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ABSTRACT. The prospects and limitations of defining truth in a finite model in the same
language whose truth one is considering are thoroughly examined. It is shown that in
contradistinction to Tarski’s undefinability theorem for arithmetic, it is in a definite sense
possible in this case to define truth in the very language whose truth is in question.
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1. INTRODUCTION

It has now become common wisdom that one cannot speak about the truth
in a language in that same language, but that one has to use an essentially
stronger metalanguage – at least, if one is not prepared to give up some
basic laws of logic. This received picture is, of course, largely a conse-
quence of Tarski’s work, especially his justly celebrated theorem on the
undefinability of truth.

My aim in this paper is to question this received picture slightly. My
point of departure is the question: What if the universe is finite? For, al-
though Tarski’s undefinability theorem is known to hold for a wide range
of theories, actually even the weakest such theories, for example Robinson
Arithmetic Q, allow only infinite models: the classical methods of logic
just require this (this remark will become more clear in what follows);
no doubt one has assumed that theories allowing finite models are much
too weak to have any use as a metatheory. Nevertheless, as I show below,
certain more recent logical tools enable one to partly overcome this.

As long as one is dealing with the foundations of mathematics, it is
indeed natural to consider theories that contain a reasonable amount of
arithmetic, and consequently imply the infinity of their models – I am
not trying to argue for strong finitism in the philosophy of mathematics.
But when doing philosophy and theorizing about truth, the controversial
infinite mathematical realm may not be the best possible starting point.
And if we consider truth with respect to the material world, I think it is
quite problematic if a theory of truth in itself rules out finite universes and
implies that the world is infinite.1
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Consequently, my approach below to the notion of truth will be a rather
unusual. Figuratively speaking, I shall take an agnostic view concerning
the size of the universe, that is, I shall allow the possibility that it is finite,
although I make no claims about its size (in first-order logic, this allows
the possibility that the universe may be infinite: one cannot then rule out
this unless one determines the maximal size of the universe; this is a well
known corollary of the compactness theorem). I then ask how the concept
of truth can be approached in this framework. It turns out that the resulting
picture differs in certain respects quite a lot from the standard view.

2. LOGIC AND FINITE MODELS

Recently, a great number of logicians have started to pay growing attention
to the model theory of finite models, or briefly, finite model theory – not
because of the concept of truth or any philosophical reason, but mainly
because of its relevance for computer science.2 Let us first review a couple
of basic facts of this field that have been known for a long time.

The basic limitative result is Trakhtenbrot’s Theorem (Trakhtenbrot,
1950), according to which the set of finitely valid first-order sentences
(i.e. the sentences that are true in every finite model) is not recursively
enumerable. This means that, in contradistinction to Gödel’s completeness
theorem, one cannot have a complete axioms and/or rules of inference for
finitely valid sentences.

On the other hand, every finite model can be characterised up to iso-
morphism by a first-order sentence. It follows immediately that truth in
any particular finite model can be completely axiomatized. For a model-
theoretician, this may be a disappointing state of affairs (and consequently,
finite model theory largely concentrates on different model classes). But
viewing the issue philosophically, I don’t think that there is any intrinsic
value in the possibility to construct indefinitely many bizarre models of a
theory.

As the notion of truth in a finite model is always decidable, it is (strong-
ly) representable in any standard arithmetical theory. Hence, it is indeed
easy to develop a complete theory of truth in finite models, say, in set
theory or Peano Arithmetic (or, actually, even in Robinson Arithmetic).
But in all these cases the metatheory is a theory of a very different level, as
it claims that the universe is infinite, and this runs in the face of my finitist
approach here. That is, all these theories are simplyfalse in any finite
model. This makes it impossible to compare theory and its metatheory in
the way I would like to do. In what follows, I aim to investigate whether
one can do any better. It turns out that one can.
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Remarks.Before I proceed, it is in order to make more explicit what
I exactly mean by “truth” here. Here I can be very short-spoken, for I
shall simply follow the standard Tarskian inductive definition of truth in a
model, which applies directly also to the finite models. Moreover, it may
be best to emphasize that I shall commit myself to the classical logic, with
bivalence and the law of the excluded middle (although in the context of
finite domains, even intuitionists would not question their validity). So in
these respects my approach is in complete accordance with Tarski’s.

