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Abstract
Proponents of the predictive processing (PP) framework often claim that one of the 
framework’s significant virtues is its unificatory power. What is supposedly unified 
are predictive processes in the mind, and these are explained in virtue of a common 
prediction error-minimisation (PEM) schema. In this paper, I argue against the claim 
that PP currently converges towards a unified explanation of cognitive processes. 
Although the notion of PEM systematically relates a set of posits such as ‘efficiency’ 
and ‘hierarchical coding’ into a unified conceptual schema, neither the frameworks’ 
algorithmic specifications nor its hypotheses about their implementations in the 
brain are clearly unified. I propose a novel way to understand the fruitfulness of the 
research program in light of a set of research heuristics that are partly shared with 
those common to Bayesian reverse engineering. An interesting consequence of this 
proposal is that pluralism is at least as important as unification to promote the posi-
tive development of the predictive mind.

Keywords  Predictive processing · Predictive coding · Free-energy principle · 
Unification · Explanation · Pluralism · PP toolbox

1  Introduction

Proponents of the predictive processing framework (PP) often claim that one of its 
virtues is its ability to unify many, if not all, aspects of cognition, including per-
ception, action, learning, attention, memory, motivation, social cognition, psychopa-
thology, language, consciousness and other phenomena (Friston, 2010; Seth, 2014; 
Clark, 2016; Hohwy, 2013; Kiefer & Hohwy, 2018; de  Bruin & Michael, 2018; 
Lupyan & Clark, 2015). In each of these cases, it is assumed that agents should infer 
the underlying, hidden, causes (e.g., the source of a sound) of sensory inputs (e.g., 
the perceived sound pattern) by predicting the sensory inputs and minimising, in the 
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long run, the mismatch between those predictions and the actual sensory signal at 
multiple levels of a hierarchical generative model (Wiese & Metzinger, 2017).

Although unification is often cited as a reason for the extraordinary excitement 
surrounding PP (Clark, 2013; Hohwy, 2013; Friston, 2010), there is currently no 
wide consensus about what the framework’s unificatory status actually amounts to. 
One idea is that PP’s unity lends explanatory grounds for choosing to work with 
PP in investigating cognition. For example, Clark (2013, 2016) and Hohwy (2013, 
2020a) argue that prediction-error minimisation (PEM) offers a universal explana-
tion of cognitive processes that results in greater predictive power.1 Gładziejewski 
(2019, p. 670) claims that PP’s unificatory credentials confer additional credibility 
and evidential support to specific hypotheses about predictive brain mechanisms 
when other criteria (e.g., empirical adequacy) fail to distinguish those hypotheses 
from a set of competing non-PP alternatives.2 On the contrary, the status of the 
related free-energy principle (FEP) as a ‘grand unifying theory’ of life and mind 
has recently been challenged (Colombo & Wright, 2017), and Colombo et al. (2018) 
argue that the PP framework should be agnostic about what mechanisms are at work 
in characterising a given cognitive task as precision-weighted PEM, and that “cred-
ibility” and “approximation to truth” are simply the wrong terms to describe PP’s 
unificatory value, while this negative characterisation seems to be compatible with 
the view that PP offers methodological benefits (Hohwy, 2020b)3 and aesthetic 
appeal (Prinz, 2019).4

In this paper, I suggest a more nuanced perspective that balances PP’s unifica-
tory with its pluralistic aspects to positively expand its fruitfulness. In particular, 
I argue that PP’s key concepts provide a unifying schema, but its process theories 
are highly pluralistic. A consequence of this result is that, contra theorists such as 
Clark (2013), Hohwy (2020b) and Gładziejewski (2019) and in line with Colombo 
and Wright (2017), PP’s unity lends no strong explanatory grounds for preferring 
to work with it. I argue that PP’s unificatory merits are not the only or major reason 
for choosing to work with PP on instrumental grounds, as seems to be suggested by 
theorists such as Hohwy (2020a). The instrumental value associated with PP bears 

1  The idea is that PP offers explanations, mainly functional ones, that are simple and cover a wide vari-
ety of phenomena, and so they have a broad scope.
2  The key idea of the confirmation-theoretic approach to PP from Gładziejewski (2019, p. 696) is that 
“the fact that a given PP-model fits a recurring pattern lends it additional credibility relative to rival 
explanations. [... Unification] does not, by itself, make PP-models unconditionally good or true. If they 
are to succeed qua explanations, it is still necessary to show that PP-models map onto the actual causal 
structure of the brain. But absent this sort of knowledge, unity serves as additional evidence for PP-
models”. A more formal account of confirmation-theoretic unification in Bayesian cognitive science is 
offered by Colombo and Hartmann (2017, Sect. 5.3) on the basis of a Bayesian network analysis.
3  Hohwy (2020b) understands unification based on the FEP as a “regulatory principle, ‘guiding’ or 
‘informing’ the construction of process theories”.
4  Prinz characterises PP and other approaches by Andy Clark as stories with an associated “narrative 
appeal” that offers “ways of thinking about minds that we can find more or less compelling because they 
give us new perspectives on who we are and how we relate to the world around us. Good narratives must 
make contact with reality, but that is not what differentiates one from another. The ones that we find 
compelling give us a picture of ourselves that we find rewarding in some way” (Prinz, 2019, p. 235).
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many more facets than is currently reflected by researchers’ polarisation towards 
claims about its unificatory merits. Specifically, I show that PP’s fruitfulness for for-
mulating plausible and testable hypotheses about cognitive phenomena is realised 
by the application of a diverse set of cognitively and pragmatically beneficial heuris-
tics that are so far underexplored and that invite opportunities for both unification as 
well as for pluralism in the predictive mind. Instead of a unified account, predictive 
processers are free to develop heterogeneous hypotheses about how cognition works.

I begin by outlining the central tenets of the PP framework with a focus on the 
PEM schema and its neurocentric perspective on cognitive function in Sect. 2. In 
Sect. 3, I borrow Danks’ (2014, Chap. 8) distinction between schema- and process-
centred unifications, which I take as a standard to identify PP’s unificatory status as 
a schema-centred unification, and I argue that PP currently fails to unify cognitive 
processes to a high degree since there is a plurality of PP algorithms that are difficult 
to integrate into a coherent set of predictions about brain function. In Sect. 4, I moti-
vate a shift away from the idea that PP offers explanatory unifications. In Sect. 5, I 
argue that PP’s fruitfulness for the discovery of plausible and testable hypotheses 
builds on the application of a diverse set of associated research heuristics, whose 
application is compatible with the claim that PP develops locally disconnected 
explanations of how the brain predicts the world. I conclude that the significance of 
unification should be balanced with that of pluralism in the predictive mind.

2 � Central Tenets of Predictive Processing

The central assumption of the PP framework is that cognition follows a single 
imperative to minimise prediction error, on average and in the long run (Hohwy, 
2013). As a version of the Bayesian Brain Hypothesis (Knill & Pouget, 2004), PP 
starts from the assumption that the brain represents information at the subpersonal 
level in terms of probability distributions (i.e., predictions) over possible sensory 
states at various levels of a hierarchical generative model. The standard view is that 
the model is cortically implemented by a hierarchical message-passing schema in 
which top-down connections of neural networks carry predictions about activities at 
lower levels of the cortical hierarchy and bottom-up connections carry information 
about errors in those predictions. Prediction-error signals encode information about 
the discrepancy between incoming signals and prior predictions at each level5 (Fris-
ton, 2005; Rao & Ballard, 1999).

