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Mechanistic explanations satisfy widely held norms of explanation: the ability to manip-
ulate and answer counterfactual questions about the explanandum phenomenon. A cur-
rently debated issue is whether any nonmechanistic explanations can satisfy these explan-
atory norms. Weiskopf argues that the models of object recognition and categorization,
JIM, SUSTAIN, and ALCOVE, are not mechanistic yet satisfy these norms of explana-
tion. In this article I argue that these models are mechanism sketches. My argument applies
recent research using model-based functional magnetic resonance imaging, a novel neuro-
imaging method whose significance for current debates on psychological models and mech-
anistic explanation has yet to be explored.

1. Introduction. A mechanistic explanation of a phenomenon describes
the entities, activities, and organization of the mechanism that produces,
underlies, or maintains that phenomenon (Bechtel and Abrahamsen 2005;
Craver 2007). Mechanistic explanations satisfy what are widely considered
the normative constraints on explanation: the ability to answer a range of
counterfactual questions regarding the explanandum phenomenon and the
ability to manipulate and control the explanandum phenomenon (Craver
2007). These norms capture what is distinctive about the scientific achieve-
ment of explanation as opposed to prediction, description, or categorization.
A currently debated issue is whether any nonmechanistic forms of expla-
nation can satisfy these explanatory norms.1 Weiskopf (2011) argues that the
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models of object recognition and categorization, JIM, SUSTAIN, and
ALCOVE, are not mechanistic explanations and nonetheless satisfy these
normative constraints.

I argue that JIM, SUSTAIN, and ALCOVE are in fact, and are intended
by their creators to be, mechanism sketches, that is, incomplete mechanistic
explanations. My argument applies recent research using model-based func-
tional magnetic resonance imaging (fMRI). Model-based fMRI allows cog-
nitive neuroscientists to locate even widely distributed neural components in
psychological models. These novel neuroimaging methods have developed
only recently (Glascher and O’Doherty 2010), and philosophers have yet to
discuss their significance for current debates on psychological models and
mechanistic explanation.

The article is organized as follows. In section 2 I motivate the mechanis-
tic account of explanation and introduce two important distinctions in that
account: complete models versus mechanism sketches, and how-possibly
versus how-actually models. In section 3 I introduce the three models of
object recognition and categorization that Weiskopf takes as the scientific
grounds for his philosophical thesis. In section 4 I present Weiskopf’s argu-
ments for thinking that these models are nonmechanistic yet explanatory.
I also begin to respond to these arguments. I show precisely why JIM should
be seen as a mechanism sketch. In section 5 I show how the inventors of
SUSTAIN and ALCOVE have subsequently used model-based fMRI to de-
cide between these mechanism sketches on the basis of information about
widely distributed parts.

2. Mechanistic Explanation. The mechanistic account of explanation de-
veloped out of Salmon’s (1984) insight into the problems that arise when
an account of explanation is tied too closely to prediction. Salmon’s prin-
cipal target was the deductive-nomological account. According to the
deductive-nomological account (Hempel and Oppenheim 1948), an explana-
tion is an argument with descriptions of at least one law of nature and ante-
cedent conditions as premises and a description of the explanandum phe-
nomenon as the conclusion. On this view, to explain is to show that the
explanandum phenomenon is predictable on the basis of at least one law of
nature and certain specific antecedent and boundary conditions. However,
tying explanation this closely to prediction generates some famous problems
(Salmon 1989). On such a view, many mere correlations come out as ex-
planatory. For example, a falling barometer reliably predicts the weather, but
the falling barometer does not explain the weather. In contrast, on the causal-
mechanical view, explanation involves situating the explanandum phenom-
enon in the causal structure of the world. There is more than one way of sit-
uating a phenomenon in the causal structure of the world, and in this article
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I am solely concerned with explanations that identify the mechanism that
produces, underlies, or maintains the explanandum phenomenon.2

If one ties explanation so closely to prediction, one risks missing what
makes explanation a distinctive scientific achievement. Weiskopf (2011) and
I in fact agree on what makes explanation distinctive: explanations provide
the ability to answer a range of counterfactual questions regarding the ex-
planandum phenomenon and the ability to manipulate and control the expla-
nandum phenomenon. Weiskopf and I disagree about what kinds of expla-
nation or model can satisfy these norms.