3. VARIETIES OF DEFINABILITY

A central part of the received picture of truth is Tarski’s Theorem, accord-
ing to which, roughly speaking, truth is not definable (see Section 5). There
are, however, various different kinds of notions of definability in logic
(cf. Mostowski, 1965, pp. 29–30). Nowadays, Tarski’s Theorem is often
expressed by saying that arithmetical truth is not definable (by an arith-
metical formula) in the standard model of arithmetic. This is the notion of
definability in a model. However, one often considers ratherdefinability in
a theory; this general notion includes various sorts (weak, strong, etc.) of
representability. (Tarski himself spoke of semantic definability and formal
definability.) When considering finite models, there are good reasons to
focus on the latter.

First, one simply cannot define any infinite set, however simple, in a
finite model – or even a finite set larger than the universe of a given model.
Especially, it is therefore trivially impossible to define in a finite model
the set of all sentences true in that model. For, there are always infinitely
many true (and false) sentences; hence the question of definability of truth
in a finite model does not even make sense. On the other hand,in a theory
allowing finite models it may very well be possible to define, or represent,
even infinite sets, as we will soon see.

Second, one may note that definability in a model is in fact a special
case of representability, namely, it coincides with representability in the
complete theory of the model. Note that in this case weak and strong repre-
sentability coincide (cf. Mostowski, 1962). Consequently one may as well
state Tarski’s Theorem as saying that arithmetical truth is not weakly rep-
resentable even in the (non-axiomatizable) complete theory of arithmetic
(cf. Section 5).

Representability is normally a much weaker notion than definability in
a model, and if we can establish representability in a manageable theory,
we have established a stronger result – and on the other hand, definability
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in a model may just be too strong a notion for some purposes. Moreover, as
every finite model can be completely described by a first-order sentence,
definability in a finite model can be always turned to definability in the
theory consisting of such a sentence. Thus, one loses little if one focuses on
definability in a theory. Therefore, in what follows, I shall mainly discuss
the notion of definability in a theory. More exactly, I shall concentrate
mostly on the notion of weak representability, and occasionally consider
also strong representability.

DEFINITION 3.1. A formalized theoryF weakly representsa setS, if
for some formulaϕ(x) of the language ofF , n ∈ S ⇔ F ` ϕ(n̄).

If, moreover,n /∈ S ⇔ F ` ¬ϕ(n̄), one says thatF strongly represents
the setS.

It is obvious how one generalizes these notions for relations.

4. THE CLASSICAL APPROACH: ROBINSON ARITHMETIC AND ITS

EXTENSIONS

For comparison, let us first review “the classical approach”, by which I
mean roughly the approach that was initiated in Gödel’s seminal 1931
paper on incompleteness, and which culminated in the classical bookUn-
decidable Theoriesby Tarski, Mostowski and Robinson, from 1953, where
it was shown that a very simple theory Q, now standardly called Robinson
Arithmetic, is sufficient to strongly represent all recursive sets. It follows
that Q also weakly represents all recursively enumerable sets. The axioms
of Robinson Arithmetic Q are the following:

(Q1) s(x) 6= 0,
(Q2) s(x) = s(y)→ x = y,
(Q3) x 6= 0→ (∃y)(x = s(y)),
(Q4) x + 0= x,
(Q5) x + s(y) = s(x + y),
(Q6) x × 0= 0,
(Q7) x × s(y) = (x × y)+ x.

This simple theory proves the so-called Diagonalization Lemma (also
known as the Self-Referential Lemma, or Gödel’s Fixed Point Lemma),
fundamental to various “limitative results” of logic. Let us assume that an
effective Gödel numbering of the language of arithmetic has been fixed,
and let us denote the Gödel number of an expressionϕ by pϕq.
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THE DIAGONALIZATION LEMMA 4.1. For every formulaϕ(x) with
one free variable there is a sentenceψ such thatQ ` ϕ(pψq)↔ ψ .

This lemma enables one to prove that Q and all its consistent axiomatizable
extensions are incomplete and undecidable. It is also the key tool in the
proofs of the various theorems on the undefinability of truth, to which we
next turn.

5. UNDEFINABILITY OF TRUTH: DIFFERENT VARIANTS OFTARSKI’ S

THEOREM

Let us first state Tarski’s undefinability theorem in terms of weak rep-
resentability. In fact, this is close to the form in which Gödel gave it
(Gödel, 1934), see also (Tarski et al., 1953) – both Gödel and, later, Tarski,
Mostowski and Robinson only stated it in terms of strong representability,
but the theorem holds even for weak representability. One can prove the
following two diferent variants:

THEOREM 5.1. One cannot weakly represent arithmetical truth in any
consistent recursively axiomatizable extension of Robinson Arithmetic.

