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Conceptual Spaces, Generalisation
Probabilities and Perceptual

Categorisation

Nina L. Poth

Abstract Shepard’s (Science 237(4820):1317–1323, 1987) universal law of gener-

alisation (ULG) illustrates that an invariant gradient of generalisation across species

and across stimuli conditions can be obtained by mapping the probability of a

generalisation response onto the representations of similarity between individual

stimuli. Tenenbaum and Griffiths (Behav Brain Sci 24:629–640, 2001) Bayesian

account of generalisation expands ULG towards generalisation from multiple

examples. Though the Bayesian model starts from Shepard’s account it refrains from

any commitment to the notion of psychological similarity to explain categorisation.

This chapter presents the conceptual spaces theory as a mediator between Shepard’s

and Tenenbaum & Griffiths’ conflicting views on the role of psychological similarity

for a successful model of categorisation. It suggests that the conceptual spaces

theory can help to improve the Bayesian model while finding an explanatory role

for psychological similarity.

2.1 Introduction

As a counter to the behaviouristically inspired idea that generalisation of a particular

kind of behaviour from one single stimulus to another single stimulus is a mere

failure of discrimination, Shepard (1987) formulated a law that he empirically

demonstrated to obtain across stimuli and species. His argument was that the law

models categorisation as a cognitive function of perceived similarities.

The ULG has contributed to many models in categorisation research. One such

a model that evolved on the basis of his work is Tenenbaum and Griffiths’(from

herein T&G, 2001) Bayesian inference model of categorisation. T&G argue that
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8 N. L. Poth

their model is advantageous to Shepard’s model in two respects. On the one hand, it

can capture the influence of multiple examples on categorisation behaviour. On the

other hand, T&G argue that it can unify two previously incompatible approaches

to similarity. One is Shepard’s approach to similarity as a function of continuous

distance in multi-dimensional psychological space. The other is Tversky’s (1977)

set-theoretic model of similarity, which considers the similarity of two items to

be a function of the number of their shared or distinct features. T&G argue that

their model is advantageous to Shepard’s original proposal because it is formally

compatible with both conceptions of similarity and thus scores high in terms of

its unificatory power. However, T&G take as an implication of the fact that their

model is not strictly committed to any particular conception of similarity (i.e.

Shepard’s or Tversky’s), that the (scientific) concept of similarity can be generally

dismissed from explanations of the universal gradient of generalisation that Shepard

had observed; probabilities alone are sufficient. Contra Shepard, T&G thus suggest

considering generalisation probabilities as primary to similarity.

In this chapter, I suggest that the theory of conceptual spaces offers a perfect

tool for resolving this debate. In particular, I argue that the theory of conceptual

spaces can make T&G’s Bayesian model more conceptually transparent and

psychologically plausible by offering a tool to supplement it with a psychological

similarity space, while capturing its advantage of showing that the multiplicity of

examples in a learner’s history matters for changes in categorisation behaviour. The

conceptual spaces theory then helps to explicate that some notion of similarity is

indeed needed for probabilistic models of categorisation more generally, and hence

keeps in with Shepard’s original motivation to explain categorisation as a function

of perceptual similarity.

In Sect. 2.2, I outline Shepard’s (1987) model of categorisation, with an emphasis

on the role he attributes to perceived similarities in categorisation. In Sect. 2.3, I

present T&G’s (2001) expansion of Shepard’s model, with an emphasis on the size

principle – a principle which formally expresses the added value from considering

multiple examples for categorisation. In Sect. 2.4, I present some problems with

T&G’s model. I argue that T&G’s conclusion that probabilities should be considered

primary to similarities is not warranted and that this perspective undermines their

model’s semantic interpretability. In Sect. 2.5 I suggest, more positively and on the

basis of Decock and colleagues’ (2016) Geometric Principle of Indifference, to

consider a conceptual space as a semantic basis for Bayesian hypotheses spaces.

I argue that in providing such a space, the conceptual spaces theory can help to

avoid the issues with T&G’s model and bring it in line with Shepard’s original

motivation to explain the generalisation gradient as a psychological function of

similarity. I conclude with a suggestion, that this combination of a conceptual space

and Bayesian inference could be considered as a more fruitful approach to modelling

generalisation probabilities in perceptual categorisation than a probabilistic model

on its own.
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2 Conceptual Spaces, Generalisation Probabilities and Perceptual Categorisation 9

2.2 Shepard’s Universal Law of Generalisation

This section briefly reviews Shepard’s mathematical model of generalisation,

and points out its historical relevancy for cognitive-representational models of

categorisation.

Shepard (1987)’s universal law of generalisation is a pioneering concept in the

psychology of perceptual categorisation. When Shepard published the results of

his work, it was widely held that categorisation does not follow a universal law

or pattern that might reflect a natural kind structure. Shepard contrasts the case of

categorisation to Newton’s (1687/1934) universal law of gravitation. Newton’s law

was very influential and helped to discover invariances in the physical structure

of the universe. Inspired by Newton’s achievements, Shepard’s aim was to find

a mathematical generalisation function that accurately models the psychological

representation of cognitive categories by extracting the invariances in the perceived

members of a category. Shepard took this to be a vital move against behaviourism

and for the idea that generalisation is a cognitive decision, not merely a failure of

sensory discrimination.

Shepard’s law can be expressed by the following proposition.

(ULG) The universal law of generalisation:

For a set of stimuli, i and j , the empirical probability of an organism

to generalise a type of behaviour towards j upon having observed i is a

monotone and exponentially decreasing function of the distance between

i and j in a continuous psychological similarity space.

ULG states that with a continuous increase in the distance between stimuli i and

j in psychological space (that is, with an increase in their perceived dissimilarity),

subjects are decreasingly likely to give these stimuli the same behavioural response.

On this basis, ULG predicts that subjects should be less likely to generalise a

behaviour associated with a given physical stimulus towards a relatively dissimilar

stimulus and more likely to generalise the behaviour towards a relatively similar

stimulus.

