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Abstract In this paper, I discuss the analysis of logic in the pragmatic approach
recently proposed by Brandom. I consider different consequence relations,
formalized by classical, intuitionistic and linear logic, and I will argue that the
formal theory developed by Brandom, even if provides powerful foundational
insights on the relationship between logic and discursive practices, cannot
account for important reasoning patterns represented by non-monotonic or
resource-sensitive inferences. Then, I will present an incompatibility semantics
in the framework of linear logic which allow to refine Brandom’s concept of
defeasible inference and to account for those non-monotonic and relevant
inferences that are expressible in linear logic. Moreover, I will suggest an
interpretation of discursive practices based on an abstract notion of agreement
on what counts as a reason which is deeply connected with linear logic
semantics.

Keywords Dialogues · Linear logic · Analytical pragmatism ·
Actions that count as reasons

Introduction

The analytical pragmatism proposed by Brandom, stressing that “we must look
at what it is to use locutions as expressing meanings—that is, at what one
must do in order to count as saying what the vocabulary lets the practitioners
express” (Brandom 2008), sheds new lights on foundational issues concern-
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ing logic, in particular, developing a strong connection between logic and
inferential (pre-logical) practice or abilities, which are to be grounded in the
general practice of giving and asking for reasons.

I will investigate different logical vocabularies as related to different aspects
of a pre-logical inferential practice and I will challenge Brandom’s model,
which is based on a particular incompatibility semantics, taking into account
two well-established non-classical paradigms of reasoning, represented by
intuitionistic and linear logic, for which an account in Brandom’s terms has
not yet been provided.

I will argue that Brandom’s formal model cannot find a suitable place for
intuitionistic, causal or non-monotonic reasoning and I will claim that this is a
severe drawback for the generality of Brandom’s theory. Then, I will propose a
different model of incompatibility semantics, based on the algebraic structure
providing models of linear logic, that can express classical, intuitionistic and
linear consequence relations in a harmonious way. In particular, I will inves-
tigate a refinement of Brandom’s notion of defeasibility, a condition required
in order to define consequence relations from incompatibility relations, which
may be used to keep track of some instances of relevant reasoning. From the
technical point of view, the formal approach here presented can be considered
a generalization of Brandom’s semantics towards non-monotonic, intuitionistic
and resource-sensitive reasoning, since all the definition I will present can be
rephrased to fit in the formal apparatus defined in Brandom (2008). However,
I will provide a different justification for incompatibility semantics based on
an abstract form of agreement, a deal between a proponent and an opponent
in a dialog, on what count as a reason. The intuition leading the approach I
am proposing is that a pragmatic account of the meaning of logical constants,
suggesting that we should look at what it is to use logical connectives as
expressing logical meanings, requires an interactive point of view on logic,
since, as Wittgenstein puts it “it is not possible to obey a rule ‘privately’ ”.1

The notion of incompatibility, which is defined by Brandom as a constitutively
modal notion, will be here interpreted using the concept of agreement on
“what count as incompatible” in a given context.

In Section “Analytical Pragmatism”, I will recall Brandom’s main defi-
nitions of meaning-use relations. In Section “Limits of Incompatibility
Semantics”, I will discuss Brandom’s incompatibility semantics and I will inves-
tigate its relationship with intuitionistic and linear inferences. Section “Linear
Logic” contains a succinct presentation of linear logic and its expressive power
in order to show its advantages as a framework to discuss2 logic in terms of
practices. In Section “Incompatibility Semantics Based on Linear Logic”, I
will present an incompatibility semantics based on linear logic and I will show

1Wittgenstein (1967), §202.
2The point of view here adopted is closer to Brandom foundational considerations. A modelization
of speech acts that keep track of their illocutionary force using linear logic has been developed in
Bellin and Dalla Pozza (2002).



Philosophia (2012) 40:99–119 101

how it is capable of expressing intuitionistic and non-monotonic inferences, by
means of a refinement of the notion of defeasibility. Section “Conclusions”
contains some conclusive remarks on the relationship between inferential
practices and the proposed incompatibility semantics.

Analytical Pragmatism

Without entering the details of the complex theory proposed by Brandom,
I briefly recall the definition required in order to state the place of logic
in Brandom’s analytical pragmatism. Brandom defines some fundamental
meaning-use relations that allow to keep track of the pragmatic aspects of
meaning definitions.

Consider a set of practice or abilities P and a vocabulary V, one defines two
fundamental meaning-use relations: PV-suf f iciency, which holds between P
and V when P is sufficient to deploy V, and VP-suf f iciency, which holds when
the vocabulary V is sufficient to specify the set of practice P.

Using the two fundamental relations, one can define PP-suf f iciency, that
holds between two sets of practice P and P′ when the first can be elaborated
into the other (by a set of algorithmic abilities that implement practical
elaboration), and VV-suf f iciency, that holds between two vocabularies V and
V ′ when V is sufficient to characterize V ′.

An interesting example Brandom presents to interpret those relations in a
precise way is given by formal language theory, taking vocabularies in their
syntactic aspect. Considering Chomsky hierarchy, classical results in formal
language theory show that context free grammar can be generated by push
down automaton and context sensitive language can be generated by a linear
bounded automaton.

In this example, the vocabulary V is the language generated by the automa-
ton and the set of practice or abilities P is represented by the computational
power of the automaton. For example, push down automata are PV-sufficient
for a context free language.

The automata example, allows to state also in a quite precise way the
relation of PP-sufficiency as algorithmic elaboration: a set of practice or
abilities P is PP-sufficient for P′ whenever an algorithm implementing P can
also implement P′.

It is interesting to remark that this approach introduces complexity is-
sues concerning the practices we are describing, besides providing a general
framework to speak about practice. Consideration concerning complexity are
interesting form a cognitive point of view, since they provides useful tests for
formal models; for example, one could assume that the tasks actual practices
or abilities perform should be described as tractable problems, or problems not
exceeding the complexity class NP.

