoring all those term-occurrences in M that are not

bound by some occurrence of ‘∃’, and so the combination of (In4) and (C1′) still allows such

properties as being a friend of Aristotle to be misclassified as intrinsic (assuming no surprises

in the metaphysics of the ‘friend-of’ relation). This is clearly a major defect. Hence, we

have to either strengthen (C1′) or conjoin it with a further condition. In any case, we will

have to impose a requirement roughly to the effect that any term that has in M a free

occurrence at subject-position is in the matrix of M ‘specified’ to denote a part of one or

more of the respective relata of A (i.e. of the attribute in question). This talk of specification

may at present be somewhat opaque, but the basic idea is not much different from that of

quantifier-restriction as formalised in (C1′). For, roughly in the same way in which M

can contain restrictions on its quantified variables, it can also contain restrictions on the

referents of the terms that have in it free occurrences at subject-position. More particularly,

we can say that a term t is in M specified to denote a part of at least one of “the respective

relata of A” just in case the matrix of M R-entails a predication of a parthood relation, or

a disjunction of such predications, analogous to the formula mentioned in clause (iii) of
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(C1′).75 The relevant requirement, to be conjoined with (C1′), can thus be stated as follows:

(C2) For any term t and any free occurrence o of t in M: if o stands at subject-position,

then there exists an index set J together with a set of variables {ui | i ∈ J} and a set

of terms {Pi | i ∈ J} such that the following four conditions are satisfied:

(i) Each ui is a λ-variable of M.

(ii) Each Pi denotesI′,g′ a parthood relation.

(iii) The matrix of M R-entails p
∨

i∈J Pi(t, ui)q.

(iv) Each occurrence of each Pi that is free in the (first) occurrence of M’s matrix in

M is free simpliciter.76

But even the conjunction of (C1′) and (C2) leaves several kinds of term-occurrence out

of account. Consider, e.g., the case of a term-occurrence that does not stand at subject-

position. Certainly any free occurrence that stands in M at primary predicate-position—i.e.

at predicate-position, but not contained in any occurrence that stands at subject-position—

should be given a ‘free pass’, in the sense of not being required to satisfy the consequent

of the main conditional of (C2). If M is, e.g., the λ-expression ‘λx E(x)’, it would make

little sense to require that the matrix of M should R-entail pP(E, x)q, where P is a term

denotingI′,g′ a parthood relation. It is also arguable that we should give a free pass to

any free formula-occurrence that stands in M at primary sentence-position, for otherwise we

would be excluding such innocuous λ-expressions as ‘λx (part(e, x) ∧ E(e))’, in which the

formula ‘E(e)’ has a free occurrence at primary sentence-position.77

75The appeal to R-entailment, as opposed to entailment simpliciter, is motivated by considerations similar to
those given in Section 7.3 above.

76This clause is meant to rule out that any Pi has in M an occurrence that contains a variable-occurrence
bound by the initial ‘λ’ in M. (Cf. footnote 57 above.) The parenthetical qualification (“first”) is needed for the
case that M is infinitely deeply nested.

77If ‘e’ and ‘E’ respectively denoteI ′,g′ a certain entity x and the property of being an electron, then
‘λx (part(e, x) ∧ E(e))’ will denoteI ′,g′ a property that can be appropriately described as that of having x as
a part and being such that x is an electron. Since we are assuming that the parthood relation denotedI ′,g′ by ‘part’
is itself intrinsic (cf. footnote 61 above), this property will also plausibly be intrinsic (and it will be so regardless
of whether x is in fact an electron). For a similar example, the property of having Paris as a part and being such
that Paris has the Kremlin as a part likewise seems intrinsic, regardless of the fact that Paris does not actually
have the Kremlin as a part.
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What if the free occurrence in question stands at non-primary predicate-position, like

the occurrence of ‘horse’ in ‘λx part(∃x horse(x), x)’ or the occurrence of ‘human’ in ‘λx (x =

human(Socrates))’? A defender of the conjunction of (C1′) and (C2) might argue that this

will be of no concern, given that any entity that instantiates λx part(∃x horse(x), x)—and

thus has the state of affairs ∃x horse(x) as a part—thereby also has any constituent of that

state of affairs as a part, including the property of being a horse. Analogously for any en-

tity that instantiates λx (x = human(Socrates)). An opponent might object, however, that

this solution requires a somewhat broad conception of parthood and that, for the pur-

poses of analysing the concept of intrinsicality, it will be preferable not to take sides in

the debate over what counts as a part of what. If the opponent is right, then free term-

occurrences at non-primary predicate-position should be required to satisfy the consequent

of the main conditional of (C2); and the same will hold (by similar considerations) for free

term-occurrences at non-primary subject- or sentence-position. This line of reasoning can-

not be easily dismissed. But on the other hand, a state of affairs like ∃x horse(x) may well

have constituents other than the property of being a horse, even though these constituents

are not named by any terms occurring in ‘∃x horse(x)’ or any other formula denoting the

state of affairs that there are horses; and if we follow the opponent’s reasoning, then some

analogous requirement should be put in place for those unnamed constituents as well, on

pain of creating a double standard for named and unnamed constituents. Such a require-

ment could certainly be formulated, but it would make the overall account of intrinsicality

even more ungainly (and by a considerable margin), whereas the theoretical benefit seems

rather slim by comparison. For this reason, I propose that we continue to ‘give a free pass’

to term-occurrences that are properly contained in term-occurrences standing at subject-

position. The only free term-occurrences to which we are so far not giving a free pass

are accordingly those that stand at primary subject-position, i.e. at subject-position while

not being properly contained in any term-occurrences standing at subject-position, like the

occurrence of ‘Socrates’ in ‘λx R(x, Socrates)’.

Let us return to free term-occurrences at primary sentence-position. Two paragraphs

back we said that free formula-occurrences at this kind of position should be given a free
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pass, but we have thereby not yet said anything about free occurrences at primary sentence-

position of constants and variables, such as the occurrence of ‘s’ in ‘λx ((x = x) ∧ s)’. Ar-

guably, such occurrences should not be given a free pass. To see this, we have to begin

by noting that, typically, a property like that of being such that s obtains (for some state of

affairs s) is intuitively not intrinsic. After all, for something x to instantiate such a property

will not be “purely a matter of which parts it [i.e. x] has, what it and its parts are like, and

how it and its parts are related among each other”, but also of whether s obtains; and s

may very well have nothing to do with x or the parts of x. In most familiar cases, this can

be readily enough brought out by choosing a λ-expression that exhibits, at least to some

extent, the logical structure of s. For example, if s is the state of affairs that there are horses,

then the property of being such that there are horses will, relative to a suitable interpretation

I and variable-assignment g, be denoted by L := ‘λx ((x = x) ∧ ∃y horse(y))’. And unless

the property of being a horse has a very surprising metaphysics (or we adopt an extremely

coarse-grained conception of attributes and work with a correspondingly liberal concept of

equivalence), there will then exist no interpretation I ′ ⊇ I and variable-assignment g′ ⊇ g

such that, “for some λ-expression M that has the same λ-variables as L and whose matrix

is unsimplifiably equivalent to that of some reductionI′,g′ of L”, (C1′) is satisfied. So the

property of being such that there are horses will be duly classified as extrinsic, at least if (C1′)

figures as one of the conditions that replace the ellipsis in (In4). However, if s does not

have a ‘logical structure’, i.e. if s is logically simple, the problem persists.78 Let I and g be

78I have proposed an analysis of logical simplicity as applied to states of affairs in my (2016: 34f.):

A state of affairs s is logically simple iff, for any interpretation I, variable-assignment g, and
formula ϕ: if ϕ denotesI,g s, then there exist an interpretation I ′ ⊇ I, a variable-assignment
g′ ⊇ g, and an atomic term t such that ϕ has relative to I ′ and g′ a reduction that is equivalent to
p¬¬tq.

This analysis presupposes that the underlying conception of states of affairs is coarse-grained enough to treat
each state of affairs as identical with its own ‘double negation’. If this is not granted, the ‘¬¬t’ on the last line
of the analysis may, e.g., be replaced with ‘[t]’, where the bracket notation would be introduced as follows (cf.
op. cit., p. 35n.):

For any term t, p[t]q is a formula, and for any interpretation I, variable-assignment g, and
any term t, p[t]q has a denotation relative to I and g iff t denotesI,g a state of affairs; in which
case p[t]q denotesI,g the same state of affairs.

This notation is also useful insofar as it fills a lacuna left by the thesis (CS) in Section 6.2 above. For instance,
(CS) now has the consequence—provided that p[t]q is in the relevant sense equivalent to pt ∨ tq—that, for any
interpretation I and variable-assignment g: if t denotesI,g a given state of affairs s, then so does pt ∨ tq.
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any interpretation and variable-assignment, and let L be any λ-expression that denotesI,g

the property in question, i.e. λx ((x = x) ∧ s): given the logical simplicity of s, there will

then always exist some interpretation I ′ ⊇ I, variable-assignment g′ ⊇ g, and λ-expression

M such that (i) M’s matrix is equivalent to that of some reductionI′,g′ of L and (ii) M is

identical with pλv ((v = v) ∧ t)q, where v is the λ-variable of L and t some atomic term

denotingI′,g′ s. Such a λ-expression neither (C1′) nor (C2) is able to rule out: not the former,

since it is only concerned with bound variable-occurrences, and nor the latter, since it is

only concerned with term-occurrences in subject-position. Hence, as long as s is logically

simple, we are currently not classifying λx ((x = x) ∧ s) as extrinsic. But intuitively, such a

property is no less extrinsic than that of being such that there are horses.

The upshot of these considerations is that free occurrences of atomic terms at primary

sentence-position should not be given a free pass, meaning that they should be required

to satisfy the consequent of the main conditional of (C2). To summarise, we should give

a free pass to all and only those free term-occurrences that (i) do not stand at primary

subject-position and (ii) are not occurrences of atomic terms at primary sentence-position.