Within the mechanistic framework there are two important distinctions
that will be necessary in the arguments that follow: complete models versus
mechanism sketches, and how-possibly versus how-actually models (Craver
2007). Mechanism sketches are incomplete descriptions of mechanisms that
contain black boxes and filler terms (Craver 2007, 113). They are still par-
tially explanatory. More details can be added to the model to fill in the gaps,
though no model is ever fully complete, just complete enough for practical
purposes. There can certainly be too many details for the purposes of the mod-
eler, and the details that are included should be relevant.3 Idealized models
can be mechanistic explanations even if they are in some sense incomplete;
they can exclude irrelevant detail.

A how-possibly model describes a merely possible mechanism, whereas
a how-actually model describes the mechanism that (we have the most evi-
dence to believe) actually produces, maintains, or underlies the explanan-
dum phenomenon. As Weiskopf (2011, 315) rightly points out, this distinction
is epistemic. Turning a how-possibly model into a how-actually model does
not require modifying the model itself in any way; it requires testing the
model. The greater the evidential support for the model, the more how-
actually it is. In contrast, turning a mechanism sketch into a more complete
mechanistic explanation requires modifying the model by filling in missing
details.

3. JIM, SUSTAIN, and ALCOVE. In this section I introduce the models
of object recognition and categorization on which Weiskopf builds his case
for the existence of nonmechanistic yet explanatory models. In section 4
I present Weiskopf ’s arguments for thinking that these models are non-
mechanistic yet explanatory.

2. See Bechtel (2009) for a discussion of some other ways of causally situating a
phenomenon. What Bechtel calls “looking down” I am here calling “mechanistic ex-
planation.”

3. See Craver (2007, 139–60) for one account of constitutive (i.e., mechanistic) relevance.
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According to JIM (John and Irv’s Model), in perception objects are bro-
ken down into viewpoint-invariant primitives called “geons.” Geons are
simple three-dimensional shapes such as cones, bricks, and cylinders. The
properties of geons are intended to be nonaccidental properties (NAPs),
largely unaffected by rotation in depth (Biederman 2000). Objects are rep-
resented as spatially arranged collections of geons. The geon structure of
perceived objects is extracted and stored in memory for later use in com-
parison and classification.

The importance of NAPs is shown by the fact that sequential matching
tasks are extremely easy when stimuli differ only in NAPs. If you are first
shown a stimulus and then a series of rotated stimuli, each of which differs
from the first only in NAPs, it is a simple matter to judge which stimuli are the
same as or different from the first. Sequential matching tasks with objects that
differ in properties that are affected by rotation in depth are much harder.

In JIM, this object recognition and categorization process is modeled by
a seven-layer neural network (Biederman et al. 1993). Layer 1 extracts image
edges from an input of a line drawing that represents the orientation and depth
of an object (Biederman et al. 1993, 182). Layer 2 has three components that
represent vertices, axes, and blobs. Layer 3 represents geon attributes such as
size, orientation, and aspect ratio. Layers 4 and 5 both derive invariant rela-
tions from the extracted geon attributes. Layer 6 receives inputs from layers 3
and 5 and assembles geon features, for example, “slightly elongated, vertical
cone above, perpendicular to and smaller than something” (184). Layer 7 in-
tegrates successive outputs from layer 6 and produces an object judgment.

ALCOVE (Attention Learning Covering map), like JIM, is a neural net-
work model of object categorization (Kruschke 1992). It has three layers.
The perceived stimulus is represented as a point in a multidimensional psy-
chological space with each input node representing a single, continuous psy-
chological dimension. For example, a node may represent perceived size, in
which case the greater the perceived size of the stimulus, the greater the ac-
tivation of that node. Each node is modulated by an attentional gate whose
strength reflects the relevance of that dimension for the categorization task.
Each hidden node represents an exemplar and is activated in proportion to
the psychological similarity of the input stimulus to the exemplar. Output
nodes represent category responses and are activated by summing hidden
nodes and multiplying by the corresponding weights.

SUSTAIN (Supervised and Unsupervised Stratified Adaptive Incremen-
tal Network) is a neural network model similar to ALCOVE (Love, Medin,
and Gureckis 2004). Its input nodes also represent a multidimensional psy-
chological space, but they can take continuous and discrete values. Like
ALCOVE, inputs are modulated by an attentional gate. Unlike ALCOVE,
which stores all items individually in memory in exemplar nodes, the next layer
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of SUSTAIN consists of a set of clusters (bundles of features) associated with
a category. Each cluster activates in proportion to its proximity to the input
in multidimensional psychological space; the more similar a cluster is to the
input, the more it activates. There are inhibitory connections between each
cluster, so that the cluster most similar to the input inhibits all others. This
winning cluster activates the output unit generating the category label.