One can also consider meaning-use relations defined in terms of necessity.
For example, VV-necessity captures the notion of semantic presupposition or,
considering automata example, a notion of syntactic presupposition.
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PP-necessity holds between P and P′ when it is not possible to engage in a
set of practice P unless one engage also in the set of practice P. The notion of
PP-necessity plays an important role in Brandom’s approach since it allows to
formulate in a general and elegant way several kinds of pragmatist arguments,
as Sellar’s critique of phenomenalist form of empiricism (Brandom 2008, p.12)
and, more generally, Brandom’s argument to justify the fundamental role of
inferring in discursive practices. Let’s focus on the notion of PV-necessity,
stated by Brandom as follows: “the capacity to say something of a certain kind,
to deploy a particular vocabulary, can require being able to do something of a
specifiable kind” (p. 40).

Using this notion, we can briefly present the fundamental claim which
characterizes Brandom’s pragmatic rationalism, namely the universal PV-
necessity of inferential practice.

Considering discursive practices in general, Brandom claims that asserting
is a fundamental practice which is necessary in order to engage in any practice
we count as discursive. But asserting cannot be considered independently form
inferring, since assertions are constitutively speech acts that can be used as
premises or as conclusions of inferences: asserting and inferring are practice
such that each is PP-necessary for the other. Following this point of view,
inferential practice are PP-necessary for every practice that may count as
discursive, therefore they are necessary to deploy any kind of vocabulary: they
are universally PV-necessary.

Any kind of practice we consider discursive, any kind of language game,
must include practices of giving and asking for reasons, since asserting and
inferring are deeply connected. Therefore, there is something common to all
language games, in Brandom’s terms: “pragmatic rationalism is the view that
language does have a ‘downtown’, and it comprises the practice of making
claims and giving and asking for reasons for them” (Brandom 2008, p.43.).

We can now present the role of logic in Brandom’s approach. A language
of conditionals can be viewed as the first step leading from the practice of
inferring, namely drawing certain pre-logical inferences, towards the effective
employment of a logical vocabulary: “for conditionals let one say something,
while before one could only do something” (p. 47). In particular, “the ex-
pressive role distinctive of conditionals [...] is to codify inferences, to specify
inferential practice-or-abilities, to explicate them, in the sense of making
explicit something that was implicit in them” (Brandom 2008, p. 47). So the
relationship between conditionals and inferential practice can be stated in
terms of elaboration and explication: conditionals are elaborated from infer-
ential practice and are explicative of inferential practice. This is a peculiar type
of meaning-use relation, labeled LX-relation (elaborated from and explicative
of): the genus of logical vocabulary may be defined precisely as this particular
kind of meaning-use relation.

It is useful to recall the point of view on logic adopted in Brandom’s
approach: the nature of logical vocabulary is investigated in order to legitimate
the use of logic to express considerations about meanings, to state the meaning
relations between different vocabularies. Brandom’s arguments are advanced
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in order to vindicate “semantic logicist commitment in the classical project of
analysis”(p.51), so to justify the use of logic in the analysis of meaning. I will not
discuss whether this argument justifies the use of logical formalism to represent
meanings, I believe that this is a powerful intuition about logic in general, since
it leads towards a very interesting approach to foundation of logic which deeply
links logic to discursive practice.3

As Brandom summarizes (p. 136), we can see how logical vocabularies are
related to the practice of giving and asking for reasons as follows.

Starting from the practice of giving and asking for reasons, Brandom argues,
one shows that it is PP-suf f icient for deploying basic normative vocabulary,
in particular the deontic modal vocabulary of commitment and entitlement;
then one may use the modal vocabulary as a pragmatic metavocabulary
that specifies how to deploy the concept of incompatibility, which is inter-
preted as constitutively modal notion. Then one can use incompatibility as
semantic metavocabulary to define a consequence relation of incompatibility-
entailment. The relation incompatibility-entailment is then sufficient to define
logical vocabularies.

Limits of Incompatibility Semantics

If we take a closer look at the formal theory Brandom develops, we see that it
is committed with the assumption that classical logic, at propositional level, is
the logic of incompatibility: “we have seen that any standard incompatibility re-
lation has a logic whose non-modal vocabulary behaves classically”(Brandom
2008, p. 139). Moreover, it turns out in general that all the inferences the notion
of incompatibility can express or justify are those that can be explicated by
means of a classical consequence relation. The reason is that incompatibility
relations can define only “standard” consequence relations, where a standard
consequence relation is defined by two properties: general transitivity and
defeasibility.

Consider intuitionistic consequence relation. The first condition recalls cut
rule in sequent calculus, and it is of course satisfied by intuitionistic logic, which
also satisfies cut elimination. This is not the case for defeasibility, which states
intuitively that if a proposition B is not a consequence of a proposition A, then
there is something that yields an absurdity, when added to B but not when
added to A.

The reason why intuitionistic logic doesn’t satisfy defeasibility is that de-
feasible reasoning demands a witness also for the badness of an inference. In
intuitionistic logic, a witness of good inferences is always provided in a natural

3It would be interesting to take a closer look at the relationship between logic discursive practice
and dialogic approach to logic, in particular to compare Brandom’s view with dialogic tradition of
Lorenzen (Lorenz and Lorenzen 1978) and with the recent developments in game semantics. In
Section “Incompatibility Semantics Based on Linear Logic”, I will take some insights inspired by
the dialogic tradition to provide an interactive account of incompatibility detection.
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way: an inference form A to B is good if and only if there is a proof of B given
A. So we can take the proof to be the witness. Hence in intuitionistic logic
there is a strong connection between valid inferences and witnesses.4

Consider the case in which B doesn’t follow from A. That means that the
conditional A → B is not true, which entails in intuitionistic semantics that
there is no proof of B given A. So in general, the fact that B doesn’t follow
form A in intuitionistic logic means that there is no witness, no proof, of B
given A. This is the constructive, or epistemic, character of intuitionistic logic:
it shows that we don’t have good reasons for what we don’t know.

Since intuitionistic inferences cannot be represented by a consequence
relation defined by incompatibility relations, intuitionistic logical vocabulary
cannot be justified in Brandom’s approach. This entails that the analysis of the
practice of inferring, based on incompatibility detection is missing something:
if the vocabulary of intuitionistic logic cannot be defined in terms of incom-
patibility relations, then the inferential practice described by Brandom is not
universally PV-necessary, since it is not necessary for deploying intuitionistic
vocabulary.5 Assuming classical logic as the vocabulary related to inferential
practice, we are implicitly assuming that pre-logical inferences represented by
conditionals which differs from classical material implication are in some sense
derived from the classical one. Even if non-classical inferences could cleverly
be explicated by means of some complicated modal logic construction, their
use would not be grounded in any inferential practice defined by Brandom.
If one consider what we may call intuitionistic practice of inferring, according
to which we reject for example arguments by contradiction or we require
examples to accept existential statements, the only way we have to explicate
those inferential practice is by saying that they don’t behave classically and
then we need to find reasons for this divergence.