In perception, PEM is achieved by updating the model that generates top-down 
predictions at higher levels of the hierarchy in proportion to the magnitude of 
incoming error signals, in such a way that the resulting predictions approximate 

5  The term ‘level’ is taken to either refer to the different layers of an artificial neural network and its 
computational activity in the model or to different areas in the cortex when the model is used to char-
acterise brain function. In the former case, levels are related functionally (the activity at one level is a 
function of the activity at the level below or above). In the latter case, they are related as parts to wholes, 
such that things at higher levels are physically composed of things at lower levels. How these two kinds 
of levels relate to each other is currently unclear (for review, see Sprevak, 2021b).
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information from novel incoming sensory signals at lower levels. This way of updat-
ing predictions is efficient in the sense that only information about the error, as 
opposed to the complex incoming signal, is processed at higher levels (Rao & Bal-
lard, 1999). This neurocentric version is complemented by an ‘active inference’ per-
spective: in action, PEM can be achieved by bringing about the predicted state with 
one’s body (Hohwy, 2013).6 Which option is chosen depends on the precision in 
proportion to which error signals are weighted. Precision is defined as the inverse of 
the variance of the subjective probability distribution involved in prediction. If error 
signals are weighted with high precision, the model is revised; if they are weighted 
with low precision, sensory input is adjusted so as to align with the model’s predic-
tions. Characterising perception and action in terms of precision-weighting adds to 
the flexibility of the framework to accommodate different aspects related to cogni-
tion, perception and action (Adams et al.’s 2013 study of the force-matching illusion 
provides a helpful illustration).

PP’s unificatory credentials in cognitive neuroscience are often supported based 
on the FEP, which starts from the assumption that biological organisms need to sur-
vive and maintain homeostasis. To do this, they should seek sensory states that are 
highly predictable. Whether a state is predictable depends on how much information 
it carries for a system. Free energy is defined as “an information theory measure 
that bounds (is greater than) the surprise on sampling some data, given a generative 
model” (Friston, 2009, p. 293). This essentially narrows the range of possible physi-
cal states that the organism could be in to those that make its physical states highly 
probable given its surrounding environment. However, the organism itself has only 
indirect access to a measure of this (objective) quantity. Minimising free energy is 
understood to be equivalent to maximising the likelihood of incoming sensory input 
conditional on a representation of how that input was generated (Friston, 2005). 
Under the assumption that organisms represent possible sensory states in terms of 
subjective probability distributions, the task of minimising the discrepancy between 
their predictions and the actual sensory states they happen to be in (as relevant to 
survival) is commonly reduced to the task of minimising long-term average sensory 
prediction error. This task is then considered to be one of approximating Bayesian 
inference. What makes the FEP unifying is its simplicity and broad scope—it is con-
sidered a single principle which applies to all living organisms and, hence, to all 
biological forms of cognition (Friston, 2010). However, there is no wide agreement 
on what unification in the predictive mind actually amounts to.

3 � Unification and Pluralism in the Predictive Mind

Some proponents understand PP as a “process theory of information processing” 
(Spratling, 2017,  p. 1), and they sometimes talk as if they envision PEM to inte-
grate processing in the brain. For instance, Hohwy (2013, p. 1) writes that PEM “is 

6  To be fair, this perspective has been developed into a framework for modelling neurocognitive pro-
cesses as well (Smith et al., 2021b).
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one main function of the brain, on a par with the heart’s pumping of blood”, and 
that “PEM provides a unified account of brain processes for mind, cognition, and 
action” (Hohwy, 2018,  p. 159). Sometimes, precision-weighted PEM is presented 
as a canonical micro-circuit of cortical neurons (Bastos et al., 2012), as a “simple, 
yet comprehensive, theory of how the cerebral cortex performs Bayesian inference” 
(Spratling, 2016), or as “a grand unifying theory of the brain” (Clark, 2018, p. 526). 
Illustratively, Clark (2009, pp. 975–976) compares predictive processes to ‘Escher 
Spaghetti’ to support the claim that cognitive processing might be more integrated, 
and less functionally separated into distinct domains (e.g., vision, audition, etc.), 
than specialised researchers have been willing to admit.

These statements suggest that PP not only gives a single, accurate, description of 
cognitive behaviour, but that it integrates processes carrying out perception, action, 
and other aspects of cognition. It is not only a theoretical ‘gloss’ that is unified but 
the processes themselves are wholly predictive in nature.

3.1 � A Plurality of PP Algorithms

Danks’ (2014, pp. 191–204) notion of a process-centred unification can be used to 
put this suggestion to the test.7 Process-centred unifications involve a single model 
in which the processes or operations carried out by the system are in a relevant sense 
shared across its performance in a variety of different cognitive tasks. Danks does 
not provide a compact definition of shared processes, but he focuses on examples 
of cognitive architectures such as ACT-R (Anderson, 1993). In ACT-R, each mod-
ule processes production rules (if–then-statements), whose joint operation is natu-
rally constrained by the spatio-temporal order in which the outputs of those opera-
tions are passed from one module to another. The central point is that “the same 
integrated system—the same processes and representations (perhaps even the same 
brain areas), not just the same mathematics—underlies a wide range of cognition 
and behavior” (Danks 2014, p. 194, emphasis added).

To make the notions of ‘shared process’ and ‘integrated system’ more precise, 
it is helpful to borrow from new mechanists in cognitive neuroscience, where a 
cognitive process is a temporally extended mechanism, and the productive continu-
ity between its stages (these might be treated for convenience as discrete steps) is 
achieved by functional or causal interactions between its components and their activ-
ities (Craver, 2006; Krickel, 2018; Glennan, 1996; Bechtel & Abrahamsen, 2005). A 
process theory specifies the component stages and interactions that are considered 
relevant to a cognitive process. A process can be considered unified or shared to the 
extent that its component stages interact in a way that renders them invariant across 
different domains. The production rules in ACT-R illustrate this point: they specify 
the functional interactions that connect the internal operations in one module (e.g., 
semantic memory) to other modules (e.g., declarative memory). ACT-R is unified 
in the sense that the way in which these rules are compiled remains functionally 

7  These options are not exhaustive, but they seem particularly well-suited to characterise the sorts of uni-
fications common to cognitive models.
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invariant regardless of changes in the cognitive task and environmental conditions. 
Thus, for process-centred unifications, it is not only important that the processes 
carried out are all based on the same abstract specification of a function in terms 
of PEM, that is, there is one functional analysis for a variety of different processes, 
but that the way in which the components of this function are manipulated remains 
invariant across the system. The question is whether such a functional integration 
currently holds for PP as well.

The results of a review of five different PP algorithms by Spratling (2008, 2016, 
2017) provide reasons to doubt that PP currently integrates predictive processes in 
this sense. In particular, the algorithms that currently fall under PP are (a) linear pre-
dictive coding in digital signal processing (Makhoul, 1975; O’Shaughnessy, 1988), 
(b) a predictive coding algorithm in the retina (Srinivasan et al. 1982), (c) a biased-
competition version developed by Spratling (2008) to model the neural mechanisms 
of attention, (d) hierarchical predictive coding, developed by Rao and Ballard (1999) 
to model visual processing in the cortex, and (e) the free-energy version developed 
by Friston (2005). (c) is a non-linear extension of (d) to model biased competition in 
attentional selection tasks.

Mathematically, all five algorithms compute the same generic input–output func-
tion of minimising prediction error but vary in how prediction error is calculated. 
Specifically, they differ in details about configuration, equations, and computational 
activity of the associated artificial neural nets. Some algorithms align with regards 
to one of these features, while simultaneously adopting opposite aspects of another 
feature. In (a), (b) and (d), prediction error is a function of subtracting the predictive 
signal from the incoming signal, thereby minimising the sum of squared error. In 
contrast, (c) and (e) calculate prediction error as a divisive function of the input sig-
nal divided by prior predictions, minimising Kullback–Leibler divergence. However, 
while both (e) and (d) use both excitatory feedforward connections and inhibitory 
feedback connections between layers of the network, it is worth noting their differ-
ences in scope: whereas (d) is restricted to modelling early perceptual processing, 
(e) generalises towards other capacities associated with cognition, such as action 
control.

This difference is clearest in the contrast between Spratling’s (c) and Rao and Bal-
lard’s (d) models, which differ with respect to their assumptions about the types of 
network activities that are involved in error signal coding and about whether error is 
computed between or within layers.8 Crucially, these models ascribe different func-
tions to hierarchical neural network layers and their connections in the hierarchical 
networks. In Rao and Ballard’s model, the function of a layer is to calculate predic-
tion error and the connections between layers of the hierarchy encode predictions. 

