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1. Introduction 

 Philosophers of psychology debate, among other things, which psychological models, if any, are 

(or provide) mechanistic explanations. This should seem a little strange given that there is rough2 

consensus on the following two claims: 1) a mechanism is an organized collection of entities and 

activities that produces, underlies, or maintains a phenomenon, and 2) a mechanistic explanation 

describes, represents, or provides information about the mechanism producing, underlying, or 

maintaining the phenomenon to be explained (i.e. the explanandum phenomenon) (Bechtel and 

Abrahamsen 2005; Craver 2007). If there is a rough consensus on what mechanisms are and that 

mechanistic explanations describe, represent, or provide information about them, then how is there no 

consensus on which psychological models are (or provide) mechanistic explanations? Surely the 

psychological models that are mechanistic explanations are the models that describe, represent, or 

provide information about mechanisms. That is true, of course; the trouble arises when determining 

what exactly that involves. Philosophical disagreement over which psychological models are 

mechanistic explanations is often disagreement about what it means to describe, represent, or provide 

information about a mechanism, among other things (Hochstein 2016; Levy 2013). In addition, one's 

position in this debate depends on a host of other seemingly arcane metaphysical issues, such as the 

nature of mechanisms, computational and functional properties (Piccinini 2016), and realization 

(Piccinini and Maley 2014), as well as the relation between models, methodologies, and explanations 

(Craver 2014; Levy 2013; Zednik 2015). Although I inevitably advocate a position, my primary aim in 

this chapter is to spell out all these relationships and canvas the positions that have been taken (or could 

be taken) with respect to mechanistic explanation in psychology, using dynamical systems models and 



2 

 

cognitive models (or functional analyses3) as examples.  

 In Section 2, I lay out the basic conceptual toolkit of and motivation for a mechanistic account 

of explanation, including only recent historical development (for a more extensive history of 

mechanistic philosophy, see Chapters 2 and 3 of Glennan and Illari [2017]). In Section 3, I analyze 

more closely the question of what it takes for an explanation to be mechanistic. Taking center stage is 

an increasingly common distinction between mechanistic explanations, on the one hand, and their 

representational form, including the strategies and methodologies used to construct those 

representations, on the other (Andersen 2014a, b; Craver 2014; Craver and Kaplan 2018; Hochstein 

2016; Levy 2013; Zednik 2011, 2015). I illustrate the way this distinction is used with regards to 

dynamical systems models, which dynamicists have claimed to be non-mechanistic explanations. A 

similar dialectic occurs with respect to the mechanistic status of functional analyses or cognitive 

models. I take this up in Section 4, where I examine the issue of the autonomy of psychology and the 

relation between functionalism and mechanistic explanation. In Section 5, I briefly compare the 

previous distinctions (between explanation and representational form/strategy) with the long-standing, 

though changing, distinction between ontic and epistemic conceptions of scientific explanation. 

2. Mechanisms and Mechanistic Explanation  

 I first briefly gesture at an ontology of mechanisms, laying out only the bare commitments 

required to establish a broad concept of mechanism and mechanistic levels. Then, I motivate a 

mechanistic account of explanation, and make two normative distinctions: between mechanism 

schemata and mechanism sketches, and between how-possibly and how-actually models. I also contrast 

both of those distinctions with phenomenal models. 

2.1 Mechanisms 

 While it is true that there is rough consensus that mechanisms contain entities and activities, or 

simply active entities, spatiotemporally organized to give rise to a behavior or property of the whole 
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mechanism4, there is disagreement over the specific metaphysics of mechanisms (see Illari and 

Williamson [2012] for a discussion of this disagreement and a recommendation of a broad construal of 

mechanisms, similar to mine, that applies across sciences). I do not wish to get involved in this debate 

here. I will assume a permissive5 concept of mechanism as any collection of entities, also broadly 

construed, whose collective, organized activity gives rise to the behavior or property of a whole in 

context (see also Levy’s [2014: 9] distinction between the 'narrow picture' and the 'broad picture' of 

mechanisms and Andersen’s [2014a, b] distinction between mechanism1 and mechanism2). The entities 

in a mechanism need not be neatly localizable or contained within well-defined boundaries. An entity 

could be any set of structural properties that is robustly detectable (Piccinini and Craver 2011: 296).  

 Though permissive, this concept of mechanism is not trivial because it does not make every 

system – not even every causal system – a mechanism. Mechanisms contrast with aggregates, which 

lack the requisite organization. The parts of mechanisms have spatiotemporal properties, and stand in 

organizational and causal relations to one another, that are explanatorily relevant to the behavior of the 

mechanism as a whole. As such, mechanisms are more than the sums of their parts: their behavior 

depends on the spatial, temporal, and causal organization of their parts. Aggregates, in contrast, are 

systems – even causal systems – whose behavior does not depend on the spatial, temporal, and causal 

organization of their parts. As such, a property of an aggregate is literally a sum of the properties of its 

parts. The concentration of a fluid, for example, is an aggregation of particles. Aggregates have 

properties that do not change when their parts are reorganized, because in true aggregates, spatial, 

temporal, and causal organization is irrelevant (Wimsatt 1997; Povich and Craver 2017). 

 Mechanisms are often organized hierarchically into levels (Craver 2015; Povich and Craver 

2017). The components of mechanisms can themselves be composed of organized components that are 

responsible for their activity. Similarly, a mechanism may compose an active entity that is itself a 

component in a larger mechanism. The term 'mechanistic levels' refers to this embedded, hierarchical 
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organization of mechanisms.  

 Mechanistic levels contrast with another prominent use of the term 'levels' in psychology: 

Marr's levels or Marrian levels (Marr 1982). Marr's levels are best understood as levels of description, 

abstraction, analysis, or realization. The computational level, algorithmic level, and implementational 

level arguably do not stand in causal or componency relations with one another (Craver 2015; Craver 

and Bechtel 2007) (I briefly return to this in Section 4). 

 Mechanistic levels are necessarily local, in contrast to the more monolithic levels of Oppenheim 

and Putnam (1958), who divided nature into levels of atoms, molecules, cells, organs, organisms, and 

societies. For mechanistic levels, an entity is at a lower mechanistic level than another if and only if it 

is a component in the mechanism of the latter. From this, a weak notion of sameness of level is derived: 

two entities are at the same level only if they are components in the same mechanism, and neither is a 

component of the other.6 

 A component of a mechanism is more than just a mereological part; it is a part that contributes 

to the behavior of the mechanism – it is a constitutively relevant part. There is some debate over how to 

cash out this notion of constitutive relevance. Craver (2007) characterizes it in terms of mutual 

manipulability of part and whole: A part is a component of (or is constitutively relevant to) a 

mechanism if one can manipulate the mechanism’s behavior by manipulating the part, and one can 

manipulate the part’s behavior by manipulating the mechanism. This account is not without problems7, 

but I will not examine those here. Instead, I will assume that the notion of constitutive relevance as 

contribution to the behavior of a mechanism is clear enough for our purposes. 