Modifying (C2) accordingly, we obtain:

(C2′) For any term t and any free occurrence o of t in M: if o either stands at primary

subject-position or is an occurrence of an atomic term at primary sentence-position,

then there exists an index set J together with a set of variables {ui | i ∈ J} and a set

of terms {Pi | i ∈ J} such that the following four conditions are satisfied:

(i) Each ui is a λ-variable of M.

(ii) Each Pi denotesI′,g′ a parthood relation.

(iii) The matrix of M R-entails p
∨

i∈J Pi(t, ui)q.

(iv) Each occurrence of each Pi that is free in the (first) occurrence of M’s matrix in

M is free simpliciter.
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9.2 Bound occurrences of non-atomic terms

Another class of term-occurrences that we have so far been leaving out of account is

that of bound occurrences of non-atomic terms, i.e. of formulas and λ-expressions. We

have said above (p. 44) that free term-occurrences at primary predicate-position should

be given a ‘free pass’ in the sense that they should not be required to satisfy the con-

sequent of the main conditional of (C2). In the same paragraph, it was said that free

formula-occurrences at primary sentence-position should similarly be given a free pass.

Now, arguably the same goes for bound term-occurrences at primary predicate-position

and for bound formula-occurrences at primary sentence-position. For instance, while the

λ-expression ‘λx ∃y part(y, x)’ contains at primary sentence-position a bound occurrence

of ‘part(y, x)’, the denoted property will certainly be intrinsic as long as ‘part’ denotes an

intrinsic parthood relation. By contrast, it can be argued that a bound occurrence of a

non-atomic term should not be given a free pass if it stands at primary subject-position.

For example, consider the occurrences of ‘P(x)’ and ‘Q(x)’ in ‘λx (P(x) = Q(x))’. As-

suming that ‘P’ and ‘Q’ respectively denote two properties P and Q, the property de-

noted by this expression is that of being such that one’s instantiation of P is identical with

one’s instantiation of Q, which is intuitively extrinsic. From this we may infer that bound

term-occurrences at primary subject-position should not receive a free pass. On the other

hand, when it comes to bound term-occurrences at non-primary subject-position, or at

non-primary predicate- or sentence-position, we can apply the same considerations that

we have above applied to free term-occurrences in these same sorts of position. As a res-

ult, it seems reasonable to conclude that a bound occurrence of a non-atomic term should

receive a free pass if and only if it does not stand at primary subject-position.

To modify (C2′) accordingly, a natural first step would be to delete the ‘free’ on the

first line of (C2′). The variable ‘o’ of the resulting version of (C2′) will then range also

over bound variable-occurrences, which have so far been the responsibility of (C1′) (with

the exception of those that are bound by an occurrence of ‘λ’). But more importantly, if

the revision is to work as intended, the consequent of the main conditional of (C2′) will

have to be modified as well. For if the respective occurrence o of the respective term t
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contains a variable that is bound not by the initial ‘λ’ but rather by (say) some quantifier-

occurrence within M, then the requirement that the matrix of M should R-entail the dis-

junction p
∨

i∈J Pi(t, ui)q will typically not yield the desired result. This becomes clear if

one considers, e.g., the case in which M is the λ-expression ‘λx ∃y part(P(y), x)’, where

‘P’ denotesI′,g′ some property. The matrix of M—i.e. the formula ‘∃y part(P(y), x)’—will in

this case not R-entail anything like ‘part(P(y), x)’. But nor should it be required to.

In order to formulate the appropriate requirement, it will be useful to introduce first

the notion of a term-occurrence’s being ‘governed’ by an occurrence of a formula, which

can be provisionally defined as follows:79

Definition 9.1. A term-occurrence o is governed by a formula-occurrence o′ iff the following

three conditions are satisfied:

(i) o′ stands at primary sentence-position.

(ii) o is free in o′.

(iii) o is not free in any formula-occurrence that properly contains o′.

For example, consider the λ-expression ‘λx ¬∃y¬part(y, x)’—which, relative to a suitable

interpretation and variable-assignment, denotes the property of (what Lewis has called)

loneliness—and let o be the second occurrence of ‘y’ in this expression. We then have that

o is governed by the embedding occurrence of ‘¬part(y, x)’. By contrast, due to clause (iii)

of the present definition, o is not governed by the occurrence of ‘part(y, x)’, since the latter

is properly contained in the occurrence of ‘¬part(y, x)’. As will become clearer shortly, this

helps us ensure that properties such as loneliness are not classified as intrinsic.

The notion of governing allows us to formulate the needed revision of (C2′)’s main con-

ditional. The basic idea can be put as follows: if the respective occurrence o satisfies certain

conditions, then o has to be either (a) a variable-occurrence bound by the initial occurrence

of ‘λ’ in M or (b) governed by some occurrence o′ of a formula that R-entails a suitable

formula p
∨

i∈J Pi(t, ui)q. To specify the “certain conditions”, we can for the most part use

79For the final definition, see Section 10.1 below.
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the antecedent of the main conditional of (C2′), except for one small modification: since

the variable ‘o’ now ranges also over bound variable-occurrences, its range now includes

the elements of lists of variable-occurrences that are immediately preceded by occurrences

of ‘∃’ or ‘λ’ (like the first occurrences of ‘y’ and ‘z’ in ‘λx ∃y, z R(x, y, z)’); and it patently

makes no sense to require of these that they be governed by formula-occurrences that R-

entail certain disjunctions—for one thing because any such variable-occurrence is bound in

any formula-occurrence that contains it, and can therefore not be governed by any formula-

occurrence. Variable-occurrences of this sort should thus be given a ‘free pass’. To do so, we

will let the variable ‘o’ in our revision of (C2′) range only over referential term-occurrences,

in the following sense:

Definition 9.2. A term-occurrence is referential iff it is not an element of a list of one or

more variable-occurrences that is immediately preceded by an occurrence of ‘λ’ or ‘∃’.

In addition, it will be convenient to have at our disposal the notion of an ‘argument-

occurrence’:

Definition 9.3. A term-occurrence is an argument-occurrence iff, for some λ-expression L, it

is a referential variable-occurrence bound by the initial occurrence of ‘λ’ in L.

For example, of the four occurrences of ‘x’ in ‘λx (P(x) ∧ ∃x Q(x))’, only the second is an

argument-occurrence: the first and third are not referential, and the third and fourth are

not bound by the initial occurrence of ‘λ’.80

With the help of the three concepts just introduced, we can now formulate a revised

version of (C2′) that will supersede the conjunction of (C1′) and (C2′) as our core condition:

(CC0) For any term t and any referential occurrence o of t in M: if o either stands at primary

subject-position or is an occurrence of an atomic term at primary sentence-position,

80On a somewhat pedantic note (though this will help to prevent misunderstanding later on), consider the
second occurrence of ‘x’ in the formula ‘y = λx R(x, z)’: this occurrence is also not an argument-occurrence,
since it is not bound by the initial occurrence of ‘λ’ in any λ-expression. Instead it is only bound by the initial
occurrence of ‘λ’ in an occurrence of a λ-expression. The only expression that the occurrences just mentioned
are contained in is the formula ‘y = λx R(x, z)’. More generally, any occurrence of an expression is contained
in exactly one—typically larger—expression; and if a variable-occurrence is bound by some occurrence of ‘λ’,
then both will be contained in the same expression. (See Appendix B for the relevant definitions.) It follows
from this that, for any expression E and any occurrence o: if o is an argument-occurrence in E, then E is a
λ-expression, and o is bound by the initial occurrence of ‘λ’ in E.
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then o is either an argument-occurrence or governed by an occurrence o′ of a formula

ϕ such that, for some index set J together with a set of variables {ui | i ∈ J} and a set

of terms {Pi | i ∈ J}, the following five conditions are satisfied:

(i) Each ui is a λ-variable of M.

(ii) Each Pi denotesI′,g′ a parthood relation.

(iii) ϕ R-entails p
∨

i∈J Pi(t, ui)q.

(iv) Each occurrence of each ui that is free in o′ is an argument-occurrence.81

(v) Each occurrence of each Pi that is free in o′ is free simpliciter.

For many applications, this already constitutes an adequate core condition, but there

are still three ways in which it is too restrictive. First, it does not allow negations or

disjunctions of what we may call ‘inclusion attributes’, such as the property of having Paris

as a part, to be classified as intrinsic.82 Second, it does not allow an attribute to be classified

as intrinsic if an analysis of the latter will make reference to pluralities or sets, as in the

case of being composed of cells. And third, it does not properly deal with ‘chains’ of parthood

relations, as in having an atom as a part that has a neutron as a part. In the next Section, we

will deal with each of these issues in turn.83

81From this it follows that each occurrence of each ui free in o′ is bound by the initial occurrence of ‘λ’ in
M. To see this, note that o′ governs o, which means that o is free in o′, hence contained in o′, and therefore
contained in the same expression as o′. But the expression that o is contained in is M. So o′ is also contained
in M, and the same goes for any occurrence of any ui that is free in o′ (and hence contained in o′). To say that
such an occurrence is an argument-occurrence then means that it is bound by the initial occurrence of ‘λ’ in M.
(Cf. the previous footnote.)

82In Section 2.2 above, properties of this kind have been referred to as ‘haecceitistic inclusion properties’, but
for the sake of brevity I will here simply call them ‘inclusion properties’. An example of an inclusion relation
would be λx, y (part(Paris, x) ∧ part(Moscow, y)).

83Another limitation of (CC0), though only a minor one, lies in the fact that it effectively assumes that
β-reductions do not affect the denotation of a λ-expression. (A β-reduction is the syntactic transformation
by which, e.g., ‘λx (λy R(y, a))(x)’ can be transformed into ‘λx R(x, a)’. See Dorr [2016b: §§5f.] for relevant
discussion.) If this assumption were false, it might happen that the weakest concept of equivalence that renders
(CA) true is still strong enough that, e.g., the matrix of

λx ∃y
(
part(y, x) ∧ (λz (z = z))(y)

)
(∗)

is not equivalent to ‘∃y (part(y, x) ∧ (y = y))’. In this way it would turn out that the property denoted by (∗)
is by our account classified as extrinsic, since the second and third occurrences of ‘z’ in (∗) are not governed
by any formula that R-entails ppart(z, x)q. Yet the denoted property is plausibly intrinsic. The assumption in
question could be dispensed with if we adopted a more complicated definition of governing, but it does not
seem to me that much would be gained by this.