Shepard captured this tendency formally in terms of an exponential decay

function. He obtained this function by plotting the probability of generalisation (the

observed relative frequency at which a subject generalises behaviour to stimulus

i towards stimulus j ), gij , against a measure of psychological stimulus distance,

dij , where psychological distance was obtained by means of the multi-dimensional

scaling method (Carroll and Arabie 1980; Kruskal 1964; Shepard 1962). Shepard

showed that the generalisation gradient is invariant across various stimuli (e.g. size,

lightness & saturation, spectral hues, vowel and consonant phonemes and Morse

code signals) and across species (e.g. pigeons and humans), thus the name ‘universal

law’. He obtained two insights from the mathematical modelling of this law.

nina.poth@ed.ac.uk



10 N. L. Poth

1. If measured based on psychological (instead of physical) distance, the shape of

the generalisation gradient is uniform across stimuli and species. (Uniformity)

2. The metric of the psychological similarity space is either the City-Block distance

or the Euclidean metric. (L1-/L2-measurability)

The first point expresses the idea that differences in stimulus strength and

corresponding generalisation might depend on differences in the psychophysical

function that transforms physical measurements into psychological ones. For exam-

ple, subjects might generalise the same label to two colour shades that a physicist

would classify as ‘green’ and ‘yellow’ along the physical wavelength spectrum.

However, if the two colour shades are positioned in a model of psychological colour

space instead1 then subjects’ generalisations might be expected. This is because in

psychological similarity space, the colour shades may be judged to be more similar

than their measure along the physical wavelength spectrum actually indicates. The

physical distance between stimuli along the one-dimensional wavelength spectrum

might thus differ from their perceived distance in multi-dimensional psychological

similarity space. Shepard took this discrepancy as a possible explanation of the

previous difficulty to establish an empirically adequate model of generalisation

by measuring physical stimulus space. Thus, a transformation function would be

needed to recover a psychological distance measure from the physical distance

measure. Shepard’s second insight was that this function is a member of the family

of Minkowski metric.

Categories in this psychological framework are modelled as consequential

regions in multidimensional similarity space. Shepard assumes three constraints

on the categoriser’s background beliefs about consequential regions prior to any

observation.

. . . (i) all locations are equally probable; (ii) the probability that the region has size s is given

by a density function p(s) with finite expectation µ; and (iii) the region is convex, of finite

extension in all directions, and centrally symmetric. (Shepard 1987, 1320)

(i) is important because it yet does not assume that there are differences

in the internal structure of categories. This is relevant because if any possible

item in a category has the same chance of occurring, then this model cannot

account for prototype effects in categorisation (cf. Rosch and Mervis 1975). (ii)

is advantageous with respect to the formal precision and flexibility of the model.

Since the magnitudes of the measured stimuli (e.g. brightness and sound) are

measured in continuous space, probability densities are a suitable tool to use for

a decision strategy when evaluating candidate categories on the basis of the training

stimulus. (iii) is an assumption that makes the model mathematically more elegant,

but Shepard has given additional arguments for assuming that categorisers indeed

categorise in ways that satisfy convexity (Shepard 1981).

1A common example is the 3-dimensional CIELAB colour space which models colour representa-

tions along three axes, the hue, saturation and brightness dimensions (cf. Fairchild 2013).
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As a psychophysical law, ULG explains the probability of generalisation by

heavily relying on the notion of internally represented similarities. What makes

the generalisation function psychological as opposed to physical is that “it can

be determined in the absence of any physical measurements on the stimuli.”

(Shepard 1987, 1318). For example, even if the colour of an item on the physical

wavelength spectrum might change so as to become more different under differing

lighting conditions, this change might not actually be represented as a change

in the vector coordinates that would be assigned to the perceived colour of the

item in psychological similarity space. Thus, the invariance of the gradient could

not be explained without the more subjective notion of representational perceptual

similarity.

If this is correct, and the generalisation gradient arises from psychological instead

of physical measurements, then what is needed for a model of similarity-based

categorisation is a conceptual distinction between the psychological and physical

magnitude of the difference between (training- and test-) stimuli, respectively,

how they are related. In his work on psychophysical complementarity, Shepard

(1981) argues that psychological similarity offers such a distinction. In particular,

Shepard distinguishes between two kinds of similarities; first- and second-order

similarities. Accordingly, first-order similarities are similarities between physically

measurable properties in the world on the one hand and representations thereof

on the other hand. For example, consider the similarity between the redness of

a dress as measured on the physical wavelength spectrum, and the redness of the

dress as I perceive it. Second-order similarities, in contrast, are similarities between

mental representations themselves. For instance, consider the similarity between

my representation of the dress’ redness at one point in time, t0, as compared to my

perceptual experience of the dress’ redness at another point in time, t1.

Why should it be important to distinguish between first- and second-order

similarities for categorisation? Because they impose different kinds of accuracy

conditions on the representations of similarities, which in turn constitute the

generalisation gradient. Edelman (1998) motivates this point by alluding to Shepard

& Chipman’s (1970) distinction between first- and second-order isomorphisms.2

They suggest that veridicality in perception is instantiated through the perception of

similarities amongst the structure of shapes. The task of perceptual categorisation is

not to build representations that resemble objects in the world. Instead, the task of

the visual system is to build representations that stand in some orderly relationship to

similarity relations between perceived objects. This supports Shepard’s idea that the

criteria for whether generalisation is accurate or not are not determined by physical

measurements but by some psychological standard.

2For instance, second-order isomorphisms of shapes are measurements of similarities between

representations of the similarities of shapes (Edelman refers to this as a ‘representation of

similarity’), as opposed to similarities between distal shapes and their proximal representations

(a ‘representation by similarity’). Where categories are seen here as reference shapes, they are to

some extent cognitive constructions.

nina.poth@ed.ac.uk
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Consider second-order isomorphisms between shapes. What is represented are

principled quantifications of changes of shape, not shapes themselves. The idea is

that information about distal (represented) similarity relationships is picked up by

the representing system through a translation process. In particular, the information

about similarity relationships is reduced to invariances between movements in distal

parameter space. This allows for dimensionality reduction to constitute a proximal

(representing) shape space (Edelman 1998, 452). This process of translation (as

opposed to a process of reconstruction), allows for a reverse inference from subjects’

similarity judgements to a common metric. Veridicality, in that sense, means

consistency amongst subjects when judging the similarities between considered

object shapes, as opposed to consistency across stimuli conditions (for individual

shapes).

The example of first- and second-order similarities illustrates that Shepard con-

siders psychological similarity as explanatorily central to the relationship between

assignments of category membership and perceived similarity. This goes against

behaviourist analyses because similarity is seen as a cognitive function of decreasing

distance. But Shepard’s model is restricted to a comparison between representations

of single members of a category. An alternative view on generalisation probabilities

is offered by a Bayesian model of categorisation that considers generalisation

from multiple examples but eventually suggests to explain categorisation regardless

of the notion of psychological similarity. The model is presented in the next

section.