8  With respect to the configuration, Rao and Ballard’s model assumes that connections between lay-
ers are many-to many while connections within a layer are one-to-one, but Spratling’s PC/BC model 
assumes that connections between layers are one-to-one but connections within layers are many-to-many. 
Regarding computation, when Rao and Ballard’s model calculates prediction error using subtraction, 
the PC/BC model calculates it using divisive modulation. Regarding computational activity, when error 
nodes in Rao and Ballard’s model produce both positive and negative values, error nodes in Spratling’s 
PC/BC model produce only positive values.



1 3

Schema‑Centred Unity and Process‑Centred Pluralism of the…

However, in Spratling’s version, the weights inside a layer encode predictions, while 
the function of connections between layers is to compute the prediction error. Thus, 
when in Rao and Ballard’s model, predictions are passed down to the layer below 
(call this stage i) and errors are passed upwards to the next layer above (call this 
stage ii), the opposite is the case in Spratling’s model, where predictions are passed 
upwards (stage i*) and errors are passed downwards to the next layer below (stage 
ii*).

It might be objected that the two algorithms are unified because they resemble 
each other in several respects. For example, both assume a hierarchical network 
structure in which lower layers of the network are closer to the input signal and 
higher layers are farther removed from the input signal. In each case, a single layer 
consists of a set of prediction and error units connected by weighted connections. 
And they both assume that learning proceeds by changing the weights of the net-
work by applying a Hebbian learning algorithm. Furthermore, each of these algo-
rithms targets a different cognitive process, one for producing biased competition 
between prediction nodes and the other for producing linear coding in the visual 
cortex, and it is principally possible that they operate simultaneously in a cognitive 
system.

However, mere resemblance and parallel activity are insufficient to account for 
a process-centred unification. PP proponents also have to show that these processes 
are functionally integrated, or that they produce an explanation that is invariant 
across cognitive tasks. It is difficult to see how these different ways of computing 
PEM can be simultaneously performed by the same integrated system in a way that 
remains functionally invariant across vision and attentional selection tasks. It is not 
clear how PP algorithms functionally interact with each other, since there seems to 
be no productive continuity between the stages of the processes that each of them 
computes. In fact, stage i* does not interact with stage ii, and stage i does not inter-
act with stage ii* either. Furthermore, the PC/PB algorithm predicts performance 
in biased-competition tasks and the Rao and Ballard algorithm predicts visual tasks 
excluding biased competition, but it is unclear how these predictions can be com-
bined to predict performance in complex tasks that require selection of salient stim-
uli for visual processing, since each of these algorithms is restricted to functionally 
distinct subsystems, one for attention and the other for vision. Thus, in contrast to 
ACT-R, these algorithms do not remain invariant across tasks. Given vision Rao and 
Ballard’s model is used, but given attentional selection, Spratling’s is preferred.

As this analysis shows, we currently have a variety of distinct PP algorithms 
which, as a collective, model processes that are not integrated in the relevant sense 
of a process-centred unification. Some of these versions of PP rely on shared math-
ematical principles (e.g., Kullback–Leibler divergence), but lack shared assumptions 
about the configuration of parts (e.g., the hierarchical organisation of the network) 
and types of activities (e.g., whether bottom-up error signals carry positive or nega-
tive values). Many aspects in how prediction error is minimised in each model are 
not shared with other models. Thus, even if each algorithm computes a function that 
minimises prediction error, the different ways of doing so are currently not unified 
to a high degree. In effect, it is difficult to see how the distinct predictions that these 
algorithms generate (e.g., for attention and vision) can be combined into a single 
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coherent process theory. There could be functional integration in case there was only 
one algorithm that was responsible to carry out all cognitive tasks with a single pre-
dictive process. However, none of these algorithms currently stands out as the best 
supported. Thus, although it is correct that PP offers process-level models, these 
models do not jointly identify a unified cognitive process. This conflicts with propo-
nents’ assumption that cognitive processing itself is unified. Some PP theorists seem 
to implicitly acknowledge this by characterising the framework as a ‘toolbox’ with a 
stock of algorithms (Clark, 2013; Hohwy, 2020a; Litwin & Miłkowski, 2020). How-
ever, they fail to emphasise the lack of causal or functional integration across these 
tools.

3.2 � Schema‑Centred Unity in the Predictive Mind

On the other hand, there is a certain kind of unity to the plurality of PP algorithms, 
since, even if they differ regarding their specific assumptions about how error is 
computed etc., they all in a sense share some basic structure or “explanatory motifs” 
(Aitchison & Lengyel, 2017). A more suitable way to characterise this is using 
Danks’ (2014) notion of a schema-centred unification.9 This describes an abstract 
structure that is shared by a variety of distinct cognitive theories and models that are 
instantiating that structure. Schema-centred unifications combine only a few ingre-
dients and do not identify with specific models, which typically involve additional 
posits that may differ significantly from each other. Prime examples are Bayesian-
ism,10 and connectionism11 both of which unify a variety of different Bayesian or 
connectionist models of different cognitive phenomena12 by subsuming them under 
a common classificatory schema.

9  Gładziejewski (2019) uses this label to characterise PP’s unificatory credentials, but does not distin-
guish it from process-centred unifications.
10  Bayesian models describe cognitive tasks using three ingredients: a hypothesis space, a prior prob-
ability distribution across hypotheses, and a likelihood function that relates the evidence to hypotheses 
(representing the agent’s expectation to observe the evidence given that the hypothesis was true). Bayes’ 
theorem combines these ingredients in a single formal scheme: pr(h|e) ∝ pr(e|h)pr(h) . Bayesian learn-
ers choose a hypothesis as a function of the loss expected from choosing incorrectly, or they choose the 
hypothesis that obtains the maximum a posteriori probability, or they average across hypotheses (Grif-
fiths et al., 2008).
11  In connectionism, the structure resembles a network and concerns the algorithm by which the system 
operates. Connectionist networks have an input layer of nodes associated with activation values, a num-
ber of intermediate layers that propagate that activation and an output layer of nodes associated with acti-
vation values indicating performance. The most common learning algorithm is backpropagation, which 
relies on gradient descent learning (McClelland et al., 1986).
12  For example, specific Bayesian models may differ in the type of learning rule they use to update old 
priors into novel posteriors. For example, some models follow strict conditionalisation, where learners 
are completely certain about the evidence, and others follow Jeffrey conditionalisation, where learners’ 
observations do not always lead to certainty about the associated evidential statement (Huber, 2016). In 
connectionism, we can have one model that postulates two distinct causal mechanisms for the acquisition 
of verb syntax in children, and another model that postulates a single mechanism (Abrahamsen & Bech-
tel, 2006, p. 166).
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One of the main advantages to schema-centred unifications is that they are simple 
and tidy. However, this can be understood in various ways. For example, mathemati-
cal models are often simple not because they demand a few entities to exist in the 
world but because they use only a few variables or a single formula to express a 
complex idea. This elegance is a structural property, measured by the syntactic com-
plexity of the models’ formalisms, regardless of whether these formalisms describe 
real entities. This contrasts with the orthodox understanding of parsimony, accord-
ing to which a simple theory demands few things to exist (Quine, 1948). For exam-
ple, due to their ontological commitments, mechanistic models in cognitive science 
would deliver parsimonious explanations to the extent that they would postulate 
only a small number of entities and activities in parts of a neural system. Mechanism 
schemas are simple in this sense, as they leave out many components of a mecha-
nism (Craver, 2007), while remaining committed to ontological claims.

PP unifies cognition similar to both Bayesianism and connectionism.13 PP covers 
a wide variety of cognitive phenomena in terms of a relatively elegant description 
of PEM. PEM is elegant because we only have to accept that cognition is precision-
weighted PEM, and this implies no commitment to any specific algorithm specify-
ing how PEM is carried out. Furthermore, although PP’s diverse algorithmic posits 
lack shared operations, PEM classifies each algorithm under a common conceptual 
schema. For example, although each algorithm codes information in a different way, 
each way counts as ‘efficient’.14 The PEM schema simplifies algorithmic specifica-
tions and identifies shared mathematical features between them. PP thereby satisfies 
the typical features of schema-centred unifications: we have a reduction of the total 
number of algorithmic specifications to a single PEM schema that combines a small 
set of salient mathematical features.