Since, as Brandom proves, standard consequence relations are precisely
those that can be obtained by means of incompatibility relations (Brandom
2008 p. 138) and no incompatibility relation can define a non-standard conse-
quence relation, we are lead to admit that we can justify just those inferential
practices which behave as classical logic.

This is a serious drawback. Firstly, because classical logic has been widely
considered not adequate to model agents reasoning. Furthermore, it turns out
that many pre-logical inferences that are actually performed in communication
cannot be considered as inferential practice in Brandom’s sense, since they
cannot be obtained from asserting and inferring. If we assume that there is

4In particular, Curry-Howard isomorphism between proofs in intuitionistic logic and terms in
lambda calculus can be considered as an effective construction of witnesses for good inferences.
5The point is that the relationship between classical and intuitionistic reasoning cannot be stated
in terms of pragmatically mediated semantic relations. I claim that this relationship has a special
interest for semantics since, as Dummett points out in Dummett (1991), classical and intuitionistic
logic lead to two different theories of meaning: the first one states meaning in terms of truth
conditions, and in general is committed with realism, while the second one gives a characterization
of meaning in terms of proof, or reasons, and can be considered matching anti-realist insights.
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an intuitionistic inferential practice, besides a classical one, then inferring in
Brandom’s sense is not PP-necessary anymore.

Consider another example. Assuming standard consequence relation, there
is no way to justify causal inferences in terms of discursive practice. Let’s
consider a toy example of causality. Assuming the notion of incompatibil-
ity Brandom axiomatizes, one can prove the following (see Brandom 2008,
p. 128):

If A entails B and A entails C, then A entails B and C. (1)

A famous example proposed by Girard in order to explicate the meaning
of linear logic connectives is based on inferences like Eq. 1. As an example of
Eq. 1 we can consider: “if I spend 1 euro, I get a coffee”, “If I spend 1 euro, I
get a tee”, hence “if I spend 1 euro, I get a coffee and a tee”.

As Girard argues, assuming Eq. 1 amount to forget any causal relation
between premises and conclusions. The reason is that, briefly, interpreting
propositions as events, we do not make distinction between a single occurrence
of an event (“spending 1 euro”) and any number of occurrences of an event. In
general, since the consequence relation Brandom defines satisfies weakening
(see p. 143), non-monotonic reasoning cannot be described as well.

Therefore, if we consider a vocabulary of linear conditional, or a vocabulary
of non-monotonic conditionals, we see that they cannot be elaborated form
the inferential practice defined by Brandom: this would provide another
argument against universal PV-necessity of inferring described in terms of
incompatibility detection.

Again, if we consider a practice of making pre-logical causal inferences
like Eq. 1, the practice of inferring described by Brandom would not be PP-
necessary anymore.

Since the notion of incompatibility is not suitable to represent consequence
relations which are well codified as intuitionistic and causal reasoning, I claim
that the notion of incompatibility as stated by means of general transitivity
and defeasibility is not adequate to ground logical vocabularies and to connect
logic with inferential and discursive practice. A more fine-grained articulation
of the concept of inferential practice is then required in order to place different
reasoning patterns under a same pragmatic foundational concept. In the
next sections I will show how a formal analysis of discursive practices may
also justify a different kind of incompatibility semantics, which is capable of
defining intuitionistic, classical and linear (non-monotonic) inference. Before
presenting incompatibility semantics, we need to introduce some features of
linear logic which is the general framework for the semantics I am proposing.

Linear Logic

Linear logic is a resource sensitive logic that allows to specify precisely how
hypotheses are used in the deduction. Its applications were successful in com-
puter science, providing models of computation, and in general in modelling
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processes in which awareness of resources consumption is fundamental.6 We
will discuss linear logic and its relationship with classical and intuitionistic logic
taking sequent calculus as a model of proof system, since it is particularly apt
to speak about properties of proofs.

Consider the behavior of the implication in linear logic. Linear implication,
denoted A � B, satisfies modus ponens:

A, A � B � B (2)

However, Eq. 2 is provable just in case the right quantity of antecedent
formulas is provided:

A, A, A � B � B (3)

The sequent (3) is not provable since intuitively there is an A which is not
demanded by the antecedent of the implication. The meaning of A � B is
“consuming A, one can produce B”. We can see Eq. 1 as a form of deal
between a buyer and a seller: “I give you A, if you give me B”. In order to
achieve the control on the demands of formulas in the deduction, structural
rules of Gentzen sequent calculus (weakening and contraction) do not hold at
a global level:

� � �

�, A � �
W

�, A � �

�, A, A � �
C

Recall that in sequent calculus there are two ways of presenting logical rules:
an additive form, which take the union of contexts, and a multiplicative form,
which take copies of contexts:

� � A � � B
� � A ∧ B

additive
� � A � � B

�, � � A ∧ B
multiplicative

Using structural rules, one can prove that the two formulations are equiva-
lent. If structural rules are removed, we have to consider two different types of
conjunction (and, by duality, two types of disjunction):

� � A � � B
� � A&B

&
� � A � � B

�, � � A ⊗ B
⊗

The language of linear logic can be divided into three groups of connectives:
multiplicative, additive and exponentials. I briefly recall their intuitive mean-
ing in Table 1. We will consider negation, the most important linear connective,
in more details later.

6An interesting aspect of linear logic is that many abstract machines can be encoded in linear
logic (see Girard 2006, pp. 220–221). We cannot enter the details here, I simply remark that this
feature provides a precise definition of Brandom’s idea of LX-relation: if the practice or abilities
are represented, as in the formal language example, by means of automata, we can see how to
define the notion of explication straightforwardly: we simply say that a vocabulary V explicates
the practice P if the vocabulary is expressive enough to encode the machine implementing P.
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Table 1 Linear logic connectives

Multiplicatives:
Conjunction: A ⊗ B (“tensor”). It means that we have exactly one copy if A and one copy of B,

no more no less. E.g. A ⊗ B � A: intuitively, in order to sell A and B, we need someone who
agrees to buy A and B, while here there is just a buyer for A.