2.2 Mechanistic Explanation 

 The contemporary account of mechanistic explanation has its origin primarily in the work of 

Salmon (1984, 1989), among others (see, for example, Scriven [1959, 1975]). He developed a causal 

account of explanation in response to problems that arose for the deductive-nomological account (DN; 
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also known as the covering-law model, sometimes as one half of the covering-law model). According 

to DN, an explanation is a deductive argument with descriptions of at least one law of nature and 

antecedent conditions as premises and a description of the explanandum phenomenon as the conclusion 

(Hempel and Oppenheim 1948). To explain, then, is to show that the explanandum phenomenon is 

expectable or predictable given the truth of the premises. However, tying explanation this closely to 

prediction generates some now-infamous problems (Salmon 1989). For example, on such an account, 

many mere correlations come out as explanatory, which intuitively is not true. A falling barometer 

reliably predicts the weather, but the falling barometer does not explain the weather (Salmon 1989: 47).  

 According to Salmon's (1984) causal-mechanical view, in contrast, explanation involves 

“situating” the explanandum phenomenon in the causal structure of the world. (Salmon called this an 

'ontic conception' of scientific explanation, contrasting it with the 'epistemic conception' of the 

deductive-nomological account. I return to this still-relevant distinction in Section 5.) There are several 

ways of so situating an explanandum phenomenon. An etiological-causal explanation is 'backward-

looking': it describes the explanandum phenomenon's past causal history (its immediately prior causes, 

the causes of those causes, and so on). A constitutive-mechanistic explanation is 'downward-looking': it 

describes the entities, activities, and organization of the mechanism that produces, underlies, or 

maintains the explanandum phenomenon. It is the kind of explanation that most readily comes to mind 

when one hears the phrase 'mechanistic explanation.' However, there is also the neglected contextual-

mechanistic explanation, which is 'upward-looking' (though see Craver [2001] and Bechtel [2011], 

from which I have borrowed the 'looking' metaphor). It describes the broader environmental conditions 

on which the behavior of a mechanism depends, such as the character of its inputs8. For example, 

Bechtel (2011) considers Gibson’s (1979) ecological psychology to provide explanations of this sort for 

visual perception. This chapter will be concerned with the latter two kinds of explanation, constitutive 

and contextual mechanistic explanation.  
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 There are two important normative distinctions (or continua) in the mechanist's conceptual 

framework: mechanism schemata versus mechanism sketches, and how-possibly versus how-actually 

models (Machamer, Darden, and Craver 2000; Craver 2007). A mechanism schema is an abstract 

description of a type of mechanism, rather than a specific token instance. Details will inevitably be 

omitted, but, ideally, only details that are irrelevant to the mechanism type. Details that are specific to 

tokens of the type can be added as the schema is applied to instances (Machamer et al. 2000: 15). 

Mechanism sketches, on the other hand, are incomplete descriptions of (type or token) mechanisms that 

contain black boxes and filler terms (Craver 2007: 113). They are still partially explanatory, but they 

are lacking in relevant detail. More details can be added to the model to fill in the gaps, though no 

model is ever fully complete, just complete enough for practical purposes (Craver and Darden 2013). 

Idealized models qualify as mechanism schemata, rather than sketches, to the extent that they capture 

relevant aspects of mechanisms.  

 A how-possibly model describes a merely possible mechanism, whereas a how-actually model 

describes the mechanism that (we have the most evidence to believe) actually produces, maintains, or 

underlies the explanandum phenomenon. This distinction is epistemic: turning a how-possibly model 

into a how-actually model does not require modifying the model itself in any way; it requires testing 

the model (Weiskopf 2011). The greater the evidential support for the model, the more how-actually it 

is. Between how-possibly and how-actually models is a range of how-plausibly models. Turning a 

mechanism sketch into a more complete mechanism schema, in contrast, requires modifying the model 

by filling in missing details (Craver and Darden 2013). These details may be at the same mechanistic 

level as the rest of the details in the model, or they may be at a lower mechanistic level. 

 In contrast to how-possibly and how-actually models, and mechanism sketches and schemata, 

which more or less completely describe possible or actual mechanisms responsible for some 

explanandum phenomenon, a merely descriptive, or phenomenal, model merely describes an 
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explanandum phenomenon, usually in a general, concise way. Snell's law is a common example of a 

phenomenal model (Craver and Darden 2013). It accurately and compactly describes the relationship 

between the angle of incidence and the angle of refraction when light passes between two media, but it 

does not explain refraction. Somewhat like sketches, Glennan (2017) also includes how-roughly 

models, which only roughly accurately represent an actual mechanism. 

 Mechanistic explanations satisfy what are widely considered, by mechanists and non-

mechanists (e.g., Chirimuuta 2014; Rice 2015; Weiskopf 2011) alike, to be important normative 

constraints on explanation: the ability to answer relevant counterfactual questions about the 

explanandum phenomenon ('what-if-things-had-been-different' questions or, more compactly, w-

questions), and the ability to manipulate and control the explanandum phenomenon (Craver 2007)9. 

These norms capture in part what is distinctive about the scientific achievement of explanation, as 

opposed to other achievements like prediction, description, or categorization. As the barometer 

example above shows, a model can be predictive without being explanatory. These norms also provide 

a basis for explanatory power: when all else is equal, a model is more explanatorily powerful when and 

only when it can answer more relevant w-questions and afford more opportunities for control (Ylikoski 

and Kuorikoski 2010). 

3. Dynamical Models, Strategies, and Explanations 

 I have briefly described what mechanisms and mechanistic explanations are, but I have not yet 

given any examples of explanations in psychology that are uncontroversially mechanistic. I will briefly 

describe a favorite of mechanists (see, e.g., Craver, 2005, 2007): the learning and memory mechanism 

of long-term potentiation (LTP; see Kandel, Schwartz, and Jessell 2000). There are different kinds of 

LTP, but I will focus on the commonly discussed NMDA-receptor dependent LTP. The entities in the 

mechanism include glutamate molecules, NMDA and AMPA receptors, and calcium and magnesium 

ions, and they engage in organized activities such as diffusing, blocking, opening, and binding, in order 
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to produce long-term strengthening of synaptic connections. Specifically, glutamate is released from 

the presynaptic cell with each action potential and binds to NMDA receptors on the postsynaptic cell, 

causing the receptors to change shape, exposing a channel in the cell membrane. However, the channel 

is blocked by a magnesium ion as long as the postsynaptic cell is polarized (i.e., inactive). If the 

postsynaptic cell depolarizes as a result of frequent action potentials stimulating the AMPA receptors, 

the magnesium ion is released, allowing calcium ions to diffuse into the cell. The rising intracellular 

calcium concentrations set in motion a long biochemical cascade that results in the production of more 

AMPA receptors, eventually strengthening the synaptic connection. 