51



10 Three Refinements

10.1 Negations and disjunctions of inclusion attributes

Relative to a suitable interpretation I and variable-assignment g, the property of not having

Paris as a part is denoted by the λ-expression ‘λx ¬part(Paris, x)’. Let L be this expression.

Intuitively, the property it denotes is intrinsic, for to instantiate it appears to be purely

a matter of “which parts [something] has”.84 Under our present account of intrinsicality,

which is obtained by replacing the ellipsis in (In4) with (CC0), there should then exist an

interpretation I ′ ⊇ I, a variable-assignment g′ ⊇ g, and a λ-expression M such that: (i)

M has the same λ-variables as L; (ii) the matrix of M is unsimplifiably equivalent to that

of some reductionI′,g′ of L; and (iii) the ‘core condition’ (CC0) is satisfied. As above, let us

suppose that the relevant concept of equivalence is that of S-equivalence.

Suppose now further that M = L, and let o be the occurrence of ‘Paris’ in M: clearly o

then satisfies the antecedent of the main conditional of (CC0). But the consequent is not sat-

isfied, since the only formula-occurrence governing o is the occurrence of ‘¬part(Paris, x)’.

And this outcome can apparently not be avoided by an alternative choice of M. It thus

turns out that our account misclassifies not having Paris as a part as extrinsic. By analog-

ous considerations, it can be seen that our account also misclassifies the property of having

either Paris or Rome as a part. For suppose that M is the λ-expression ‘λx ¬(¬part(Paris, x)∧

¬part(Rome, x))’, and let o again be the occurrence of ‘Paris’ in M. Then, as in the previous

example, we find that o satisfies the antecedent of the main conditional of (CC0) but not its

consequent. Yet intuitively, having either Paris or Rome as a part should come out intrinsic,

given that for something to instantiate it is “purely a matter of which parts it has”.

A straightforward way to repair this defect is to revise our above definition of ‘is gov-

erned by’ (p. 49) by exempting from its third condition all those cases in which o is free

simpliciter:

Definition 10.1. A term-occurrence o is governed by a formula-occurrence o′ iff the following

three conditions are satisfied:

84Cf. (In′
0), p. 12 above.
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(i) o′ stands at primary sentence-position.

(ii) o is free in o′.

(iii) If o is not free simpliciter, then o is not free in any formula-occurrence that properly

contains o′.

Thus, if o is free simpliciter, then it will be governed by any formula-occurrence o′ that

satisfies conditions (i) and (ii). The occurrence of ‘Paris’ in ‘λx ¬part(Paris, x)’, for instance,

is now governed by the occurrence of ‘part(Paris, x)’ as well as by that of ‘¬part(Paris, x)’.

Unfortunately, this weakening of the concept of governing has the unwelcome side

effect that ‘distinctness properties’, such as being distinct from Paris, are also classified as

intrinsic. To see this, suppose that M is the λ-expression ‘λx (Paris 6= x)’—or, without

use of abbreviatory devices: ‘λx ¬I(Paris, x)’—and let o once more be the occurrence of

‘Paris’ in M. This occurrence will then be governed by that of ‘I(Paris, x)’, and, by what

has been said in Section 7.2 above, the identity relation denotedI′,g′ by ‘I’ is a parthood

relation. Hence, o satisfies the consequent of the main conditional of (CC0), and in this

way our account threatens to classify distinctness properties as intrinsic. But intuitively,

such properties are extrinsic.85 In order to accommodate this intuition, we will need to

strengthen (CC0) by adding a sixth clause:

(vi) If o is free simpliciter and at least one Pi denotesI′,g′ the identity relation, then o′ does

not stand in the scope of an odd number of occurrences of ‘¬’.

This modification ensures that distinctness properties are classified as extrinsic. Let us refer

to the new core condition that results from adding (vi) to (CC0) as ‘(CC1)’.

85At first sight this assessment may seem to conform with our orienting characterisations (In0) and (In′
0): for

something to be distinct from Paris is plausibly not purely a matter of “which parts it has, what it and its parts
are like, and how it and its parts are related among each other”. But on reflection the matter is not so clear.
Since parthood is reflexive, it might be argued that for something x to be distinct from Paris is very much
“purely a matter of which parts it has [etc.]”, since it is purely a matter of whether that particular part of x that
is x itself is identical with Paris. And after all, isn’t this just how we have to argue in order to get the result
that ‘identity properties’, such as being Socrates, should count as intrinsic? It seems, then, that the differential
classification of distinctness properties as extrinsic and of identity properties as intrinsic is not borne out by
our orienting characterisations. Nonetheless I think that it is nearly non-negotiable.
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10.2 Sets of parts

The first five numbered clauses of (CC1) roughly amount to the requirement that ϕ should

R-entail a formula to the effect that the respective referent of t (in the context of its occur-

rence o) is a part of at least one of the respective relata of A. But this requirement—and in

particular condition (iii)—is a good deal too strong.

To see why, let P be the plausibly intrinsic property of being composed of cells. One

approach towards analysing P would be to use the machinery of plural logic. Another

approach, which I shall follow here, is to employ standard set-theoretic machinery and to

make use of sets as ‘auxiliary entities’. On this approach, we will first of all identify P with

the property of being a fusion of some set of cells. A fusion of a set S may here be understood

as the unique entity that, first, has each member of S as a part and, second, is such that

each of its parts has a part in common with at least one member of S.86 Relative to an

interpretation that maps the constants ‘set’, ‘el’, and ‘cell’ to, respectively, the property of

being a set, the relation of set-membership, and the property of being a cell, our property P

can then be denoted by

λx ∃S
(

set(S) ∧ ∀y
(
el(y, S) → (cell(y) ∧ part(y, x))

)
∧

∀y
(
part(y, x) → ∃z, w

(
el(z, S) ∧ part(w, z) ∧ part(w, y)

)))

.

(1)

Suppose that M is this λ-expression, I ′ an interpretation of the sort just described, and g′

some variable-assignment. The thing to note, then, is that the referential occurrences of ‘S’,

the referential occurrences of ‘y’ on the first line, and those of ‘z’ and ‘w’, all satisfy the ante-

cedent of (CC1)’s main conditional (since they all stand at primary subject-position), but

fail to satisfy the consequent. This suggests that, in order to ensure that our account classi-

86Cf. Hovda (2009). I deliberately restrict myself to talk of fusions of sets because, given our other theoretical
commitments, it would quickly lead to paradox if we allowed that any class of entities, no matter how large,
has a fusion. (Cf. McCarthy [2015].)

As an alternative to the set-theoretic approach pursued here, it might be suggested that we make use of
infinitely long disjunctions. Thus P might be identified with the property of being an entity x such that (a) for
some cell c1, x has c1 as a part and each part of x has a part in common with c1, or (b) for some cells c1 and c2, x has
c1 and c2 as a part and each part of x has a part in common with c1 or c2, or . . . . At least one problem with this
approach lies in the fact that, in order to cover every set-sized cardinality, the disjunction would have to be of
more than set-sized length.
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fies properties like P as intrinsic, (CC1) has to be weakened rather substantially, namely in

two respects.

First, we have to allow referential occurrences o of terms t in M to count as ‘redeemed’

if they are governed by an occurrence of a formula to the effect that t is a set of parts of one

or more of the respective relata of A. (To say that a given occurrence ‘counts as redeemed’

means here that it does not prevent the classification of A as intrinsic.) But this is still too

narrow: we should also allow such occurrences to count as redeemed if they are governed

by occurrences of formulas to the effect that their respective referents are sets of sets of

parts of one or more of A’s relata, and so on for even more deeply nested sets. One way

to see this is by considering the property—call it ‘Q’—of having as many green parts as red

parts. Assuming for the sake of example that the properties of being red and being green are

intrinsic, Q should be classified as intrinsic, too; but on a standard set-theoretic analysis it

will be denotable by a λ-expression ‘λx ∃B (. . .)’ in whose matrix the referential occurrences

of ‘B’ (for ‘bijection’) are governed by an occurrence of a formula to the effect that B is a set

of ordered pairs of parts of x (where x is the respective bearer of the property).87 Moreover,

under the standard conception of ordered pairs (viz., Kuratowski’s), each such pair is a

nested set {{a}, {a, b}}, where a and b are the two coordinates of the pair in question. So

we are here dealing with quantification over sets of sets of sets of parts of x. The analysis of

other intrinsic properties may require quantification over even more deeply nested sets.88

87More specifically, relative to an interpretation that maps the constant ‘pair’ to the triadic relation that holds
among entities x, y, and z (in this order) iff x is the ordered pair 〈y, z〉, Q will be denotable by the following
λ-expression:

λx ∃B
(

set(B) ∧ ∀y
(
el(y, B) → ∃z, w (pair(y, z, w) ∧ part(z, x) ∧ part(w, x) ∧ red(z) ∧ green(w))

)
∧

∀y
(
(part(y, x) ∧ (red(y) ∨ green(y))) → ∃z, w

(
el(z, B) ∧ (pair(z, y, w) ∨ pair(z, w, y))

))
∧

∀y, z, w, u, r, s
(
(el(y, B) ∧ el(z, B) ∧ pair(y, w, u) ∧ pair(z, r, s)) → ((w = r) ↔ (u = s))

))

.

Here the first line ‘says’ that B is a set and each member of B is a pair of (in this order) some red and some
green part of x; the second line says that each red or green part of x is either the first or the second coordinate
of some ordered pair that is a member of B; and the third line says that B is a bijection.