2.3 Tenenbaum and Griffiths’ Size Principle

This section outlines a Bayesian model of categorisation by Tenenbaum and

Griffiths (2001) that attempts to expand Shepard’s approach to generalisation in

two ways.

1. They show that the number and magnitude of examples observed shapes the

generalisation gradient.

2. They show that the probability of generalisation is (formally) independent of any

particular model of similarity.

I elaborate shortly on both points to illustrate the differences between T&G’s

and Shepard’s views on the relation between generalisation probabilities and

psychological similarities.

The first point of expansion considers the generalisation function that learners

are supposed to follow when learning categories. For this, T&G suggest a Bayesian

inference algorithm, which they call the size principle. It helps to consider the size

principle in light of the general Bayesian learning theory that T&G suggest.

nina.poth@ed.ac.uk



2 Conceptual Spaces, Generalisation Probabilities and Perceptual Categorisation 13

The idea is that learners follow Bayes’ theorem in computing the posterior

probability, Pr(H |E), of a hypothesis, H , about which consequential region is

shared for stimuli of a common class, in light of the available evidence, E.

Bayes’ Theorem

Pr(H |E) =
Pr(H)P r(E|H)

P r(E)

Bayes’ Theorem makes explicit how the posterior probability of a hypothesis

given some piece of evidence can be obtained; by taking the prior probability,

Pr(H), together with the likelihood, Pr(E|H), relative to the probability of the

evidence, Pr(E). For the current purpose, only the prior and likelihood are of

interest. This is because dividing by Pr(E) only serves normalisation purposes.

T&G argue that the likelihood term can be replaced by the size principle. The

size principle states that if the available evidence is held constant, hypotheses

that point towards smaller consequential regions should be preferred over those

hypotheses that suggest larger consequential regions when making a generalisation

decision. Moreover, if the information about perceived similarities is held constant,

the tendency to prefer smaller categories for generalisation should become stronger

with an increasing number of examples observed for that category. Formally, the

size principle can be expressed as follows.

The size principle

Pr(E|H) ∝

(

1

size(HC)

)|n|

(2.1)

Consider an example for the size principle that comes from Xu and Tenenbaum

(2007). Three Dalmatians are given as examples for the word ‘fep’, together with

the following hypotheses space.

H1: 〈‘f ep′, DALMATIAN〉

H2: 〈‘f ep′, DOG〉

H3: 〈‘f ep′, WHITE WITH BLACK DOTS〉

If the three Dalmatians are a random sample of the true category that the word

‘fep’ refers to, the size principle says that learners should have a higher degree of

belief in H1 than in H2 and H3. Following this size principle, this is a rational

choice because it is more likely to observe 3 Dalmatians as examples of what

‘fep’ means if in fact it referred to the category of Dalmatians as compared to

the class of dogs or things that are white and have black dots. The size principle

thereby expresses what Xu and Tenenbaum (2007) call a suspicious coincidence

mechanism: it would be very unlikely to observe 3 Dalmatians if ‘fep’ meant ‘dog’.

More formally, based on the size principle: since size(Dalmatian) < size(dog) <

size(white with black dots), Pr(E|H1) > P r(E|H2) > P r(E|H3).

nina.poth@ed.ac.uk
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The second point of T&G’s expansion takes the size principle for granted and

argues that the probability of generalisation – expressed in the likelihood term – is

itself primary to perceived similarities in the analysis of categorisation behaviour.

This claim is motivated by the idea that formally, the probabilistic model can

be translated into either a set-theoretic approach to similarity (such as the one

put forward by Tversky 1977) or a similarity-as-psychological-distance approach

(such as the one suggested by Shepard 1981, 1987). The probability space that is

considered in T&G’s model can be measured in terms of both, the number of shared

or distinct features or the relative distances between items in a continuous space.

This is because relative frequencies can be expressed in terms of either spatial or

numeral proportions. Thus, based on which quantity the size of a consequential

region is actually measured is irrelevant to Eq. 2.1.

T&G take the formal independence of probabilities from the particular type

of similarity model to indicate that perceptual similarities might be derived from

generalisation probabilities. T&G conclude that generalisation probabilities are

enough to explain categorisation behaviour and that such explanations can therefore

do without the concept of psychological similarity. They write:

We expect that, depending on the context of judgement, the similarity of y to x may

involve the probability of generalizing from x to y, or from y to x or some combination of

those two. It may also depend on other factors altogether. Qualifications aside, interesting

consequences nonetheless follow just from the hypothesis that similarity somehow depends

on generalization, without specifying the exact nature of the dependence. (Tenenbaum and

Griffiths 2001, 637)

However, it is yet an open question how probability assignments can determine

perceived similarities between category members. More on this problem in Sect. 2.4.

2.3.1 Advantages Over Shepard’s Model

The size principle adds to Shepard’s model in two ways. One advantage is that

T&G’s model makes the role of exemplar variability for generalisation more

transparent. This helps understanding why multiple examples, expressed by the

exponent |n|, can help to make categorisation more precise. Accordingly, a higher

number of examples helps to gain more information about where to set the

boundaries of a category: “All other things being equal, the more examples observed

within a given range, the lower the probability of generalization outside that range.”

(Tenenbaum and Griffiths 2001, 633). Categorisation is then a form of prediction. A

category plays the role of a random variable, X = {x1, . . . , xn} whose probability to

take on particular values in similarity space must be calculated. A more informative

distribution of the estimated random variable allows for more precise predictions

which values in similarity space are most probably to be observed as next examples

of the to-be-inferred category.

nina.poth@ed.ac.uk
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Another advantage of T&G’s model over Shepard’s model is that it is richer in the

predictions that it makes about generalisation performance. This also follows from

the additional consideration of exemplar variability in the size principle. If less data

is available under equal exemplar variability, the uncertainty in generalisation is

greater and the overall distribution of probability assignments less distinct. Holding

the exponent stable, the size principle prescribes a preference for categories with

a smaller magnitude. Exemplar-variability, accordingly, determines generalisation

probability. To that end, T&G can explain changes in the generalisation gradient

that occur despite constancies in similarity comparisons. For instance, the model

predicts that even under circumstances in which a novel item is actually very

similar to the average of previously observed exemplars, it might not be generalised

upon. The rationale is given by the size principle. With an increasing amount of

examples, rational learners should become more restrictive in their willingness to

expand generalisation. In other words, boundaries around regions in similarity space

become sharper and generalisation patterns more distinct throughout a subject’s

learning history. Thereby, the Bayesian model can account for undergeneralisation

– some of the presented examples are not considered particularly relevant for

generalisation, even though they would fall within the hypothesised consequential

region. Since this result is difficult to obtain in Shepard’s model, the size principle

offers a valuable expansion of ULG.