THEOREM 5.2. One cannot weakly represent arithmetical truth in any
sound extension (in the language of arithmetic) of Robinson Arithmetic.

I shall refer to these formulations as the undefinability of truth, or as the
non-existence of atruth-definition.

Now originally (in his pathbreaking (1933a)) Tarski did not present
his undefinability result in this form.3 Rather, his version proves the non-
existence of atruth-predicate. That is, Tarski required that an adequate
definition of truth should entail all instances of his famous Convention T,
e.g.

The sentence “Snow is white” is true (inL)

if and only if snow is white

and similarly for every sentence of a given languageL. More formally, this
can be put as follows:

DEFINITION 5.3. A formulaT (x) is called atruth-predicatefor a theory
F if for every sentenceϕ of the language ofF , F ` T (pϕq)↔ ϕ.
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(Often what I call here a truth-predicate is also called a truth-definition, but
I prefer to use “truth-predicate” in order to clearly separate the two notions,
for the reasons that will become evident below.) By simple application
of the Diagonalization Lemma, one can easily prove the following two
version of Tarski’s theorem (cf. Smullyan, 1992, pp. 194–195):

THEOREM 5.4. Let F be a sound formalized theory (i.e.F proves no
theorem that is false in the standard model of arithmetic). Then there is no
truth-predicate forF .

THEOREM 5.5. LetF be a consistent formalized theory which proves the
diagonalization lemma. Then there is no truth-predicate forF .

Discussion

Now, the truth in a particularfinite modelis decidable, and hence Q can
even strongly represent truth of any first-order language in any finite model.
In particular, it can deal with the truth of itsown languagein a finite model
(although it clearly cannot have a truth-predicate, by Theorems 5.4 and
5.5). This is perhaps worth pointing out, for some passages of Tarski as
well as many popular expositions may seem to suggest that such a situation
is not at all possible.

Nevertheless, as I have already noted, this is not in all respects satis-
factory, for Q itself allows only infinite models, is thus itself false in every
finite model. (One might say in defence that although the universe is finite
there is, from the metaperspective, something with infinite number, namely
the true sentences; however, I shall not pursue this line further here.)

Our first two variants of Tarski’s theorem (Theorems 5.1 and 5.2) con-
cern the set of sentences true in the standard model, i.e. they are about the
truth of a language in a specific model. The latter variants (5.4 and 5.5)
on truth-predicates, on the other hand, say nothing about any particular
model, but concern truth in a language – in any model. Now certainly the
existence of a truth-predicate is sufficient to have a truth definition (in a
model, or insometheory of the language); however, as we will shortly see,
it is not a necessary condition: one may have a truth-definition without
having a truth-predicate.

The literature has not always clearly distinguished between the above
two variants of Tarski’s theorem, that is, between the non-existence of
truth-definition and the non-existence of truth-predicate; both follow easily
from the Diagonalization Lemma, and utilize the Liar paradox – and the
former implies the latter. However, in my finitary setting, it is of fundamen-
tal importance to clearly distinguish between these two (as will become
clear later).
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6. TRUNCATED ARITHMETIC TA

Let us next look how one could suitably weaken Robinson Arithmetic so
that it would allow finite models, without losing all its proof-theoretical
power. For this purpose, I have formulated the following finitary arithmetic
that I call Truncated Arithmetic4; let us abbreviate it by TA. It is a theory
in which every function symbol has the standard interpretation whenever
its arguments and value are within the given finite model, and in the other
case they are interpreted as the largest element of the model.5

Let us consider the languageL(TA)= {0,<, s,+,×} where 0 is a con-
stant,< a binary relation symbol,s unary function symbol and+,× are
binary function symbols. Terms 0, s(0), s(s(0)), s(s(s(0))) . . . are called
numerals. Then-th numeral, whose standard interpretation isn (that is,
which containsn occurrences ofs), is denoted bȳn. Now the axioms of
TA are (the universal closures of) the following:

(A1) ¬(x < x),
(A2) x < y ∨ y < x ∨ x = y,
(A3) (x < y ∧ y < z)→ x < z,
(A4) ¬(x < 0),
(A5) s(x) = y → (∀z)¬(x < z ∧ z < y),
(A6) [x < s(x)] ∨ (∀y)[(y < x ∨ y = x) ∧ x = s(x)],
(A7) x + 0= x,
(A8) x + s(y) = s(x + y),
(A9) x × 0= 0,

(A10) x × s(y) = (x × y)+ x.