88An objector might at this point raise a Benacerraf-style worry about there being no uniquely adequate
conception of ordered pair. (Cf. Benacerraf [1965].) But it is not clear to me what such an objection would
aim to show. If the point were that there exists no uniquely adequate set-theoretic analysis of properties like
Q, it would be innocuous. And if the point were that, under the set-theoretic approach, we would have to
distinguish between multiple properties that all equally deserve to be described as a ‘property of having as
many green parts as red parts’, there would still not (as far as I can see) be a serious problem.
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It is interesting to ask whether a term-occurrence that is governed by a suitable predic-

ation of ‘set-of-parts-hood’ may also have to count as redeemed if it is free simpliciter. An

example of such an occurrence is that of the constant ‘Paris’ in the λ-expression

λx
(
set(Paris) ∧ ∀y (el(y, Paris) → part(y, x))

)
, (2)

which denotes the somewhat bizarre property of having Paris as a set of one’s parts. Fairly

clearly, for something to instantiate this property is not “purely a matter of which parts

it has [etc.]”, and so we would seem to have good reason to regard it as extrinsic. But

appearances may be deceiving. If Paris were simply a set of some entities—say, a set of

three entities a, b, and c—then it would presumably be less strange to think of having Paris

as a set of one’s parts as intrinsic: to instantiate it would be purely a matter of having a, b,

and c as one’s parts. But now, what sort of thing Paris actually is (e.g. whether it is a set or

a non-set) should make no difference with respect to whether having Paris as a set of one’s

parts is intrinsic. For consider: for any entity x, the property of having x as an atomic part

is plausibly intrinsic, even if x is not actually atomic. For another example, just as having

Mars as a part and being such that Mars is made of rock is intrinsic, the property of having Paris

as a part and being such that Paris is made of rock should likewise count as intrinsic (never

mind whether Paris is actually made of rock). Analogously, then, if having {a, b, c} as a set

of one’s parts counts as intrinsic, then so should the property of having Paris as a set of one’s

parts. I would accordingly propose to treat this property as intrinsic.

The second respect in which (CC1) has to be weakened concerns the ‘chaining’ of spe-

cifications. For example, the referential occurrences of ‘y’ on the first line of (1) ought to

count as redeemed (in the sense of not preventing the classification of P as intrinsic) in

virtue of the fact that they are governed by an occurrence o of a formula to the effect that y

is a member of S, where the occurrence of ‘S’ in o is in turn governed by an occurrence of a

formula to the effect that S is a set of parts of x. In contrast to the case of having an atom as a

part that has a neutron as a part (briefly mentioned on p. 51 above), the present chain consists

not of two predications of parthood, but rather of a predication of set-of-parts-hood fol-
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lowed (in ‘descending’ order) by a predication of set-membership. Let us say that a chain

of predications is redeeming iff, as a result of its presence, the term-occurrence at the chain’s

‘lower’ end should count as redeemed (in the sense specified above).

All redeeming predication chains have in common that the term-occurrences at their re-

spective ‘upper’ ends are argument-occurrences, i.e. referential variable-occurrences bound

by the initial ‘λ’ of the containing λ-expression.89 So, e.g., a chain whose upper end is a

variable-occurrence bound by a quantifier will (for obvious reasons) not count as redeem-

ing.90 As for the types of predication that a redeeming chain can consist of, we have so

far encountered (i) predications of parthood, (ii) predications of set-membership, and (iii)

predications of ‘set-of-parts-hood’. By what has been said above, this last term should here

be understood as applying not only to set-of-parts-hood properly so called, but also to all

its nested variants, such as set-of-sets-of -parts-hood and even set-of-(parts-or-sets-of-parts)-

hood, and so on.

It is somewhat controversial whether a redeeming chain can also consist of nothing but

predications of set-membership. We can here remain neutral on the question of whether

set-membership is a parthood relation. Independently of this question I propose to treat

set-membership as ‘on a par’ with parthood as far as the intrinsic/extrinsic distinction is

concerned. One reason for this move lies in the fact that, from a purely intuitive point of

view, it seems in fact quite plausible (at least to my mind) to say that properties like having

Paris as a member are intrinsic.91 The second reason lies in the fact that this move will lead to

a simpler account of intrinsicality (without any obvious loss in extensional adequacy). To

be sure, on a strict reading of our orienting characterisation (In′
0), it is not the case that for

something to instantiate having Paris as a member is “purely a matter of which parts it has

[etc.]”, unless set-membership is a parthood relation. At the same time, however, I think

that it would not be wildly counter-intuitive to broaden that characterisation so as to treat

set-membership in a way that is largely analogous to the way in which it treats parthood

89See Definition 9.3 above.

90An example of such a chain would be the single predication of parthood that, in ‘λx ∃y part(Paris, y)’,
connects the occurrence of ‘Paris’ to the subsequent occurrence of ‘y’.

91This is pace Marshall (2015: 14), who classifies the property of having a member as extrinsic.
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relations.

The above considerations have led us to a view on which single predications of part-

hood, set-membership, and set-of-parts-hood all make for redeeming (albeit short) chains.

If this is correct, it is hard to see why longer chains made up of any combination of such

predications should not also count as redeeming. This means in particular that, in the case

of a predication of set-of-parts-hood near the top of a given chain, we need not require that

the depth of the nesting should be matched by the number of subsequent (i.e. lower) pre-

dications of set-membership. For example, the property of having S as a set of one’s parts and

being such that Paris is a member of a member of a member of S, for some entity S, will still count

as an (admittedly unusual) intrinsic property. Furthermore, given that set-membership is

for the purposes of the intrinsic/extrinsic distinction treated as on a par with parthood, it

stands to reason that predications of ‘set-of-parts-or-members-hood’ (where this label again

also applies to nested variants of what it applies to stricto sensu) should be treated in the

same way as predications of set-of-parts-hood.

So much for the two respects in which (CC1) has to be weakened. In order to implement

the necessary changes, we will first address the problem of formally characterising the class

of all predications that are to the effect that the referent of a given term t is a part, or a

member, or a set of parts or members (etc.) of one or more other entities. In the next

subsection, we will then turn to chains consisting of multiple such predications.

The natural approach to a formal characterisation of the mentioned class of predications

is to proceed in a recursive manner, starting with simple predications of parthood and

set-membership, as well as disjunctions of such predications. Predications of set-of-parts-

or-members-hood will then be added in the recursion step. As parameters, we will use

an interpretation I, a variable-assignment g, a term t, and two sets of terms T and U. (By

way of orientation, it may help to think of t as the term of which o is an occurrence, of T

as the set of M’s λ-variables, and of U as a set of terms of which each member denotes

the property of being a set, the relation of set-membership, or a parthood relation.) The

definition runs as follows:

Definition 10.2. For any interpretation I, variable-assignment g, term t, and any sets of
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terms T and U, the following holds:

(i) D0(I, g, t, T, U) is the class of all formulas ϕ such that there exists a non-empty set of

formulas ∆ satisfying the following two conditions:

1. ϕ is equivalent to p
∨

δ∈∆ δq.92

2. For each δ ∈ ∆, there exist terms P ∈ U and u ∈ T such that P denotesI,g either

a parthood relation or set-membership, and δ = pP(t, u)q.

(ii) For any ordinal α > 0, Dα(I, g, t, T, U) is the class of all formulas ϕ such that, for

some terms S, E ∈ U, some variable v, and some non-empty set of formulas ∆, the

following four conditions are satisfied:

1. ϕ is equivalent to pS(t) ∧ ∀v
(

E(v, t) →
∨

δ∈∆ δ
)
q.

2. S and E respectively denoteI,g the property of being a set and set-membership.

3. For any δ ∈ ∆, there exists an ordinal β < α such that δ ∈ Dβ(I, g, v, T, U).

4. The variable v does not occur free in t or any member of T ∪ U.

The class of all formulas that express (relative to a given interpretation I and variable-

assignment g) the requirement that the referent of a given term t be a part, or a member,

or a set of parts or members (etc.) of one or more entities x1, x2, . . .—where the xi are the

respective referents of some of the members of a given set of terms T—can now be formally

characterised as the class of all formulas ϕ such that, for some ordinal α and some set of

terms U, ϕ is a member of Dα(I, g, t, T, U). Equipped with this notation, we can take a first

step towards the desired weakening of (CC1):

(CC2) For any term t and any referential occurrence o of t in M: if o either stands at primary

subject-position or is an occurrence of an atomic term at primary sentence-position,

then o is either an argument-occurrence or governed by an occurrence o′ of a formula

ϕ such that, for some set V of λ-variables of M, some set of terms U, and some set of

formulas ∆, the following five conditions are satisfied:

92The ‘equivalent’ should here be understood as mutual entailment in the sense of Definition 6.3.
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(i) ϕ R-entails p
∨

δ∈∆ δq.

(ii) For any δ ∈ ∆, there exists an ordinal α such that δ is a member of Dα(I ′, g′, t, V, U).

(iii) For any variable v ∈ V: any occurrence of v free in o′ is an argument-occurrence.

(iv) For any term u ∈ U: any occurrence of u free in o′ is free simpliciter.

(v) If o is free simpliciter and there exist a formula δ ∈ ∆ and terms P and u such

that δ is equivalent to pP(t, u)q and P denotesI′,g′ the identity relation, then o′

does not stand in the scope of an odd number of occurrences of ‘¬’.

Here the clauses (i), (iii), (iv), and (v) respectively correspond—with some adjustments due

to the switch from talk of an index set J to talk about a set of formulas ∆—to the clauses

(iii), (iv), (v), and (vi) of (CC1).

10.3 Chains of Predications

(CC2) still suffers from the defect that it ignores redeeming chains consisting of more than

one predication, as a result of which it fails to accommodate not only the intrinsicality of

having an atom as a part that has a neutron as a part, but also that of being composed of cells.

To remedy this, we will have to replace the entire consequent of (CC2)’s main conditional

with a requirement to the effect that the respective term-occurrence o sits at the bottom of

a redeeming chain. More specifically, the requirement will be to the effect that o should be

directly or indirectly linked to one or more argument-occurrences via a possibly branching

graph (technically, a rooted directed graph), which I shall call an ‘(I, g)-graph’. Before we set

about defining this concept, I should note two complications that arise in connection with

redeeming chains of more than one predication.

