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DYNAMIC EPISTEMIC LOGIC

AND LOGICAL OMNISCIENCE

Abstract. Epistemic logics based on the possible worlds semantics suffer
from the problem of logical omniscience, whereby agents are described as
knowing all logical consequences of what they know, including all tautolo-
gies. This problem is doubly challenging: on the one hand, agents should be
treated as logically non-omniscient, and on the other hand, as moderately
logically competent. Many responses to logical omniscience fail to meet this
double challenge because the concepts of knowledge and reasoning are not
properly separated. In this paper, I present a dynamic logic of knowledge
that models an agent’s epistemic state as it evolves over the course of rea-
soning. I show that the logic does not sacrifice logical competence on the
altar of logical non-omniscience.

Keywords: epistemic logic; dynamic epistemic logic; logical omniscience;
resource-bounded reasoning

1. Introduction

The standard modal approach to epistemic logic, which dates back to
Hintikka’s Knowledge and Belief [24], models knowledge in terms of a
possible worlds semantics. On this approach, an agent is said to know
a proposition ϕ just in case ϕ is true in all possible worlds that are
epistemically possible for the agent. Given this semantics, it follows that
agents are characterized as logically omniscient: they know all logical
consequences of what they know, including all classical tautologies.

Informally, the proof goes as follows: Suppose an agent knows a
proposition ϕ and consider any proposition ψ that is logically entailed by
ϕ. Since the agent knows ϕ, ϕ is true in all epistemically possible worlds
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for the agent. And since ϕ logically entails ψ, ψ is true in all possible
worlds in which ϕ is true. Given that all epistemically possible worlds
are logically possible, it follows by transitivity of set inclusion that ψ is
true in all epistemically possible worlds for the agent. In turn, the agent
knows ψ. So if an agent knows ϕ, she knows any logical consequence
of ϕ. In other words, knowledge is described as closed under logical
consequence.

If we aim to model real-world agents, as opposed to ideal agents,
describing knowledge as closed under logical consequence is clearly in-
admissible. For whereas the knowledge of unrealistically intelligent and
powerful agents may well be closed under logical consequence, ordinary
agents like human beings, computers, and robots generally fall short of
logical omniscience. Standard modal epistemic logics thus suffer from
what was dubbed the problem of logical omniscience by Hintikka [25].

Logical omniscience is a problem insofar as we aim to model the
explicit knowledge of real-world agents  that is, the kind of knowledge
that agents can act upon and answer questions about. Some theorists
have adopted a distinction due to Levesque [32] between explicit and
implicit knowledge, whereby an agent implicitly knows everything that
follows logically from what she explicitly knows. By definition, then,
logical omniscience is unproblematic in the case of implicit knowledge.
And there may often be good reasons for examining the consequences of
what an agent knows, even if the agent cannot make those consequences
count in her practical deliberation. For instance, if we aim to model the
information that is stored in an agent’s epistemic state, we are looking
for a theory of implicit knowledge. Or, as pointed out by Levesque [32],
if we are interested in, not what an agent knows directly, but what the
world would be like given the agent’s knowledge, we are looking for a
theory of implicit knowledge. However, my concern in this paper is with
the explicit knowledge of real-world agents. As such, logical omniscience
is a genuine problem in need of a solution.

Lack of logical omniscience may stem from various sources, the ma-
jority of which can be seen as special cases of resource-boundedness.
Bounded agents like you and me simply do not have the time, memory,
and computational power to infer all the  generally infinitely many 
logical consequences of what they know. But even given unlimited re-
sources, logical non-omniscience may arise from an incomplete reasoning
mechanism on part of the agent. For instance, even an infinitely powerful
chess computer may fail to decide whether white has a winning strategy,
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if it is deprived of one or more of the rules of chess. This is not to
say that all real-world agents are rule-based. In particular, I leave it
an open question to what extent human beings can be said to reason
in accordance with inference rules. To circumvent this tricky empirical
question, I will focus on resource-bounded agents who, by assumption,
reason by applying inference rules.

To model such agents accurately, careful attention must be paid to
the kind of logical non-omniscience that bounded resources give rise to.
A claim that has received substantial support in the literature is that
the knowledge of resource-bounded agents is not generally closed under
any logical law, where a set Γ of propositions is closed under a logical
law λ iff Γ contains every proposition that can be derived from Γ by any
number of applications of λ.1 The crucial point in favour of this claim
is that for any logical law, it is not hard to imagine a resource-bounded
agent whose knowledge is not closed under that law. For instance, it
is not hard to imagine an agent who knows ϕ and ψ, but fails to know
some complicated proposition ((ϕ ∧ ψ) ∧ ψ) ∧ (ψ ∧ ((ϕ ∧ ψ) ∧ (ψ ∧ ϕ)))
that can be derived from ϕ and ψ by a large number of applications
of conjunction introduction. So we cannot assume that the knowledge
of resource-bounded agents is closed under conjunction. The same goes
for other inference rules. Given this, I will take the following to be a
desideratum for solving the problem of logical omniscience:

Non-closure (NC): The knowledge of resource-bounded agents
is not closed under any non-trivial logical law.

Notice that (NC) does not say that agents are incapable of deriving
logical consequences of their knowledge. In fact, for all (NC) says, some
resource-bounded agents may be highly logically competent. The modest
claim is that we cannot expect a resource-bounded agent’s knowledge to
obey any closure principle (with the exception of identity, ϕ ⊢ ϕ).