The content of these axioms is the following: axioms (A1)–(A3) just state
that< is a strict total order (note that in TA ‘<’ is not, in contradistinction
to Q, definable in terms of ‘+’); (A4) that 0 is always the first element; (A5)
says that the successor is always the immediate successor; (A6) guarantees
that below the (possible) last elements behaves just like in the standard
case, and beginning from it it collapses to the identity; (A7)–(A10) are
just the familiar defining axioms for addition and multiplication (i.e. they
are identical to the axioms (Q4)–(Q7)); however, whenever the model is
finite and successor behaves non-standardly, also addition and multiplica-
tion collapse; their value is the last element whenever the “standard” value
is larger than it.6

Clearly this theory is satisfied by a model with just one object, and has
a model with each finite cardinality; obviously, it has also infinite models,
and especially, it is satisfied by the standard model of arithmetic (thus it is
sound). Hence, TA is semantically a very weak theory (and consequently,
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the incompleteness of TA can be shown by a simple semantical argument).
However, it is surprisingly strong in another respect.

First, note that TA is sufficient to calculate correctly the value of any
closed term as a numeral. Moreover, TA is complete with respect to all
sentences with the form(∃x1) . . . (∃xn)(t = t ′), wheret, t ′ are any terms
(these are called∃-sentences), i.e. TA proves all sentences of this form that
are true in the standard modelN (these facts can be proved by simple
inductions).7 It follows that if a Diophantine equation has a solution, this
fact can be proved in TA.

Now the logical tool than enables me (at least partly) to overcome the
infinity assumption of the classical approach is the following: In 1970 Yuri
Matiyasevich proved that Hilbert’s tenth problem is unsolvable (Matiyase-
vich, 1970); but although he is most famous for this devastating negative
result, his strong basic result was actually that every recursively enumer-
able set can be given a Diophantine representation, i.e. they all can be
defined by a∃-formula. Matiyasevich’s result built essentially on earlier
work by Julia Robinson, Martin Davis and Hilary Putnam (Davis, Putnam
and Robinson, 1961). Hence it is often called the MRDP-theorem.

MRDP-THEOREM 6.1.Every recursively enumerable set is definable by
a ∃-formula.

Now this entails, together with the above considerations, the following fact
that will play a crucial role below:

THEOREM 6.2. For any recursively enumerable setS one can find a
∃-formula (having the form(∃x1) . . . (∃xn)(t = t ′)) that weakly represents
S in TA.

In fact, if one added to TA the defining axioms of exponentiation, even
the older result by Robinson, Davis and Putnam, from 1961, would be
sufficient.

It follows that TA is what Smullyan (1961, 1993) has called a Gödel
Theory: it is incomplete and undecidable; however, it isnot a Rosser The-
ory, and hence, in Tarski’s terminology,not essentially undecidable; that
is, its every consistent extension is not undecidable. For one may add to it,
for example, the sentence(∀x)(x = 0) – or, any sentence that determines
the model’s size to be some finite cardinality – and the resulting theory is
complete and decidable.

Moreover, TA provides a particularly weak (even finitely satifiable)
finitely axiomatizable theory that is undecidable, and hence one can use
TA, instead of “infinitary” Q, to prove alsothe undecidability of first-
order logic. That is, letϕTA be a conjunction of the axioms of TA. Then
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a sentenceψ is a theorem of TA if and only if (ϕTA → ψ) is a theorem
of first-order logic. Hence a decision method for the latter would yield a
decision method for the former, which is impossible.

7. ON THE DEFINABILITY OF TRUTH

Let us now return to our main subject, that is, the definability of truth (in
finite models). Recall again that truth and falsity in a particular finite model
are decidable, or recursive, and hence trivially recursively enumerable;
therefore my theory TA can, by Theorem 6.2, weakly represent truth of any
first-order language in any finite model. Especially, it can weakly represent
truth-in-its-own-language in any finite model!

More exactly, assume that, in addition to a Gödel numbering of sen-
tences (from now on, I shall assume that our numbering is defined forall
first-order expressions, and not just forL(TA)), one has fixed a coding of
finite models, i.e. an effective mapping from the set of finite models to the
set of natural numbers. The code number of a finite modelM is denoted
by pMq. Then the following two facts follow directly from Theorem 6.2:

THEOREM 7.1. There is a formulaSat (x, y) of the language ofTA such
that TA ` Sat (pMq, pϕq) ⇔ M |= ϕ.