First, while negated parthood predications, as in the case of not having Paris as a part, do

not in general impugn an attribute’s intrinsicality,93 a chain of two or more negated parthood

predications arguably does, since a property such as neither having Paris as a part nor being

such that Paris has the Kremlin as a part (or in symbols: λx (¬part(P, x)∧¬part(K, P))) seems

clearly extrinsic. Further, the property of not having Paris as a part but being such that Paris

93Cf. Section 10.1 above.
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has the Kremlin as a part seems likewise extrinsic. To accommodate these observations, I

propose that a chain containing a negated predication of parthood (where the respective

non-part is the referent of a free term-occurrence) should count as redeeming only if that

predication stands at the very bottom of the chain. Negated predications of set-membership

and set-of-parts-or-members-hood should arguably be treated in the same way.

Second, we should take into account that, while being distinct from Paris is extrinsic, the

slightly more complex property of having a part that is distinct from Paris appears to be intu-

itively intrinsic, since for something to instantiate it is (as may be argued) “purely a matter

of which parts it has”.94 If this assessment is correct, then a chain containing a negated pre-

dication of identity (where one of the two relata is the referent of a free term-occurrence)

should count as redeeming if and only if that predication satisfies two conditions: it has to

stand at the bottom of the chain (by what has been said in the previous paragraph, given

that identity is a parthood relation), and the chain has to contain a least two links. The

requirements for negated predications of identity are thus somewhat stronger than those

for negated predications of other parthood relations. As far as I can see, no similar ex-

ceptions hold for any other parthood relation, nor for the relations of set-membership and

set-of-parts-or-members-hood.

In the following definition of ‘(I, g)-graph’, the conclusions of the previous two para-

graphs are incorporated in the form of condition (ii.5). The main idea is that each node

of an (I, g)-graph has to be either an argument-occurrence or to satisfy what is essentially

an analogue of the consequent of (CC2)’s main conditional. In addition, some machinery

is needed to create the links, or ‘edges’, that lead from the graph’s ‘root’, possibly via

intermediate nodes, to one or more argument-occurrences.

Definition 10.3. For any interpretation I and variable-assignment g, an (I, g)-graph is an

ordered triple 〈N, E, r〉, where N and E are sets (of the graph’s ‘nodes’ and ‘edges’, respect-

ively) and r (the graph’s ‘root’) is a term-occurrence such that, for some λ-expression L,

some function Γ from N to the set of formula-occurrences in L, and some function Φ from

94We could not rightly be said to know which parts a given entity x has if we did not know, for any given
entity y, whether x has y as a part. So, if we know which parts x has, and x does not, e.g., have Paris as a part,
we will know this. But then we will also know that x has at least one part that is distinct from Paris.
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N to the class of sets of terms, the following three conditions are satisfied:

(i) Each member of N is a term-occurrence in L.

(ii) For any term t: any occurrence o of t with o ∈ N is either an argument-occurrence

or governed by an occurrence o′ of a formula ϕ such that, for some set of terms U,

some set of formulas ∆, and some function F from ∆ to the class of sets of terms, the

following five conditions are satisfied:

1. ϕ R-entails p
∨

δ∈∆ δq.

2. For any δ ∈ ∆, F(δ) is minimal under the condition that, for some ordinal α, δ is

a member of Dα(I, g, t, F(δ), U).95

3. Γ(o) = o′ and Φ(o) =
⋃

δ∈∆ F(δ).

4. For any term u ∈ U: any occurrence of u free in o′ is free simpliciter.

5. If o is free simpliciter and o′ stands in the scope of an odd number of occurrences

of ‘¬’, then o = r and, for any formula δ ∈ ∆ and any terms τ and u: if δ

is equivalent to pτ(t, u)q and τ denotesI,g the identity relation, then u is not a

variable of which each occurrence free in o′ is an argument-occurrence.

(iii) N and E are minimal under the following two conditions:

1. r ∈ N.

2. For any o ∈ N, any term t ∈ Φ(o), and any occurrence o′ of t free in Γ(o), the

following holds: o′ ∈ N and 〈o, o′〉 ∈ E.

In the simplest case, an (I, g)-graph has only a single node, viz., the graph’s root (which

then has to be an argument-occurrence). In a more complex case, the graph’s nodes form

a single chain without branches. For example, if g is some variable-assignment and I

an interpretation that maps the constants ‘set’ and ‘el’ to, respectively, sethood and set-

membership, then the second occurrence of ‘y’ in the λ-expression (1) on p. 54 above is the

95F(δ) is here minimised because, for each ordinal α, set of terms T, and formula δ ∈ ∆ ∩ Dα(I, g, t, T, U),
we want only those terms t ∈ T that are actually mentioned in δ. (This restriction is needed for the proper
functioning of condition (iii.2).)
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root of an (I, g)-graph with exactly two edges, leading from the root to the third occurrence

of ‘S’ and from there to the second occurrence of ‘x’. A simple example of a branching

(I, g)-graph can be found in ‘λx, y ∃z (part(z, x) ∨ part(z, y))’: each of the two referential

occurrences of ‘z’ is the root of a V-shaped (I, g)-graph, in which the respective occurrence

of ‘z’ is directly linked to the referential occurrences of ‘x’ and ‘y’.

Let us say that an (I, g)-graph 〈N, E, r〉 is well-founded iff there exists no infinite sequence

of term-occurrences o1, o2, . . . such that E contains 〈o1, o2〉, 〈o2, o3〉, and so on. The final

version of our account’s core condition can then be stated as follows:

(CC) For any term t and any referential occurrence o of t in M: if o either stands at primary

subject-position or is an occurrence of an atomic term at primary sentence-position,

then o is the root of a well-founded (I ′, g′)-graph.

To give a somewhat informal gloss of this condition, one might say that it requires every

referential term-occurrence that stands in M at primary subject-position (as well as every

referential occurrence of an atomic term that stands in M at primary sentence-position)

to be either identical with or ‘properly linked up’ to one or more referential variable-

occurrences that are bound by the initial occurrence of ‘λ’ in M. This does not exactly roll

off the tongue; but if we are prepared to cut some corners, we might instead perhaps say

that (CC) “requires the term-occurrences in M to be properly linked up to M’s λ-variables”.

11 Summary

Using (CC) to replace the ellipsis in (In4), we arrive (after a few cosmetic changes) at the

following account:

(In) An attribute A is intrinsic iff, for any interpretation I, variable-assignment g, and

λ-expression L: if L denotesI,g A, then there exist an interpretation I ′ ⊇ I, a variable-

assignment g′ ⊇ g, and a λ-expression M that satisfy the following three conditions:

(i) M has the same λ-variables as L.

(ii) M’s matrix is unsimplifiably equivalent to that of some reductionI′,g′ of L.
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(iii) For any term t and any referential occurrence o of t in M: if o either stands

at primary subject-position or is an occurrence of an atomic term at primary

sentence-position, then o is the root of a well-founded (I ′, g′)-graph.

Combining the informal paraphrases offered in Section 8.1 and at the end of the previous

Section, we can say that an attribute A is intrinsic, according to (In), iff every λ-expression

L that denotes A at best only seems to exhibit A as extrinsic, by containing some term-

occurrence that does not ‘properly link up’ to one or more of L’s λ-variables.

A selection of ‘data points’ that have helped us arrive at this account is given in Table 1.

Concerning its formal characteristics, I should begin by noting that the account has exactly

two parameters: first, the notion of a parthood relation, which is operative in the defini-

tion of the concept of an (I, g)-graph, and second, the concept of equivalence that is both

explicitly and implicitly at play in condition (ii) (implicitly, because it is also used in the

definition of the relevant concept of simplifiability). The notion of a parthood relation has

been left unspecified except for the two constraints (PR1) and (PR2) listed in Section 7.2.

Naturally, the broader the notion of parthood that is ‘plugged’ into (In), the broader the

corresponding concept of intrinsicality. As for the relevant concept of equivalence, we have

seen in Section 8.1 that this concept should be chosen in such a way as to capture the

coarse-grainedness of our conception of attributes.

In Section 4 it was suggested that all logically simple attributes are intrinsic. This is

borne out by the present account, at least if ‘logically simple’ is understood in the sense

of the analysis proposed in my (2016: §3.3).96 Some other consequences worth mentioning

have to do with closure under Boolean operations. Thus, if (In) is correct, then neither the

96According to that analysis, an attribute A is logically simple

iff, for any interpretation I, variable-assignment g, and λ-expression L: if L denotesI,g A, then
there exist an interpretation I ′ ⊇ I, a variable-assignment g′ ⊇ g, and an atomic term F such
that L has relative to I ′ and g′ a reduction whose matrix is equivalent to pF(v1, v2, . . .)q, where
v1, v2, . . . are (in this order) the λ-variables of L.

The relevant concept of reduction is here the same that has been introduced in Section 6.2 above, and the
relevant concept of equivalence depends, as in the case of (In), on the coarse-grainedness of our conception of
attributes. (Cf. op. cit., p. 23n.) Given this understanding of ‘logically simple’, the proof of the thesis that every
logically simple attribute is intrinsic essentially boils down to showing that, for any interpretation I ′, variable-
assignment g′, atomic term F, and variables v1, v2, . . ., the λ-expression M = pλv1, v2, . . . F(v1, v2, . . .)q has a
non-simplifiable matrix and satisfies condition (iii) of (In).
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§ Intrinsic Extrinsic

2.1 Having Paris as a part Being a father

2.2 λx (x 6= x) Being such that Socrates is non-self-
identicala

6.2 Being Socrates and someone’s son

6.3 Being an electron iff distinct from λx (x = x)

7.1 λx part(∃y horse(y), x)

7.2 λx (x = Socrates)

7.3 λx ∃y (part(x, x)∧ (y 6= y))a

8.2 Either having an electron as a part or not
having an electron as a parta,b

9.1 Having Paris as a part and being
such that Paris has the Kremlin as
a part

Being a friend of Aristotle

Being such that s obtains

Being such that there are horses

9.2 λx ∃y part(y, x) λx (P(x) = Q(x))

λx ¬∃y ¬part(y, x)

10.1 Not having Paris as a part Being distinct from Paris

Having either Paris or Rome as a
part

10.2 Being composed of cellsc

Having as many red parts as green
partsd

Having Paris as a set of one’s parts

Having Paris as a member

10.3 Having an atom as a part that has a
neutron as a parte

λx (¬part(Paris, x) ∧ ¬part(Kremlin, Paris))

Having a part that is distinct from
Paris

λx (¬part(Paris, x) ∧ part(Kremlin, Paris))

aOn a suitably fine-grained conception of attributes.
bOn a suitably coarse-grained conception of attributes.
cAssuming that being a cell is intrinsic.
dAssuming that being red and being green are intrinsic.
eAssuming that the properties of being an atom and being a neutron are intrinsic.