A solution to the problem of logical omniscience should satisfy (NC)
in order to treat agents as logically non-omniscient in the right way.
However, as has been pointed out by Chalmers [9], Bjerring [5, 6, 7], Duc
[18], among others, we must not sacrifice logical competence on the altar
of logical non-omniscience. For although we cannot expect real-world
agents to close their knowledge under logical laws, we can still expect
them to engage in bounded, but non-trivial, inferential reasoning. For

1 Refer, amongst others, to Wansing [38], Duc [16, 18], Ågotnes [2], and Jago [26].
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instance, I currently know that it is snowing and that it is cold outside
whenever it snows. Do I know that it is cold outside? It seems so! Of
course, there may be circumstantial reasons why I may fail to actually
form the belief that it is cold outside. But at least I have the capacity to
form the belief given my ability to reliably perform a single application of
modus ponens. Similarly, artificially intelligent agents such as computers
and robots obviously do perform non-trivial deductions, despite limited
resources. For instance, a proof generator for classical propositional logic
can easily verify that ψ follows from {ϕ, ϕ → ψ}. So an epistemic logic
for agents who are entirely logically inept is hardly of any interest for
computer scientists or artificial intelligence researchers. Given this, a
solution to the problem of logical omniscience should treat agents as
logically competent or non-ignorant in the following minimal sense:

Non-ignorance (NI): If a resource-bounded agent knows the
premises of a valid inference and knows the relevant inference rule,
then, given sufficient resources, the agent can infer the conclusion.

Over the past five decades, many attempts have been made to solve
the problem of logical omniscience. However, most such attempts fail to
jointly satisfy (NC) and (NI). The reason for this, as I will argue, is that
many proposed solutions to the problem of logical omniscience remain
within a static framework: they do not describe an agent’s reasoning
process, but only what the agent knows at the end point of a (more or
less idealized) reasoning process. Static approaches to epistemic logic
cause problems in the context of logical omniscience, because it is an
agent’s limited  but not absent  ability to reason logically that makes
the agent logically non-omniscient and logically non-ignorant at the same
time. So to properly solve the problem of logical omniscience, we cannot
abstract away from the reasoning processes that underlie much belief
(and knowledge) formation.

In this paper, I develop a dynamic logic of knowledge that models an
agent’s epistemic state as it evolves over the course of reasoning. I show
that the logic jointly satisfies (NC) and (NI)  and so it properly solves
the problem of logical omniscience.

I proceed as follows. In Section 2, I examine three prominent static
responses to logical omniscience and show that each of them fails to
jointly satisfy (NC) and (NI). This serves to motivate Section 3 in which
I present a novel dynamic framework to deal with logical omniscience.
I present a number of desirable results of the framework and argue that
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it jointly satisfies (NC) and (NI). I also compare the framework to other
dynamic approaches to epistemic logic in the literature. In Section 4,
I conclude and discuss future work.

2. Responses to Logical Omniscience

We have seen that logical omniscience arises in Hintikka-style logics from
defining knowledge as “truth in all epistemically possible worlds”. Given
this, it would seem natural to try to avoid logical omniscience by modify-
ing either the notion of knowledge, the notion of truth, or the notion of a
world. These three general strategies underlie many proposed solutions
to the problem of logical omniscience. In this section, I examine the three
strategies (in reverse order) and argue that each of them fails to jointly
satisfy (NC) and (NI). I focus on responses that retain the core model of
knowledge as “truth in all epistemically possible worlds”. As such, I will
not discuss syntactic approaches to epistemic logic that take knowledge
as primary, rather than analyse knowledge in terms of worlds. In such
logics, agents represent their knowledge symbolically as sets of sentences.
Later, in Section 3, I briefly discuss a number of dynamic logics of syntac-
tic knowledge that have been proposed to deal with logical omniscience.

2.1. Impossible Worlds

A popular strategy to avoid logical omniscience, proposed in various
forms by Cresswell [10, 11, 12], Hintikka [25], Rantala [34], Wansing [38],
and Fagin et al. [22], is to augment the set of worlds that an agent can
consider epistemically possible by a set of impossible worlds, where the
rules of classical logic fail to hold. Formally, this strategy is implemented
by replacing the classical, recursively defined valuation function with a
syntactic valuation σ that assigns arbitrary truth-values to all sentences
in all worlds. σ is required to behave classically in possible worlds, but
may behave arbitrarily in impossible worlds. For example, ϕ∧ψ need not
be true in an impossible world that verifies ϕ and ψ, unless we demand
that σ closes impossible worlds under conjunction. In turn, an agent
can know ϕ and ψ, but fail to know ϕ ∧ ψ. So knowledge is no longer
described as closed under classical entailment.

Although the inclusion of impossible worlds can help us avoid logical
omniscience, impossible worlds approaches generally fail to jointly satisfy
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(NC) and (NI). To see why this is so, proceed by cases. Assume, first,
that σ is allowed to behave completely arbitrarily in impossible worlds.
That is, impossible worlds may be arbitrarily logically ill-behaved. This
means that agents will be modelled as altogether logically ignorant: they
need never know any logical consequences of what they know. To see
this, suppose that an agent knows ϕ and consider any logical consequence
ψ of ϕ. Since the agent knows ϕ, ϕ is true in all epistemically possible
worlds for the agent. And given that impossible worlds can be arbitrarily
logically ill-behaved, there will be impossible worlds that verify ϕ but not
ψ. In turn, there is nothing to ensure that ψ is true in all epistemically
possible worlds just because ϕ is. So the agent need not know ψ. In turn,
(NI) is violated. Assume, next, that σ is required to close impossible
worlds under one or more logical laws. This means that an agent’s
knowledge will be described as closed under those laws. For example,
if σ is required to close impossible worlds under conjunction, knowledge
will be described as closed under conjunction. To see this, suppose that
an agent knows ϕ and ψ. Given this, ϕ and ψ are true in all epistemically
possible worlds for the agent. And since all worlds that verify ϕ and ψ
also verify ϕ ∧ ψ, all epistemically possible worlds for the agent verify
ϕ ∧ ψ. So the agent knows ϕ ∧ ψ. In turn, (NC) is violated. On
the assumption that σ either behaves arbitrarily in impossible worlds
or closes them under at least one inference rule, we conclude that the
impossible worlds approach fails to jointly satisfy (NC) and (NI).