2.4 Problems for Tenenbaum and Griffiths’ Approach

This section outlines three problems for T&G’s approach. The first problem is that

T&G are too hasty in dismissing similarity from their programme of explaining

generalisation. T&G illustrate that their Bayesian model is independent of any

particular account of similarity. However, T&G conclude that just because the

Bayesian model is formally independent of any particular notion of similarity,

similarity can be dismissed from an explanation of the generalisation gradient.

They even make the stronger claim that the represented generalisation probabilities

should be seen as primary to the perceived similarities of category members. But

this conclusion seems too hasty. Just because their model is independent of any

particular view on similarity (i.e. it is formally compatible with both Tversky’s and

Shepard’s definition of similarity), this does not mean that similarity more generally

cannot serve as a conceptually useful notion for the probabilistic model. Indeed,

it could be plausible to think that considerations of similarity would, in fact, make

T&G’s Bayesian inference approach more precise and explanatorily useful. The first

problem has two facets in effect.

The first facet of the problem of disregarding similarity is that similarity is

conducive to an explication of the relationship between exemplar variability and

how this changes the generalisation gradient. The reason for this is that it is hard to

see how the concept of exemplar variability itself can be defined without alluding to

similarity in the input data; in fact, it is easier to see how generalisation probabilities

nina.poth@ed.ac.uk



16 N. L. Poth

can be derived from changes in the average similarity between examples. This also

corresponds to the common conception of exemplar variability in the literature

on clustering algorithms in machine learning, particularly on nearest-neighbour

models (Russell and Norvig 2002, ch. 18). The remaining question for T&G’s model

is thus which of its features can establish the relationship between the observed

generalisation gradient and the agent’s corresponding subjective degrees of belief

about category membership, if not similarity.

The second facet is that T&G underestimate the semantic value of similarity for

interpreting the size principle. Yet Eq. 2.1 leaves open how the size of a candidate

category should be measured, and its semantic content interpreted. One reason for

its semantic opaqueness is that Eq. 2.1 loses the explicit mentioning of the evidence

on the right-hand side of the equation.3 This also makes it difficult to identify the

degree of confirmation of a belief by an example because it cannot be compared how

far and by which measure the contents of terms E and H align. More conceptually,

it is not clear what the belief in the Bayesian model that is assigned a probability

value is actually about. Similarity could provide an answer to this question. For

instance, on Shepard’s account, consequential regions are individuated through a

measure of distance. This measure is an internal representation of the agent, and

thus provides content for a belief about category membership. Similarity can help

understanding of the relationship between the perceptual features of observations

as represented by the agent and the probabilistic inference of concepts. Thus, T&G

should not disregard but instead consider similarity as a conceptual basis for their

Bayesian categorisation model.

The second problem with T&G’s Bayesian approach is that it is incomplete. This

is because it only considers the likelihood and leaves out considerations of prior

constraints on the inference of categories. For instance, preferences for some over

other categories might be important for deciding about cases in which the observed

evidence confirms multiple candidate categories equally well.

A final problem with T&G’s approach is that the size principle invites worries

about undergeneralisation. Undergeneralisation occurs when a to-be-learned word

is applied to only a subclass of the items that denote its true meaning. For

example, if the word ‘dax’ meant ‘tulip’, but a learner applies it only to yellow

tulips, then ‘dax’ is undergeneralised. In Eq. 2.1, undergeneralisation is to be

expected because a learner should prefer to generalise towards the smallest possible

category that is compatible with the evidence. This is problematic for the empirical

adequacy of a categorisation model because we know that category learners, such

as children, do not only undergeneralise but often do overgeneralise word meanings

to broader categories than would be accurate (cf. Bloom 2002, 36, 158). It is

not clear how T&G’s model can capture an optimal trade-off between under- and

overgeneralisation.

3I thank Wolfgang Schwarz for pointing me towards this issue.
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2.5 A Geometric Principle of Categorisation

This section uses the conceptual spaces theory to move beyond the size principle.

In particular, the argument is that the size principle can be made more precise by

considering a conceptual space as a semantic basis for Bayesian inference. I start

by outlining Decock et al.’s (2016) argument that the conceptual spaces theory

can be used to formulate a geometric principle of indifference as a solution to the

different carvings-up problem. I subsequently argue that Decock et al.’s geometric

solution to the different carvings-up problem can be generalised towards a solution

to the problems with T&G’s approach. This generalisation is framed as a geometric

size principle that moves beyond T&G’s size principle in making it more precise.

Though being motivated by a similar idea, the geometric size principle also moves

beyond Decock et al.’s approach in that it can account for category learning.

2.5.1 Decock et al.’s Geometric Principle of Indifference

Decock et al. (2016) use a conceptual space to establish a geometric principle of

indifference (gPOI), and thereby avoid some of the problems that were encountered

by a standard principle of indifference (sPOI). The sPOI states that

. . . given a set of mutually exclusive (at most one can be true) and jointly exhaustive

(at least one must be true) propositions, and barring countervailing considerations, one

ought to invest the same confidence in each of the propositions. Put differently, given a

set of propositions of the aforementioned kind, if you lack any reason not to treat them

evenhandedly, you should treat them evenhandedly. (Decock et al. 2016, 55)

A problem for the sPOI is the different carvings-up problem. This is the problem

of choosing the right kind of hypotheses space. For example, considering a box

with an unknown number of multi-coloured marbles, one can carve up the space of

considered possibilities for any outcome in different ways. Probabilities could be

distributed over the set of hypotheses ‘red’ and ‘any other colour’. Or, alternatively,

one could distribute probabilities over the set of hypotheses, ‘red’, ‘blue’ or ‘any

other colour’. The first option can be expressed as H = {H1,H2}, where H1 =‘red’

and H2 = ‘any other colour’. The second option can be expressed as H =

{H1,H3,H2}, where H1 = ‘red’, H3 = ‘blue’, and H2 = ‘any other colour’.