3.3 � Shifting Focus Away from Explanatory Unification

PP’s status as a schema-centred unification does not necessarily make it more explan-
atory. Some proponents associate PP’s unificatory merits with reasons to believe 
that it offers better explanations than available alternatives (e.g., Gładziejewski, 
2019; Clark, 2016; Hohwy, 2013). However, it is unclear what justifies this associa-
tion. Perhaps schema-centred unifications could be associated with law-like explana-
tions because they are simple and abstract. Indeed, classical explanatory unifications 

13  PEM can be seen as one way to update hypotheses in approximation to Bayesian inference. Both PEM 
and other Bayesian learning rules minimise the Kullback–Leibler divergence between the prior and the 
posterior distributions (Kwisthout et  al., 2017; Sprenger & Hartmann, 2019, Chap. 1). In this sense, 
learning is considered to be optimal to the extent that prior information is updated conservatively or to 
the extent that information is integrated in a statistically optimal way. PEM might be seen as a special 
case of Jeffrey conditionalisation, since it is assumed that the incoming signal is noisy and uncertain. PP 
shares with connectionism a commitment to algorithmic specifications and assumes artificial neural net-
works, as illustrated in the previous section.
14  The relevant features might not be shared by all algorithms. For example, linear predictive coding for 
signal detection (a) does not imply hierarchical coding. So the feature ‘hierarchical’ might only apply 
partly to the PP toolbox.
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like Newtonian dynamics have been analysed in these terms. They unify by allowing 
the generalisation of a few or stringent patterns of argument or elegant predictions 
to a wide range of observations and broader regularities (Friedman, 1974; Kitcher, 
1989). The FEP could fall into this category. As an idealised mathematical repre-
sentation of what it means to live, it is simple and has a broad scope.15 However, a 
major problem is that the simplicity associated with a schema-centred unification 
does not necessarily confer greater truth or empirical adequacy to it. This problem 
is reflected in PP’s research practice. Especially in the domain of perception, much 
of the evidence compatible with the predictions generated by PP is simultaneously 
compatible with alternative approaches that suggest bottom-up processing (Walsh 
et al., 2020). It is also compatible with some of PP’s predictions that a phenomenon 
in question could have been brought about by a top-down non-PP algorithm, such as 
pure direct variable coding (Aitchison & Lengyel, 2017). The claim that cognition 
corresponds to PEM is difficult to confirm or disconfirm, since this is underdeter-
mined by the empirical data, and its mere consistency does not show that PP is the 
best explanation of these findings. A legitimate concern is that the PEM schema 
might be nothing more than scientists’ preferred information-theoretic terminologi-
cal ‘gloss’ applied to the data (Cao, 2020).

Two recent observations support the claim that PP lacks empirical adequacy. The 
first is that key terms constituting the PEM schema obtain no clear interpretation. 
For example, ‘precision’ is sometimes used across psychology and neuroscience to 
mean ‘salience’, ‘high confidence or trust’ or simply ‘dopaminergic gain’ (Litwin 
& Miłkowski, 2020, pp. 22–24) and ‘prediction’ is often used interchangeably with 
‘anticipation’ and ‘expectation’ (Ficco et al., 2021, p. 11). As Litwin and Miłkowski 
(2020) suggest, without adequate means to translate between these terms, their co-
identification makes it difficult to pin down which psychological entity is uniquely 
being referred to across studies, effectively preventing convergence to shared inter-
pretations and accumulation of evidential support. The second observation is that 
the mapping between PP’s algorithmic specifications and the brain’s neural archi-
tecture is currently too imprecise to be uniquely testable, since additional assump-
tions concerning neurophysiological details are needed to implement them (Sprevak, 
2021c).16 However, since these assumptions are not direct consequences of PP’s the-
oretical assumptions, any confirmation associated with a test of algorithmic imple-
mentations might carry only spurious support for the PEM schema (cf. Cooper & 
Guest, 2014).

15  Friston (2013, pp. 112–113) excludes PP from causal explanations but this leaves it open whether they 
function as law-like explanations.
16  Standard assumptions are that the cortical hierarchy in the brain and neural connections between its 
areas implement the hierarchical structure and connections between network layers, that cortical areas 
closer to the sensory surface implement lower layers of the network, and that ascending (descending) 
cortical pathways implement feedforward (feedback) connections in the network. Additional assumptions 
are often made. For example, it is often assumed that changes in the precision associated with prediction 
error signals are encoded in changes in the long-term post-synaptic gain of superficial pyramidal cells 
(Adams et al., 2013). However, this assumption is rather ad hoc (Sprevak, 2021c, pp. 25–26).
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Some proponents try to circumvent these problems by separating PP’s concep-
tual, unified aspects from the program’s associated empirical investigations. For 
example, Hohwy (2020a) claims that the FEP is a “mathematically enshrined con-
ceptual analysis, and therefore not something in need of empirical evidence”. This 
limits its broad scope exclusively to the domain of analytic conclusions. However, 
this characterisation is at odds with scientific practice in PP research. As he him-
self (2020a, p. 220) observes, “there is now concerted effort in cognitive neurosci-
ence to generate and test distinctive predictions of PP [...].” Insofar as PP counts as 
an approach to brain function, it targets neurocognitive phenomena and proponents 
clearly do attempt to test it empirically as well. Appeal to enshrined conceptual 
analysis evokes more questions than answers, since it remains unclear how these 
two features, the elegant conceptual analysis and the diverse set of hypotheses for 
empirical test, jointly fit to a unified explanation.

At this point, it is helpful to note that the PP framework is standardly analysed 
along the three levels of Marr’s (1982) approach to vision as an information-pro-
cessing system, which has been discussed in detail in many other places but his dis-
tinction among the three levels of analysis is worth recapitulating since it provides a 
scaffold for making my point. At Marr’s computational level of analysis, researchers 
specify the task faced by the cognitive system, why it is appropriate and the logic of 
its potential solution. The PEM schema in PP operates perfectly at this level. Marr’s 
level of representation and algorithm identifies the representations (e.g., zeros and 
ones, in the case of a cash register) and how these are manipulated by the system 
to solve the problem (e.g., adding two numbers). The PP toolbox corresponds to 
analyses at this level. Finally, level of implementation identifies how this solution 
is physically realised (e.g., in the hardware of the cash register). PP’s claims at this 
level remain most speculative. It is typically suggested that PP’s explanatory merits 
should be assessed in terms of all three levels (see Sprevak, 2021a, for a review).

This complicates the relationship between unification and explanation in the 
predictive mind. On the one hand, the PEM schema is highly elegant (it combines 
a small set of salient mathematical features to describe the system’s task), and so 
it might count as using a highly stringent argument pattern. However, it is appar-
ent from the above considerations that the PEM schema itself does not derive any 
concrete predictions about real-world phenomena, and this reduces the breadth of 
its scope to the domain of conceptual analysis, as opposed to empirical prediction. 
In these terms, it is problematic to say that the PEM schema provides an accept-
able explanation. On the other hand, the PP toolbox comes closer to the domain 
of empirical prediction, of which it develops a relatively diverse range based on its 
algorithmic specifications (e.g., the prediction that error signals are passed upwards, 
which follows from Rao and Ballard’s model and that signals are passed down-
wards, which follows from Spratling’s biased-competition model; predictions about 
changes in dopaminergic-gain that surround common Friston models likewise result 
from adopting the free-energy version). However, as is argued in Sect. 3.1, the PP 
toolbox (alone) does not unify these potential predictions in a sense that corresponds 
to a very stringent or invariant argument pattern. In these terms, it is problematic to 
say that PP’s predictions provide a unification. Together, these trends evoke a ten-
sion that does not fit well into the unificationist account of explanation along the 
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lines of Kitcher (1989), according to which a unifying explanation derives the pre-
dictions about many diverse phenomena while using only a few or stringent argu-
ment patterns to do so. That is, PP’s unifying element is not identical to an accept-
able explanation of cognition, since only in conjunction with additional algorithmic 
and implementational theory specifications are concrete predictions being produced. 
However, these additions are diverse and do not obviously correspond to a strin-
gent argument pattern. Thus, insofar as PP’s explanatory merits should be assessed 
across the whole range of Marr’s levels of analysis, one can currently not speak of a 
highly unified explanation.