To avoid this dilemma, one may attempt to “partly” close impossible
worlds under logical consequence. More specifically, we may aim to
close impossible worlds under easy but not full logical consequence. For
if every world that verifies a proposition ϕ also verifies at least the easy
logical consequences of ϕ, we will have ensured that agents know at
least the easy logical consequences of what they know. In this way,
some measure of logical competence is retained. The trouble, as has
been pointed out by Bjerring [5, 6, 7] and Jago [27, 28], is that no
world can be closed under easy logical consequence without being closed
under full logical consequence. To see this, consider a world w that is
not closed under full logical consequence. This means that, for some
proposition ψ that follows from premises ϕ1, . . . , ϕn, w verifies all of
the premises ϕ1, . . . , ϕn, but not the conclusion ψ. Consider now any
proof P from ϕ1, . . . , ϕn to ψ. Since w verifies ϕ1, . . . , ϕn, but not ψ,
w must violate at least one of the inferences in P . And on any relevant
interpretation of what counts as an “easy inference”, a single application
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of a simple inference rule will count as an easy inference. In turn, w is not
closed under easy logical consequence. So if a world is not closed under
full logical consequence, it is not closed under easy logical consequence.
Equivalently, if a world is closed under easy logical consequence, it is
closed under full logical consequence. So the strategy of partly closing
impossible worlds under logical consequence does not help us resolve the
dilemma between logical omniscience and logical ignorance.

2.2. Non-Classical Worlds

A different strategy to avoid logical omniscience is to change the notion
of truth by replacing the semantics of classical logic with the semantics of
a weaker non-classical logic. The hope is that the problem of logical om-
niscience can be alleviated somewhat by describing agents as omniscient
with respect to a sufficiently weak non-classical logic instead of classical
logic. Numerous non-classical logics have been investigated in the liter-
ature, including 4-valued logic, intuitionistic logic, and relevance logic.2

I shall here consider an approach proposed by Levesque [32], Lakemeyer
[30], and Fagin et al. [21, 22]  with only minor differences among them 
that adopts a non-classical treatment of negation. The idea is to replace
the classical truth-functional semantics of negation, by which ¬ϕ is true
iff ϕ is false, with a non-truth-functional semantics that takes ¬ϕ and
ϕ to have independent truth-values. One way of capturing this idea
formally is to replace the classical truth assignment which assigns truth-
values to all atomic sentences in all worlds with a non-classical truth
assignment that assigns truth-values to all literals in all worlds (where
a literal is an atomic sentence or its negation). The familiar satisfaction
clauses of modal epistemic logic are modified accordingly to define sep-
arately what it means for a sentence and its negation to be true.3 Fagin
et al. [22, pp. 321-25] show that this non-classical treatment of negation
yields a logic in which {ϕ → ψ, ϕ} no longer implies ψ, but in which,
for example, {ϕ, ψ} still implies ϕ ∧ ψ and ¬¬ϕ still implies ϕ. In turn,
knowledge is no longer described as closed under material implication,
but is still described as closed under conjunction and double negation.

2 See Priest [33] for an overview of non-classical logic. 4-valued logic was studied
by Belnap [4], intuitionistic logic by Heyting [23], and relevance logic by Anderson
and Belnap [1], and Routley and Meyer [35, 36, 37].

3 I omit some of the formal details here. Refer to Fagin et al. [22, pp. 321–32]
for a comprehensive exposition.
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Although non-classical epistemic logics do not describe knowledge as
closed under classical entailment, they nevertheless fail to jointly satisfy
(NC) and (NI). To see why this is so, proceed again by cases. As-
sume, first, that the chosen non-classical logic is non-trivial (i.e. has
at least one logical law). This means that an agent’s knowledge will
be described as closed under the non-trivial law(s) of that logic. In the
example above, an agent’s knowledge would be described as closed under
e.g. conjunction and double negation. In turn, (NC) is violated. The
relevant informal proof is structurally similar to the ones presented in
the previous section. Assume, next, that the chosen non-classical logic is
trivial (i.e. has no logical laws). In effect, worlds may then be arbitrarily
logically ill-behaved. In turn, as I argued in the previous section, agents
will be characterized as being incapable of performing even the most
elementary logical derivations which means that (NI) is violated. So any
non-classical epistemic logic fails to jointly satisfy (NC) and (NI).

2.3. Awareness

A third strategy to avoid logical omniscience, first proposed by Fagin and
Halpern [20], is to redefine the concept of knowledge in the following way:
An agent knows a proposition ϕ just in case ϕ is true in all possible worlds
that are epistemically possible for the agent and the agent is aware of ϕ.
The underlying intuition is that “it is necessary to be aware of a concept
before one can have beliefs about it. One cannot know something of
which one is unaware” [22, p. 337]. Formally, this idea is captured by
introducing, for each agent i, a syntactic awareness function Ai that in
each world w yields a set of sentences that agent i is aware of in w. Agent
i’s awareness set may be completely arbitrary, unless closure conditions
are placed on Ai. For example, agent i may be aware of ϕ ∧ ψ in w
without being aware of ϕ or ψ in w, unless a condition is placed on Ai

to the effect that ϕ, ψ ∈ Ai(w) if ϕ ∧ ψ ∈ Ai(w). In turn, an agent may
know ϕ ∧ ψ without knowing ϕ or ψ which means that knowledge is no
longer described as closed under classical entailment.