4. Weiskopf’s Arguments. Weiskopf argues that the previous models are
able to satisfy the norms of explanation but are not mechanistic models.
How do these models provide the ability to answer counterfactual questions
about the explanandum phenomenon and the ability to manipulate and con-
trol the explanandum phenomenon? According toWeiskopf, they satisfy these
explanatory norms “because these models depict one aspect of the causal
structure of the system” (2011, 334). This claim is prima facie in tension with
Weiskopf’s claim that these models are not mechanistic. He argues that “there
may be an underlying mechanistic neural system, but this mechanistic struc-
ture is not what cognitive models capture” (333).

One way of reconciling the above claims is to argue that these models are
explanatory because they depict causal structure, but they are not mecha-
nistic because the causal structure that they depict is not a mechanism. This
is the line Weiskopf takes. Why, according to Weiskopf, are these causal
structures not mechanisms? He argues, “If parts [of mechanisms] are allowed
to be smeared-out processes or distributed system-level properties, the spatial
organization of mechanisms becomes much more difficult to discern. . . .
Weakening the spatial organization constraint by allowing distributed, non-
localized parts incurs costs, in the form of greater difficulty in locating the
boundaries of mechanisms and stating their individuation conditions” (Weis-
kopf 2011, 334). The causal structures depicted by JIM, SUSTAIN, and
ALCOVE should not be thought of as mechanisms, according to Weiskopf,
because the structures that putatively implement them are highly distributed.
If mechanisms are allowed to contain distributed, nonlocalized parts, this
will make it difficult to locate them. Call this the practical problem of non-
localization. Weiskopf does not provide any reason to think that the phil-
osophical (rather than practical) problem of mechanism individuation is
made more difficult by allowing distributed parts or that existing accounts
of mechanism individuation cannot handle distributed parts.4 Yet numer-
ous neuroimaging methods, especially model-based fMRI, ameliorate this

4. See n. 3 for an account of mechanism individuation. Weiskopf (2011, 331) also cites
the phenomenon of neural reuse as inconsistent with mechanistic explanation, but the
fact that a part of one mechanism can also be a part of a different mechanism constitutes
only a practical problem for mechanism individuation.

MECHANISMS AND MODEL-BASED fMRI 1039



practical problem. Model-based fMRI is well suited to mechanistically dis-
criminate between competing, equally behaviorally confirmed psychologi-
cal models.5

In addition to Weiskopf’s practical problem, there is what I call the triv-
iality problem of nonlocalization. Weiskopf argues that if these kinds of
distributed parts are allowed, then “it is far from clear what content the no-
tion of a mechanism has anymore” (2011, 334). First, as I have said, there
has been no argument that existing accounts of mechanism individuation
cannot accommodate distributed parts. If these accounts are workable while
allowing distributed parts, then the notion of a mechanism remains content-
ful. Second, this objection misunderstands the mechanistic project, or at least
a plausible way of conceiving that project. If you conceive the mechanistic
project as articulating a “downward” way of causally situating an explanan-
dum phenomenon that was neglected by Salmon and others who focused
on “backward” (etiological) causal explanation (Craver 2007, 8), then a “lib-
eralization” of the notion of mechanism that permits distributed parts is per-
fectly in line with that project and should not be seen as any kind of conces-
sion or retreat. Although such a “liberalization” may make mechanisms even
more ubiquitous than they already were, it does not make every physical sys-
tem a mechanism. For example, mere aggregates lack the organization nec-
essary to be mechanisms (135–39).

Next, I present some of the neuroimaging studies conducted with JIM
and argue that JIM is a mechanism sketch. JIM was built not merely to
produce the same behavior as human beings in object recognition tasks, but
to model something that might really be happening in human brains (Bie-
derman et al. 1993, 176). Accordingly, Irving Biederman, one of the cocre-
ators of JIM, and others have conducted various neuroimaging studies to
investigate the neural underpinnings of the model.