Canonical examples of mechanistic explanation, such as the one I have just described, have 

given the impression that a mechanistic explanation should look a certain way or be constructed using 

certain methods (Zednik 2011; 2015). In some of the most seminal work on mechanistic explanation 

(e.g., Bechtel and Richardson 1993; Glennan 1996; Machamer et al. 2000), the examples and diagrams 

used were very machine-like: biological oxidation, voltage-gated ion channels, the action potential, 

protein synthesis, LTP. This arguably led to the impression that a mechanistic explanation is a particular 

machine-like kind of model or representation (Hochstein 2016; Zednik 2015), but some mechanists 

deny this (Craver 2014; Piccinini and Craver 2011; Zednik 2011, 2015).10 With this impression in 

place, counterexamples to mechanistic explanation have come in the form of explanatory models in 

psychology (and elsewhere) that look nothing like the mechanists' canonical, machine-like examples. 

Implicit or explicit in many mechanists' responses to these counterexamples is a distinction between 

mechanistic explanations and mechanistic models, including the representational form that such 

explanations take11. Let us examine in some detail the dialectic in one prominent case from psychology 

– dynamical systems models – with that distinction in mind.  

3.1 Dynamical Systems Models  

 Dynamical systems models are models that employ the mathematical concepts of dynamical 
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systems theory, such as differential or difference equations (Chemero 2009; Izhikevich 2007; Zednik 

2011). This allows the modeling of the temporal evolution of relevant variables, which can be 

represented mathematically (and graphically) as a trajectory through a phase or state space. The state 

space of a system represents all its possible states (i.e. all possible values of the system's variables). A 

trajectory through state space is thus a representation of how the system's variables change over time. 

Graphical representations have the benefit of allowing careful and intuitive analysis of state space 

topology, revealing abstract, dynamical features such as the presence of attractors (i.e. states into which 

the system tends from surrounding states) (Izhikevich 2007). In dynamical models in psychology, the 

relevant variables often span brain, body, and environment (van Gelder 1998; van Gelder and Port 

1995; Zednik 2011). I briefly describe three dynamical models: the HKB model, Beer's model of 

categorical perception, and Thelen et al.’s (Thelen, Schöner, Scheier, and Smith 2001; Smith and 

Thelen 2003) dynamical field model of the A-not-B error.12 

 One of the first dynamical models that was presented as a challenge to mechanistic explanation 

was the Haken-Kelso-Bunz model (HKB; Haken, Kelso, and Bunz 1985. See also Chemero 2009; 

Chemero and Silberstein 2011; Stepp, Chemero, and Turvey 2011; Walmsley 2008). Although the 

explanandum of this model is not an especially cognitive phenomenon, it will be helpful to review it 

and mechanists' responses. 

 HKB is a model of bimanual coordination, specifically simultaneous, side-to-side movement of 

the index fingers (and hands). The behavioral data were obtained by asking participants to move 

horizontally both index fingers either in-phase (pointing toward the midline, then away) or out-of-phase 

(both pointing left, then both right). Participants were asked to keep pace with a metronome so that 

experimenters could manipulate the rate of finger movement (Kelso 1981). By increasing the rate, 

experimenters found that only in-phase movement is possible beyond a certain critical rate. Participants 

who began out-of-phase involuntarily switched to in-phase once the critical rate was crossed. The same 
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phenomenon occurs during other forms of bimanual coordination, such as hand movements at the wrist 

(Kelso 1984). 

 To model this phenomenon with dynamical systems theory, the fingers are represented as 

coupled oscillators and the stable in-phase and out-of-phase movements as attractors. The dynamics are 

described by the following differential equation: 

dϕ/dt = –dV/dϕ = −a sin ϕ – 2b sin 2ϕ, 

where V is the so-called potential function, V(ϕ) = −a cos ϕ − b cos 2ϕ, and the ratio b/a is a control 

parameter that varies inversely with finger oscillation frequency and determines the topology of the 

phase space (i.e. the landscape of attractors). At a low oscillation frequency, there are two attractors, 

corresponding to stable in-phase and out-of-phase movement. At a high frequency, past the critical 

value, the landscape shifts to include only one attractor, corresponding to stable in-phase movement. 

This accurately describes the observed behavioral data. 

 Beer's (1996, 2003) dynamical model of perceptual categorization (or categorical perception) is 

more cognitively interesting (Zednik [2011] provides a detailed analysis of this model). The model is a 

simulated system consisting of a 14-neuron continuous-time recurrent neural network (CTRNN), inside 

an evolved model agent (meaning its network architecture was constructed with an evolutionary 

algorithm13), inside a two-dimensional environment. The agent moves horizontally as circles or 

diamonds fall from above. It 'categorizes' these objects by catching the former and avoiding the latter. 

The agent perceives with an eye consisting of seven rays, each connected to a corresponding sensory 

input neuron. When a ray hits an object, its input neuron receives a signal inversely proportional to the 

distance from the object – the closer the object when 'seen' by a ray, the greater its input signal. 

 The agent with the best performance evolved a strategy of active scanning (Beer 2003). First, 

the agent centers the object in its field of view, then it moves back and forth, scanning the object. The 

scan narrows to home in on circles, while breaking to avoid diamonds. Beer (2003: 228-9) explains this 
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active scanning as follows. First, he decomposes the agent-environment dynamics into the effect of the 

relative positions of agent and object on the agent's motion, and vice versa. Then, for both circle and 

diamond trials, he superimposes the motion trajectory of the object through the agent's field of view 

onto a steady-state velocity field, which represents, for each point in the agent’s field of view, the 

agent's steady-state horizontal velocity in response to an object at that point (228). Finally, he notices 

from an examination of the agent's motion trajectories that it consistently overshoots the midline of its 

visual field, due to the lag in time for the neural network to respond to sudden changes in sensory input. 