The awareness approach fails to jointly satisfy (NC) and (NI) for
much the same reason that the impossible worlds approach falters in this
respect. If awareness sets are allowed to behave completely arbitrarily,
agents need never be capable of deriving any logical consequences of what
they know. To see this, suppose that an agent knows ϕ, and consider
any logical consequence ψ of ϕ. Since the agent knows ϕ, ϕ is true in all
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epistemically possible worlds for the agent and the agent is aware of ϕ.
And since all epistemically possible worlds are logically possible, ψ is true
in all epistemically possible worlds for the agent. However, given that
awareness sets may behave completely arbitrarily, there is nothing to en-
sure that the agent is aware of ψ just because she is aware of ϕ. In turn,
the agent need not know ψ just because she knows ϕ. So agents need
never know any logical consequences of what they know which means
that (NI) is violated. To avoid this result, we may specify certain closure
properties on awareness sets. For instance, we may require that aware-
ness sets are closed under subformulas: whenever an agent is aware of ϕ,
she is aware of all subformulas of ϕ. As Fagin et al. [22, p. 341] show, this
ensures that an agent’s knowledge is closed under material implication: If
an agent knows ϕ and ϕ → ψ, the agent also knows ψ. In turn, some mea-
sure of logical competence is retained. However, this means that (NC) is
violated instead. So the awareness approach violates either (NC) or (NI).

To avoid this dilemma, we may aim to close awareness sets under
easy but not full logical consequence. For if an agent is aware of at least
all the easy logical consequences of what she is aware of, we will have
ensured that the agent’s epistemic state is closed under easy logical con-
sequence. However, just as we cannot close impossible worlds under easy
logical consequence without closing them under full logical consequence,
so we cannot close awareness sets under easy logical consequence without
closing them under full logical consequence. To see this, we simply go
through the same line of reasoning that we went through when discussing
the impossible worlds response. So the strategy of partly closing aware-
ness sets under logical consequence does not help us resolve the dilemma
between logical omniscience and logical ignorance.

3. Dynamic Epistemic Logic

The underlying reason why the three examined responses to logical omni-
science fail to jointly satisfy (NC) and (NI) is that they all remain within
a static framework: they do not model an agent’s reasoning process, but
only what the agent knows at the end point of a (more or less idealized)
reasoning process. As mentioned in the introduction, static approaches
to epistemic logic cause problems in the context of logical omniscience,
because it is an agent’s ability to perform bounded, but non-trivial,
logical reasoning that makes the agent logically non-omniscient and log-
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ically non-ignorant at the same time. It therefore seems natural to try to
resolve the dilemma between logical omniscience and logical ignorance
by modelling the relationship between knowledge and reasoning. This
is what I aim to do in this section. I present a dynamic epistemic logic
that models an agent’s epistemic state as it evolves over the course of
reasoning.

A number of dynamic theories of knowledge have already been pro-
posed in the literature to deal with logical omniscience. However, these
theories typically model syntactic knowledge: instead of modeling knowl-
edge in a world-involving framework they take knowledge as primary.
An early dynamic model of syntactic knowledge is Konolige’s Deduction

Model of Belief [29] which models an agent’s epistemic state as a set of
sentences that is closed under a set of deduction rules. Given that the set
of deduction rules may be incomplete, the problem of logical omniscience
can be alleviated to some extent. More recently, active logics (formerly
known as step logics) have been developed to model the evolution of
syntactic knowledge over the course of reasoning (see [19, 14, 15]). Here
one step of reasoning is taken to correspond to a single application of
an inference rule. Ågotnes have proposed a Logic of Finite Syntactic

Epistemic States [2] that centers around two syntactic operators ∆i and
∇i that take sets of sentences as arguments: ∆i{ϕ1, . . . , ϕn} says that
agent i knows at least the formulae ϕ1, . . . , ϕn, whereas ∇i{ϕ1, . . . , ϕn}
says that agent i knows at most the formulae ϕ1, . . . , ϕn. The language
also introduces expressions for knowing an inference rule  or, more gen-
erally, a mechanism  analogue to knowing a formula. An agent can then
apply a known mechanism to obtain a new epistemic state if she chooses
to. In particular, if an agent knows an inference rule and the relevant
premises, then the agent may derive the conclusion if she chooses to.

Duc’s dynamic epistemic logic [16, 17, 18] adds a dynamic operator
〈Fi〉 to the standard epistemic language such that 〈Fi〉ϕ intuitively means
that ϕ is true after some reasoning process performed by agent i. This
allows him to model agents who, despite being logically non-omniscient,
are capable of eventually teasing out any logical consequence of what
they know, if only they think hard enough. In particular, such agents
can derive any tautology of classical logic, since the rule “from ϕ infer
〈Fi〉Ki ϕ” is derivable in Duc’s logic (see [17, p. 643]). Since the standard
necessitation rule “from ϕ infer Ki ϕ” is not derivable in Duc’s logic,
logical omniscience is avoided. Duc provides no semantics for his logic,
but Alechina and Ågotnes [3] have developed a framework for modelling



Dynamic epistemic logic and . . . 11

the dynamics of syntactic knowledge for which Duc’s logic is sound and
complete. Later, in this section, I will discuss the more technical details
of Duc’s theory, since his framework bears similarities to the one I present
below.

To my knowledge, no one has yet presented a dynamic logic of knowl-
edge that properly solves the problem of logical omniscience while retain-
ing the core model of knowledge as “truth in all epistemically possible
worlds”. This is a problem, since the worlds-based account has proven
to be a highly successful framework for modelling epistemic notions such
as belief, knowledge, credence, and information. Indeed, this framework
has been widely adopted not only by philosophers, but also by linguists,
computer scientists, and artificial intelligence researchers. In light of
this popularity, it would be desirable if we could solve the problem of
logical omniscience within a world-involving framework. As such, my
eventual goal is to develop a dynamic logic of knowledge defined both
axiomatically and model theoretically, using a world-involving semantics.
In this paper, I develop this logic from an axiomatic point of view. The
corresponding model theory will be left for future work. However, in
Section 4, I provide an outline of how I intend to proceed to develop the
model theory.