Disjunction: A℘B (“par”). Its intuitive meaning is clearer considering that it is the disjunction
that defines linear implication: A � B ⇔ A⊥℘B, where A⊥ is the linear negation of A.

Units: 1 is the neutral element for ⊗ and ⊥ for ℘.
Additives:

Conjunction: A&B (“with”). It introduces a form of choice: we have one between A and B
and we can chose which one, for example A&B � A, but we don’t have them both:
A&B � A ⊗ B.

Disjunction: A ⊕ B (“plus”). It means that we have one between A and B but we cannot chose,
A � A ⊕ B but A ⊕ B � A&B.

Units: 
 is the neutral element for & and 0 is the neutral element for ⊕.
Exponentials:

They are unary connectives, denoted !A and ?A. They allow to reintroduce structural rules in a
local way: !-formulas allow contraction and weakening on the premises of the sequent (on the
left of �), ?-formulas allow contraction and weakening on conclusions (on the right of �).
Exponentials remove formulas from their linear status and make quantity not to matter
any more.

Translating Classical and Intuitionistic Logic into Linear Logic

Rather than considering linear logic as an alternative logic, one can see it as a
proof-theoretical analysis of classical and intuitionistic logic. The reason is that
we can take classical and intuitionistic sequents and translate them in linear
logic which provides a framework in which intuitionistic and classical proofs
coexist and interact. The idea is that, instead of changing logic or deductive
system, one can change formula: one can define intuitionistic or classical
formula as linear formula of a certain type. Therefore, in this approach, it is the
syntax of the formula to show the deductive properties required to argue on the
content defined by that proposition: the formula itself contains the indication
showing the kind of reasoning required.

One of the most important remarks that lead to linear logic was the
decomposition of intuitionistic implication (→) into linear implication and
exponential:

A → B = !A � B (4)

Intuitively, it means that intuitionistic implication can be obtained from
linear implication forgetting the quantity of hypothesis.

I briefly recall the translation (see Girard 1993) of classical and intuitionistic
logic into linear logic since I will use it in order to provide a more general
incompatibility semantics to account for classical, intuitionistic and linear
inferences.

As it is well known from Gentzen, intuitionistic sequent calculus can be
obtained from classical sequent calculus with the condition that the right side
of the sequent must contain at most one formula; that is enough to block for
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example the provability of the excluded middle. Intuitionistic linear logic (ILL)
is obtained as well from classical linear logic (CLL) restricting the right side of
the sequent.

The analysis linear logic provides of classical and intuitionistic proofs is
stated in terms of a controlled use of structural rules, so the difference
between intuitionistic, classical and linear proofs can be presented in terms of
formulas allowing weakening and contraction on the left or on the right of the
sequent.

We will not enter the details of the translation here, for all the definitions, I
refer to Girard (1993). For example, in the intuitionistic case, one translate
atoms p∗ = p, conjunctions (A ∧ B)∗ = A∗&B∗, and implications as (A →
B)∗ =!(A∗) � B∗; for the classical case the situation is more complicated since
there are choice to be made in order to keep track of the position of the
classical formula in the sequent (premise or conclusion).

Let A∗ be a translation of intuitionistic (classical) formula in linear logic,
we have:

� �IL A iff !�∗ �LL A∗ (5)

� �CL � iff !�∗ �LL?�∗ (6)

Intuitively, intuitionistic proofs may use structural rules just on the left of
the sequent, being the right side restricted to a single formula; classical proofs
may use structural rules on both sides.

We will exploit this translation in order to discuss defeasibility and to
present a notion of incompatibility that is capable to account both for defeasi-
ble inferences and non-defeasible inferences in an harmonious way.

It is important to remark that the relationship between classical linear logic
and intuitionistic linear logic differs form the relationship between classical
and intuitionistic logic. In linear logic, if one restricts the language excluding
the constant 0 and ⊥, then a formula is provable in intuitionistic linear logic
if and only if it is provable in classical linear logic (Schellinx 1991).7 In
the following section, we will use intuitionistic linear logic augmented with
constant 0 and ⊥, as in Troelstra (1992).

Negations

Before presenting an incompatibility semantics inspired by linear logic, we
need to consider the role of linear negation. The intuition is that linear
negation A⊥ operates a form of exchange of perspective, rather than switching
the semantic value of a proposition.

7This property doesn’t hold in the non-linear case. For example, Peirce law ((A → B) → A) → A,
which does not contain the constant for absurd, it is provable in classical logic while it is not
provable in intuitionistic logic.
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In particular, the role of negation can be interpreted as the exchange of
perspective between a proponent and an opponent in a dialog game.8

The idea is that a certain content “A” can be interpreted as a set of abstract
objects, they can be considered as actions, or players, in favor of A; then linear
negation A⊥ will be a set of actions, or players challenging A. Then, (A⊥)⊥
represents the opponent of the opponent of A. Since negation in linear logic is
involutive, we have:

A⊥⊥ = A (7)

So an opponent of an opponent of A is a proponent of A, and not just an
opponent of A⊥. I will refine this interpretation in the following section.

Besides linear negation,9 it is possible to define a usual notion of negation by
means of absurdity and implication, as usual in intuitionistic logic, exploiting
the intuition: “not A means that claiming A, one would claim absurdity”.

Firstly, we remark that in linear logic there are two constants for absurdity:
⊥ and 0. The difference can be presented as follows: ⊥ doesn’t satisfy ex falso
quodlibet: even if ⊥ is derivable, that doesn’t entail that for every formula φ,
⊥ � φ; while 0 satisfies ex falso quodlibet, being �, 0 � � an axiom of linear
logic. So we can define two negations:

¬A ⇔ A � 0 (8)

¬lin A ⇔ A � ⊥ (9)

We have that A, A � 0 � φ for all φ, while there are φ such that A, A �
⊥ � φ. We will use this negation in Section “Incompatibility Semantics
Based on Linear Logic” to provide a more fine-grained analysis of defeasible
inferences.