Therefore, according to Beer, active scanning is explained by the dynamic interaction of the steady-

state velocity fields and the neural network's lag.14 

Finally, consider Thelen et al.’s (2001; Smith and Thelen 2003) dynamical field model of the A-

not-B error. The A-not-B error is an instance of perseverative reaching – infants between 7-12 months 

will continue to reach to a location (location “A”) where they have previously reached for a hidden toy, 

even after they see the toy moved to a new location (location “B”). Infants older than 12 months tend 

not to make the error. Getting into all the mathematical details of the dynamical field model of the A-

not-B error would take us too far afield, so I will only focus on the broad outline. The model consists of 

a differential equation that specifies the activation level for each point in the infant’s movement 

planning field. These points correspond to points in the infant’s visual field where it could reach, it’s 

reaching field. Once activation at a point of the movement planning field passes a threshold, the infant 

reaches toward the corresponding point in space. The activation is a function of three inputs: task input 

(e.g., environmental features like distance to containers and their salience), specific input (e.g., to 

where the experimenter draws the infant’s attention) and memory input (reflecting previous reaching 

trials). The A-not-B error occurs when, after several A-trials, the memory input overwhelms the other 

inputs and the infant reaches to location A. This model successfully predicts many facts about the 

circumstances under which the A-not-B error occurs, such as the influence of posture, attention, and 
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delay (Smith and Thelen 2003).  

Dynamicists have argued that dynamical models such as the above are non-mechanistic because 

they abstract from low-level neural details and capture high-level qualitative behavior, yet such models 

are still explanatory because they yield understanding (Gervais 2015), accurate prediction, and 

unification of diverse systems (Chemero 2009; Chemero and Silberstein 2011; Stepp, Chemero, and 

Turvey 2011; van Gelder and Port 1995; Walmsley 2008). HKB, for example, does not include any 

specification of the neural mechanisms responsible for finger movements, but it does accurately 

describe diverse systems (including the coordinated limb movements of two separate people [Schmidt, 

Carello, and Turvey 1990]) and accurately predicts the amount of time it takes for the relative phase to 

stabilize following selective interference (Walmsley 2008). Van Eck (2018) disagrees that 

understanding, prediction, and unification are (individually or jointly) sufficient for explanation but 

agrees that some dynamical models – such as the dynamical field model – are not mechanistic. Instead, 

the dynamical field model is what he calls a “causal contextualized model” that does not refer to any 

constitutively relevant parts of a mechanism. 

3.2 Mechanist Responses 

 The responses of mechanists to dynamical models have invoked the distinction laid out in 

Section 2.2 between predictive, phenomenal models and mechanism-schemata. Mechanists have 

argued that although a dynamical model's predictive power is a theoretical virtue, it is not enough to 

make a dynamical model explanatory (as the barometer example above shows), and, relatedly, that a 

dynamical model's unificatory ability (i.e. its ability to apply to a wide range of diverse systems) is 

likewise insufficient for explanation (Kaplan and Craver 2011). Instead, according to mechanists, a 

model like HKB, insofar as any internal causal structure is omitted15, is a phenomenal model that 

merely describes an interesting, widespread pattern, but does not explain that pattern. In light of these 

concerns, Kaplan and Craver (2011) have argued that dynamicists have not yet provided a satisfactory 
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account of what makes dynamical models explanatory, if they do not refer in any way to mechanisms 

or their organization (see also Kaplan 2015; Kaplan and Bechtel 2011).    

 Beer (2003) seems not to have explicitly taken his dynamical explanation to be non-mechanistic 

(see endnote 14). Zednik (2011) argues that Beer's explanation should be seen as describing interactive 

components in an extended mechanism that spans brain, body, and environment. The explanandum is 

the behavior of one component in this mechanism, the agent's active scanning. The model shows how 

interactions with the environment, along with the time lag in responding to stimuli, result in active 

scanning.16 While this explanation does not describe any internal mechanisms, so is not a constitutive 

mechanistic explanation, it does seem to qualify as a kind of contextual mechanistic explanation.17 

 Regarding the dynamical field model (Thelen et al. 2001; Smith and Thelen 2003), let us 

consider van Eck’s argument more closely. By “mechanistic explanation,” van Eck explicitly has in 

mind constitutive explanation (2018: 14-5). Since the dynamical field model of the A-not-B error does 

not refer to a mechanism (or components thereof) inside the infant, but variables outside (e.g., posture 

and the locations of the containers), it is not a constitutive explanation. The mechanist is likely to 

concede this though and respond that it is still a mechanistic explanation, just of the contextual variety 

(Zednik 2011). We have already seen that Zednik (2011) considers Beer’s model an extended (i.e., 

contextual) mechanistic explanation, and in the same paper Zednik argues that Thelen et al.’s model is 

too, for the same basic reasons. The dynamical field model is explanatorily similar to Beer’s model, so 

van Eck would likely also consider Beer’s model a causal contextualized model. 

Van Eck considers this response (2018: 15-6) and argues that the dynamical field model is not a 

contextual mechanistic explanation because variables like posture are not causes but constraints that set 

the context for causes, constraints which, importantly, he says are different from background 

conditions. The mechanist is likely simply to deny either the cause/constraint distinction or the 

constraint/background condition distinction (as Gervais and Weber [2011], Zednik [2011], and even 
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Smith and Thelen [2003] appear to). After all, the mechanist will say, the input variables of the model, 

like posture or container color, stand in manipulable counterfactual dependence relations to the 

explanandum, and that is all it takes to be a cause of the explanandum (Woodward 2003). This is 

consistent with Bechtel’s (2009: 557-9) discussion of how contextual mechanistic explanations 

describe the specific character of a mechanism’s inputs and the systematic dependence of its behavior 

on them. 

3.3 Strategies and Explanations 

In responding to dynamicists, Zednik (2011) makes an increasingly common distinction 

between mechanistic explanations, on the one hand, and the heuristic strategies and tools used for 

constructing and representing them, on the other. He emphasizes that dynamical systems theory is a 

mathematical and conceptual framework that, as such, can be used to represent anything to which its 

concepts apply. If that includes the components, activities, and organization of mechanisms, then 

dynamical systems theory can provide mechanistic explanations.18 Zednik (2015) has since extended 

this point, using examples from evolutionary robotics and network science to show how new tools for 

mechanism description and discovery go beyond the traditional mechanistic strategies of 

decomposition and localization (Bechtel and Richardson 1993). 