Which set of hypotheses is considered matters for the distribution of the probability

assignments because these are mutually dependent.

The problem is that these different ways to carve up the space are each probabilis-

tically admissible but taken together, they become incoherent. Considering the first

hypotheses space, one could assign Pr(H1) = .6 and Pr(H2) = .4. But considering

nina.poth@ed.ac.uk



18 N. L. Poth

the second hypotheses space one could assign Pr(H1) = .25, Pr(H2) = .5 and

Pr(H3) = .25. How can it be rational to assign Pr(H1) = .6 and Pr(H1) = .25

simultaneously? Intuitively, the same probability value should be assigned to H1 in

each case.

Decock et al. solve the different carvings-up problem in two steps. In a first step,

they regard the geometry of concepts as primary to the formulation of the degrees-

of-belief functions. For this, they use the architecture of concepts as suggested by

the conceptual spaces theory (Gärdenfors 2000).

A conceptual space is a geometric similarity space. It is defined as a number of

quality dimensions (e.g. height, size, hue, saturation, brightness). Objects can be

assigned a value along each dimension, where each value represents the respective

perceived quality of the object. In combining those values from each axis of

the conceptual space, objects can be represented as vectors in conceptual space.

The distances between the vectors express the perceived similarity between them.

Roughly, the larger the distance, the less similar the objects are.4 Regions in

conceptual space represent concepts – cognitive categories – and cover areas in

conceptual space. The content of a region captures not only information about

already observed members of a category, but also information about yet unobserved

members. Thus, a region in conceptual space indicates a concept’s intensional

content, where the intension could be understood as all the possible qualities that

a member of the concept can be assigned (cf. Carnap 1988).5

On Decock et al.’s account, the basic quality dimensions are important for

specifying the gPOI. This is because they are taken as the fundamental attributes

(e.g. attributes such as shape, size, colour) needed to define the predicates used in

the formulation of the hypotheses.

In a second step, Decock et al. use a modification of Carnap’s (1980) γ -rule

to specify the prior probabilities for any possible carving up. The γ -rule specifies

how the probability of an object, o’s (e.g. an unobserved colour shade), falling in a

region, Ci , can be computed. The gamma-rule says that this probability is equal to

the size of Ci relative to the size of the conceptual space, CS (which in Carnap’s

terminology is the attribute space). Where the sentence ‘an object o’s falling in a

region Ci’ refers to the content of a hypothesis, HCi
: {o ∈ regionCi

}, the rule can

be expressed more formally as follows.

4To be a bit more precise, the distance function is exponential. Gärdenfors (2000) suggests the

Euclidean distance metric for Euclidean space and the Minkowskian distance metric for non-

Euclidean space.
5Categorisation in conceptual spaces follows a function that maps each point in similarity space

onto a unique cell in a Voronoi tessellation. The fundamental categories that serve as candidates

when formulating the hypotheses prior to their evaluation thus result from a mechanism of concept

acquisition which requires justification itself. For the purpose of this chapter, I mainly disregard

the Voronoi tessellation as a concept acquisition mechanism, and consider only the geometric

properties of an established conceptual space as substantial for the argument.
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Carnap’s γ-rule

Pr(HCi
) =

size(regionCi
)

size(CS)
(2.2)

Decock et al. (2016) argue that Eq. 2.2 can solve the different carvings-up

problem because it helps to fix the probabilities for each considered hypothesis (e.g.

HCi
: {o ∈ regionCi

} versus HCj
: {o ∈ regionCj

}) in dependence of the size of the

underlying region (e.g. regionCi
versus regionCj

). Thus, considering two possible

hypotheses spaces, it can be exactly decided how the space should be carved up

because the concepts used for formulating the relevant propositions are now fixed

in their relative sizes.

Consider the following example. Take C1 to stand for the region in conceptual

space representing the category red. Take C2 to stand for the region in conceptual

space representing the category blue. And take C3 to stand for the region in

conceptual space representing the category any other colour. Following Eq. 2.2,

the prior probability of a hypothesis pointing towards an object o to lie in C1 is

the area of C1 divided by the area of the entire conceptual space. Decock et al.

(2016) call this prior probability measure α. Then, it does not matter how the space

is carved up, that is, whether the partition {(o ∈ C1), (o ∈ C2)} or the partition

{(o ∈ C1), (o ∈ C2), (o ∈ C3)} is considered. The assignment of a prior degree

of belief to (o ∈ C1) will be the same, namely α, regardless of whether any other

colour is considered in the prediction. With a similar example, Decock et al. show

that by fixing probabilities based on the spatial properties of the conceptual space,

it is possible to stay neutral on which partition is the right one – the prior degrees of

belief stay the same.

Decock et al.’s approach illustrates a further advantage of the conceptual spaces

theory. This is that the geometric space can help making the γ -rule more precise.

In particular, Decock et al. use the geometric properties of the conceptual space

to establish a unique measure of the size of a region – the Lebesgue-measure.

Thereby, they can make more explicit the relationship between the assignments of

probabilities to candidate hypotheses (i.e. beliefs) in dependence of their semantic

contents (i.e. areas in conceptual space). More formally, their modification looks as

follows.

Decock et al.’s Lebesgue-specification of the γ-rule

µ∗(Ci) =
µ(Ci)

µ(CS)
(2.3)

For Decock et al., the normalised Lebesgue measure, µ∗, represents the prior

degree of belief of the agent to classify an unknown object as a member of

concept Ci . Thus, Eq. 2.3 makes Eq. 2.2 more precise. This is important because

just upon considering the conceptual space, it is possible to semantically interpret

the hypotheses. This is because the conceptual space provides the basic predicates
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without which the hypotheses could not be formulated. The specification is thus

possible only via the assumption of the conceptual space. In particular, the size

is measured by integrating over the subset of vectors in conceptual space that

would be covered by each category predicate, Ci . This way, the gPOI delivers a

formally precise solution to the different carvings-up problem, and presents a better

alternative to the sPOI.

More generally, Decock et al.’s account is similar in its spirit to the criticism

of T&G’s approach presented here. Roughly, just like the sPOI lacks a semantic

basis for prior degrees-of-belief functions, T&G’s size principle lacks a semantic

basis for determining the likelihoods in Bayes’ Theorem. The common claim is that

the conceptual spaces theory offers a way out of the problem by making Bayesian

inference more precise, and semantically interpretable.