To get started, consider the following mundane case of a reasoning
process.

The Mary Case: Mary is about to leave the house and ponders
whether to put on a rain jacket. She can see that it is raining
outside and knows that if it is raining then she should wear a rain
jacket. Since Mary is an ordinary person with ordinary cognitive
resources, she manages to apply modus ponens and conclude that
she should put on a rain jacket before leaving the house.

Mary’s reasoning process has at least two central features. The first
feature is the inference rule, modus ponens, which Mary has to apply to
derive the conclusion. Of course, more complex reasoning processes may
involve several inference rules. In such cases, we need to pay attention
not only to the involved inference rules, but also to the chronology of
these inference rules. For instance, if an agent knows ¬¬ϕ and ϕ → ψ,
the agent will have to apply first the rule of double negation elimination
and then modus ponens to derive ψ. The second feature of Mary’s
reasoning process is the cognitive cost of applying modus ponens. We
can think of the cognitive cost of an inference rule as the time it takes for
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an agent to apply the inference rule. As is common, I shall take time to
be discrete, which means that the cognitive cost of, say, modus ponens
simply is a natural number µ ∈ N.

A complete description of Mary’s reasoning process should pay equal
attention to the two features above. Of course, we may not always be
interested in a complete description of an agent’s reasoning process. For
instance, if we aim to model whether an agent can derive a conclusion
within a given time span, we need only pay attention to the total cog-
nitive cost of the agent’s reasoning process and can abstract away from
the specific inference rules involved in the reasoning process. Sometimes
we may even simply be interested in whether an agent can or cannot

eventually derive a given proposition, regardless of the cognitive cost of
doing so. For the sake of generality, I will however develop a fully detailed
logic that takes into account (i) the specific applications of inference rules
involved in a reasoning process, (ii) the chronology of these applications
of inference rules, and (iii) the cognitive cost of each application of an
inference rule.

The remainder of this section is organized as follows. In Section 3.1,
I define a dynamic epistemic language that augments the standard epis-
temic language over which Hintikka-style logics are defined. In Sec-
tion 3.2, I provide an axiomatization of the dynamic epistemic logic that
I have set out to develop and present a number of desirable results of this
logic. I also compare the logic to Duc’s dynamic epistemic logic. Finally,
in Section 3.3, I argue that the presented logic jointly satisfies (NC) and
(NI)  and so it properly solves the problem of logical omniscience.

3.1. The Dynamic Epistemic Language

The logic presented in what follows is defined over a propositional modal
language Ld(Φ) (‘D’ for dynamic) defined as follows.

Definition 1 (Language). The dynamic epistemic language Ld(Φ) is
defined inductively from a set Φ of atomic sentences, an adequate set of
truth-functional connectives Π = {¬,→} (from which the connectives ∧,
∨, and ↔ are defined as usual), a knowledge operator K, and a set of
dynamic operators 〈Ri〉

λi for 1 ¬ i ¬ n:

• Φ ⊆ Ld(Φ).
• If ϕ ∈ Ld(Φ) then ¬φ ∈ Ld(Φ).
• If ϕ, ψ ∈ Ld(Φ) then ϕ → ψ ∈ Ld(Φ).



Dynamic epistemic logic and . . . 13

• If ϕ ∈ Ld(Φ) then Kϕ ∈ Ld(Φ).
• If ϕ ∈ Ld(Φ) then 〈Ri〉

λiϕ ∈ Ld(Φ), for 1 ¬ i ¬ n.

The dual modality is defined in the usual way:

[Ri]λiϕ := ¬〈Ri〉
λi¬ϕ .

Intuitive readings of the various sentence types in Ld(Φ) follow here:

• Kϕ: The agent knows ϕ.
• 〈Ri〉λiϕ: After some application of Ri at cognitive cost λi, ϕ is the

case.
• [Ri]λiϕ: After any application of Ri at cognitive cost λi, ϕ is the case.

The following remarks will help us gain an intuitive understanding
of the language Ld(Φ). First, we can think of {R1, . . . ,Rn} as a set
of inference rules, where λi is the cognitive cost of Ri. For reasons of
generality, I will leave the set of inference rules unspecified, but as a
heuristic exercise we may keep in mind the inference rules of a natural
deduction system such as Lemmon’s system L [31]. In an epistemic
context, the inference rules should be sound in order to secure veridicality
of knowledge. In a doxastic context, this requirement may be dropped.
Second, notice the difference between 〈Ri〉λi and [Ri]λi : 〈Ri〉λiϕ says that
ϕ is the case after some application of Ri at cognitive cost λi, whereas
[Ri]λiϕ says that ϕ is the case after any application of Ri at cognitive
cost λi. To illustrate this difference, 〈MP〉µ

Kψ is true of Mary, since
there is some application of modus ponens after which Mary knows ψ 
namely the instance that involves the premises ‘it rains’ and ‘if it rains
then Mary should put on a rain jacket’. However, given that Mary knows
other sentences on which modus ponens can be applied, Mary does not
know ψ after any application of modus ponens. So [MP]µ Kψ is not
true of Mary. Having defined Ld(Φ), we now turn to axiomatizing our
dynamic epistemic logic.