THEOREM 7.2. For any fixed finite modelM, there is a formula TrM(x)
ofL(TA) such thatTA ` TrM(pϕq) ⇔ M |= ϕ.

Moreover, let us again denote a conjunction of the axioms of TA byϕTA.
As ϕTA ` TrM(pψq) for every trueψ , by the Deduction Theorem (or, the
introduction rule for implication),ϕTA → TrM(pψq) is a theorem of logic
if and only if M |= ψ .

Discussion

As Theorems 7.1 and 7.2 apply in particular toL(TA), one may thus in
TA (and its sound extensions) obtain, in an exact sense, a complete truth-
definition in the very same language whose truth one is considering. The
state of affairs here is thus the direct opposite to the infinitary case, i.e.
Theorems 5.1 and 5.2. The situation is this comfortable as long as one con-
siders the issue purely in the proof-theoretical level, from the point of view
of TA, as I have done. The complications begin to occur when one con-
siders these truth-definitions as interpreted in a particularfinite model of
TA. Then not only all true (in the intended sense) instances ofTrM(pψq),
but also some false ones, become true. (This is because in “too small"
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models, some true sentences of the form(∀x1) . . . (∀xn)(t 6= t ′) become
false.) Only the true ones are satisfied only by theinfinite standard model
of arithmeticN ! Similar qualifications must be made,mutatis mutandis,
with respect toSat (x, y). This is a definite limitation in my approach, but
unavoidable as long as there are infinitely many truths (cf. Section 10) –
and, in the case ofSat (x, y), infinitely many finite models. Nevertheless,
I think that the above partial positive results are philosophically rather
interesting.

It is important to note that weak representability, unlike strong repre-
sentability, is not preserved in all consistent extensions. In particular, not
every complete extension of TA weakly represent the truth; especially, a
complete theory of a finite model does not weakly represent truth in that
model. For the case is exactly the same as in the case of definability in a
finite model, discussed in the very beginning of this paper. Namely, such a
complete theory implies that the universe is finite, and again, the question
of defining the set of infinitely many truths does not even make sense.
For similar reasons, one can even less hope to strengthen the above results
to strong representability of truth by extending TA to a complete theory
of a finite model. Strong representability can only be obtained by adding
axioms of infinity, i.e. by moving to Q or some stronger theory that has
only infinite models.

8. FAILURE OF CONVENTION T

Thus far I have shown that in the case of finite models, it is possible to have
a truth-definition for a language in that same language. On the negative
side, one must recognize that one just cannot satisfy Tarski’s adequacy con-
dition, Convention T. (This was implicit already in my discussion above
(in Section 5), when I noted that a truth-predicate is not relative to any
model, but defines truth-in-a-language in any model.) This is a simple
consequence of a variant of Tarski’s Theorem, Theorem 5.4, for the axioms
of TA are all true in the standard model of arithmetic and thus TA is sound
in the relevant sense. Thus we have:

COROLLARY 8.1. There is no truth-predicate forTA.

In the case of our truth-defining formulasTrM(x) (or more generally, any
formula that weakly represents truth), this fact can be seen also more
directly. For assume that TA would, for some finite modelM, prove for
TrM(x) all the instances of Convention T. Let thenϕ be a sentence that
determines the (finite) cardinality ofM. We have assumed that
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TA ` TrM(pϕq)↔ ϕ; further, asTrM(x) weakly represents truth-in-M,
andϕ is true-in-M, also TA` TrM(pϕq). Thus, by simple logic, TÀ ϕ.
But this cannot be the case:ϕ is a sentence that fixes the cardinality of the
model, whereas TA has models of each finite cardinality as well as infinite
ones. Hence the assumption is false.

Discussion

The above consideration shows that Tarski’s famous Convention T, i.e.
the existence of a truth-predicate is, although sufficient, not necessary for
having a truth definition.

That is, it is true that in the standard case, when one considers truth
(in the language of arithmetic) in the (infinite) standard modelN of arith-
metic, there is neither a truth-predicate nor a truth definition (the latter
implies the former), and there is consequently little need to sharply dis-
tinguish between these two notions. But if one focuses solely on the finite
models, the situation is radically different. Although one still cannot have
a truth-predicate (not in TA, not in Q or PA, not even in the highly non-
effective and strong complete theory of arithmetic), it is possible to have
a truth-definition in the sense of weak representability. Further, Q and its
extensions can even strongly represent truth in a finite model, and this
holds also for their own language, when interpreted such that it allows a
finite model (as in the case of TA).