2.5.2 Going Beyond the Size Principle

To avoid the problems with the size principle, I follow Decock et al.’s approach in

two steps. The first step is to define the hypotheses space with the conceptual spaces

theory. The second step is to explore in which ways the architecture of a conceptual

space can provide additional constraints on categorisation.

For the first step, the conceptual spaces theory suggests that a category should

be interpreted as a region in the conceptual space. It can be seen that under this

interpretation, the size principle can be compared to Carnap’s γ -rule. Equation 2.2

takes the size of the relevant region relative to the size of the entire conceptual

space. In contrast, Eq. 2.1, disregarding for a moment the |n|-component, reverses

this relation. An assignment of total probability (which represents that the observed

item belongs to any category) is taken relative to the size of a candidate category.

Thus, the size principle reverses the influence of the size of a category on the degree

of belief function. Given the structural similarities between Eqs. 2.2, 2.3 and 2.1,

also the size principle can be specified with the help of the geometry of concepts.

Following Decock et al., the surface area of a region in conceptual space can be

measured with the Lebesgue measure, µ (see Eq. 2.3). One way in which this could

be expressed is as follows.

Pr(ei |H〈Ci ,L〉) =
µ(ei ∩ Ci)

µ(Ci)
(2.4)

Equation 2.4 expresses the likelihood of a known item, ei , given that it is a

member of a region, Ci , in conceptual space. The likelihood is a measure of the

relative overlap of a piece of evidence, ei ∈ E, and a candidate region, Ci . This
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is taken relative to the measure of the region, Ci .
6 The likelihood hence becomes

larger the better the relative overlap of the evidence with the candidate concept.

Equation 2.4 moves beyond the size principle by answering the problems that

were associated with T&G’s approach. It can solve the first problem of disregarding

similarity too hastily because in contrast to T&G’s argumentation, it does welcome

similarity as a basis for probabilistic inference in categorisation. This is positive for

avoiding the two facets that come with this problem. For the first facet, the geometric

approach can offer at least an explanation sketch of how perceived similarities in

varying examples relate to the corresponding probability assignments to possible

future exemplars. In a conceptual space, exemplar variability is captured by mea-

suring the average distance between the exemplars. A probability density function

can be approximated once sufficiently many exemplars have been observed. In a

conceptual space with continuous quality dimensions, the probability of observing

an item from a particular region in conceptual space is then simply the area under

the probability density function bounded by the region. A relation between the

probability and the perceived similarities of the exemplars can thus be established

based on the distance measure that a conceptual space is equipped with. In effect,

this can give rise to the dynamics between the size of a category and how it

determines the likelihood for the corresponding hypothesis (cf. Krumhansl 1978).

By considering similarity as a basis for probability assignments, the geometric

approach also helps to find a more transparent semantic interpretation of the size

principle. This is based on two changes that come with a geometric approach to the

size principle. First, Eq. 2.4 replaces the likelihood with a measure of the relative

proportion of areas in conceptual space. This defines the content of the hypotheses

more precisely: as mappings from measurable regions in conceptual space (e.g.

the concept TULIP) to the labels whose meaning is to be inferred (e.g. ‘dax’).

Second, Eq. 2.4 lets the term for the evidence, E, re-occur on the right-hand side

of the equation. In doing so, the geometric approach helps to make more explicit

the relationship between the evidence and a hypothesised category (here measured

by their relative spatial overlap). Based on these two changes, Eq. 2.4 is easier to

interpret than Eq. 2.1. The evidence is a point in conceptual space and a candidate

category is a region in such a space, and their relative overlap can be measured

geometrically. More generally, this shows that the geometric approach offers a

more transparent way to interpret the likelihood term in the Bayesian inference of

categories.

To make this point more clear, consider the following example. Zoey’s dad wants

to teach her the names of some colour categories. He shows her three particular

colour shades, blue1, blue2 and blue3, and he calls each of them ‘azure’. For an

overview:

E = e1 : 〈blue1, ‘azure’〉, e1 : 〈blue2, ‘azure’〉e3 : 〈blue3, ‘azure’〉

6This formal solution – to consider the relative overlap of the evidence and the candidate category –

has already been suggested in a joint talk held by Peter Brössel and me at a conference in Salzburg,

2015 (Poth and Brössel 2015).

nina.poth@ed.ac.uk



22 N. L. Poth

H = H1 : 〈turquoise, ‘azure’〉, H2 : 〈light blue, ‘azure’〉, H3 : 〈blue, ‘azure’〉

With the help of the conceptual spaces theory, a hypothesis can now be inter-

preted in terms of the average spatial distance between those subsets in conceptual

space that are indicated by the corresponding regions. For instance, the content of

H1 can be partially expressed in terms of the distance of those vectors in colour

space that would be perceived as turquoise colour shades. The other part of this

content is the linguistic description itself, ‘azure’, which is given in the supervised

learning environment that is considered here. In light of this interpretation, hypothe-

ses can be evaluated in terms of the intensions of the categories that they point

towards, that is, in dependence of their average spatial distances. Following Eq. 2.4,

the information about perceived similarities as represented in conceptual space can

then be used to assign probabilities to each candidate hypothesis. For instance, the

semantic content of the hypothesis that blue1, blue2 and blue3 belong to category

turquoise is the relative overlap of the distance between blue1, blue2 and blue3 and

the average distance of perceivable items within the candidate region in conceptual

space that represents the intension of the corresponding term (e.g. ‘azure’).7 Then,

Pr(E|H1) would win in the competition because it presents the best overlap with

E.

Another way in which the geometric approach moves beyond the size principle

is that it can make T&G’s Bayesian inference model more complete. This is because

whereas T&G yet only specify the likelihoods in the inference of categories, a

conceptual space can offer additional constraints to determine the prior probabilities.

One constraint is convexity. In the conceptual spaces theory, convexity means that

if two items in conceptual space are known to belong to the same category, then any

other item that would lie on a straight line between the two examples will be known

to be a member of the category, too. Convexity can offer an additional constraint on

word-meaning inferences in the context of categorisation tasks. This can be helpful

for evaluating contexts in which the evidence is insufficient to decide for a unique

way to generalise, e.g. when candidate categories are confirmed equally well by the

evidence alone.