Hochstein (2016) hits on a distinction similar to Zednik's (2015) in his diagnosis of the 

disagreement over which models are mechanistic explanations. He locates two opposing assumptions 

concerning the role of representation in mechanistic explanation. He calls these assumptions the 

'representation-of' and 'representation-as' accounts of mechanistic explanation. According to the 

representation-of account, for an explanation to be mechanistic, it must be a representation of a 

mechanism, where this requires only that the explanation provide information about a relevant 

mechanism. According to the representation-as account, for an explanation to be mechanistic, it must 

not only provide information about a mechanism, but also represent the mechanism mechanistically, 
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that is, as a mechanism. That is, not only must the represented thing in the world be a mechanism, it 

must be represented in a particular, machine-like way; the model or representation itself must have the 

form of depictions of neatly localized entities interacting to produce the explanandum.19 

 On the representation-of account, the general relation between mechanistic explanations and 

models is as follows. In the world there is a target mechanism, that produces, maintains, or underlies an 

explanandum phenomenon. There are many, conceptually and representationally distinct ways of 

describing this mechanism. To the extent that a model accurately picks out the mechanistic structures 

relevant to the explanandum phenomenon, the model mechanistically explains the explanandum 

phenomenon, regardless of how those structures are represented and regardless of which concepts are 

deployed (see Potochnik [2016] for some contrasting arguments). The form of representation and 

concepts deployed may be important when we are concerned with the understanding a model provides 

to cognitive agents, but mechanists who hold a view like the representation-of account typically also 

hold, contra Gervais (2015)20, that explanation and understanding should be kept relatively distinct – a 

model that provides understanding but no information about mechanisms is never a mechanistic 

explanation (e.g., Craver 2014). 

 The representation-of account places no requirements on the form of the representation or 

concepts deployed. Since the representation-as account requires more of a model for it to be a 

mechanistic explanation, fewer psychological models will be counted as mechanistic explanations 

according to it than according to the representation-of account. Here we see, then, how the two 

opposing assumptions lead to disagreement about which psychological models are mechanistic and 

why. 

 Hochstein (2016) argues that the representation-of account trivializes the claim that 

neuroscience provides mechanistic explanations. Since the brain is a collection of mechanisms and 

neuroscientists model the brain, they therefore provide mechanistic explanations. However, some have 
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argued that there are explanations in neuroscience that are not of mechanisms (e.g., Chirimuuta 2014; 

see Paz [2017] for a response). Furthermore, showing why and how neuroscientists provide 

mechanistic explanations requires showing why and how their distinctive concepts provide information 

about mechanisms, which is a controversial and nontrivial philosophical task, especially for cognitive, 

computational, and systems neuroscience (Piccinini and Craver 2011, Kaplan 2011, Zednik 2015, 

Povich 2015, 2019; I return to this in the next section). Compare this to a similar debate about 

etiological causal explanation. For example, Skow (2014) basically holds a representation-of account of 

causal explanation: roughly, an explanation is causal if and only if it provides information about the 

explanandum's causal history.21 One might say that this trivializes the claim that science provides 

causal explanations, since scientists model the natural world and, plausibly, the natural world is made 

of causes (ignoring the quantum realm and general skepticism about causation; see Andersen 2016). 

What is non-trivial is showing how a model provides a causal explanation. Skow responds to some 

prominent putative counterexamples to causal explanation (e.g., explanations that cite causally inert 

entities) by showing in detail precisely how they provide causal information (e.g., by showing how 

such explanations rule out possible causal histories). Furthermore, constitutive mechanistic models can 

provide information about the constitutive relation between an explanandum and its mechanism 

without providing much, if any, information about its causal history. These would not be causal 

explanations according to an account like Skow’s, so it does not make all scientific explanations causal 

(see Povich [2018] for a discussion of some explanations that are arguably non-causal even on a broad, 

informational construal of causal explanation). 

 The representation-of account of mechanistic explanation is therefore not without some 

precedent. An account like Skow's (2014) has long been widely recognized as legitimate in the 

literature on causal explanation, where, to be a causal explanation, a representation need only provide 

information about an explanandum's causes or causal history (Jackson and Pettit 1990; Lange 2013; 



17 

 

Lewis 1986). On such accounts of causal explanation, explanations do not have to have a particular 

representational or conceptual form in order to count as causal. Proponents of the representation-of 

account can be seen as extending this idea to mechanistic explanation. 

 A distinction similar to Zednik’s (2011; 2015) is made by Levy (2013), who distinguishes 

between what he calls 'causal mechanism,' 'explanatory mechanism,' and 'strategic mechanism'. Only 

the latter two concern us here. According to Levy, explanatory mechanism is the thesis that 'to explain a 

phenomenon, one must cite mechanistic information' (100). This appears to be equivalent to the 

representation-of account. On the other hand, strategic mechanism 'articulates a way of doing science, a 

framework for representing and reasoning about complex systems,' using modeling methods such as 

decomposition and localization (104-5). Unlike the representation-as account, strategic mechanism 

does not explicitly say that mechanistic explanations must have a certain representational form, but 

such strategies do constrain the representational form of models. Adherence to strategic mechanism 

might therefore motivate adherence to the representation-as account.   

 Similarly, Andersen (2014a, b) distinguishes between five conceptions of mechanism or 

mechanistic philosophy. The most important for us are what she calls mechanism1 and mechanism2. 

The central difference between them is that mechanism1 has stricter criteria (like a regularity 

requirement) for when something counts as a mechanism and, like Levy’s (2013) ‘strategic 

mechanism,’ offers methodological prescriptions while mechanism2 does neither. Like Levy’s (2013) 

‘explanatory mechanism,’ according to mechanism2, models are explanatory because they describe 

mechanisms in the permissive sense (Andersen 2014a: 280). 

 Thus, Hochstein’s (2016) representation-of/representation-as distinction, Zednik’s (2015) 

explanation/heuristic distinction, Levy’s (2013) explanatory mechanism/strategic mechanism 

distinction, and Andersen’s (2014a) mechanism2/mechanism1 distinction seem to be at least roughly 

coextensive. One might also make a similar point by distinguishing between mechanistic explanations 
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and mechanistic models, construed as kinds of representation. Mechanistic explanations can be 

provided by non-mechanistic models, since non-mechanistic models can provide information about 

mechanisms. It is important to note, however, that agreement on one side of these distinctions does not 

guarantee agreement about which psychological models are mechanistic explanations. For example, 

two philosophers who both hold the representation-of account could still disagree about which 

psychological models are mechanistic explanations, because they disagree, inter alia, about the 

ontology of mechanisms – that is, they disagree about whether the thing about which a model provides 

information counts as a mechanism (see endnote 5). 

4. Abstraction, Functionalism, and Realization   

 In addition to dynamical models, functional analyses or cognitive models are prominent 

putative counterexamples to mechanistic explanation in psychology (Fodor 1965, 1968; see Piccinini 

and Craver [2011] for response). A functional analysis of a psychological capacity explains it in terms 

of the functional properties, either of the whole cognitive system, or of its parts. Contrast functional 

analysis with the explanation of LTP above: in that explanation, explicit reference is made to neatly 

localizable structural components (e.g., glutamate molecules, NMDA and AMPA receptors, and 

calcium and magnesium ions) that engage in organized activities (e.g., diffusing, blocking, opening, 

and binding) that are responsible for the explanandum phenomenon. Functional analysis, on the other 

hand, proceeds relatively independently (or autonomously) of consideration of the structural 

components (and their physical activities) that realize the functional properties or play the functional 

roles posited in the analysis (Weiskopf 2011; 2017). Mechanists have either denied such independence 

or denied that such independence renders functional analyses non-mechanistic, arguing instead that 

functional analyses are mechanism-sketches (call this the “sketch thesis”; Piccinini and Craver 2011; 

Piccinini 2015; Povich 2015). Let us examine more closely the reasons for and against the mechanistic 

status of functional analyses, which will bring out how realization and abstraction (can) relate to 
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mechanistic explanation. 