Incompatibility Semantics Based on Linear Logic

I present an interpretation of linear logic semantics in terms of reasons used
in an abstract dialog. In Girard (1987), Girard suggested an intuitive interpre-
tation of phase semantics, the algebraic semantic providing a canonical model
of linear logic, in terms of phases of observations and facts. The analogy was
inspired by quantum mechanics: a fact F, which is in linear logic the semantic

8The dialogical interpretation of logic and in particular the interpretation of sequent calculus
in terms of dialog games goes back to the work of Lorenzen (Lorenz and Lorenzen 1978). A
dialogic interpretation of linear logic is provided by Blass, see Blass (1992). Further refinements
of Blass semantics lead to the definition of a game semantics for linear logic in Abramsky and
Jagadeesan (1994). Game semantics can be considered a truly interactive account of the meaning
of logical constants, which seems to be closer to Brandom’s point of view. Here, we decided to
work with the algebraic semantics of linear logic in order to make the comparison with Brandom’s
incompatibility semantics easier.
9We can consider linear negation as a type of negation at least considering that it defines De
Morgan dualities between conjunction and disjunction: (A ⊗ B)⊥ iff (A⊥℘B⊥).
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value of sentences, is a set of observations for which a form of agreement
between observer and observed holds. This form of agreement is represented
by the property F = F⊥⊥, so facts are those sets of observations that are stable
under the test represented by the counter-observations F⊥.

I suggest here a different interpretation based on what I call actions that
count as reasons and propositions. The notion of action is here intended to
be very abstract, no further specification is provided, in particular we do not
require any normative constraint on what kind of actions a count as a reason
for an atomic content A, just the agreement on the fact that a count as a reason.
So we are not going to define good or bad reasons for atomic contents, rather
we just consider admissible reasons.

The intuition motivating this interpretation is that the practice of giving
and asking for reasons requires a form of agreement between what counts
as a reason for accepting A and what count as a reason for rejecting A. In
our framework, the practice of giving and asking for reasons requires that
a proponent must be recognized as a proponent and an opponent must be
recognized as an opponent on some issue. This form of agreement has been
analyzed by Brandom in terms of commitment and entitlement. I will argue
that this form of agreement can be formalized by means the properties of linear
negation A = A⊥⊥.

Brandom’s approach concerning incompatibility semantics can be sum-
marized as follows: firstly, the analysis of discursive practices as practices
of giving and asking for reasons by means of the concepts of commitment
and entitlement leads to define incompatibility relations; then, exploiting the
properties of incompatibility relations, one defines a consequence relations;
then one proves representation theorems stating that incompatibility relations
generates precisely those consequence relations.

Here, since the notion of incompatibility I define is based on the semantics
of linear logic,10 we will have representation theorems respect linear con-
sequence relation for free. Moreover we have soundness and completeness
respect sequent calculus for linear logic.

Actions that Count as Reasons

Let (P, ·, 1) be a commutative monoid, the intended meaning of the elements
of the monoid is that they are actions that count as reasons in particular
contexts. The multiplication · represents a concatenation of such actions, one
may imagine it as the sequence of moves in a dialog. Therefore actions do not

10The definitions are just an interpretation of those defining phase semantics for linear logic,
see Girard (2006). We are going to define a classical phase space which provides models for
classical linear logic; then we will point at some differences with intuitionistic linear logic discussing
defeasible inferences.
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behave as elements of sets, since their repetitions matters.11 The unit 1 of the
monoid is a special action that changes nothing: given any action a, performing
1 one has a: a · 1 = a. The unit 1 will play the role of a special action that count
as reason: if 1 is reason for A, then the agreement on the issue A has been
reached. The unit 1 will be used to define the notion of truth in this context.

We define on subsets X, Y ⊆ P, the following operation:

X � Y := {a| ∀x ∈ X, ax ∈ Y} (10)

X � Y is the set of those actions a that concatenated with an action x in X,
produce an action in Y. A phase space is defined as follows:

Definition 1 A Phase space P is a couple (P, ⊥) where P is a commutative
monoid and ⊥ ⊆ P is a chosen subset of P called the pole.

In our interpretation, the choice of the pole ⊥ amounts to assume a form
of agreement between agents on what count as disagreement: the choice
of the pole can be seen as the choice of those actions that are considered
incompatible.

Given a subset X of P, we define the following operation that interpret
linear negation:

X⊥ := X � ⊥ = {y ∈ P| ∀x ∈ X, yx ∈ ⊥} (11)

The set X⊥ is the set of those actions that are incompatible with actions in
X. Intuitively, negation allows to define directions: if A can be considered a
set of reason for, then A⊥ can be considered a set of reason against.

We can now define an incompatibility relation between elements of the
phase space P .

Definition 2 An incompatibility relation, a⊥b , between a and b in P holds iff
ab ∈ ⊥

We are defining the incompatibility relation between actions in general.
Once we define propositional contents, we will have a definition of incom-
patibility between reasons. The sets of elements of P that provide denotation
of sentences, namely those sets of actions providing propositional contents, are
defined as follows.

Definition 3 A proposition is a subset A ⊆ P such that A = A⊥⊥. The ele-
ments of a proposition A are called reasons.

In the interpretation I am suggesting, A is a set of actions a that may count as
reason for a particular content; A⊥ will be the set of those actions a′ such that

11The order of actions should matter too, we assume here commutativity for simplicity. Note that
it is possible to consider non-commutative versions of linear logic; for an algebraic semantics, see
Yetter (1990).
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aa′ ∈ ⊥, therefore a′ are those actions that together with an a for A produce
an action of the type ⊥, namely a and a′ are incompatible. The negation ()⊥
operate the exchange between proponent and opponent.

We can imagine this abstract communicative situation as follows: a pro-
ponent P performs an action a to claim an issue A, then the opponent O
challenges a by means of a′ which is in A⊥; then P replies with something
in A⊥⊥ and so on. Since A⊥⊥ is equal to A, the form of agreement we are
assuming means that P and O are aware they are discussing a same issue.12

a : A
︸ ︷︷ ︸

P

, then a′ : A⊥
︸ ︷︷ ︸

O

, then a′′ : (A⊥)⊥
︸ ︷︷ ︸

P

. . . (12)

Not every set of actions X in P has this property. Consider what happens
on those sets of actions that are not propositions, namely, those sets X such
that X �= X⊥⊥. Since for every subset X it holds that X ⊆ X⊥⊥, if X is not a
proposition, it means that there are actions for X⊥⊥ that are not actions for X:
a move x′′ to challenge a move x′ for X⊥ (which was challenging x : X) is not
recognized as a reason for X, but for some other content, on which there is no
agreement on what actions are considered incompatible:

x : X
︸ ︷︷ ︸

P

, then x′ : X⊥
︸ ︷︷ ︸

O

, then x′′ : (X⊥)⊥ = Y
︸ ︷︷ ︸

P

then x′′′ : ((X⊥)⊥)⊥ = (Y)⊥
︸ ︷︷ ︸

O

(13)