Given these difficulties with PP’s current explanatory status, I suggest to step 
back and first consider the question in what sense the FEP and the PEM schema 
can contribute to the positive development of the program, if only in virtue of their 
conceptual features. Subsequently, questions concerning the adequacy of the result-
ing scientific explanations can be asked. That is, instead of focusing on how well 
PP’ unificatory merits already provide explanations of cognition, I suggest focusing 
instead on the ways in which these and other merits can be employed to develop 
such explanations. Thus, in the remainder of this paper, I suggest what I deem is 
a more suitable way to analyse PP’s credentials by focusing on their cognitive and 
heuristic value, as opposed to whether PP is true or better confirmed than available 
alternatives.

4 � How to Develop PP into a Fruitful Research Program

While critics such as Cao (2020) and Litwin and Miłkowski (2020) admit that PP 
models do provide a novel “interpretative gloss” and that this can be somehow 
“fruitful”, they rarely explain how its “suggestive heuristic effects” could positively 
contribute to the “innovative and productive” status of neuroscientific research based 
on PP. Ivani (2019, p. 3) rightly warns that “fruitfulness [...] can be easily ascribed 
to many programs because its definition is loose and no clear strategy for assessing 
it is provided.” This makes it all the more important to explain which principles PP’s 
fruitfulness relies on. Building on Ivani’s approach, a starting point to assess PP’s 
fruitfulness is to study the research heuristics that it uses to qualitatively “extend and 
improve” (Ivani, 2019, p. 5) its content. It is not clear that PP explains cognition due 
to its unifying element, but it is still possible to expand the program in ways that are 
scientifically relevant. In the following, I show that PP offers several (non-exhaus-
tive) research heuristics and discuss their contribution to the positive development 
of the program.

4.1 � Research Heuristics Characterising PP

4.1.1 � The Push‑down Heuristic

Firstly, in developing specific algorithmic models of brain function, predictive pro-
cessers might endorse what Zednik and Jäkel (2016, p. 3967) call the “push down 
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heuristic”. They adopt Marr’s (1982) levels-framework to spell out this heuristic to 
show how Bayesian reverse-engineering practices can move beyond the computa-
tional level, but their approach to heuristic strategies can be transferred to PP as 
well. Accordingly, this heuristic can be used to “push down” the mathematical char-
acterisation of ideal agents (according to the FEP those maintaining homeostasis by 
minimising long-term average prediction error) at the computational level to char-
acterise the varying processes at the algorithmic level of brain function that pro-
duce the behaviour. In other words, the PEM schema is pushed down to describe 
the activity of artificial neural network models and the interactions between deep 
pyramidal cells, which are said to “carry predictions”, and superficial pyramidal 
cells, which are said to “carry prediction errors”, in the brain. Zednik and Jäkel 
argue that the push-down heuristic is often used to choose among a set of candidate 
algorithmic models to work with (although this implies nothing about whether this 
model is more true than any of the others). We see the result of this selection in the 
PP toolbox: although we have no clear winning algorithm, there are relatively few 
algorithms that are currently considered worthwhile investigating under the assump-
tion of the PEM schema.

4.1.2 � The Tools‑to‑Theory Heuristic

Another heuristic borrowed from Zednik and Jäkel (2016,  p. 3970) is the “tools-
to-theory heuristic”, which “encourage[s reverse-engineers] to introduce algorithms 
from completely different domains of inquiry”. Examples are Gibbs sampling and 
particle filtering, which are special cases of Monte Carlo algorithms for approximat-
ing Bayesian inference. These algorithms were initially created for use in machine 
learning and statistics, but the tools-to-theories heuristic allows predictive process-
ers to use them as adequate characterisations of psychological processes. For exam-
ple, these algorithms can be used to build in limitations of memory and process-
ing capacity by making each consecutive step in the process dependent on only the 
information processed in the previous step. Clark (2016, p. 61) characterises PP in a 
similar way:

Action-oriented predictive processing models come tantalizing close to over-
coming some of the major obstacles blocking previous attempts to ground a 
unified science of mind, brain, and action. They take familiar elements from 
existing, well-understood, computational approaches (such as unsupervised 
and self-supervised forms of learning using recurrent neural network architec-
tures, and the use of probabilistic generative models for perception and action) 
and relate them on the one hand to a priori constraints on rational response 
(the Bayesian dimension) and, on the other hand, to plausible and (increas-
ingly) testable accounts of neural implementation.

Most of the simulations of neuronal responses predicted by PP models involve 
the use of algorithmic tools that are borrowed from neighbouring disciplines. Exam-
ples are artificial neural networks and variational inference from machine learning 
(Neal & Hinton, 1998).
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4.1.3 � The Plausible Algorithms Heuristic

Furthermore, PP theorists seem to be using what Zednik and Jäkel (2016,  pp. 
3971–3972) call the “plausible algorithms heuristic”. This heuristic uses established 
principles in psychology and neuroscience to guide selection of algorithmic models 
from a candidate space. PP starts from the assumption that brains face the inverse 
problem (they have only indirect access to the outside world and so must rely on 
sensory information to infer its hidden states) and employs the assumption that neu-
ral systems deal with uncertainty since sensory channels are noisy. This already 
restricts plausible candidates to the domain of probabilistic algorithms that can cap-
ture these statistical regularities in sensory inputs.

PP adds to this the principle of efficient coding, according to which neuronal 
populations encode incoming information in proportion to their channel capacity or 
response range, which accounts for the reliability of signal processing despite the 
presence of noise.17 Two further examples are Hebbian learning and hierarchical 
information processing across multiple layers of the cortex. None of these princi-
ples originates from PP (these principles are basic to computational neuroscience 
and psychology) but each principle inspires the formulation and implicitly acts as a 
plausibility criterion in determining which kinds of algorithms can be added to the 
PP toolbox.

4.1.4 � The Unification Heuristic

Furthermore, PP’s unifying aspect, the PEM schema, can be seen as a conceptual 
tool that facilitates the search of an elegant interpretation of the available empiri-
cal findings from psychological and neuroscience. This is exemplified by the divi-
sion of labour between the PP toolbox and the PEM schema, which serve both as 
tools that PP researchers have at their disposal. One is a practical tool accumulated 
via methods acquired from neighbouring disciplines for the purpose of making local 
predictions about brain function (when conjoined with the relevant neuroanatomi-
cal and physiological auxiliaries); the other is a cognitive tool for synthesising and 
systematising these findings in a relatively simple manner to allow researchers to 
make sense of the brain’s purpose for all the neuronal activity that can be recorded. 
A similar idea is mentioned in Hohwy (2020b), who argues that unification based on 
the FEP functions as a “regulatory principle, ‘guiding’ or ‘informing’ the construc-
tion of process theories”.

17  This proposal has been famously spelled out in Barlow’s redundancy-reduction hypothesis, according 
to which neurons maximise the ratio of the information that a neuron’s response rate y and a stimulus x 
carry about each other to the neuron’s channel capacity (Barlow, 2001). However, it is disputed in how 
far this conception of neural coding captures the neuronal representation of information, since, among 
other things, this conception fails to capture the aboutness of mental states (the mutual information meas-
ure is symmetric and hence insufficient to capture this directionality) and it lacks the aspect of subjectiv-
ity (see Sprevak, 2020; Isaac, 2019; Figdor, 2020, for critical discussion).
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One might wonder whether unification offers any serious benefit to the fruitful-
ness of PP, insofar as it does not seem to be really explanatory (Sect.  3.3).18 To 
explain this, let me add that unification proposes strong theoretical or conceptual 
constraints on what are viable algorithmic-level specifications (i.e., only those that 
fit the PEM schema). As is often noted by proponents of reverse-engineering, the 
minutiae of detail in the brain is overwhelming and researchers are rational to avail 
themselves to additional conceptual aids that function as guides to navigate through 
massive amounts of data from neuropsychological studies, hence their preference 
to begin at Marr’s (1982) computational level of analysis. Following Marr (1982), 
the benefit of top-down analyses is that they provide a clear conception of the mind 
that contributes most to understanding a cognitive capacity (e.g., seeing) because it 
guides what to look for when studying the vast details of the brain. In PP, this role is 
fulfilled by the PEM schema, which, in its elegance, functions as a regulative ideal 
for the interpretation and synthesis of diverse sets of ideas, assumptions and data, 
often borrowed from neighbouring disciplines. Dennett (1994) adds that reverse-
engineering is “the interpretation of an already existing artefact by an analysis of 
the design considerations that must have governed its creation” (ibid., p. 683), and 
it is to “prove, through building, that you have figured out how the human mecha-
nism works” (ibid. p. 684). Here, having available starting assumptions of optimal 
design are a precondition for building machines that eventually serve as toy models 
to investigate the human mechanism.