4.1 Functional Analyses and Mechanism Sketches 

 The primary reason that Piccinini and Craver (2011) give for the sketch thesis is that functional 

analyses put constraints on the possible mechanisms that implement the functions posited in the 

analysis. Similarly, structure constrains function: not just any structural component can perform any 

function. For example, to perform the functions of belief and desire boxes, a mechanism(s) must be 

able to distinguish between those two types of representation and transform them in relevant ways 

(Piccinini and Craver 2011: 303). This puts some constraints on what could possibly implement belief 

and desire boxes. Since putting constraints on a possible mechanism is the same as providing 

information about a mechanism (in the most common sense of “information”), this argument appears to 

rely on a representation-of account of mechanistic explanation (Hochstein 2016): functional analyses 

are mechanism sketches because they provide information about mechanisms.  

 The neural mechanisms that play the functional roles of belief and desire boxes (or other 

functional states), are likely vague, widely distributed, and multi-functional. For this reason, Piccinini 

and Craver (2011) also emphasize a permissive concept of mechanism like the one given in Section 2.1 

above, according to which the components that play the functional roles need not be neatly localizable 

or contained within well-defined boundaries (Piccinini and Craver 2011: 296). 

 Weiskopf (2011; 2017) objects to the sketch thesis and the claim, required for that argument, 

that mechanism components can be widely distributed. Against the latter claim, he argues that it results 

in 'greater difficulty in locating the boundaries of mechanisms' (Weiskopf 2011: 315) and gives up 'any 

requirement that parts be describable in a way that our modeling techniques can capture' (2017: 56). I 

do not have space to respond in detail here, but I have argued in depth elsewhere that model-based 

fMRI can ameliorate these practical worries (Povich 2015).22 

 In response to the sketch thesis, Weiskopf (2017) argues as follows. If functional analyses are 
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mechanism-sketches, then they are amenable to two kinds of elaboration. 1) Intralevel elaboration 

involves adding details, discharging filler terms, and so on, while staying at the same mechanistic level. 

2) Interlevel elaboration involves going down mechanistic levels in order to explain their component 

entities and activities. He argues that it cannot be the case that functional analyses need interlevel 

elaboration in order to describe completely the causal structure relevant to a psychological 

phenomenon, because that would lead to a downward regress. In order to provide a complete model at 

any mechanistic level, one would have to give a complete model at every lower mechanistic level. He 

argues that if functional analyses need intralevel elaboration, this can be accomplished with more 

specific functional analyses of subsystems – there is no reason to think functional concepts can never 

fully accurately capture the psychological properties of a system. 

 The mechanist can make several moves in response to this argument. First, it could be argued 

that even if a functional analysis fully captures that psychological properties of a system, its 

explanatory incompleteness is shown by the fact that adding implementation details increases the 

explanatory power of the model (i.e., its ability to answer w-questions and to afford opportunities for 

intervention and control). Note that adding implementational details is not a kind of interlevel 

elaboration: simply to identify the occupant of a functional role is not to explain mechanistically how 

that occupant plays its role23. Implementational details are mechanistically intralevel details. To think 

otherwise is to confuse mechanistic levels with Marrian levels, as I have argued elsewhere (Povich 

2019). Weiskopf appears to be confusing the two when he says, in a discussion about descending 

mechanistic levels, “What does not follow is that an explanation of a psychological capacity by appeal 

to a cognitive model also requires that we have a further set of lower-level explanations for how all of 

the elements of the model are implemented” (2017: 59; emphasis added). 

 Second, building off the previous point, the mechanist could accept that functional analyses can 

be complete mechanism schemata, rather than mere sketches. This seems a natural move for a 
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proponent of the representation-of account, according to which the kinds of concept deployed in an 

explanation do not affect its mechanistic status. The mechanist could argue that as long as the 

functional concepts deployed pick out features of mechanisms, functional analyses count as 

mechanistic explanations. This is just to deny the representation-as account that is presupposed in 

Weiskopf's (2017) argument, for example, when he claims that, 'The question is whether remedying 

this sketchiness requires stepping out of the explanatory framework of psychology' (58) or that, 'An 

ideally complete cognitive model will still be one that is couched in the autonomous theoretical 

vocabulary of psychology' (59). For Weiskopf, whether an explanation is mechanistic depends on the 

vocabulary in which it is couched. Proponents of the representation-of account deny this. 

Piccinini and Craver’s (2011) argument that functional analyses are mechanism-sketches was 

not meant to imply that functional or computational analyses are never true or explanatory. The 

argument was that functional analyses are true and explanatory to the extent that they accurately 

describe mechanisms. A central part of that argument was showing that different kinds of functional 

analysis are 'elliptical' descriptions of mechanisms. This argument gains plausibility from a particular 

account of the realization relation, namely the subset account (Heil 2011; Shoemaker 2007; Piccinini 

and Maley 2014; Povich 2019). On the subset account, the realized is literally a subset of the realizer – 

functional concepts pick out subsets of the very same properties picked out by non-functional 

(structural, neural) concepts. Thus, realized and realizer seem not to be as ontologically autonomous as 

a functionalist like Weiskopf needs them to be. The subset account of realization, then, gives more 

precise content to the claim that functional analyses are 'elliptical' descriptions of mechanisms. The 

subset account also makes explicit why adding implementational details to a functional analysis is not a 

mechanistically interlevel elaboration: to add implementational details is to identify certain properties 

of the realizer that are not picked out by a functional concept, all of which properties are at the same 

mechanistic level (see Povich [2019] for an elaboration of this argument).24 
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If all this is right, however, then it seems that Piccinini and Craver (2011; also Piccinini 2015) 

were wrong that all functional analyses are mechanism-sketches – they seem to have the conceptual 

resources to say that sometimes functional analyses can be complete(-enough) mechanism schemata. 

Perhaps it is more consistent with their view to say that all functional analyses are how-possibly 

models25. Mechanistic details are often sought in order to confirm functional analyses (a point van Eck 

[2018] makes with respect to dynamical models), though evidence for functional analyses can come 

from other places too, such as behavioral interventions (Weiskopf 2017). 