In Eq. 13, x and x′ are incompatible by definition, but then, there is
no agreement on the fact that x′′ and x′′′ are incompatible. So there is no
agreement on the fact that x′′′ is challenging x′′, and hence no agreement on the
fact that they count as reasons for the agents involved in the communication.13

Among the properties that holds in a phase space, we have that for any sub-
set X ⊆ P, the smallest proposition containing X is given by X⊥⊥. Moreover,
every proposition A is of the form Y⊥. Intuitively, a propositional content
A requires agreement on which set of actions (Y) are those that challenge
the content of A. It is important to remark that the notion of incompatibility
we defined here depends on the choice of the pole. As we saw, the notion
of incompatibility is defined in terms of ⊥, so there may be different form
of incompatibility depending on the context, on the choice of the specific
subset ⊥.

12We could say that it is the property itself that let us speak of a same issue, namely, an issue is
determined by the interaction in the dialog.
13Remark that the technical framework I am presenting can be considered independently from the
suggested interpretation. The interpretation here defined points at a purely pragmatic interpreta-
tion of propositional content of sentences, which is identified with sets of actions that count as
reasons in a dialog. One could anyway take the technical definitions and state them as in Brandom
(2008), see technical appendix p. 141–155. Define an incompatibility frame as a syntactic phase
space (P,⊥), where P is a set of propositional formulas; example of syntactic phase spaces are
involved in the completeness proof of sequent calculus for linear logic, see Girard (2006). The
incompatibility-entailment relation can be defined as X |=⊥ Y iff X⊥ ⊆ Y. In this way |=⊥ will
define precisely the linear logic consequence relation.
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Since ⊥ is a proposition (it satisfies ⊥⊥⊥ = ⊥), the model requires that
agents agree on what counts as a reason for ⊥: it is required to agree on what
count as disagreement, on what actions are incompatible. Moreover, there may
be different types of propositions, or propositional contents, that depend on
the choice of what is disagreement. For example, if one takes the pole ⊥ to be
empty, then we have just two propositions P and ∅, or two kinds of semantic
value, so we have the usual truth values semantics for classical logic. In that
case disagreement is just classical contradiction.

Logical Connectives

We are going to define logical connectives on propositions. Remark that the
structure we presented is quite explicit on which type of contents may be object
of logic: logic works on propositions, that are those contents on which there is
a agreement on what count as a reason.14 The following properties are used to
define the interpretation of connectives:

Proposition 1 For every A, B ⊆ A:

1. if A ⊆ B, then B⊥ ⊆ A⊥
2. A ⊂ A⊥⊥
3. A⊥ = A⊥⊥⊥
4. A is a proposition if f A = B⊥, for some B ∈ A
5. (A ∪ B)⊥ = A⊥ ∩ B⊥

Define the concatenation X · Y of sets as follows:

X · Y = {xy| x ∈ X and y ∈ Y} (14)

We can now define the semantic structures required to interpret linear
connectives. First one defines linear negation using ⊥:

A⊥ = (A)⊥ (15)

For every proposition A, B ⊆ P , we have:

A ⊗ B := (A · B)⊥⊥
A℘B := (A · B)⊥

1 := {1}⊥⊥

A&B := A ∩ B
A ⊕ B := (A ∪ B)⊥⊥

0 := ∅⊥⊥

 := P

!A := (A ∩ I)⊥⊥
?A := (B ∩ I)⊥⊥

14It would be interesting to consider the relationship between logic and other form of discursive
dynamics: if logic works where the agreement we defined holds, how communication can be
formalized when that form of agreement is missing? Is it still a form of reasoning? Interesting
insights on this issue can be found in Girard’s Ludics, a recent development of linear logic,
see Girard (2007). The connection between the paradigm of computation defined in Ludics and
Wittgenstein’s language games has been investigated in Pietarinen (2003).
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In the definition of exponentials, I is the set of the idempotent elements of
the monoid P, namely those elements that satisfy a · a = a, intuitively they are
those actions for which repetitions doesn’t matter. Note that there is at least
one idempotent defined by the unit of the monoid.

For reasons of space, we can only mention that it is possible to provide a
form of dialogic interpretation of linear logic connectives, namely it is possible
to define them as moves in a dialogue game, we refer to Blass (1992).

Linear Consequence Relation

The usual semantic notions of truth, consequence and validity can be stated in
this framework as follows.

Let LLL be a language for linear logic:

LLL := p|p⊥|A ⊗ B|A℘B|A ⊕ B|A&B|!A|?A (16)

We will use Greek capital letters to denote (multi) sets of formula.15

Let P be a phase space, the interpretation of LLL into P is a function v that
associates with each atomic formula p in LLL a proposition v(p) ⊆ P . We can
extend v to complex formulas using Proposition 1.

The notion of truth in this context is defined by means of the neutral element
of the monoid underlying P :

Definition 4 A formula A is true in P iff 1 ∈ v(A). A formula A is valid iff A
it is true in every phase space P .

A proposition holds in a phase structure when 1 belongs to the interpreta-
tion of A. The notion of validity states that A is true for every phase space:
in particular, it means that A is true for every choice of ⊥. Valid formulas are
those that are true independently of the choice of what count as incompatible.

We can define a consequence relation for linear logic, denoted by |=LL, as
follows:

Definition 5 � |=LL � iff for every valuation v, v(�) ⊆ v(�).

So valid inferences are those that do not depend on what count as incom-
patible, they hold for every choice of ⊥.

We have soundness and completeness of linear logic sequent calculus
respect to phase semantics:

Theorem 1 � |=LL � if f � �LL �.

15In classical logic one consider sequents to be defined as sets of formulas. In linear logic, we have
to consider multi-sets since repetitions matter.
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Defeasible Inferences

In this section, I present a refinement of the notion of defeasibility in order to
account for the non-monotonic and causal inferences that can be expressed in
linear logic. We are going to prove that linear consequence relation will satisfy
general transitivity at a global level, while it will satisfy defeasibility just in a
local way, namely on particular types of propositions. Then we will see which
kind of formula are those involved in defeasible inferences. This will provide
a more fine-grained analysis of types of inference in terms of what kind of
reasons they demand.