The motivation to build a convexity constraint in the architecture of a cate-

gorisation model comes from the idea that convex categories should be preferred

in meaning inferences because they are easiest to infer. In the conceptual spaces

theory, natural properties are considered to be those that are convex. This statement

is expressed as “Criterion P” in the conceptual spaces theory (Gärdenfors 2000,

71). The rationale behind Criterion P is that it serves to establish a cognitive

distinction between natural and gerrymandered categories. Such a distinction is

needed to tackle Goodman’s (1972) new riddle of induction: why do we want to

prefer inferences towards categories such as green or blue, as opposed to those

7The k-nearest neighbour rule (Russell and Norvig 2002, ch. 18) suggests a similar interpretation.

Here, to-be-classified items are grouped based on their distance to an average observation in a

vector space, and this can be used to determine a model’s graded meaning inferences.
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towards grue or bleen? For Goodman, the answer is that green and blue are

projectible predicates and should thus be preferred over grue or bleen, which are

inductively useless. In the conceptual spaces theory, the conceptually abstract notion

of projectibility is made more precise with the more spatially grounded notion of

convexity.

To see how convexity can help narrowing down the candidate categories if the

evidence alone cannot do so, imagine the following example. Over a period of three

days, Zoey’s dad shows her a sequence of three flowers. The flowers are of different

colours but all have the same shape. On each of these observations, Zoey’s dad

says ‘dax’. Thus, there is E = e1 : 〈 white tulip, ‘dax’ 〉, e2 : 〈 yellow tulip,

‘dax’ 〉, e3 : 〈 red tulip, ‘dax’ 〉. What is more, all observations are made during

the afternoon. Given these three pieces of evidence, the following hypotheses seem

plausible. H = H1 : ‘dax’ means tulip, H2 : ‘dax’ means flower, H3: ‘dax’ means

tulip in the afternoon.

Intuitively, H1 is to be preferred over H2 because H1 is more plausible in light

of E. Following Eq. 2.4, H1 is better supported by E than H2 because E and the

candidate category tulip achieve a better relative overlap in conceptual space than

E and the candidate category f lower . However, E is insufficient to give H1 an

advantage over H3 because all observations were in fact made in the afternoon. But

intuitively, H3 also appears less plausible than H1. Equation 2.4 cannot provide

sufficient reason for this because it only considers the role of the evidence in

determining the probabilities. Thus, some other criterion must be chosen to evaluate

the hypotheses in addition to the available evidence.

The convexity constraint can help here. The category tulip in the afternoon

is most probably non-convex because it mixes the category tulip with the time

dimension. Whereas objects that look like tulips are likely to form convex clusters

in the shape and colour domains, adding the time dimension would make them

become scattered in conceptual space. This is because by adding the constraint in the

afternoon, objects that would be classified as tulip would lose the property of being

a tulip during some intervals along the time dimension (e.g. during those intervals

that represent the morning and the evening).8 Under the assumption that tulip in the

afternoon is non-convex, H3, as opposed to H1, points towards a gerrymandered

category and should thus be harder to infer. In other words, H1 should be preferred

over H3 because it points towards a more natural category, even if the evidence

confirms both hypotheses equally well.

Formally, this suggestion will be best captured in the prior probabilities. That is,

before Zoey is going to observe the next example, her prior degree of belief in the

8See also Gärdenfors’ (2000, pp. 211) solution to the grue- and bleen problem, in which he argues

that grue and bleen are non-convex because they are defined by the hue and the time dimensions.

He argues that in contrast, the categories blue and green are convex because in the latter cases there

is no interference with the time dimension.
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hypothesis that ‘dax’ means tulip should be higher than her prior degree of belief in

the hypothesis that ‘dax’ means tulip in the afternoon, just because tulip is a more

natural concept.9

Apart from the specification of the prior probabilities, criterion P could also help

with the worry of undergeneralisation. This is because if a category is convex, then it

will have to occupy on average a larger proportion of the conceptual space than a cat-

egory that maximally fits the examples. Though a full reply to this problem cannot

be fleshed out here, one option is to consider the Voronoi tessellation (Gärdenfors

2000, pp. 87) to accommodate overgeneralisation. A Voronoi tessellation partitions

the conceptual space into clusters of mutually exclusive and exhaustive convex sets

of objects. The tessellation process starts from a prototype. At least two prototypes

are needed to achieve a tessellation because the cells are established through a

connection of the bisectors of hypothetical lines that connect the prototypes for any

cluster of items. Upon tessellating the space, any item that is closer in space to a

prototype than to any other prototype will be assigned a membership function for

the category that is represented by the prototype, i.e. the cell associated with that

prototype. With this method, a learner would overgeneralise easily, if the partition

is broad enough. Generally, the approach outlined here should not be committed to

the Voronoi tessellation. But it illustrates that convexity can indeed help to counter

the worry of undergenralisation that comes with the size principle.

To recapitulate, this section has taken Decock et al.’s solution to the different

carvings-up problem as starting point to help moving beyond the size principle.

The advantage of the resulting geometric approach to categorisation is that it can

avoid the problems presented in Sect. 2.4 while keeping in with Shepard’s original

motivation to use similarity as a tool to explain the generalisation gradient.

2.5.3 A Worry for a Geometric Principle of Indifference

Decock et al.’s approach has a problem; it cannot explain how information about

how a category is commonly used changes the degree of belief in that category being

the right meaning candidate. That is, it fails at accounting for pragmatic effects in

category learning.10 For instance, consider two categories, Ca and Cb, represented

as regions in conceptual space. Imagine that the size of both corresponding regions

is the same, as measured by the Lebesgue integral. That is, size(Ca)/size(CS) =

size(Cb)/size(CS). Because according to Carnap’s γ -rule, all that matters for

determining the prior degree of belief is the relative size of a category, the prior

probabilities for Ca and for Cb must also be the same. Based on Decock et al.’s

9There is some evidence for a preference of convex categories in children learning homophones

(e.g. Dautriche et al. 2016) and also amongst adults and other word types more generally Jäger

(2010).
10Thanks to Peter Gärdenfors for pointing out this problem to me.
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approach, we obtain that µ∗(Ca) = µ∗(Cb) and thus that for any unknown item o,

Pr(o ∈ Ca) = Pr(o ∈ Cb). But imagine that it is also known that Ca is used often

in linguistic communication, whereas Cb is very rarely used. It is not clear how this

information could be captured by a measure of the size of either Ca or Cb alone.