It thus begins to look as though the demand for a truth-predicate is
an unnecessarily strong requirement when one considers exclusively fi-
nite models. In fact, the reason why Tarski originally approached truth
via truth-predicates, i.e. why Tarski put forward his Convention T as the
condition of material adequacy of a truth-definition, was that he was aware
that in arithmetic and set theory, truth is highly non-constructive and in-
accessible, and needed a way to define truth independently of any “cri-
terion” for recognizing truths, the latter being impossible in these cases
(cf. Etchemendy, 1988). In our case of finite models no such problems
arise, for truth is decidable, and the detour via truth-predicates becomes
unnecessary.

I have emphasized above that a truth-predicate has nothing to do with
truth in a particular model, but fixes truth-in-a-language in any model. But
it is interesting to note that so doesin the class of finite models, although in
a different way, also my satisfaction relationSat (x, y) (see Theorem 7.1).
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9. THE LIAR PARADOX?

It is immediate from our above consideration that TA can also define (i.e.
weakly represent) falsity (in a finite model) in its own language. At this
point, one is probably wondering whether the Liar paradox and other se-
mantical anomalies threaten, and whether my approach is even consistent.
The short but uninformative answer is: TA is obviously consistent, as it
has a model, and even the trivial model of one object. In fact, one may
note in passing that in a sense, TA can even prove its own consistency.
That is, Theorem 7.1 trivially implies the following (whereϕTA is, again, a
conjunction of the axioms of TA):

THEOREM 9.1. TA` (∃x)Sat (x, pϕTAq).

Nevertheless, one should take this with a grain of salt and not read too
much into it: ourSat (x, y) is apparently not intensionally but only exten-
sionally correct, and one cannot prove in TA many basic facts on satisfia-
bility.

But be that as it may, the closer analysis of the reasons for the failure
of constructing the Liar paradox for TA is actually quite interesting. Let us
next examine in detail what happens.

First, recall that the infinite standard model of arithmeticN is also a
model of TA. Consider then a∃-sentenceF(x) that defines Falsity-in-M
(for a fixed finite modelM). Now by the Diagonalization Lemma, there
is a sentenceψ such that Q̀ F(pψq) ↔ ψ , and hence the equivalence
holds in particular in the infinite standard model of arithmeticN , i.e.

N |= F(pψq)↔ ψ.(∗)
But what is the truth-value ofψ in M, and inN ?

(i) Assume first thatψ is false inM. Then by weak representability of
falsity, TA ` F(pψq), which is thus true in every model of TA, and in
particular inN . By the above equivalence (∗), alsoψ must be true inN .
In sum, ifψ is false inM, it is true inN .

(ii) Assume then thatψ is true inM. ThusF(pψq)must be false inN ,
andψ too must be (by (∗)) false inN .

Thus, independently of the truth-value ofψ , it must necessarily have
a different truth-value inM and inN . It follows that neitherψ nor¬ψ
is provable in TA. (One thus obtains an undecidable sentence by an appli-
cation of the Liar paradox somewhat different from the standard Gödelian
reasoning.) Consequently, the attempt to construct the Liar paradox fails
because the “paradoxical” sentence has a non-standard interpretation in
the finite modelM and fails to have the intended anomalous meaning;
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it, so to say, necessarily goes beyond the finite model in question. It thus
turns out that a genuine self-reference requires, in the formalized first-order
languages, axioms of infinity!8

10. FINITELY MANY TRUTHS ?

Thus far, I have considered the whole infinite totality of sentences true
in a finite model; and this has also led to certain complications. But one
may note that the “whole truth” of a finite model can be expressed by one
sentence, and that there are only finitely many truths “simpler” than this
sentence. Consequently, it would not be terribly restrictive to focus ones
attention to a finitely limited set of sentences. That is, one may fix a nat-
ural (e.g., lexicographical) ordering of the sentences, and beginning from
the simplest, focus on a finite number of truths (in a fixed finite model)
including a complete description of the model in question.