If JIM is a mechanism sketch, the systems and processes in the model re-
quired for the extraction, storage, and comparison of geon structures must to
some extent correspond to (perhaps distributed) components in the brain’s
actual object recognition system. For example, if JIM is a mechanism sketch,
there is an area or a configuration of areas in the brain where simple parts and
NAPs are represented. In one study investigating this (Hayworth and Bie-
derman 2006), participants were shown line drawings that were either local
feature deleted (LFD), in which every other vertex and line was deleted from

5. Weiskopf (2011, 335–36) is right that evidence for psychological models can come
from many places. Although psychological models can be supported and constrained
behaviorally, this degree of “evidential autonomy” does not establish the explanatory
autonomy Weiskopf requires. It does not affect the mechanist’s point that the parts of a
psychological model must correspond to brain regions that implement the relevant com-
putations for the model to be explanatory.
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each part, removing half the contour, or part deleted (PD), in which half of
the parts were deleted. On each trial, participants saw either LFD or PD stim-
uli presented as a sequential pair and had to report whether the exemplar
depicted by the second stimulus was the same as or different from that de-
picted by the first. The second stimulus was always mirror-reversed with re-
spect to the first. Each experimental run was composed of an equal num-
ber of three conditions: identical, complementary, and different exemplar. In
the identical condition, the second stimulus was identical to the first stimu-
lus (though mirror-reversed). In the complementary condition, the second
stimulus depicted the same exemplar as the first, but the second stimulus was
a “complement” of the first stimulus. An LFD complement is composed of
the deleted contour of the first stimulus, and a PD complement is composed
of the deleted parts of the first stimulus. In the different exemplar condition,
the second stimulus depicts a different exemplar than the first.

This study used an fMRI adaptation design that relies on the assumption
that when two successive stimuli activate the same brain region, neural ac-
tivity reduces (Krekelberg, Boynton, van Wezel 2006, 250). The results of
the study showed adaptation between LFD complements and lack of adap-
tation between PD complements in lateral occipital complex, especially the
posterior fusiform area, an area known to be involved in object recogni-
tion. These results imply that this area is “representing the parts of an object,
rather than local features, templates, or object concepts” (Hayworth and Bie-
derman 2006, 4029). Biederman has conducted many other fMRI experi-
ments, including some that “suggest that LO [lateral occipital cortex] is the
locus of the neural correlate for the greater detectability for nonaccidental
relations” (Kim and Biederman 2012, 1824).

Although these experiments suggest that JIM should be seen as a mech-
anism sketch, Weiskopf has another argument for why it should not: JIM has
properties that do not and could not correspond to anything in the brain.
Weiskopf (2011, 331) refers to JIM’s “fast enabling links” (FELs), which al-
low the model to bind representations and have infinite propagation speed.
Weiskopf calls FELs an example of “fictionalization,” or “putting compo-
nents into a model that are known not to correspond to any element of the
modeled system, but which serve an essential role in getting the model to
operate correctly” (331). The FELs, Weiskopf argues, undermine the claim
that JIM is a mechanism sketch.

Weiskopf is right that FELs are an essential fictionalization. However,
playing an essential role in getting a model to operate is not the same as
explaining; these parts of the model carry no explanatory information and
render the model, or at least part of it, how-possibly (where the possibility
involved is not physical possibility, since FELs are physically impossible).
FELs play the black box role of whatever it is that accounts for binding. In
addition to playing a black box role, they serve practical and epistemic pur-
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poses such as suggesting, constraining, and sharpening questions about mech-
anisms (Bogen 2005). Let me explain how by comparing FELs to Bogen’s
example of the Goldman, Hodgkin, and Katz (GHK) equations.

The GHK voltage and current equations are used to determine the re-
versal potential across a cell’s membrane and the current across the mem-
brane carried by an ion. These equations rely on the incorrect assumptions
that each ion channel is homogeneous and that interactions among ions do
not influence their flow rate (Bogen 2005, 409). Bogen highlights the ef-
fects on research of these incorrect assumptions: “Investigators used these
and other GHK equation failures as problems to be solved by finding out more
about how ion channels work. Fine-grained descriptions of exceptions to the
GHK equations and the conditions under which they occur sharpened the
problems and provided hints about how to approach them” (410). The GHK
equations provide a case of “using incorrect generalizations to articulate and
develop mechanistic explanations” (409). Something similar can be said about
FELs. Not only do FELs play an essential black box role, but they also sug-
gest new questions about mechanisms, new problems to be solved. For ex-
ample, Hummel and Biederman write, “[FELs allow] JIM to treat the con-
straints on feature linking (by synchrony) separately from the constraints on
property inference (by excitation and inhibition). That is, cells can phase lock
without influencing one another’s level of activity and vice versa. Although it
remains an open question whether a neuroanatomical analog of FELs will
be found to exist, we suggest that the distinction between feature linking and
property inference is likely to remain an important one” (1992, 510). Like
the GHK equations, FELs suggest new lines of investigation, in this case re-
garding the relation between feature linking, property inference, and their neu-
ral mechanisms. Specifically, FELs suggest research questions such as “Can
biological neurons phase lock without influencing one another’s activity?” and
“Are there other ways biological neurons could implement feature linking
and property inference independently?”