PP researchers follow the same strategy when inferring from the observed behav-
iour (e.g., of neurons or persons) and the rationality assumption that the goal is to 
minimise prediction error the most plausible candidate cognitive processes (i.e., 
algorithmic implementations) that have generated it. It is in the spirit of reverse 
engineers such as Marr and Dennett that only gathering empirical data without an 
initial description of the cognitive task in mind is much more likely to lead to fruit-
less research. One would have much data but not know how to understand it. Their 
point was not to deny that descriptions of the underlying cognitive processes and 
states as well as the activities of cells that implement these processes are also impor-
tant, but these descriptions are insufficient on their own to offer a complete under-
standing of a cognitive capacity. The role of the unification heuristic (but also inter-
field collaboration and other heuristics following below) is to make this inference 
easier and faster, in this case, by providing conceptual clarity and choice criteria 
for further analyses at other levels. In this sense, unification is indeed a regulative 
device that constrains the theoretical inference process even if it might not by itself 
offer any substantial explanations or unique predictions concerning cognitive mech-
anisms. In other words, the PEM schema carries cognitive and pragmatic benefit for 
proponents of the program, and in this sense, its associated schema-centred unifica-
tion is part of what makes PP theoretically fruitful.

There are interesting parallels to recent discussions on the role of theory for psy-
chological science. van Rooij et al. (2018) argue that rational analyses are in some 
sense “as if” and contain constructive elements that might belong to the realm of the 

18  I thank an anonymous reviewer for asking me to clarify this point.
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instrumental or fictional, as opposed to the actual.19 However, it is important to note 
that abstraction from real-world detail does not mean regress. Even if rational analy-
ses and unifying characterisations are often empirically underdetermined, they can 
still contribute to the development of plausible explanations, since abstraction and 
idealisation do not imply that the corresponding theory is unrealistic or inconsist-
ent. For instance, Poirazi and Papoutsi (2020) argue that modelling facilitates data 
summaries and “the synthesis of existing data into concrete theories” and thereby 
“increases tractability” (ibid., p. 312). They likewise point to the cognitive benefits 
associated with unification, claiming that “[r]esearchers can make better inferences” 
because “refined models will unify fragmented data” (bid., p. 318). This resonates 
with the recent debates on the positive role of computational modelling in constrain-
ing theory building in cognitive science between van Rooij and Baggio (2021) and 
Guest and Martin (2021), who investigate the conditions for deriving high-verisi-
militude theories before empirical test. These authors suggest that science, by which 
they mean the construction of experimental effects, should not be dissected from 
good theorising, by which they mean the development of plausible explanations 
of real-world cognitive capacities. This resonates well with the reverse engineer-
ing perspective, where the PEM schema does not itself explain the mind and brain, 
but if figures within a set of methodological tools for developing such explanations 
(Zednik & Jäkel, 2016, p. 397). The idea that unification is a crucial step into this 
direction is not novel; already in in the Critique of Pure Reason, Kant (1998) claims 
that unity is a precondition for for scientific inquiry and the acquisition of scientific 
knowledge. Insofar as “discovery [i]s part of the way science works” (Milkowski, 
2014, p. 12), unification is scientifically useful, and so the elegance associated with 
the PEM schema is useful to the positive development of the PP program.

4.1.5 � The Pushing‑down Complexity Heuristic

PP also seems to use heuristics that go beyond those discussed by Zednik and Jäkel 
(2016). In an excellent review, Sprevak (2021c) characterises PP algorithms and 
their relation to implementational assumptions in a way that suggests yet another 
heuristic, which is that “[t]o a first approximation, the predictive coding research 
programme tends to ’push down’ complexity and variation between cognitive pro-
cesses and tasks into complexity and variation at the level of physical implementa-
tion” (Sprevak, 2021c, p. 5). According to Sprevak, PP aims for a maximally simple 
or elegant account of cognition and behaviour at the computational and algorith-
mic levels, and it accommodates the complexity of actual brains and behaviour by 
allowing for complex and diverse accounts at the implementational level. That is, PP 
does not explain complex behaviour by assuming that brains should solve a variety 
of different computational problems, nor does it assume that brains use many dif-
ferent algorithms for solving those problems. Instead, PP assumes that their physi-
cal implementations are extremely complex and diverse. Pushing down complexity 
is different from Zednik and Jäkel’s push-down heuristic since it contributes to the 

19  I thank an anonymous reviewer for highlighting this.
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open-ended character of PP (there are no constraints concerning which accounts are 
permissible at Marr’s implementational level) and it does not make PP more test-
able, and what is pushed down is not mathematical structure but questions about 
metaphysical details. It can nevertheless be treated as another research heuristic 
within the PP programme. Proponents may sometimes trade unity and simplicity at 
the computational and algorithmic levels to include suitable aspects of diversity, for 
instance it might be assumed that several PP algorithms should be used to solve 
a given PEM problem (e.g., to accommodate complex combinations of visual and 
attentional selection tasks). The pushing-down complexity heuristic characterises 
predictive processers’ tendency to tackle issues of complexity that are observed in 
the phenomena by adding assumptions at the level of implementation.

As an example of this heuristic, consider Sprevak’s (2021b, Sect. 7) discussion 
of the Müller-Lyer illusion. This illusion occurs when we observe two straight lines, 
one with arrows pointing inwards, the other with arrows pointing outward, as being 
of a different length, even if they are in fact of exactly the same length. We could 
use a ruler and measure their length, thereby revising our belief that the lines have 
different length. However, there seems to be absolutely no way in which we can 
integrate this information with our perceptual experience. We continue to perceive 
the lines as being of different lengths, no matter what. Sprevak uses this example 
to illustrate an obstacle for the claim that cognisers (like us) always follow the goal 
of minimising prediction error (in the long run). The point of the illusion example 
is to show that we are sometimes unable to revise our predictions about the world. 
This, of course, is not a good sign for the PEM account of cognition. The pushing-
down complexity heuristic endows predictive processers with a standard strategy to 
respond to such problems. They can maintain that the system attempts to solve the 
task of long-term PEM, but appeal to differences in its algorithmic and hardware 
implementations to explain away such “anomalies”. In the case of the Müller-Lyer 
illusion, Sprevak appeals to the addition of implementational limitations such as a 
limit on how rapidly and how quickly physical resources can change while carrying 
out a specific task and algorithm to explain why a cogniser might have difficulty 
to adjust parameters of the internal generative model. We might fail to revise our 
perceptual model of the two lines because our hardware for doing so is simply too 
slow or unresponsive to accommodate the relevant change. This is a case of push-
ing-down complexity because the explanation at the computational level remains 
very simple, and the divergence from initial predictions is accommodated by adding 
parameters at the implementational level. By using the pushing-down complexity 
along Marr’s levels, researchers obtain additional room to leave their proposals at 
higher levels of analysis intact while adding hypotheses to accommodate anomalies 
in behaviour at lower levels.

4.1.6 � The Interfield‑Collaborations Heuristic

Finally, the FEP may work as a discovery heuristic because it might facilitate inter-
field collaborations within the life sciences. Previous work by Colombo and Wright 
(2021) attributes a potential epistemic and pragmatic role to the FEP as a ‘first prin-
ciple’ in the life sciences alongside organicist and mechanistic views. They suggest 
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that the principle can “afford a common intellectual framework for researchers from 
different communities to work together to answers questions of common concern” 
(Colombo & Wright, 2021,  p. 3485). However, they do not elaborate what this 
means. They only argue that “[t]he diversity of expertise involved in understand-
ing brains and organisms, and the fragmentation in present-day neuroscience and 
biology, highlights the need for principles that could afford a common intellectual 
framework for researchers from different communities to work together to answers 
questions of common concern. FEP is an impressive candidate for one such first 
principle [...]” (Colombo & Wright, 2021, p. 3485). The FEP might be best under-
stood as a cognitive tool to facilitate collabrations for answering research questions 
that are shared across fields, as opposed to a theory that competes for truth. This, in 
essence, seems to render it as an instrument for establishing inter-field collabora-
tions (Darden & Maull, 1977).