3.2. Axiomatization

In axiomatizing our dynamic epistemic logic Ld, it will be helpful to
have a notationally convenient way of representing arbitrary sequences
of dynamic operators:

〈‡〉i := 〈Ri〉
λi . . . 〈Rj〉λj ,

[‡]i := [Ri]λi . . . [Rj ]λj ,
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where Ri, . . . , Rj are arbitrary inference rules, and i = λi+· · ·+λj . 〈‡〉iϕ
says that “after some application of Ri at cognitive cost λi followed by
. . . followed by some application of Rj at cognitive cost λj , ϕ is the
case”. The intuitive reading of [‡]i is obtained by replacing ‘some’ by
‘any’. Intuitively, a sequence of dynamic operators represents a reasoning
process consisting of a sequence of applications of inference rules. Such
a sequence may be arbitrarily long or it may be empty. Also, it may
contain the same inference rule multiple times.

Given these notational preliminaries, we are ready to axiomatize Ld.

Definition 2 (Axiomatization of Ld). Let ϕ, ψ ∈ Ld(Φ), let Γ ⊆ Ld(Φ),
and let 〈‡〉i, 〈†〉j (and [‡]i, [†]j) denote arbitrary sequences of dynamic
operators. The logic Ld has the following axiom schemata:

PC All substitution instances of propositional tautologies,
(A1) 〈‡〉i

Kϕ → ϕ (Veridicality)
(A2) 〈‡〉i

Kϕ → 〈‡〉i[†]j Kϕ (Persistence)
(A3) 〈‡〉iϕ ∧ 〈†〉jψ → 〈‡〉i〈†〉j(ϕ ∧ ψ) (Succession)
(A4) 〈‡〉i(ϕ ∧ ψ) → 〈‡〉iϕ (Elimination)

Ld has the following inference rule:

MP If Γ ⊢ ϕ and Γ ⊢ ϕ → ψ then Γ ⊢ ψ.

The axiom PC together with MP axiomatize classical propositional
logic. The axiom (A1) is a dynamic version of the well-known veridicality
axiom T of standard epistemic logic, whereby knowledge entails truth.
(A1) ensures that only true sentences can be derived. Notice that since
Kϕ → ϕ is a substitution instance of (A1), knowledge entails truth in
the logic Ld. In a doxastic context, (A1) may be dropped, since belief
is not veridical. (A2) says that known sentences remain known over
the course of reasoning. Such a persistence axiom is needed to ensure
that known premises remain available to the agent during an inference.
Without some sort of persistence axiom, an agent need never successfully
perform an inference. However, (A2) holds only under two assumptions.
First, the agent’s memory has to be infallible: the agent cannot forget
what she knows, since this would mean that knowledge does not persist.
Second, the agent’s environment has to be static: the truth-values of
objective sentences cannot change over the course of reasoning, since
knowledge cannot be assumed to persist in a changing environment given
that knowledge is veridical. Although both assumptions are implausible
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in many situations, I shall assume them for current purposes. (A3)
says that reasoning processes can succeed each other in the expected
way. For instance, if Kϕ is the case after some application of modus
ponens and Kψ is the case after some application of modus tollens, then
Kϕ ∧ Kψ is the case after some application of modus ponens followed
by some application of modus tollens. Notice that (A3) does not imply
that knowledge is closed under conjunction, since it does not allow us
to infer K(ϕ ∧ ψ) from Kϕ ∧ Kψ. That is, Kϕ ∧ Kψ → K(ϕ ∧ ψ) is
not a substitution instance of (A3). This is important, since closure
under conjunction would violate (NC). (A4) says that if both ϕ and ψ
are the case after a reasoning process then, in particular, ϕ is the case.
Notice, again, that (A4) does not imply that knowledge is closed under
conjunction elimination, since it does not allow us to infer Kϕ from
K(ϕ∧ψ). That is, K(ϕ∧ψ) → Kϕ is not a substitution instance of (A4).
Again, this is important, since closure under conjunction elimination
would violate (NC).

There are axioms aside from (A1)–(A4) that one could take to charac-
terize the concepts of knowledge and reasoning. For example, one could
introduce dynamic versions of the introspection axioms 4 and 5 from
standard epistemic logic. However, for the narrow purposes of defining a
logic that jointly satisfies (NC) and (NI), the included axioms will suffice.

The logic Ld describes agents with no inference rules available to
them. In order to equip agents with inference rules, Ld is extended
with appropriate axioms  one axiom per inference rule. If Λ is a set of
inference rules, let L

Λ
d denote the logic that extends Ld with axioms that

equip agents with the rules in Λ. To illustrate, I will here provide axioms
that equip agents with modus ponens (MP), conjunction introduction
(CI), and double negation elimination (DN). In stating these axioms,
it will be helpful to have a notationally convenient way of representing
arbitrary conjunctions of sentences in Ld(Φ): ∆ := ϕ∧· · ·∧ψ. The same
sentence is allowed to appear multiple times in ∆. Given this notation,
we can axiomatize the logic L

Λ
d as follows.

Definition 3 (Axiomatization of L
Λ
d ). Let Λ = {MP,CI,DN}, and let

∆ be an arbitrary conjunction of sentences in Ld(Φ). Furthermore, let
µ, κ, and ν denote the cognitive costs of MP, CI, and DN, respectively.
L

Λ
d extends Ld with the following axiom schemata:

(MPd) 〈‡〉i(∆ ∧ Kϕ ∧ K(ϕ → ψ)) →
〈‡〉i〈MP〉µ(∆ ∧ Kϕ ∧ K(ϕ → ψ) ∧ Kψ) (MP-success)
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(CId) 〈‡〉i(∆ ∧ Kϕ ∧ Kψ) → 〈‡〉i〈CI〉κ(∆ ∧ Kϕ ∧ Kψ ∧ K(ϕ ∧ ψ))
(CI-success)

(DNd) 〈‡〉i(∆ ∧K¬¬ϕ) → 〈‡〉i〈DN〉ν(∆ ∧K¬¬ϕ∧Kϕ) (DN-success)