In the next section I will explain model-based fMRI and demonstrate
how recent model-based fMRI research shows that, like JIM, SUSTAIN and
ALCOVE are mechanism sketches.

5. Model-Based fMRI. fMRI is a neuroimaging method that provides an
indirect measure of neuronal activity. More specifically, fMRI measures a
physiological indicator of oxygen consumption that correlates with changes
in neuronal activity (Huettel, Song, and McCarthy 2009, 159–60).

Model-based fMRI is a neuroimaging method that combines psycho-
logical models with fMRI data. It “provides insight into ‘how’ a particular
cognitive function might be implemented in the brain, not only ‘where’ it is
implemented” (O’Doherty, Hampton, andKim 2007, 39). In this way,model-
based fMRI provides a way of discriminating between competing, equally
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behaviorally confirmed cognitive models (Glascher and O’Doherty 2010,
502). Furthermore, “the more complex the model (and hence the more as-
sociated free parameters), the more unconstrained the behavioral fitting be-
comes,” in which case the additional constraints imposed by neurophysio-
logical and neuroimaging data become “even more critical” (O’Doherty et al.
2007, 37; see also White and Poldrack 2013).

To conduct a model-based fMRI analysis, one starts with a psychological
model that postulates internal variables between stimulus input and behav-
ioral output. While research participants perform a model-relevant task, re-
searchers obtain fMRI data from which they can locate neural correlates
of the internal variables (O’Doherty et al. 2007, 36). The model-predicted
values of internal variables across trials are convolved (mathematically
combined) with a canonical hemodynamic response function (HRF; Glas-
cher and O’Doherty 2010, 505). This is done to account for the usual lag in
the hemodynamic response (O’Doherty et al. 2007, 37). This yields a new,
model-predicted HRF that can be regressed against the obtained fMRI data.
This allows researchers to identify brain areas where the model-predicted
HRF significantly correlates with the observed HRF across trials.6

I should make clear that model-based fMRI inherits the limitations of
fMRI, such as poor spatiotemporal resolution, and does not obviate the
need for other neuroimaging methods (e.g., positron emission tomography
½PET�, electroencephalography ½EEG�, or magnetoencephalography ½MEG�),
to which the model-based approach can also be applied.

Now that we have a basic understanding of how model-based fMRI works
and what it can accomplish, let me return to SUSTAIN and ALCOVE and
show how they are mechanism sketches by drawing on recent model-based
fMRI research.

Both models were investigated in a model-based fMRI study in which
participants completed a rule-plus-exception category learning task (Davis,
Love, and Preston 2012). During the task, a schematic beetle was presented,
and participants were asked to classify it as living in hole A or hole B. Par-
ticipants then received feedback on the correctness of their classification.
The beetles varied on four of the following five attributes, with the fifth held
constant: eyes (green or red), tail (oval or triangular), legs (thin or thick), an-
tennae (spindly or fuzzy), and fangs (pointy or round). Six of the eight bee-
tles presented could be correctly categorized on the basis of a single attri-
bute. For example, three out of four hole A beetles had thick legs, and three

6. Batterman and Rice (2014) object that the notion of correspondence between model
and world is never explained by mechanists. I have no general theory of correspondence,
but the sense in which (parts of ) a psychological model correspond(s) to (parts of) the brain
should be clear in each case. Here, for example, correspondence is significant correlation
between model-predicted and observed HRF.
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out of four hole B beetles had thin legs. These were the rule-following beetles.
The other beetles were exceptions to the rule, having legs that appeared to
match the other category.