A typical feature of interfield-collaborations is that they allow researchers from 
different fields to share problems by transforming proper terms from one field to 
another. For example, Darden and Maull (1977) discuss the transformation of ‘muta-
tion’ from genetics, where it initially meant the heritable alteration in the genotype 
of an organism, to biochemistry, where it is understood as the heritable alteration 
in base sequence. Darden and Maull emphasise that the meaning of ‘mutation’ is 
essentially shared by the two fields, in the sense that “... heritable alteration in the 
genotype was heritable alteration in the base sequence of DNA...” (Darden & Maull, 
1977, p. 151); there was no replacement of one by the other term in the sense that 
“claims about mutation from genetics were retained and biochemical claims added” 
(ibid., p. 152). The important aspect of such meaning transformations for interfield 
collaborations is that they retain the knowledge associated with the term’s original 
use and add knowledge in light of its novel use in the neighbouring field or theory. 
On the basis of such shared concepts, it is possible for researchers working with 
different theories to solve problems jointly. In particular, meaning trasnformations 
are accompanied by problem shifts such that the employment of the term in both 
disciplines addresses a shared problem. As a consequence of the shared theoretical 
vocabulary, a problem that arises in one field or theoretical context can be shifted to 
another field or theoretical context that might contribute with novel tools and ideas 
for solving it. The relevant solution is inter-theoretic because the problem is shared 
by the two fields or theories, and so is its solution.

Several instances of PP research similarly tend to display researchers’ sharing 
of terms across areas in cognitive science, and thereby nourish interfield collabora-
tions. PP transforms terms associated with the notion of prediction from informa-
tion theory, physics and the philosophy of science, where it initially referred to the 
inference from past to future events (e.g., the sun has always risen, so how probable 
is it to rise tomorrow?) to the philosophy of mind, psychology, AI and neurosci-
ence, where it refers to the probabilistic representation of certain states (e.g., how 
probable is it that an object is moving, given certain changes associated with its 
shadow?, Kersten et al., 1996) at the subpersonal level of the brain. While in phys-
ics, the aim is to predict physical happenings in the world (e.g., bodies falling, gas 
expanding), in PP, the aim is to describe the brain’s predictions of the next sensory 
input by processing probabilistic representations of the world and updating these in 
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light of prediction errors. PP researchers borrow these terms to establish a novel 
understanding of the problem of prediction that builds on shared key concepts, such 
as “Shannon information”, which initially refers to a mathematical function of the 
physical probability distribution over a set of outcomes (e.g., the sun is going to rise, 
the sun is not going to rise). PP researchers transform this concept to elucidate the 
contents of the brain’s predictions, which are now understood as a function of the 
subjective probability distribution over a set of mentally-represented outcomes (e.g., 
the object is moving, the object is not moving) (see Sprevak, 2019; Isaac, 2019; 
Figdor, 2020, for philosophical discussion). Relatedly, PP researchers borrow the 
term “entropy”, which in statistical mechanics can be understood as referring to the 
uncertainty associated with the precise microscopic arrangement of the components 
of a system, given certain macroscopic parameters like pressure, temperature and 
volume. A higher entropy macrostate implies a greater uncertainty regarding which 
particular microstate the system is in (where the macrostate is the specification of 
the macroscopic parameters of the system, and the microstate is the specification of 
the microscopic parameters of the system’s components). In PP, “entropy” refers to 
the uncertainty associated with the internal predictions of a model of the world; if 
the model is associated with low entropy, this means that the states sampled from it 
are highly predictable. Despite their transformations, PP researchers commonly take 
these meanings to be shared (at least to some extent) across disciplines since their 
mathematical characterisation remains the same, and this correspondence allows 
researchers to outsource the tools and ideas available from information theory and 
apply them to issues concerning brain and mind. Another example is the transforma-
tion of “learning” from psychology, where it is understood as the revision of expec-
tations about future states of the world in light of a mismatch with the actual experi-
ence (which is the prediction error) and its associated strength (Recorla & Wagner, 
1972),20 to “learning” in psychiatry and neuroscience, where it also means the revi-
sion of expectations about future states of the world in light of a mismatch with the 
actual experience. However, this meaning is now framed in statistical terms, where 
prediction is understood as the weighted mean of a random variable, its mismatch 
to the value that is observed is the prediction error, and the updating of predictions 
takes place at multiple levels of a hierarchical system (Corlett et al., 2020). Asso-
ciative strength is framed in terms of precision weights onto prediction signals and 
error signals; where more ‘precise’ error signals require changes in prior belief, and 
more precise predictions persist information from error signals. On this basis, PP 
creates a narrative that carries the initial conception of learning significantly further 
towards other contexts, thereby offering novel perspectives to develop explanations 
of complex cognitive phenomena, such as, for instance, psychopathological symp-
toms. It thereby adds to its previous understanding, “leveraging” and “influencing” 
recent advances in reinforcement learning (Corlett et al., 2020). Thus, in this appli-
cation of interfield collaboration, leveraging novel findings towards other ideas is a 
consequence of a shared conception of learning.

20  I thank an anonymous reviewer for pointing me to this aspect.
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Generally, none of these heuristics should be understood as individually neces-
sary or sufficient for deriving explanations; they jointly partake in the development 
of explanations in cognitive science. Furthermore, the application of one heuris-
tic can to some extent constrain or afford the application of another heuristic. For 
example, pushing-down complexity can act in the service of unification, since it 
contributes to keeping the description at the computational level clean and tidy. 
Furthermore, the elegance associated with the PEM schema can contribute to the 
improvement of the sharing of concepts and collaborating on solutions to problems 
across theoretical contexts; its simple structure can be easily understood and effec-
tively used to systematise findings from other fields, thereby making collaboration 
more efficient. Finally, unification as a regulative ideal also influences the choice of 
criteria for what counts as a plausible algorithm from the perspective of PEM, and 
constrain the selection of tools to be added from neighbouring disciplines with the 
tools-to-theories heuristic to develop the program further.

5 � Benefits and Risks Associated with PP Heuristics

The use of these discovery heuristics is not limited to establishing empirical discov-
eries. Research heuristics are often involved in the equally significant attempt to find 
appropriate formulations of testable hypotheses and to draw connections between 
findings that are already known in order to discover novel solutions to existing 
problems. The goal is not to directly choose among a set of competing hypotheses 
that one which is true, but “to facilitate the formulation of such hypotheses, and 
to thereby make possible their eventual (dis)confirmation through subsequent psy-
chological or neuroscientific research” (Zednik &a Jäkel, 2016, p. 3971). Discovery 
heuristics can be considered as a means for “developing explanations” (Zednik & 
Jäkel, 2016, p. 3985, original emphasis).

There is promise that PP heuristics can contribute to progress at this front. For 
example, Harkness and Keshava (2017, p. 8) characterise the relationship between 
abstract Bayesian ideas and PP such that “by taking evidence from both the com-
putational level (provided by Bayesian models) and implementational level (pro-
vided by neurophysiological findings) into consideration, one may, albeit provoca-
tively, conclude that the algorithmic level (predictive processing) can be regarded 
as the best candidate to form the bridge between behavior and the brain.” The idea 
is that aside from using Bayesian ideas to deal with problems of uncertainty, PP’s 
additional algorithmic posits about precision-weighting, PEM and hierarchical mes-
sage passing more readily constrain the set of available auxiliary assumptions that 
are needed to identify a specific set of neurocognitive phenomena (e.g., ascending 
and descending pathways in the brain). While Bayesian models can arrive at reli-
able predictions about neural behaviour on the basis of ideal observer models (e.g., 
Aitchison et  al., 2021), this is typically only in conjunction with both additional 
algorithmic and neurophysiological assumptions whose specific choice is relatively 
unconstrained by Bayesian formalisms. The heuristics framework suggests that 
albeit both Bayesian models and the PP toolbox can be applied to neuroscientific 
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results, PP’s additional algorithmic specifications more readily afford formulation of 
hypotheses about neurocognitive phenomena.