If this line is chosen, even a list-like definition of truth, discussed
in passing by Tarski (1933a, 1969) (cf. Etchemendy, 1988, Heck, 1997,
Soames, 1998), is not that inappropriate. Let us thus assume that in a par-
ticular modelM the relevant true sentences are amongϕ1, ϕ2, . . . , ϕn (the
first n sentences in the chosen Gödel numbering). Now consider a formula
of L(TA) having the following form:

(x = pϕ1q ∧ ϕ1) ∨ (x = pϕ2q ∧ ϕ2) ∨ · · · ∨ (x = pϕnq ∧ ϕn)(D)

Such a formula would then be a perfectly satisfactory truth-definition.
However, unlike in Tarski’s case, with TA as a metatheory (D) does not
satisfy Tarski’s criterion of material adequacy, i.e. Convention T. This is
because (D) implies all the instances of Convention T (forϕ1, ϕ2, . . . , ϕn)

only if the background metatheory provespϕiq 6= pϕjq, when i 6= j

(Tarski makes this assumption explicitly in (1933a)). But clearly TA proves
no such things. However, such inequalities do hold in a large enough fi-
nite modelM (i.e. card(M) ≥ max(i, j)), and are provable in a theory
extending TA that implies that there are enough different entities, e.g., a
complete theory of such a modelM; such a theory even proves all the
instances of Convention T, for these sentences.

Consequently, in a favourable case it is in a sense even possible to define
truth in a finite model in the very model. Namely, one may naturally dis-
tinguish simple and complex models, according to the complexity (i.e. its
place in the chosen natural numbering) of the simplest complete descrip-
tion of the model. If a model is simple and relatively large, it may indeed
be possible to define in the model “the whole truth” in that model. The
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same fact holds,mutatis mutandis, with respect to strong representabil-
ity in a complete theory of a finite model. Thus definability of truth in
a model becomes a somewhat contingent matter depending on the size
and complexity of the model. (Moreover, it clearly depends on the Gödel
numbering of the sentences. The most natural choice would perhaps be to
enumerate sentences in their lexicographical order.)

It is quite clear that a list-like definition such as (D) cannot lead to any
contradiction. But it is still illuminating to note why it does not allow a
construction of the Liar paradox. The explanation was clearly seen already
by Tarski himself (1969, p. 65): such a truth definition, and obviously also
its negation, contains all the sentencesϕ1, ϕ2, . . . , ϕn as proper parts, and
cannot coincide with any of them.

Now if one were only interested in truth (in the present, restricted sense,
i.e. as a finite set of truths) in aparticular finite model, a list-like definition
like the above (D) would be all that is needed. However, our earlier con-
siderations allow a much more general defintion: our predicateSat (x, y)

provides a definition of the truth in any finite model, and it picks up the set
of finitely many relevant truths in any sufficiently large and simple model
of TA. Hence the logical tools I developed earlier have their uses also in
the present case where one concentrates on finite fragments of language.

11. CONCLUSIONS

One may conclude that concentrating one’s focus on the finite models, on
the one hand, makes logical truth, i.e. truth in every model, more diffi-
cult to manage (non-axiomatizable), but on the other hand, makes truth
simpliciter quite accessible. In the case of finite models, one can, in a
precise sense, give a complete definition of truth for a language in this
same language – and moreover, for any other language and finite model.
And this does not require one to give up any laws of classical logic.

No doubt there are numerous aspects of the above treatment that would
deserve further elaboration. But I think that the considerations presented
here already justify the conclusion that the study of the behaviour of truth-
definitions in the case of finite models is, both logically and philosophi-
cally, rather interesting.
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NOTES

1 I think it remarkable that Tarski – unlike, as far as I know, any of his later followers
– did sense thatthe infinite characterof his metatheory is philosophically problematic:
“From the intuitive standpoint this may seem doubtful and hardly evident”, he wrote
(1933a, p. 174). And again: “The intuitive obviousness of the axioms in not uncontested”
(1933b, 282, n2). Further, Tarski confesses that if “expressions are regarded as the prod-
ucts of human activity”, then “the supposition that there are infinitely many expressions
appears to be obviously nonsensical” (1933a, p. 174, n2). Tarski then considers another
possible interpretation. “We could consider all physical bodies of particular form and size
as expressions. The kernel of the problem is then transferred to the domain of physics. The
assertion of the infinity of the number of expressions is then no longer senseless although
it may not [sic!] conform to modern physical and cosmological theories” (1933b, p. 174,
n2). Tarski leaves the question somewhat open.

Tarski even considered in passing the possibility I pursue in this paper: “The conse-
quences mentioned could of course be avoided if the axioms were freed to a sufficient
degree from existential assumptions.” (1933a, p. 175) Tarski adds, however, that such a
weakening of axioms “would considerably increase the difficulties of constructing the
metatheory, would render impossible a series of the most useful consequences and so
introduce much complications into the formulation of definitions and theorems.” For these
reasons, Tarski concludes that “it seems desirable, at least provisionally” to base his theory
of truth on the unweakened infinitary axioms. My investigations in this whole paper may
considered as a complementary commentary to these remarks by Tarski.