Table 1: Examples of intrinsic and extrinsic attributes.
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class of intrinsic nor the class of extrinsic attributes is closed under negation. Being So-

crates, e.g., is classified as intrinsic, but its negation, being distinct from Socrates, is classified

as extrinsic, and the negation of that property is again classified as intrinsic.97 The question

of whether the classes of intrinsic and extrinsic attributes are closed under conjunction and

disjunction depends on the coarse-grainedness of the underlying conception of attributes.

For example, on a conception of attributes that is sufficiently (but not too) coarse-grained,

the disjunction of the intrinsic properties of having an electron as a part and not having an elec-

tron as a part turns out extrinsic, and so does their conjunction.98 Likewise, the conjunction

of the two extrinsic properties of being such that there are electrons and being either an electron

or such that there are no electrons is on a sufficiently coarse-grained conception of attributes

identical with the (plausibly) intrinsic property of being an electron, and the same goes for

the disjunction of the two extrinsic properties of being an electron such that something is not

an electron and being such that everything is an electron.

12 The Local Distinction

Unlike the concepts of intrinsicality and extrinsicality that we have been concerned with

above, the ‘local’ notions of having a property intrinsically and having it extrinsically are

not contradictories: for example, a given electron might have the extrinsic property of

being such that there exists at least one electron not only intrinsically but also (at the same

time) extrinsically, viz., if there exists some other electron.99 Nonetheless, I think that the

two notions can be adequately understood on the basis of the distinction between intrinsic

and extrinsic attributes. We only have to help ourselves, in addition, to two concepts of

necessitation: a ‘basic’ one that corresponds to the (first) notion of entailment defined in

Section 6.3 above and another that is instead based on the notion of ‘strictly L-relevant

entailment’ introduced in Section 7.3. The basic concept can be defined as follows:

97See condition (ii.5) of the definition of ‘(I, g)-graph’.

98Cf. Section 8.2 above. We have there only considered the case of the disjunction of the two properties just
mentioned, but exactly parallel considerations apply to their conjunction.

99For other examples, see, e.g., Dunn (1990: 183) and Humberstone (1996: 228).
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Definition 12.1. A state of affairs s1 necessitates a state of affairs s2 iff there exist an inter-

pretation I, a variable-assignment g, and formulas ϕ and ψ such that: (i) ϕ denotesI,g s1,

(ii) ψ denotesI,g s2, and (iii) ϕ entails ψ.

Next, a concept of L-relevant necessitation can be defined by replacing the ‘entails’ in con-

dition (iii) with ‘L-entails’. Similarly, by replacing the ‘entails’ with ‘strictly L-entails’, one

obtains a definition of strictly L-relevant necessitation:

Definition 12.2. A state of affairs s1 strictly L-relevantly necessitates (for short: strictly L-

necessitates) a state of affairs s2 iff there exist an interpretation I, a variable-assignment g,

and formulas ϕ and ψ such that (i) ϕ denotesI,g s1, (ii) ψ denotesI,g s2, and (iii) ϕ strictly

L-entails ψ.

An at least approximate account of the local distinction might now be formulated along

the following lines:100

(Inloc) An entity x has a property P intrinsically iff there exists some intrinsic property Q

such that Q(x) obtains and necessitates P(x).

(Exloc) An entity x has a property P extrinsically iff there exists a state of affairs s that satisfies

the following two conditions:

(i) s obtains and strictly L-relevantly necessitates P(x).

(ii) No intrinsic property Q is such that Q(x) obtains and necessitates s.

For the sake of illustration, let P be the extrinsic property of being such that there exists at

least one electron, or in symbols: λx ((x = x) ∧ ∃y E(y)), and let e be some electron. It is

then easy to see that e has P ‘intrinsically’ in the sense of (Inloc), at least provided that being

an electron is intrinsic. At the same time, e has P extrinsically. For let e′ be some electron

distinct from e, and let s be the state of affairs that e is such that e′ is an electron, or in

symbols: (e = e) ∧ E(e′). It then follows that s strictly L-necessitates P(e), as can be seen

from the fact that the formula ‘(e = e) ∧ E(e′)’ strictly L-entails ‘(e = e) ∧ ∃y E(y)’; and

plausibly there is no intrinsic property Q such that Q(e) obtains and necessitates s.

100Both of the following two definitions can be readily generalised to attributes of higher adicities.
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The reason why (Exloc) makes use of strictly L-relevant necessitation lies in the need to

avoid spurious instances of a property’s being had extrinsically. For example, suppose that

all the pens in my drawer are ballpoint pens, let p be one such pen, and let D and B be,

respectively, the properties of being a pen in my drawer and being a ballpoint pen. Then the con-

junction of the states of affairs ∀x (D(x) → B(x)) and D(p) obtains and necessitates—even

L-relevantly necessitates—the state of affairs B(p). At the same time, that conjunction is not

necessitated by any state of affairs Q(p), where Q is an intrinsic property. Hence, without

the ‘strictly L-relevantly’ in condition (i), p would be classified as having B extrinsically,

which would be an unwelcome result. By contrast, the conjunction of ∀x (D(x) → B(x))

and D(p) does not strictly L-relevantly necessitate B(p), as can be seen from the fact that

‘∀x ((x = x) → B(x))∧ D(p)’ is a non-contradictory pruning of ‘∀x (D(x) → B(x))∧ D(p)’

that, like the latter, entails ‘B(p)’.

If (Inloc) and (Exloc) are by and large correct, we can apparently conclude (contrary

to what has sometimes been suggested) that the distinction between having a property

intrinsically and having it extrinsically need not be regarded as more basic than the ‘global’

distinction between intrinsic and extrinsic attributes.101

13 Conclusion

There is no denying that the account of intrinsicality proposed in this paper is unusually

complex. In itself, this need not be a bad thing: that seemingly simple notions can turn

out to have unexpectedly complex analyses is a familiar phenomenon. (Take, for example,

the concept of a smooth curve, of a random number, or of a computable function.) But

sometimes, at least in philosophy, analyses can become too complex for comfort, leaving

one puzzled as to why one should ever have cared about a concept as complex as the

proposed analysis would suggest.102 As far as I can see, there are three possible ways to

proceed in such a situation. First, one might try to find an analysis that is equivalent to

101An interestingly different conception of the intrinsically/extrinsically distinction has been explored by
Carrie Figdor (2008), who, following Ellis (2002), lays heavy emphasis on the consideration of “relevant coun-
terfactual circumstances” (p. 696).

102Timothy Williamson (2000) has famously felt this way about certain analyses of the concept of knowledge.
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the original, but simpler. Second, one might try to see if one can ‘prune’ the analysis in

some reasonable way, so as to end up with a concept that is no longer a priori coextensive

with the original but more ‘natural’ and easier to work with. A third option would be to

abandon the analytic project and to take the concept as primitive.103

Suppose that the complexity of the present account of intrinsicality is indeed too much

for comfort: which of the three options should we choose? Concerning the first, I have

to confess that I do not know how to simplify the account without sacrificing extensional

adequacy. Concerning the third, I am afraid that it would leave it a mystery what the

intrinsicality of an attribute might consist in—e.g., what it is about having Paris as a part

that makes this property intrinsic. Best, then, to take the second option. For example,

we might decide to settle for an account that abandons some or all of the refinements

introduced in Section 10. But it is not clear to me that the gains in simplicity would be

worth the resulting cost in extensional adequacy.

When it comes to the analysis of relatively familiar notions, our preference for simpli-

city might in part be rooted in the hope that a simpler analysis would provide a better

explanation of why such-and-such properties happen to fall, or not to fall, under a given

concept. This is certainly true if one compares any finitely stateable analysis with one that

merely enumerates infinitely many instances (as in, ‘An attribute A is intrinsic iff A is the

property of being self-identical or A is the property of having a proper part or ...’). By being

less ‘disjunctive’, the simpler analysis will articulate non-disjunctive features that several

intrinsic attributes have in common, and may thereby claim to provide a better explana-

tion as to ‘what makes’ those attributes intrinsic. However, this would seem to be less an

argument for pruning away complexities than a reason to look for a simpler but equivalent

103An adherent of a particularly demanding view as to what counts as an ‘analysis’ or as a ‘reductive account’
may argue that the account given in this paper qualifies neither as an analysis nor as reductive. On such a view,
I have effectively been treating ‘intrinsic’ as a primitive all along and have unwittingly provided an account
that is no analysis at all. Since this may be a possible view to hold, I should perhaps clarify in which sense
I take myself to have given an ‘analysis of intrinsicality’. As I understand the term, what makes something
an analysis is—besides its logical form—a matter of its aims, viz., (i) that the coextensiveness of analysans
and analysandum is meant to follow in large part from what may be called semantic intuitions (cf., e.g., Eklund
[2015], who talks in a similar vein of ‘competence intuitions’), and (ii) that the analysis itself is meant to be
informative. (This latter aim requires that the analysis should not be circular.) A successful analysis may thus
be said to be ‘justified’ by semantic intuitions. This justification need not, however, extend to the framework
within which the analysis is constructed. Different frameworks can be expected to give rise to correspondingly
different analyses; but this is not in itself objectionable.
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analysis. And as for the question of why we group such-and-such attributes together un-

der a common label, an analysis may in any case be the wrong place to look for an answer.

An analysis will usually not tell us what biases and desiderata have shaped our conceptual

landscape and have led us to apply the label ‘intrinsic’ to some properties as opposed to

others. But such biases and desiderata may better reflect why we “care” about intrinsicality

than any analysis could.104
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Appendix A: The Marshall–Parsons Argument

Greatly expanding on a brief argument by Josh Parsons (2001: 22f.), Dan Marshall (2009) has argued

that the intrinsic/extrinsic distinction cannot be analysed “using only broadly logical notions”. This

argument may at first sight seem to block the project pursued in the present paper, which is to

develop an account under which the intrinsicality or extrinsicality of a given attribute is a matter of

the attribute’s logical constitution. The purpose of this Appendix is to discuss whether Marshall’s

argument does in fact pose a threat to this project, and if so, how it can be answered from within

the present paper’s framework.