5. Ontic and Epistemic Conceptions of Explanation 

 The distinctions set out in Section 3 are somewhat related to, but not as coextensive with, 

another that is prominent in contemporary philosophy of explanation: Salmon's (1984, 1989) 

distinction between epistemic and ontic conceptions of scientific explanation. These conceptions were 

different accounts of what a scientific explanation aims to show of its explanandum phenomenon: that 

it is expected to occur and that it fits 'into a discernible pattern,’ respectively (1984, 121)26. According 

to Salmon, the 'discernible pattern' into which an explanandum phenomenon is fit is structured by 

causal processes, interactions, and laws (1984: 132). Explaining is 'providing information about these 

patterns that reveals how the explanandum-events fit in' (1989, 121). Explanation, for Salmon, is not 

about nomic expectability or nomic necessity, but about fitting the explanandum into 'discernible 

patterns' and 'relationships that exist in the world' (1984, 121) (Povich 2018).27 

 The ontic-epistemic debate has shifted twice since Salmon (Illari 2013)28. Salmon framed the 

debate in terms of what explanations do. After Salmon, the debate was framed metaphysically, as a 

debate about what explanations are: The ontic conception was associated with the claim that scientific 

explanations are (almost always causal) dependence relations in the world; the epistemic conception 

became associated with claim that scientific explanations are epistemic states or representations.   

 The distinction has since shifted from a metaphysical distinction concerning what explanations 
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are – representations or the things represented? – to one that focuses on explanatory demarcation and 

normative constraints on explanation (Illari 2013; Craver 2014, 2019; Povich 2018).29 Craver writes 

that according to the ontic conception, 'in order to satisfy these two objectives [of explanatory 

demarcation and explanatory normativity], one must look beyond representational structures to the 

ontic structures in the world' (2014: 28). The idea is that attention to ontic structures, rather than 

representational form, is required to demarcate explanation from other scientific achievements, like 

prediction, and to distinguish good from bad explanations, how-possibly from how-actually 

explanations, and explanatorily relevant from irrelevant features (2014: 51).30  

The ontic conception/epistemic conception distinction is not coextensive with the distinctions in 

Section 3. The other distinctions concern what makes a model mechanistic, while the ontic 

conception/epistemic conception distinction concerns what makes a model an explanation at all. It 

seems that one could consistently hold, for example, that representational form does not matter for 

whether a model is an explanation but does matter for whether it is a mechanistic explanation. It also 

seems that one could consistently hold, for example, that representational form matters for whether a 

model is an explanation but does not matter for whether it is a mechanistic explanation.  

However, the ontic conception and the representation-of account (or corresponding sides of the 

other distinctions) tend to go together, and opponents of the representation-of account (or 

corresponding sides of the other distinctions) tend to be opponents of the ontic conception (Wright 

2012) – e.g., Hochstein (2016) cites Craver’s (2014) exposition and defense of the ontic conception 

when he characterizes the representation-of account. I think it is intuitive why this is. The ontic 

conception says that the difference between a model that explains and one that does not depends on the 

ontic structures about which the model provides information. The distinction between different kinds of 

explanation can then be easily drawn by appeal to the kind of ontic structure about which information 

is provided (Craver 2014; Povich 2018, forthcoming: 33). So, if a model provides information about a 
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mechanism, it is a mechanistic explanation; if it provides information about causes, it is a causal 

explanation; etc. It is a virtue of this account that it makes mixed kinds of explanation intelligible, 

explanations that are partly etiological, partly mechanistic, etc. One could think of the representation-of 

account as an ontic conception of mechanistic explanation. 

6. Conclusion 

 Which psychological models are (or provide) mechanistic explanations? The conciliatory 

answer is, 'It depends.' It depends, for example, on whether one adopts a representation-of account or 

representation-as account of mechanistic explanation (or one side of any other of the roughly 

coextensive distinctions; Hochstein 2016; Andersen 2014a, b; Levy 2013; Zednik 2015). In some cases, 

such as when all parties agree about the counterfactual dependencies and that these dependencies are 

explanatorily relevant, disputes about whether a psychological model is a mechanistic explanation may 

be semantic.31 Whether to call a model a “mechanistic explanation” would then largely depend on how 

you conceive the mechanistic project. If you conceive it as 'explanatory mechanists' (Levy 2013) tend 

to, as articulating a 'downward' way of causally situating an explanandum phenomenon that was 

neglected by Salmon and others who focused on 'backward' (etiological) causal explanation (Craver 

2007: 8), then it becomes clearer why one might hold something like the representation-of account 

(Povich 2015). From this perspective, a categorization or typology of the diverse kinds of mathematical 

framework, representation, or model used in scientific explanatory practices might be useful for some 

purposes but does not seem to advance the classical project of a philosophical theory of scientific 

explanation, which is to provide conditions of explanatory demarcation and normativity (Craver 2014; 

again, see Potochnik [2016] for a contrast).  

Endnotes 

1. Special thanks to Carl Craver and Eric Hochstein for many hours of stimulating conversation on 

nearly all of the ideas touched upon in this chapter. Thanks also to Gualtiero Piccinini for discussion of 
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his work on functionalism and mechanism and to an anonymous reviewer for very helpful comments. 

Mistakes are inevitably my own. 

2. See Section 2.1 below. 

3. As I will use the terms here, not all functional analyses are cognitive models, but all cognitive 

models are functional analyses. See Section 4. 

4. I will speak of the 'behavior' or 'property' of a whole mechanism as that for which the mechanism is 

responsible, but there is also disagreement about how metaphysically to characterize the phenomenon 

produced by a mechanism (Kaiser and Krickel 2016). 

5. The more restrictive one makes the concept of mechanism (for example, by requiring modularity and 

stability [Woodward 2013], localizability [Weiskopf 2011], or regularity [Andersen 2012]), the 

correspondingly rarer mechanistic explanations will be. When presented with a putatively non-

mechanistic explanation, one should always ask what concept of mechanism is in the background. 

6. Eronen (2015) argues that this is so weak that it is tantamount to abandoning the idea of levels 

altogether. 

7. For example, Craver's account requires that the interventions used to establish constitutive relevance 

are 'ideal,' which seems conceptually impossible (Baumgartner and Gebharter 2015; Couch 2011; 

Harinen 2014; Leuridan 2012; Prychitko 2021; Romero 2015). For Craver’s revised account, see 

(Craver, Glennan, and Povich forthcoming). 

8. Bechtel (2011) also includes what he calls 'looking around,' which involves determining how the 

components of a mechanism are organized. I have subsumed this under constitutive mechanistic 

explanation. 