But be that as it may, I think that these careful qualifications by Tarski show his
greatness and sensitivity as a philosophical thinker.

2 See, e.g., Gurevich, 1984, Ebbinghaus and Flum, 1995.
3 For historical details concerning Tarski’s Theorem, and Gödel’s independed discovery

of it, as well as for different formulations they gave for it, see (Murawski, 1998).
4 This apt name was suggested by Lauri Hella.
5 Smorynski and Grohe have used theories that resemble somewhat TA, and their ap-

proaches have inspired my construction of TA; however, they both use only relation sym-
bols, whereas I have used function symbols in order to have numerals and the standard
notion of (weak) representability. Further, neither of them combine their theories with
MRDP-Theorem in the essential way I do in Theorem 6.2. My theory TA resembles also
the “Baby Arithmetic” of Bell and Machover; and Bell and Machover do combine their
theory with MRDP-Theorem, if only to exhibit a weak theory that is undecidable. However,
their theory has infinitely many axioms; whereas I have preferred to construct a finitely
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axiomatizable theory (cf. note 7 below). Anyway, the treatment of Bell and Machover has
importantly inspired my present approach.

6 It is quite obvious that there is a certain amount of redundancy in my axioms of TA,
and not all of them are really needed in the considerations that follow, but I think they form
an intuitively clear theory that expresses nicely what is going on here.

7 A sceptical reader may convince her/himself by noting that these facts hold already
for the “Baby Arithmetic” of Bell and Machover (see pp. 335–336) which is clearly a
subtheory of my TA (indeed, it is deducible already from my axioms (A7)–(A10); cf. Bell
and Machover, p. 341). (See also Machover, 1996.)

8 I have here used only the standard fact that the Diagonalization Lemma is provable
for Q and hence true in the standard model of arithmeticN . One may wonder whether
it is possible to improve this and prove the Diagonalization Lemma for TA. I prefer to
refrain from a judgement: On the one hand, the standard proofs of the Diagonalization
Lemma cannot be carried through in TA, for they require the diagonalization function to
be strongly representable. On the other hand, I have a hunch that one could, with some
extra labour, demonstrate a version of the Diagonalization Lemma even for TA. However,
I saw little point in taking pains and attempting to do that. For, I have already shown that
TA is undecidable and incomplete. The only consequence I can see in the present setting
would be the following: if one had the Diagonalization Lemma even for TA, then one could
conclude that the “paradoxical” Liar sentenceψ is (besides being undecidable in TA) true
in M. However, it is all too easy to find sentences that are true in a fixed finite model but
unprovable in TA (e.g., cardinality claims).
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Tarski, A. (1933a):Pojȩcie prawdy w j¸ezykach dedukcyjnych, Nakladem Towarzystwa

Naukowego Warszawskiego, Warszawa. (English translation: “The Concept of Truth in
Formalized Languages”, in A. Tarski,Logic, Semantics, Metamathematics: Papers from
1923 to 1938(edited and translated by J. H. Woodger), Clarendon Press, Oxford, 1956.
Page references are to the English translation.)

Tarski, A. (1933b): Einige Betrachtungen über die Begriffeω-Widerspruchsfreiheit und
der ω-Vollständigkeit,Monats. Math. Phys.40, 97–112. (English translation: “Some
observations on the concepts ofω-consistency andω-completeness”, in A. Tarski,
Logic, Semantics, Metamathematics: Papers from 1923 to 1938(edited and translated
by J. H. Woodger), Clarendon Press, Oxford, 1956. Page references are to the English
translation.)

Tarski, A. (1969): Truth and proof,Scientific American220(6), 63–77.
Tarski, A., Mostowski, A. and Robinson, R. M. (1953):Undecidable Theories, North-

Holland, Amsterdam.
Trakhtenbrot, B. A. (1950): Nevozmoznost’ algorifma dla problemy razresimosti na konec-

nyh klassah, (“Impossibility of an algorithm for the decision problem in finite classes”),
Dokl. Akad. Nauk SSSR70, 569–572.

Department of Philosophy
P.O.Box 24
SF-00014 University of Helsinki
Finland
E-mail: panu.raatikainen@helsinki.fi