The axiom (MPd) says, roughly, that if an agent knows ϕ and ϕ → ψ,
then the agent can derive ψ by applying modus ponens at cognitive cost
µ. Less roughly, (MPd) says that if an agent knows ϕ and ϕ → ψ after
a reasoning process 〈‡〉i then, regardless of what else is the case after
that reasoning process (denoted by ∆), the agent knows ψ, in addition
to ϕ and ϕ → ψ, after having extended 〈‡〉i with some application of
modus ponens at cognitive cost µ. Similar readings apply to (CId) and
(DNd). I would like to stress that the inference rules MP, CI, and DN

are chosen merely for illustrative purposes. Axioms corresponding to
other inference rules can be formulated in accordance with the following
general scheme, where R is an inference rule with premises ϕ1, . . . , ϕn,
a conclusion ψ, and a cognitive cost λ:

(Rd) 〈‡〉i(∆∧Kϕ1 ∧· · ·∧Kϕn) → 〈‡〉i〈R〉λ(∆∧Kϕ1 ∧· · ·∧Kϕn ∧Kψ)

Notice that the deduction theorem holds for L
Λ
d (the proof is standard

and can be found in [8, p. 203]).

Theorem 1 (Deduction theorem). If Γ ∪ {ϕ} ⊢ ψ then Γ ⊢ ϕ → ψ.

The deduction theorem allows us to prove from assumptions, which
significantly simplifies the construction of proofs. To show the logic L

Λ
d

at work, consider the following theorem:

Theorem 2. The following formula is a theorem of L
Λ
d :

K¬¬ϕ ∧ K(ϕ → ψ) → 〈DN〉ν〈MP〉µ〈CI〉κ
K(ϕ ∧ ψ)

Proof. I shall refer to the deduction theorem as (DT). Aside from
(DT), the proof involves conjunction introduction (CI) and conjunction
elimination (CE).

1. K¬¬ϕ ∧ K(ϕ → ψ) Ass.19

2. K¬¬ϕ 1, CE

3. K(ϕ → ψ) 1, CE

4. K¬¬ϕ → 〈DN〉ν(K¬¬ϕ ∧ Kϕ) (DNd)
5. 〈DN〉ν(K¬¬ϕ ∧ Kϕ) 2, 4, MP

6. 〈DN〉ν(K¬¬ϕ ∧ Kϕ) → 〈DN〉ν
Kϕ (A4)

7. 〈DN〉ν
Kϕ 5, 6, MP
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8. 〈DN〉ν
Kϕ ∧ K(ϕ → ψ) 3, 7, CI

9. 〈DN〉ν
Kϕ ∧ K(ϕ → ψ) → 〈DN〉ν(Kϕ ∧ K(ϕ → ψ)) (A3)

10. 〈DN〉ν(Kϕ ∧ K(ϕ → ψ)) 8, 9, MP

11. 〈DN〉ν(Kϕ ∧ K(ϕ → ψ)) → 〈DN〉ν〈MP〉µ(Kϕ ∧ K(ϕ → ψ) ∧ Kψ)
(MPd)

12. 〈DN〉ν〈MP〉µ(Kϕ ∧ K(ϕ → ψ) ∧ Kψ) 10,11,MP

13. 〈DN〉ν〈MP〉µ(Kϕ∧K(ϕ → ψ)∧Kψ) → 〈DN〉ν〈MP〉µ(Kϕ∧Kψ) (A4)
14. 〈DN〉ν〈MP〉µ(Kϕ ∧ Kψ) 12, 13, MP

15. 〈DN〉ν〈MP〉µ(Kϕ∧Kψ) → 〈DN〉ν〈MP〉µ〈CI〉κ(Kϕ∧Kψ∧K(ϕ∧ψ))
(CId)

16. 〈DN〉ν〈MP〉µ〈CI〉κ(Kϕ ∧ Kψ ∧ K(ϕ ∧ ψ)) 14, 15, MP

17. 〈DN〉ν〈MP〉µ〈CI〉κ(Kϕ ∧ Kψ ∧ K(ϕ ∧ ψ))
→ 〈DN〉ν〈MP〉µ〈CI〉κ

K(ϕ ∧ ψ) (A4)
18. 〈DN〉ν〈MP〉µ〈CI〉κ

K(ϕ ∧ ψ) 16, 17, MP

19. K¬¬ϕ ∧ K(ϕ → ψ) → 〈DN〉ν〈MP〉µ〈CI〉κ
K(ϕ ∧ ψ) 1, 18, DT

The formula from Theorem 2 says that if an agent knows ¬¬ϕ and
ϕ → ψ, then after some application of double negation elimination at
cognitive cost ν followed by some application of modus ponens at cog-
nitive cost µ followed by some application of conjunction introduction
at cognitive cost κ, the agent knows ϕ ∧ ψ. Theorem 2 is a desirable
result which serves to illustrate how L

Λ
d models the dynamics of epistemic

states on a high level of detail: attention is paid both to the involved
applications of inference rules, to the chronology of these applications
of inference rules, and to the cognitive cost of each application of an
inference rule. This high level of detail distinguishes the logic L

Λ
d from

Duc’s previously mentioned dynamic epistemic logic which is otherwise
similar to L

Λ
d in several respects. Recall that Duc’s logic centers around

the dynamic operator 〈Fi〉 which he gives the following reading: 〈Fi〉ϕ
means that ϕ is the case after some reasoning process performed by agent
i. This allows him to model whether an agent can or cannot eventually
derive a given proposition. For instance, since 〈Fi〉Ki ϕ is a theorem of
Duc’s logic for any classical tautology ϕ, agents are described as being
capable of deriving any tautology, regardless of the complexity of the
deduction. [17, p. 643] However, Duc’s logic abstracts away from the
particular inference rules involved in a reasoning process as well as the
cognitive cost of applying these inference rules. This abstraction has
the convenient consequence that the operator 〈Fi〉 behaves much like a
future operator of standard tense logic of transitive time. In fact, 〈Fi〉ϕ
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can be read as “ϕ is true at some future time”, whereas [Fi]ϕ can be read
as “ϕ is true at any future time”. This allows Duc to utilize well-known
axioms from tense logic in the context of epistemic logic. However, given
that we are interested in a detailed model of the evolution of epistemic
states over the course of reasoning, the abstractions made in Duc’s logic
seem inadmissible. In particular, if we want to capture the fact that not
all deductions are equally hard or easy for bounded agents to perform,
Duc’s logic is too abstract. By contrast, the logic L

Λ
d captures this fact

quite naturally by keeping track of the applied inference rules as well as
their corresponding cognitive costs.