Thus, prior probabilities alone cannot capture the pragmatic influences on degrees

of beliefs about category membership for unknown objects.

More generally, the problem is that Decock et al.’s approach cannot account for

category learning. This is because it is limited to a static account of rationality,

that is, one in which an agent is rational at a given point in time if and only if her

degrees of belief can be represented by a probability function at that point in time.

However, learning requires beliefs to change in response to novel evidence. Thus,

for a rational-learning account of categorisation, a dynamic account of rationality

that considers the evidence is needed. On such an account, an agent is rational if

and only if her change in a degree of belief from an earlier to a later time point can

be represented by conditionalisation.11 That is, her degree of belief in H conditional

on E prior to E’s occurrence, Pr(H |E), must equal her degree of belief in H after

having learned E, PE(H). But to compute Pr(H |E) and consider what happens

upon learning E, a rational learner must follow Bayes’ Theorem and compute the

likelihood.

My suggestion is that information about how frequently a category is used is part

of the evidence for category learning, and that such information can be captured

in the likelihood term. Then, the geometric size principle would already contain

the ingredients to accommodate the pragmatic challenge because it specifies the

likelihood term.

A possible response from the geometric size principle could be made by stressing

two points. First, the geometric approach specifies the likelihood instead of the prior

probabilities. Second, it can also capture the role of multiple examples for category

learning. Based on their differences, the geometric size principle is promising in

accommodating for pragmatic effects in categorisation.

For the first point, I suggest that Decock et al.’s specification of Carnap’s γ -rule

and the modified size principle function as complementary elements in a Bayesian

model of category learning. Formally, both equations express two different kinds of

degrees of beliefs. Whereas the γ -rule replaces the prior probability of observing

an unknown member, o, of a candidate category, Pr(o ∈ Ci), the geometric size

principle replaces the likelihood of observing an actual object, ei , given that it is

a member of a particular candidate category, Pr(ei |ei ∈ Ci), where o and ei can

occupy the same point 〈x, y, z〉 in conceptual space.

For the second point, one could modify Eq. 2.4 to express the idea that the

likelihood of observing a sequence of examples for a labelled category becomes

proportionally greater the better the relative overlap of the sequence of examples is,

on average, with the candidate region in conceptual space.

11The best argument for conditionalisation are diachronic Dutch Books (cf. Teller 1973).
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Pr(E = 〈ei, . . . , en〉|E ∈ Ci) ∝

(

µ∗(〈ei, . . . , en〉 ∩ Ci)

µ∗(Ci)

)

(2.5)

In intuitive terms, Eq. 2.5 says that the more examples are given, the greater the

likelihood for hypotheses that suggest categories that on average overlap well with

the examples. This modification captures the role of exemplar variability – the added

value from T&G’s expansion of Shepard’s original model of categorisation. It not

only considers the size of a region, but also takes into account the relative locations

of category examples, and the frequency at which they are observed.

The modification can help a reply to the pragmatic challenge. If one category,

Ca is used more frequently in the learning history than another category, Cb, the

likelihood for the former must, overall, be greater than the likelihood for the latter.

If Ca and Cb are mutually exclusive regions in conceptual space, the likelihoods

equal the relative frequencies at which points in these regions are observed. In a set

of 10 examples, E = 〈e1, . . . , e10〉, 7 examples are called ‘dax’ and overlap with Ca

and 3 examples are called ‘fep’ and overlap with Cb. Thus, ‘dax’ = 7/10 and ‘fep’ =

3/10. Thus, Pr(E, ‘dax′|E ∈ Ca) = .7 > Pr(E, ‘fep′|E ∈ Cb) = .3. This means

that in terms of the likelihood, a rational categoriser should favour a hypothesis that

points towards Ca as the more commonly used concept.

This approach could be made more precise by the outlined combination of

the conceptual spaces model and probabilistic inference. Inferences as to which

category any unknown object belongs to could be expressed by a probability density

function that runs over the conceptual space as estimated based on the density of

the meaning examples. The more labelled examples for one category as opposed

to another are given, the higher the probability density for the corresponding area

in conceptual space. For instance, upon observing 〈e1, ‘dax′〉, the difference in the

relative overlap with Ca and with Cb might not be significant. Given multiple

examples, however, this difference should increase and make the corresponding

prediction for observations of any next item to be called ‘dax’ more precise. If the

next two examples for ‘dax’, e2 and e3, are also in Ca then e2 and e3 present evidence

that confirms the hypothesis that ‘dax’ refers to the region Ca relatively more than

the hypothesis that ‘dax’ refers to the region Cb in conceptual space. Thus, given the

evidence, the probability density for an area confined to Ca should be greater than

the probability density for Cb. Following the original intuition behind T&G’s size

principle, the relative overlap between E and Ca becomes larger over time because

Ca is used more frequently throughout the agent’s learning history. Thus, even if

Ca and Cb would have the same size, Ca might be confirmed better by the evidence

over time than Cb.
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2.6 Conclusion

This chapter has outlined two conflicting views on the role of generalisation

probabilities in perceptual categorisation. On the one hand, there is Shepard’s

(1987) view that the probability of generalisation is a derivative of perceptual

similarities. On the other hand, there is Tenenbaum and Griffiths’ (2001) view that

the probability of generalisation governs perceived similarities. I have argued that

the theory of conceptual spaces (Gärdenfors 2000, 2014) can be used as a semantic

mediator between these conflicting views on the role of generalisation probabilities

in perceptual categorisation. The wider implication of this approach is that the

notion of similarity is conducive to the psychological plausibility of probabilistic

models of categorisation and should therefore not be considered irrelevant in the

explanation of the generalisation gradient.

Taken together, I have presented three main reasons to consider a geometric size

principle valuable. First, it provides a semantically interpretable basis for Bayesian

inference. Second, it can accommodate the intuitions behind both T&G’s and

Shepard’s approaches, that categorisation on average sharpens with an increase in

similarity and an increasing number of examples such that generalisation becomes

more restrictive. This is positive, for example, because it can explain undergener-

alisation. Third, the geometric approach provides additional constraints, such as

convexity, that could possibly be built into a Bayesian model of categorisation.

This would be advantageous to explain, for example, overgeneralisation in category

learning.

Future directions call for a way to connect the outlined model with more objective

principles of rationality in categorisation and linguistic communication. Further

elaboration is also needed with respect to conditionalisation of degrees of beliefs

about category membership in conceptual spaces.
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