Marshall’s argument revolves around two properties, viz., (i) being an electron and (ii) being either

a lonely positron or an accompanied electron, of which the first may plausibly be regarded as intrinsic

and the second as extrinsic. (To say that a thing is ‘lonely’ means here that there exists nothing else

besides it, and to say that it is ‘accompanied’ means that it is not lonely.) Let us refer to the first

property as ‘E’ and to the second as ‘E∗’. In addition, let us refer to the property of being a positron

as ‘P’. A central part of Marshall’s argument is devoted to establishing the claim that
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(S) E and E∗ satisfy the same rigid broadly logical formulas.1

Here the notion of a rigid formula is defined as follows: “A one-place formula A with a free variable

x is rigid iff p∀x[Necessarily(A(x))∨Necessarily(¬A(x))]q is true” (p. 654). As for ‘broadly logical’,

we can infer from what is said at several places in Marshall’s paper (e.g. on p. 672) that a formula

is broadly logical iff it is a formula in the language L that he describes in his footnote 2:

Let L be a language containing the variables ‘x’, ‘y’, ‘z’, ‘x1’ . . . together with the
operators and predicates: ‘¬’ (meaning ‘it is not the case that’), ‘∧’ (meaning ‘and’), ‘∃’
(meaning ‘for some’), ‘�’ (meaning ‘necessarily’), ‘at’, ‘is a possible world’, ‘is a set’,
‘exists’, ‘=’, ‘∈’ (meaning ‘is a member of’), ‘is a proper part of’, ‘instantiates’, and ‘is a
property’. If X and Y are variables in L then p(X is a possible world)q, p(X is a set)q,
p(X exists)q, p(X = Y)q, p(X ∈ Y)q, p(X is a proper part of Y)q, p(X instantiates Y)q,
and p(X is a property)q are atomic formulas in L. If A and B are formulas in L, and
X is a variable in L, then p¬Aq, p(A ∧ B)q, p(∃X)Aq, p�Aq, and p(at X)Aq [read: at
world X, it is the case that A] are formulas in L. All formulas in L are specified by the
previous two sentences. (p. 648n.)

Apart from clarifying the notion of a broadly logical formula, this passage helps explain what

it would mean for ‘intrinsic’ to be definable “using only broadly logical notions” (as Marshall

understands this phrase); for as he explains in the same footnote, “‘intrinsic’ can be defined using

only broadly logical notions iff ‘x is intrinsic’ is an abbreviation of a formula in L”. He goes

on to allow that “[w]e might wish to broaden what counts as a broadly logical definition either

by i) turning L into an infinitary language by allowing infinite conjunctions and infinite blocks

of quantifiers, or ii) by adding vocabulary such as the plural quantifier ‘there are’, the operator

‘actually’, or the term ‘the actual world’ to the list of broadly logical vocabulary”, but he suspects

that his argument can be “modified so that it applies to various such expanded conceptions of what

counts as a broadly logical definition”.

From the above thesis (S), together with three prima facie reasonable assumptions—viz., (i) that

E is intrinsic, (ii) that E∗ is extrinsic, and (iii) that any property is either necessarily intrinsic or

necessarily extrinsic—it is only a few steps to the conclusion that ‘intrinsic’ cannot be defined

(or analysed) using only broadly logical notions. (I give a very brief sketch of the reasoning in

footnote 21 above.2) I have no objection to these assumptions, nor to the inferences that lead from

1The label ‘S’ (which is not Marshall’s) is intended as mnemonic for ‘same’.

2In that footnote I essentially follow the “informal argument” that Marshall offers in §2 of his paper, in
which the central claim (S) occurs for the first time on p. 654. This claim is then put on a more rigorous footing
in the “formal argument” of §4. While (S) does not explicitly reappear in that later Section, one can see that
it is implicitly established when Marshall concludes that E and E∗ would “either both satisfy ‘x is intrinsic’
or both fail to satisfy ‘x is intrinsic’ ” if ‘x is intrinsic’ abbreviated a rigid broadly logical formula (p. 665).
Another difference lies in the fact that in §4 Marshall gives an argument for the extrinsicality of E∗, based on
the assumption that positronhood is “intrinsically qualitatively complete” (p. 664f.). These differences are not
relevant for our purposes, however.
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(S) to Marshall’s conclusion, nor to the way in which he establishes (S). Instead, in order to assess

whether his argument poses an obstacle to the present paper’s project, I will focus on the question

of whether it is possible to establish an analogue of (S) in which the phrase ‘broadly logical’ is

understood in a sufficiently broad sense that it applies to the right-hand side of the present paper’s

account of intrinsicality.

Answering this question turns out to be more complicated than one might at first expect, for

not only is the language of our account quite different from Marshall’s language L, but there are

also important differences with respect to the larger framework. Thus, while Marshall works with

an ontology of possibilia, notions of metaphysical modality play no role in our framework, and

accordingly, attributes are in it not individuated in terms of necessary coextensiveness. Instead,

they are individuated on the basis of a suitable concept of equivalence, applied to matrices of

λ-expressions; and formulas are used as names of states of affairs.

To see what sort of difference all this makes vis-à-vis Marshall’s argument, suppose we wish

to adopt a moderately coarse-grained conception of attributes: coarse-grained enough that any

property Q is identical with λx (Q(x) ∧ (x = x)), but also fine-grained enough to distinguish the

property of being self-identical from that of being self-identical and such that Socrates is self-identical.

To formulate such a conception, we would first introduce a concept of equivalence, understood as

mutual entailment in, e.g., the following sense:3

Definition A.1. A formula ϕ entails a formula ψ iff ϕ has a denotation relative to some interpretation

and variable-assignment and, for any interpretation I and variable-assignment g, the following two

conditions are satisfied:

(i) If ϕ has a denotation relative to I and g, then so does ψ.

(ii) If ϕ denotes relative to I and g an obtaining state of affairs, then so does ψ.

Equipped with the corresponding concept of equivalence (on which two formulas are equivalent

just in case they entail each other in the sense just defined), we would in the next step adopt the

following principle:4

(P) If a λ-expression L1 has the same λ-variables in the same order as another λ-expression L2,

then they satisfy the following two conditions:

3The following definition is essentially the same as Definition 6.3 (p. 28).

4For details, see Section 6.2. (P) is in effect a simplified version of the conjunction of the two theses (CA)
and (FA) that are formulated in that same Section. To reduce clutter, references to interpretations and variable-
assignments are here suppressed as far as possible.
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(i) If the matrices of L1 and L2 are equivalent and both L1 and L2 have a denotation, then

they both denote the same attribute.

(ii) If L1 and L2 denote the same attribute, then there exist a reduction L′
1 of L1 and a

reduction L′
2 of L2 such that the matrix of L′

1 is equivalent to that of L′
2.

A ‘reduction’ of a given λ-expression L is here, roughly, a λ-expression (not necessarily distinct

from L) that results from L by replacing zero or more occurrences of atomic terms with other terms

that denote the same entities as those whose occurrences they replace.5

With these preliminaries out of the way, let us now consider E∗. Relative to a variable-assignment

that maps ‘E’ and ‘P’ respectively to E and P (i.e. to the properties of being an electron and being a

positron), E∗ will be denoted by

λx
((

P(x)∧ ¬∃y (y 6= x)
)
∨
(
E(x) ∧ ∃y (y 6= x)

))
. (∗)

Under the above concept of equivalence, the matrix of (∗) turns out to be equivalent to ‘(P =

P) ∧ E(x)’, i.e. (written without abbreviatory devices) to ‘I(P, P) ∧ E(x)’.6 This is due to the fact

that the formula ‘∃y (y 6= x)’ denotes an obtaining state of affairs relative to any interpretation

and variable-assignment relative to which it denotes anything at all. And the reason for this is

simply that everything is ‘accompanied’, since there are at least two entities. Indeed, analogous

considerations apply to any formula according to which x is accompanied by at least κ-many entities

(for any set-sized cardinality κ), due to the ‘abundance’ of our ontology of attributes and states of

affairs (as well as sets). Now, given that the matrix of (∗) is equivalent to ‘I(P, P)∧ E(x)’, it follows

from (P) that E∗ is in fact the same property as that of being an electron such that P = P. Intuitively,

this property is still extrinsic. It may be extrinsic in a different way than might occur to one if the

property is instead described as that of being either a lonely positron or an accompanied electron, but that

does not matter for a discussion of Marshall’s argument. The challenge is still the same, viz., to see

whether we can classify E∗ as extrinsic without at the same time having to classify E as extrinsic.

As it turns out, our account does classify E∗ as extrinsic, at least under two assumptions. The

first of these simply states that

(A1) Instantiating E∗ does not require having P as a part.

This thesis could be made more precise, but for present purposes there will be little need to do so.

5Cf. Definition 6.1 (p. 24).

6‘I’ functions here as a logical constant denoting the identity relation. (Cf. Section 5.1.)
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I take it to be eminently plausible on any reasonable precisification. For the second thesis, we first

have to introduce two concepts of analysability:7

Definition A.2. An entity x is analysable in terms of an entity y iff there exists a term t (which could

be a formula or λ-expression), as well as some interpretation I and variable-assignment g, such that

t denotesI,g x and contains a free occurrence of a term that denotesI,g y.8

Definition A.3. An entity x is fully analysable in terms of a given set S of entities iff there exists a

term t, as well as an interpretation I and a variable-assignment g, such that:

(i) t denotesI,g x, and

(ii) Every variable or constant that occurs free in t denotesI,g some member of S.

With the help of these two concepts, the second assumption can be formulated as follows:

(A2) The state of affairs I(P, P) is not fully analysable in terms of any set that contains only entities

in terms of which E is analysable.