Two predictions from SUSTAIN and ALCOVE were tested. First, each
model predicts specific changes in recognition strength across trials. During
stimulus presentation, SUSTAIN predicts a recognition advantage for ex-
ceptions; ALCOVE predicts no recognition advantage. This difference in
recognition strength predictions arises because in ALCOVE, but not in
SUSTAIN, all items are stored individually in memory regardless of whether
they are exceptions or rule-following items. Second, each model predicts
specific changes in error correction across trials. The amount of error is given
by the difference between the model’s category response and the correct re-
sponse. Both SUSTAIN and ALCOVE predict that exceptions will always
produce more error than rule-following items, although both will produce
less error as learning progresses (Davis et al. 2012, 266).

The results revealed that both the recognition strength and error correction
measures predicted by SUSTAIN found significant correlations in medial
temporal lobe (MTL) regions, including bilateral hippocampus, parahippo-
campal cortex, and perirhinal cortex. ALCOVE’s predicted recognition strength
measure did not find any significant correlations in MTL, although its pre-
dicted error correction measure found significant correlations in MTL regions
(Davis et al. 2012, 266–67). These results “suggest that, like SUSTAIN, the
MTL contributes to category learning by forming specialized category rep-
resentations appropriate for the learning context” (269).

SUSTAIN is more how-actually (evidentially supported) than ALCOVE
because both of SUSTAIN’s prediction measures (recognition strength and
error correction) were significantly correlated with observed HRF, whereas
only one of ALCOVE’s prediction measures (error correction) was signifi-
cantly correlated. These experiments also show that cognitive neuroscientists
are currently advancing the ability to map the entities and activities in psy-
chological models to distributed neural systems, such as MTL regions span-
ning bilateral hippocampus, parahippocampal cortex, and perirhinal cortex.

Davis et al. (2012) are at times quite explicit that they are treating the
models as mechanism sketches ðsee also Love and Gureckis 2007Þ. For in-
stance, they write, “We use a model-based functional magnetic resonance
imaging (fMRI) approach to test the proposed mapping between MTL
function and SUSTAIN’s representational properties” (261). Given their em-
phasis on mapping models to the brain, it is clear that they intend these mod-
els to be mechanistic, as Biederman intends JIM to be. They are interested in
more than the behavioral accuracy of these models; after all, SUSTAIN and
ALCOVE are already behaviorally well confirmed. The main difference
between the two is in their hidden layers, where SUSTAIN has clusters and
ALCOVEstoresitemsindividually.Model-basedfMRIallowedDavisetal. to
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gather evidence relevant to assessing which of these models was more
mechanistically accurate.

6. Conclusion. Weiskopf (2011) presents three models of object recogni-
tion and categorization, JIM, ALCOVE, and SUSTAIN, that he claims are
nonmechanistic yet explanatory. He argues that they are not mechanistic
because their parts cannot be neatly localized and because they contain some
components that cannot correspond to anything in the brain, such as FELs,
but are nevertheless essential for the proper working of the model. I argue, on
the contrary, that in addition to playing a black box role, FELs play useful,
nonexplanatory roles such as suggesting new lines of investigation regard-
ing feature linking and property inference.

My argument for the claim that SUSTAIN and ALCOVE are mechanism
sketches relies partly on model-based fMRI research. Model-based fMRI and
other model-based neuroimaging methods allow cognitive neuroscientists
to explore how psychological models map onto the brain. This helps cog-
nitive neuroscientists discriminate between equally behaviorally confirmed
psychological models.

Biederman, Love, and others treat JIM, SUSTAIN, and ALCOVE as
mechanism sketches, and they should because by locating mechanisms one
opens a new range of opportunities for manipulating the mechanism and
one obtains answers to counterfactual questions that were not available be-
fore. For example:What kinds of deficit in categorization performance would
result from a lesion in bilateral hippocampus? If someone has a specific def-
icit in categorization performance, how might we fix it? Where might the
problem lie? This increases the explanatory power of these models.

The development of these model-based approaches has broader implica-
tions, beyond the narrow dispute over JIM, SUSTAIN, andALCOVE, for the
debate over the explanatory and mechanistic status of psychological mod-
els. As cognitive neuroscientists continue to test competing models against
neuroimaging data using model-based techniques, it is likely that they will,
as they should, retain those models that are mechanistically accurate and
discard those that are not, and in so doing reveal that explanatory progress in
cognitive neuroscience consists in the development of increasingly mecha-
nistic models.
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