9. These are related, of course. The latter ability is a practical analogue of the former. 

10. Although not all representations are models, in this context I will use the terms 'representation' and 

'model' synonymously to mean some kind of structure (e.g., a concrete replica, a mathematical 
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equation, a diagram, or a linguistic description) that is interpreted to represent a target system 

(Weisberg 2013). This terminological choice runs roughshod over Weisberg's distinction between 

models and model descriptions, but this should not affect the points that follow. 

11. I do not mean to imply that all mechanists make this distinction or that no mechanist has meant a 

certain kind of model by 'mechanistic explanation,' just that, of those mechanists who dispute putative 

examples of non-mechanistic explanation, many of them have appealed to this distinction, or 

something like it. Kaplan's (2011) model-to-mechanism-mapping (3M) requirement might preclude 

him from making this distinction, or at least from saying that models that fail 3M, but still provide 

information about mechanisms, are mechanistic explanations. For example, you can provide 

information about mechanisms by saying what is not responsible for an explanandum (cf. Lewis 1986: 

220), but this would violate 3M. This comes down to Kaplan's intended scope of 3M, something about 

which I will refrain from speculating here.   

12. Since my theme is psychology, I leave aside dynamical models in neuroscience, though they too 

have been presented as counterexamples to mechanistic explanation. For example, see Ross (2015), 

which relies on Batterman and Rice's (2014) notion of a 'minimal model explanation.' The response to 

Batterman and Rice in Povich (2018) applies to Ross's argument as well. 

13. Specifically, the connection weights, biases, time constants, and gain were evolved, but not the 

number of nodes (Beer 2003: 214). 

14. Beer (2003) also analyzes the neural network, including individual neurons, and how it changes 

over the course of active scanning, thus providing a multilevel mechanistic explanation of categorical 

perception via active scanning. For brevity's sake, and due to the fact that this part of Beer's analysis is 

more clearly consistent with mechanistic explanation, I omit further discussion of this; see Zednik 

(2011) for more. 

15. Kaplan and Craver (2011) note that Kelso and colleagues have not neglected to investigate the 
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neural mechanisms that generate the dynamics HKB describes. 

16. Questions like, 'Why is the lag such and such amount of time?' require looking at the neural 

mechanisms of the agent. This does not detract from the contextual mechanistic explanation of active 

scanning – the lag time is simply a different explanandum. See Zednik (2011: 254). 

17. Chemero (2009: xi, 85) argues that Gibson's (1979) ecological psychology provides a background 

theory unifying all dynamical modeling in psychology. As we have seen, however, Bechtel (2011) 

argues that Gibson's ecological psychology provides contextual mechanistic explanations.  

18. Similar arguments have been made with respect to optimization theory and network and graph 

theory: they are formal frameworks that can be used to provide mechanistic explanations when they 

provide information about properties – usually organizational properties – of a mechanism (or 

components thereof) that are relevant to the explanandum (see, e.g., Levy and Bechtel 2013; Craver 

2016). 

19. One might also put this by saying there is a distinction between mechanistic models and models of 

mechanisms (Craver, personal communication). 

20. The mechanist is likely also to object to Gervais’s (2015: 61) restrictive account of mechanistic 

explanation, which, like Weiskopf’s (2011, 2017), requires highly specific (i.e., non-abstract), neatly 

localizable entities. Gervais (2015: 61-2) also mistakenly infers, from Kaplan and Bechtel’s (2011: 443) 

claim that Voss’ (2000; Stepp et al. 2011) strong anticipation model of circadian rhythms is a how-

possibly model, that it is not mechanistic. But a how-possibly model is a mechanistic model, just one 

with little to no evidential support. The mechanist may say that no how-possibly models are 

explanations (as van Eck [2018: 10] notes), but they need not say they are not mechanistic – they 

provide information about a possible mechanism. 

21. Skow's (2014) account is more complicated than this, and it is limited to explanations of particular 

events. 
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22. Model-based fMRI is a neuroimaging method that combines psychological models with fMRI data, 

allowing cognitive neuroscientists to explore how the components of psychological models map onto 

distributed brain regions. 

23. Endicott (2011) helpfully distinguishes between the 'what' and the 'how' of functional realization. 

He argues that the former is answered by the subset account, and the latter is answered by the 

dimensioned account (Gillett 2002a, b), which is basically a kind of constitutive explanation. Only the 

latter requires descending mechanistic levels; the former concerns implementation as I have been 

discussing it. Polger and Shapiro (2008) argue that dimensioned realization is just an account of 

composition, not the realization of functional properties, because functions are not composite objects 

whose properties depend on the properties of their organized parts. If Polger and Shapiro are right, then 

the subset account is (currently) the only game in town for the functionalist, and the autonomist seems 

to be in trouble. 

24. Here I ignore certain debates around powers and their ontological and individuative relations to 

properties. For this reason and others (Audi 2012; Heil 2011), I prefer to characterize the subset 

account of realization in terms of concepts and what they pick out, rather than properties and the 

powers they confer or bestow on objects that possess them. 

25. Some later work of Piccinini’s might seem to suggest this. For example, “Much of Marr’s work 

belongs in this how-possibly category. … It is no longer enough to simply home in on ways in which 

problems might be solved in the brain; contemporary cognitive neuroscience aims to understand how 

those problems are actually solved in the brain” (Boone and Piccinini 2016: 1520; original emphasis). 

26. Salmon also includes the modal conception of scientific explanation, according to which an 

explanation shows that the explanandum had to occur.  

27. This need not be construed solely causally, and Salmon did not think causation was essential to the 

ontic conception (Povich 2018). 
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28. The modal conception has fallen out of favor and was not included in later debates (but see Lange 

[2013] for a recent defense). 

29. According to Illari (241), Craver holds that this has always been the core of the debate between the 

ontic conception and the epistemic conception. 

30. Under this framing of the debate, Wright (2012) overemphasizes the role that lexical ambiguity of 

the term 'explanation' plays in the argument for the ontic conception. The argument for Craver's claims 

about explanatory demarcation and normativity does not require lexical ambiguity.  

31. Here I am extending an idea from Woodward (2003: 86), who wrote in the context of etiological 

causal explanation: “if, as I assume is the case, we agree about all of the relevant counterfactuals, it is 

not clear that there is a further question over and above these about whether the sergeant's orders 

"really" cause the corporal to advance or not, unless that question is simply a (misleading) way of 

asking about the judgments that most people in fact endorse in such a case. This assessment seems 

particularly compelling to the extent that our concern is with causal explanation, for once we have been 

given information about the complete patterns of counterfactual dependence in the symmetric 

overdetermination and trumping cases as well as a description of the actual course of events, it appears 

that nothing has been left out that is relevant to understanding why matters transpired as they did.” 
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