Whether this assumption holds depends in part on the metaphysics of E and P (e.g. on whether P

is fully analysable in terms of {E}). For the sake of the example, let us suppose that it is true.

To illustrate how, under these two assumptions, the account developed in this paper classifies

E∗ as intrinsic, I will for reasons of space rely on a very rudimentary description of that account.

Thus, very roughly: the account classifies an attribute A as extrinsic iff, first, A is denoted by

some λ-expression L that at least seems to exhibit A as extrinsic by virtue of certain ‘complex-

making’ features of L and, second, there exists no reduction of L that shows that those features are

misleading. To apply this to our example, let L be the expression ‘λx (I(P, P) ∧ E(x))’, which, by

what has been said above, denotes E∗.9 As may be seen from the details of our account (though

admittedly not from the rudimentary description that has just been given), the complex-making

feature of L by virtue of which it “seems to exhibit” E∗ as extrinsic are the two occurrences of ‘P’.

Let now M be some reduction of L. M will then denote the same property as is denoted by L,

viz., E∗. Further, M’s matrix will contain a first conjunct γ1 that results from ‘I(P, P)’ by replacing

zero or more occurrences of either ‘I’ or ‘P’ with some coreferential other term(s), and a second

7The following definitions are essentially taken from my (2016: §3.5), though with one important change in
the second definition: in order to be ‘fully analysable’ in terms of a given set S, an entity need not be analysable
in terms of each member of S.

8Here ‘denotesI,g’ is short for ‘denotes relative to I and g’. (Cf. Section 5.2.)

9As already above, I am here suppressing references to interpretations and variable-assignments in order
to simplify the discussion.
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conjunct γ2 that results from ‘E(x)’ by replacing the occurrence of ‘E’. There are two ways in which

M might ‘save’ E∗ from being classified as extrinsic.10 The first way would be for M’s matrix (in

which ‘x’ occurs free) to entail that P is a part of x; but this is ruled out by (A1).11 The second way

would be for γ1 to be an instance of ‘redundant complexity’, which would require that M’s matrix

is equivalent to γ2 (in the sense defined above). But M’s matrix cannot be equivalent to γ2 if γ1

contains some free occurrence of a variable or constant (other than ‘I’) that does not occur free in

γ2. And that will precisely be the case if (A2) is true. So M does not, after all, ‘save’ E∗ from being

classified as extrinsic; but M was any reduction of L. Hence, given (A1) and (A2), no reduction of

‘λx (I(P, P) ∧ E(x))’ will show that what this λ-expression suggests—viz., that E∗ is extrinsic—is

not in fact the case. And so E∗ will be classified as extrinsic. By contrast, E may (for all that has

been said here) still be classified as intrinsic.

As I hope can be seen from this example, the use of λ-expressions, together with some aux-

iliary notions, such as denotation and occurrence, and combined with a moderately fine-grained

conception of attributes, allows us to articulate differences between E and E∗ that could not be

expressed using only the set of notions that Marshall considers broadly logical for the purposes of

his argument. Even though E and E∗ satisfy exactly the same formulas of Marshall’s language L,

it need not be the case, for all we know, that both of them fail to satisfy the right-hand side of the

present paper’s account of intrinsicality. Further, the description given by the right-hand side of

our account can be fairly regarded as ‘rigid’, since it does not appeal to any contingent features of

the to-be-classified attribute (such as the number of things—or sequences of things—that happen to

instantiate it). Hence, if we interpret the ‘broadly logical’ in (S) in a sufficiently broad sense that it

applies to the language of our account, that thesis no longer seems to hold.12

10Here I am drawing on further details of the account, which the above description leaves implicit.

11To keep the example reasonably simple, I am ignoring various even more outlandish possibilities, such as
that M’s matrix might entail that P is a set of parts of x.

12An objector might at this point reply that a good account of intrinsicality should be extensionally adequate
even when combined with a highly coarse-grained conception of attributes, rather than the merely moderately
coarse-grained conception that we have appealed to here. This may at first blush seem a plausible maxim, but
I do not think that it makes for an effective objection. One reason for this is given in the discussion at the end
of Section 6.1: some conceptions of attributes are simply too coarse-grained to be plausible. Another reason is
the following. If, working with a very coarse-grained conception, we still regard E∗ as extrinsic, on the basis
of its satisfying the following description: the property of being either a lonely positron or an accompanied electron,
then presumably some of the complexities of (∗) are not in fact redundant under the conception in question;
for (∗) is just a formalisation of that description. (It would be a dialectical mistake to go on insisting on E’s
intrinsicality and E∗’s extrinsicality regardless of how redundant those features become as we move to more
and more coarse-grained conceptions of attributes, unless we want to maintain that one and the same attribute
can be both intrinsic and extrinsic. Some conceptions are after all coarse-grained enough that E∗ collapses not
just into λx ((P = P) ∧ E(x)) but into E itself.) Moreover, at least one of those non-redundant complexities of
(∗) will have to be of a suitably ‘extrinsicality-indicating’ character; and finally it will have to be the case that
not all of these non-redundant, extrinsicality-indicating complexities turn out to be redundant, or to lose their
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Appendix B: Occurrences and Containment

Concepts of occurrence, containment, and variable-binding are familiar from basic mathematical

logic and computer science. However, since the discussion in this paper sometimes relies on some

finer points relating to these notions, it will be useful to provide suitably precise definitions that

apply, in particular, to the formal language described in Section 5.

To begin with, an expression of that language can be thought of as a function mapping ordinal

numbers to symbols (where each atomic term—i.e. each constant or variable—counts as one sym-

bol), such that the function’s domain is an initial segment of the ordinals. Symbols need for our

purposes not be thought of as ‘genuinely linguistic’ entities (such as types of inscriptions): we can

remain entirely noncommittal about their nature, and even allow them to be pure sets. As for

occurrences of expressions, these will here be taken to be ordered triples 〈E, e, α〉, where the first

and second coordinates are expressions and the third coordinate is an ordinal. Intuitively, the first

coordinate is the expression that contains the occurrence in question, the second is the expression

that the occurrence in question is an occurrence of, and the third indicates the occurrence’s starting

position within the containing expression, counting from zero.1 A triple 〈E, e, α〉 may thus be said

to be “the occurrence of e in E that begins with the (α + 1)th symbol of E”, provided that E and e

are expressions and that α is an ordinal such that, for each ordinal β in the domain of e, the symbol

E(α + β)—i.e. the (α + β + 1)th symbol of E—is identical with e(β). Unless these conditions are

met, 〈E, e, α〉 will not be said to be an ‘occurrence’ at all.

Based on this conception of occurrences, we can now go on to define three useful concepts of

containment:

Definition B.1. An expression E contains an expression e iff, for some ordinal α, there exists an

occurrence 〈E, e, α〉.

Definition B.2. An expression E contains an occurrence o iff, for some expression e and ordinal α, o

is identical with 〈E, e, α〉.

Definition B.3. An occurrence 〈E, e, α〉 contains an occurrence 〈E′, e′, α′〉 iff E = E′, and for each

ordinal β in the domain of e′ there exists an ordinal γ in the domain of e such that α′ + β = α + γ.

The following are some easy consequences of the last two definitions:

extrinsicality-indicating character, once we consider some reduction of (∗). If so, however, there will again be
no reduction of (∗) that saves E∗ from being classified as extrinsic.

1Cf. Wetzel (1993), who construes an occurrence of e in E as an ordered triple 〈n, e, E〉, where n indicates
the occurrence’s position in the sequence of all occurrences of e in E, ranked by their starting points.
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• Every occurrence is contained in exactly one expression.

• Every occurrence contains itself.

• An occurrence contains another only if they are both contained in the same expression.

• For any occurrences o and o′: if o contains an occurrence that contains o′, then o contains o′.

For the sake of brevity, we sometimes speak of an expression or occurrence “in” an expression or

occurrence ε, meaning an expression or occurrence that is (in the relevant sense) contained in ε. If an

occurrence is contained in an occurrence distinct from it, we say that it is properly contained in the

latter.

The distinction between ‘bound’ and ‘free’ variable-occurrences can be drawn more or less in

the usual fashion, but sometimes it matters not only whether a given variable-occurrence is bound,

but also by which operator-occurrence it is bound, if it is bound at all. In the case of the language

described in Section 5, this relation can be defined as follows:

Definition B.4. An occurrence o of a variable v is bound by an occurrence o′ of a variable-binding

operator (i.e. either ‘λ’ or ‘∃’) iff there exists a term-occurrence o∗ such that the following three

conditions are satisfied:

(i) o∗ starts with o′ and contains o.

(ii) o′ immediately precedes a list of variable-occurrences that has as one of its elements an oc-

currence of v.

(iii) For any occurrence o′′ of any variable-binding operator: if o′′ immediately precedes a list of

variable-occurrences that has as one of its elements an occurrence of v, then there exists no

term-occurrence that is properly contained in o∗, starts with o′′, and contains o.

The complicated third condition is here needed to ensure that, in those cases where a variable-

occurrence stands in the scope of two or more operator-occurrences, it counts as being bound by

the innermost applicable operator-occurrence. For example, the third and fourth occurrences of ‘x’

in ‘λx (P(x)∧ ∃x Q(x))’ are bound by the ‘∃’, not by the initial ‘λ’.

We say that a variable-occurrence is bound iff it is bound by some operator-occurrence, and free

otherwise. Variable-occurrences that are free in this sense are also said to be free simpliciter. By

contrast, we say that a variable-occurrence is free in a term-occurrence o iff it is contained in o and

not bound by any operator-occurrence in o; whereas it is said to be bound in o iff it is contained in o

and bound by some operator-occurrence in o. For instance, the second occurrence of ‘x’ in ‘∃x P(x)’
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is free in the containing occurrence of ‘P(x)’ but not free simpliciter. This terminology extends in a

natural way to occurrences of terms. Thus, a term-occurrence o is bound or free simpliciter according

as it does or does not contain a bound variable-occurrence that is free in o. And a term-occurrence

o is free in a term-occurrence o′ iff (i) o′ contains o and (ii) o contains no variable-occurrence that is

bound in o′ but free in o.
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