We can rephrase Brandom’s definitions in our framework as follows:

Definition 6 A consequence relation � is standard iff it satisfies:16

1. General transitivity (GT): if � �LL A and �, A �LL B, then �, � �LL B.
2. Defeasibility (D): Given � and �, if � ��LL �, then there exists � such that,

for every B, one has �, � �LL B and there exist a formula C such that
�, � ��LL C.

In linear logic, we can refine the notion of defeasibility considering two
formulations:

Definition 7 Depending on the choice of absurdity, we have the following
notions of defeasibility:

1. (D0): if � ��LL �, then there exists � such that �, � �LL 0 and �,

� ��LL 0.
2. (D⊥): if � ��LL �, then there exists � such that �, � �LL ⊥ and �,

� ��LL ⊥.

(D0) is equivalent to defeasibility as defined by Brandom, when one consid-
ers classical or intuitionistic formula embedded in linear logic. Remark that it
is the analysis provided by linear logic that allows to see the difference of the
two formulations which entails an interesting classification of inferences.17

Proposition 2 Let �CL be the translation of classical logic in linear logic, �IL the
translation of intuitionistic logic, �LL full linear logic (including classical logic)
and �ILL intuitionistic linear logic (including intuitionistic logic):

1. �LL satisf ies (GT);
2. �LL satisf ies (D⊥);
3. �LL doesn’t satisfy (D0);

16I state the definition using the syntactic notion of provability since we will use it to prove the
results. By completeness theorem, the same holds for semantic consequence relation.
17The remark concerning two notions of absurdity constitutes a partial answer to the question
raised by Brandom on the status of relevant logics, see Brandom (2008), pp. 173–175.
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4. �ILL doesn’t satisfy (D⊥) nor (D0);
5. �CL satisf ies (D0) and (D⊥);
6. �IL doesn’t satisfy (D0) nor (D⊥).

Proof Remember that CL and IL are obtained restricting LL to particular
formulas and sequents. For 5. and 6. there is nothing to prove, since we can
consider the translations of classical and intuitionistic sequents in linear logic
that conserve provability. In particular, for �IL, we can take the translation
of the example used by Brandom (2008, p. 171) ¬¬p �IL p, which is !(!(!p �
0) � 0) �ILL p.

The other claims are proved as follows.

1. The case of (GT) easily follows, since �LL enjoys cut elimination. Remark
that, by completeness theorem, we have also that |=LL satisfies (GT).

2. �LL satisfies (D⊥). Let � �LL �. We prove that there exists a defeasor �.
Define � as �⊥, we have, considering the definition of �⊥, that �, � �
⊥ �LL ⊥; moreover �, �⊥

�LL ⊥ since, otherwise, from �, �⊥ �LL ⊥, using
the rule of negation, we get � �LL �℘⊥ which entails, since ⊥ is neutral for
℘, � �LL �, against the hypothesis. So �⊥ is a defeasor for � �LL �.

3. �LL doesn’t satisfy (D0). Consider the following sequent which is not
provable in LL:18

A, B, C � C (17)

We prove that, for every � such that �, C � 0, we have �, A, B, C � 0.
From the hypothesis C, � �LL 0, introducing the implication, we get � �LL

C � 0.
Consider the following defeasor of {A,B,C}, A ⊗ B ⊗ C � 0:

A, B, C, A ⊗ B ⊗ C � 0 �LL 0

Using the following provable sequent C � 0 �LL A ⊗ B ⊗ C � 019 we
have that:

� �LL C � 0 �LL A ⊗ B ⊗ C � 0

by cut, we have:

A, B, C, A ⊗ B ⊗ C � 0 �LL 0 � �LL A ⊗ B ⊗ C � 0

A, B, C, � �LL 0
cut

Considering Eq. 17, every � that proves 0 with C, proves 0 also with
{A, B, C}, against (D0).

18The reason why Eq. 17 is no provable in LL is that it should be obtained form an axiom C � C
by means of monotonicity, which doesn’t hold at a global level in linear logic.
19This sequent can be proved in LL. Intuitively it means that if C proves the ex falso quodlibet
absurdity 0, then C together with any other formula proves 0. This shows a form of monotonicity
implicit in 0.
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4. �ILL doesn’t satisfy (D⊥) nor (D0). Consider the following sequent:

(A � ⊥) � ⊥ �ILL A (18)

We prove that every defeasor of A is a defeasor of (A � ⊥) � ⊥. Let �

be such that A, � �ILL ⊥. Then, we have � �ILL A � ⊥.
Using cut, we have:

(A � ⊥) � ⊥, A � ⊥ �ILL ⊥ � �ILL A � ⊥
(A � ⊥) � ⊥, � �ILL ⊥ cut

So � proves ⊥ also with (A � ⊥) � ⊥. By a similar argument, we can show
that ILL doesn’t satisfy (D0). ��

Proposition 2 shows how defeasibility behaves in the context of classical,
intuitionistic and non-monotonic (linear) reasoning. For classical reasoning,
the two form of defeasibility are satisfied, moreover one can prove that the
they are equivalent, since in classical logic the two forms of absurdity collapse.

For intuitionistic logic, both linear and non linear, we have that no form
of defeasibility can be satisfied since, as Brandom remarks, intuitionistic logic
lacks formulas expressing defeasors for bad inferences.20

In linear logic the situation is more complex, since we saw that linear
reasoning does not satisfy D0 but still satisfy D⊥.

Consider a non-monotonic inference like Eq. 17. If we look for a witness for
the badness of Eq. 17 in LL, we can find it in C⊥. Exploiting our definitions,
we have that there is agreement on the fact that C and C⊥ are incompatible.
However {A,B,C} and C⊥ are not to be considered incompatible, since we
lack an explicit agreement on A, B. Intuitively, we can say that in Eq. 17 we
can find reasons rejecting C, but they are not enough to reject A, B, C: we
miss the relevant reasons to reject A and B. This is the constructive character
of linear logic: in order to challenge a claim, we have to present explicitly our
reasons. However, if we look for a classical witness of the badness of Eq. 17,
namely something that entails everything when added to C but not when added
to {A, B, C}, we cannot find it: this notion of incompatibility based on ex falso
quodlibet forgets the relevance between reasons and claims.