The major benefit of discovery heuristics is that they can improve the quality of 
a research program by making research more efficient and easy, given the limited 
time and resources that researchers face. When a research program draws attention 
to certain research questions and possible answers over others, thereby excluding 
other kinds of research questions and answers, this can contribute to its positive 
cognitive effects (i.e., effects on researchers’ cognitive performance). For example, 
such effects can be thinking through problems and their solutions more effectively 
or finding novel answers to problems more quickly. By guiding researchers’ atten-
tion to ‘relevant’ sets of research questions (given the core assumptions of the pro-
gram) and excluding others that are deemed ‘irrelevant’, heuristic strategies such 
as the unification and pushing-down complexity heuristics can help researchers to 
make the identification of basic cognitive problems and their solutions manageable. 
This is illustrated by PP’s focus on questions concerning prediction. A possible risk 
associated with this is ignorance. For example, there might be a risk that PP’s overt 
focus on concepts like ‘prediction’ might impede the program’s ability to include 
issues surrounding belief-desire psychology and the nature of thought (Dewhurst, 
2017; Williams, 2018).21

Furthermore, because they are fallible, heuristic strategies make the navigation 
through Marr’s cascade more efficient, since, “[i]f a particular heuristic leads to 
the formulation of many false hypotheses, it is likely to do more harm than good, 
because it will lead to the disproportionate consumption of time and scientific 
resources” (Zednik & Jäkel, 2016, p. 3985). However, this also highlights that the 
inferences that result from the application of PP heuristics must be handled with 
care. Discovery heuristics are often applied in a rather unprincipled way (their appli-
cation often depends on personal interest) and, although they have practical and cog-
nitive utility, they do not guarantee convergence to truth or explanatory advance-
ments. Admittedly, under certain conditions, heuristic strategies could even serve 
to track the truth. In suggesting this, Zednik and Jäkel (2016,  p. 3985) point to 
the importance of systematic biases when selecting solutions to targeted cognitive 
problems.

Most heuristics do not highlight solutions at random, but systematically, 
by selecting only those solutions that exhibit a particular set of character-
istics. The extent to which a heuristic strategy is an efficient guide to truth 
may depend on the nature of its bias, i.e. the kinds of considerations that are 
invoked to select individual solutions. [...] Insofar as [the principles in which 
these considerations are rooted] are at least approximately true, [some of these 
heuristics] can be viewed as reasonable guides to truth; their potential to lead 

21  However, see Colombo and Fabry (2021), for an account that desires can be accommodated in a pre-
dictive framework of self-deception, and recent work on active inference in decision-making suggest no 
clash between PP and folk psychology (Smith et al., 2021a). Williams (2020) outlines a set of challenges 
against PP’s treatment of the notions of belief and thought that have so far not been met.
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researchers astray is no worse than the fallibility of [the principles exploited]. 
(Zednik & Jäkel, 2016, p. 3985)

PP employs a systematic bias towards using predictive thinking to explain inten-
tional behaviour in virtue of probabilistic content that is guided by the assumption 
that the brain deals with uncertainty and noise reduction in probabilistic terms. This 
bias roots in principles from computational neuroscience such as efficient and hier-
archical coding. As Zednik and Jäkel suggest, the important question is whether 
the basic principles in which this bias is rooted is also approximately true. Downey 
(2018) suggests that predictive thinking can indeed help researchers to arrive at reli-
able inferences about neural happenings by helping them to track the same causal 
changes as those in neurophysiological explanations.22 This could be the case if the 
algorithms governing researchers’ simulations abide to (approximately) the same 
rules as those governing neurophysiology and thus stipulating that neuronal popula-
tions compute these algorithms to generate activity patterns could allow researchers 
to track different sorts of activity patterns and changes in distinct functional areas in 
the cortex. However, whether this is the case has to be awaited. Reverse-engineering 
in cognitive science takes time, and progress in this direction can be made.23

A first step to realising the opportunities for PP’s positive development is to 
pay more attention to the possible significance of pluralism in the predictive mind. 
Insofar as PP’s diverse algorithmic posits could be grounded in neurophysiological 
activity, this suggests a metaphysical pluralism. That is, given their lack of invari-
ance, PP algorithms are likely to only hold in local domains.24 Since each algorithm 
targets a slightly different domain of cognition, the scope of each corresponding 
set of physical implementations is likely to be confined to local domains of brain 
function. If a given PP algorithm was correct, it would only correctly apply to a 
small portion of brain function (e.g., the portion responsible for biased competi-
tion), and not everywhere in the brain. This invites a nuanced perspective on unity 
and pluralism in the predictive mind. Eventually, unification in the development of 
the program might trade with pluralism as researchers move through Marr’s cas-
cade to reverse engineer the mind. Even if researchers strongly agree on the assump-
tion that the task of cognition is PEM (i.e., they adhere to a schema-centred unity), 
they might end up disagreeing strongly on their specific perspectives about how 

22  He originally developed this idea under a fictionalist interpretation of ‘make-believe games’. However, 
it seems to be readily applicable to the PP toolbox as well.
23  One possible point of departure would be to add the constraint that PP’s discovery heuristics should 
be used to formulate not only hypotheses that are novel and consistent with the evidence but, more 
importantly, hypotheses that have a high informative content and that, upon being tested, will yield 
informative answers to the questions about cognition that they address. Informative hypotheses have long 
been considered as strong because their low initial probability makes them extra informationally relevant 
on acquired empirical evidence for or against them (Popper, 1954; Bar-Hillel, 1955).
24  The idea is inspired by Cartwright’s (1994) approach to nomological metaphysical pluralism. She 
opposes fundamentalism, the claim that the laws of physics are “universal - that [they hold] everywhere 
and governs in all domains” by holding that the laws of physics apply only under specific conditions. For 
example, Newton’s equations characterising falling bodies do not apply to bank notes falling from tow-
ers; they only hold in a given domain in which they are specified (e.g., not when it is windy).
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cognition works. Admittedly, unification can play a guiding role in the choice of 
modelling approaches and algorithms from other areas (i.e., the choice is guided by 
the aim to choose only algorithms that suit an interpretation of the cognitive task 
in terms of PEM). In this regard, unification can limit, at least to some extent, the 
variety of distinct modelling approaches that might be considered. However, it also 
needs to be acknowledged that the impact of unification is itself limited, since the 
PEM schema still leaves much room for a diverse range of algorithmic specifica-
tions and implementations from Bayesian statistics and computational neuroscience, 
among which researchers might apply only their favourite tools, and not all research-
ers might decide to use unification as a guiding constraint. Researchers who focus 
on developing PP algorithms and implementations might be inclined to rely more on 
the tools-to-theories heuristic and find many different tools from neighbouring dis-
ciplines acceptable to model and theorise about cognition. Furthermore, the appli-
cation of the pushing-down complexity heuristic invites many non-elegant, com-
plex hypotheses to reappear at the level of implementation. Together, different PP 
researchers are likely to eventually diverge towards heterogeneous and potentially 
narrow-ranged explanations about how mind and brain work. In this sense, there 
remains an insufficiently acknowledged but seemingly fruitful tension between both 
unity and pluralism in the predictive mind.

6 � Conclusion

Proponents of PP often claim that one of its greatest virtues is its unificatory power. 
This claim is rarely properly explained. I have argued that PP offers a schema-cen-
tred unification by virtue of the PEM framework but it fails to deliver a process-
centred unification, due to its employment of a plurality of distinct algorithms in 
the ‘PP toolbox’. Furthermore, in focusing mainly on the unificatory aspects of the 
predictive mind, proponents of PP have paid too little attention to a variety of other 
aspects that indicate its fruitfulness to making the development of explanations of 
neurocognitive phenomena easier and faster. In outlining an account of heuristics to 
be employed for the positive development of the program, I have argued that both, 
aspects of unity and of pluralism, find their place in the predictive mind.
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