The difference between classical or intuitionistic inferences, which are not
resource-sensitive, and linear inference can be discussed considering again our
toy example of causality.

A � B, A � C �LL A � B ⊗ C (19)

20This treatment of intuitionistic logic is still not fully satisfactory since it is a negative characteriza-
tion that states that intuitionistic inferences are those that lacks defeasors. However, the approach
proposed allow to place intuitionistic logic within a same framework, the one defined by linear
logic. So we can state explicitly within the model that intuitionistic inferences lack defeasors, as
the formulas restriction shows. We decided here to study the relationship between classical and
intuitionistic logic with respect to defeasibility from a syntactic point of view, namely considering
provability. We leave to a future work the comparison between classical and intuitionistic phase
spaces with respect to incompatibility semantics. Algebraic investigations on the properties of
intuitionistic and classical phase spaces are provided in Kanovich et al. (2006).
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A defeasor for A � B ⊗ C, which is something that yields ⊥ with A �
B ⊗ C, has to mention just one copy of A, so it will not produce ⊥ together
with {A � B, A � C}, for two copies of A are required. Intuitively, a reason
showing that I cannot get a coffee and a tee with one euro is not a reason
showing that I cannot get a coffee with one euro and a tee with another euro.

Consider the intuitionistic counterpart of Eq. 19, which is provable:

!A � B, !A � C �IL!A � B ⊗ C (20)

If we were looking for the defeasors we found for Eq. 19, we would see that
a defeasor for !A � B ⊗ C needs to mention any number of As, this is the
meaning of !A. Therefore, it would be a defeasor also for {!A � B, !A � C},
for to have “any number of A” twice is to have again “any number” of As. In
this way, linear logic provides an analysis of the relevance of reasons, at least
allowing to keep track of the types of actions that count as reasons required by
different reasoning patterns.

Conclusions

We saw that linear logic provides an incompatibility semantics which accounts
for different types of inferences in terms of types of reasons required. More-
over, we presented a more fine-grained analysis of the notion of defeasibility,
in particular retrieving a relevant defeasibility which is suitable to characterize
non-monotonic inferences. In this way, the proposed incompatibility semantics
can account for non-monotonic and resource-sensitive inferences, extending
Brandom’s formal approach. We saw that the form of agreement on what
counts as incompatible lead us to define a pole ⊥ and the structure of
phase space that provides the semantics of logical connectives. If we describe
discursive practices as grounded on the form of agreement on what actions are
to be considered incompatible, we can justify linear inferences and so using the
translation of classical and intuitionistic logic in linear logic, we can also justify
classical and intuitionistic inferences.

Therefore this kind of practice or ability, that could be seen as an abstract
negotiation on what counts as incompatible, would be sufficient to deploy
linear, classical and intuitionistic vocabularies. Moreover, we have developed
the analogy between the agreement on what count as incompatible and an
abstract dialogical situation between a proponent and an opponent which are
recognized as such, namely whose actions are recognized as reasons. I am not
claiming that this kind of practice would be universally PV-necessary, since
an analytical account of that practice should require further investigations,
for example a comparison with the concepts of commitment and entitlement,
and since there might be logical vocabularies that say something important
concerning our inferential practice or abilities that are not definable within
linear logic.

However, the approach proposed shows at least how a more articulated
account of discursive practices is able to justify different kinds of consequence
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relation that depend on the particular form of agreement practitioners can
reach. As a direction for further investigations, I would like to suggest that the
(consequence) relations we can elaborate from different forms of agreement
might not be restricted to the domain of logic, the same process may be used
to provide descriptions of more general aspects of language games.

References

Abramsky, S., & Jagadeesan, R. (1994). Games and full completeness for multiplicative linear
logic. Journal of Symbolic Logic, 59(2), 543–574.

Bellin, G., & Biasi, C. (2004). Towards a logic for pragmatics. Assertions and conjectures. Journal
of Logic and Computation, 14(4), 473–506.

Bellin, G., & Dalla Pozza, C. (2002). A pragmatic interpretation of substructural logics. In
Ref lections on the foundations of mathematics, essays in honor of Solomon Feferman. ASL
lecture notes in logic (Vol. 15).

Blass, A. (1992). A game semantics for linear logic. Annals of Pure and Applied Logic, 56, 183–220.
Brandom, R. (2008). Between saying and doing. Towards an analytical pragmatism. Oxford:

Oxford University Press.
Dummett, M. (1991). The logical basis of metaphysics. Cambridge: Cambridge University Press.
Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50, 1–102.
Girard, J.-Y. (2006). Le point aveugle, cours de logique, tome 1: vers l’ imperfection. Editions

Hermann, collection, Visions des Sciences.
Girard, J.-Y. (2007). Le point aveugle, cours de logique, tome 2: vers la perfection. Editions

Hermann, collection, Visions des Sciences.
Girard, J.-Y. (1993). On the unity of logic. Annals of Pure and Applied Logic, 59(3), 201–217.
Kanovich, M.I., Okada, M., & Terui, K. (2006) Intuitionistic phase semantics is almost classical.

Mathematical Structures in Computer Science, 16, 1–20.
Lorenz, K., & Lorenzen, P. (1978). Dialogische logik. Buchgesellschaft, Darmstadt: Wissenschaftl.
Pietarinen, A.-V. (2003). Logic, language games and ludics. Acta Analytica, 18, 89–123.
Schellinx, H. (1991). Some syntactical observations on linear logic. Journal of Logic and Compu-

tation, 1(4), 537–559.
Troelstra, A.S. (1992) Lectures on linear logic. CSLI Publications.
Wittgenstein, L. (1967). Philosophical investigations (3rd ed.). Oxford: Blackwell.
Yetter, D.N. (1990). Quantales and (noncommutative) linear logic. Journal of Symbolic Logic,

55(1), 41–64.


	Incompatibility Semantics from Agreement
	Abstract
	Introduction
	Analytical Pragmatism
	Limits of Incompatibility Semantics
	Linear Logic
	Translating Classical and Intuitionistic Logic into Linear Logic
	Negations

	Incompatibility Semantics Based on Linear Logic
	Actions that Count as Reasons
	Logical Connectives
	Linear Consequence Relation
	Defeasible Inferences

	Conclusions
	References