Furthermore, if we are interested in reasoning about the epistemic
lives of agents with an incomplete reasoning mechanism  such as the
one’s described by Konolige’s previously mentioned deduction model of

belief [29]  Duc’s logic seems inadequate. For, as far as I can tell, there
is nothing in Duc’s formalism that allows us to model agents who can
apply some inference rules, but not others. The reason for this is that
the way in which Duc ensures that agents are characterized as logically
competent is by including the following axioms:

• Ki ϕ ∧ Ki(ϕ → ψ) → 〈Fi〉Ki ψ
• 〈Fi〉Ki(ϕ → (ψ → ϕ))
• 〈Fi〉Ki((ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ)))
• 〈Fi〉Ki((¬ψ → ¬ϕ) → (ϕ → ψ))

Together, these four axioms state that agents are capable of applying
modus ponens as well as the three standard Hilbert axioms of classical
propositional logic. So, on Duc’s model, agents do not reason by applying
inference rules such as the ones known from natural deduction calculi.
Instead, they reason using a Hilbert-style axiomatic proof system. As
such, Duc’s logic does not allow us to equip agents with a (possibly
incomplete) set of inference rules. By contrast, the logic L

Λ
d provides us

with exactly this kind of flexibility.
To further illustrate the kinds of formulae that can be proven in L

Λ
d ,

here follows a sample of theorems of L
Λ
d stated without proof.

Theorem 3. The following formulae are theorems of L
Λ
d :

• 〈DN〉ν
Kϕ ∧ K(ϕ → ψ) → 〈DN〉ν〈MP〉µ

Kψ
• K¬¬ϕ ∧ Kψ → 〈DN〉ν〈CI〉κ

K(ϕ ∧ ψ)
• K(¬¬(ϕ ∧ ψ)) ∧ K((ϕ ∧ ψ) → χ) → 〈DN〉ν〈MP〉µ

Kχ
• K¬ϕ ∧ K(¬ϕ → ψ) ∧ K(ψ → ¬¬χ) → 〈MP〉µ〈MP〉µ〈DN〉ν

Kχ
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Which formulae can be proven in L
Λ
d obviously depends on the spe-

cific content of Λ. The more inference rules agents are equipped with, the
stronger the resulting logic. In particular, if Λ is a complete deduction
system, agents are characterized as fully capable of teasing out logical
consequences of what they know.

3.3. Non-closure and Non-ignorance Revisited

In the previous section, I presented a dynamic epistemic logic L
Λ
d that

allows us to model an agent’s knowledge as it evolves over the course of
reasoning. It remains to show that this logic properly solves the problem
of logical omniscience. To show this, it suffices to show that L

Λ
d jointly

satisfies (NC) and (NI), regardless of the content of Λ. Proceed by cases
on Λ (empty or not).

Case 1 : Λ = ∅

L
∅
d trivially satisfies (NC), since L

∅
d describes agents as being incapable of

applying any inference rules. This means that knowledge is not described
as closed under any logical law. L

∅
d also trivially satisfies (NI), since (NI)

places no requirement on an agent’s ability to perform inferences, if the
agent does not know any inference rules.

Case 2 : Λ 6= ∅

To see that L
Λ
d satisfies (NC), consider an arbitrary inference rule R with

premises ϕ1, . . . , ϕn and conclusion ψ. We must show that L
Λ
d does not

prove the following theorem:

R-closure: Kϕ1 ∧ · · · ∧ Kϕn → Kψ

The reason why we cannot allow L
Λ
d to prove R-closure is that R-

closure describes an agent’s knowledge as closed under the logical law
R which violates (NC). To see that L

Λ
d does indeed not proveR-closure,

consider the two cases in which R 6∈ Λ and R ∈ Λ. If R /∈ Λ, L
Λ
d

clearly does not proveR-closure, since agents will be described as being
incapable of applying R. If R ∈ Λ, L

Λ
d will have an axiom that equips

agents with R. This axiom will, as we have seen, take following form:

(Rd) 〈‡〉i(∆ ∧Kϕ1 ∧ · · · ∧Kϕn) → 〈‡〉i〈R〉λ(∆ ∧Kϕ1 ∧ · · · ∧Kϕn ∧Kψ)

(Rd) does not take the form of R-closure, since (Rd) requires an agent
to reason in order to come to know ψ. By contrast, R-closure says
that an agent who knows ϕ1, . . . , ϕn automatically knows ψ. In other
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words, (Rd)  as opposed to R-closure  treats reasoning as a neces-
sary condition for a priori knowledge expansion. We conclude that L

Λ
d

satisfies (NC).
To show that L

Λ
d satisfies (NI), we must show that L

Λ
d describes

agents as being capable of applying the rules in Λ as prescribed by (NI).
Consider therefore an arbitrary inference rule R such that R ∈ Λ. Since
R ∈ Λ, L

Λ
d will have the axiom (Rd). This axiom says that if an agent

knows the premises of an instance of R then, given sufficient resources,
the agent can derive the relevant conclusion. And since this is exactly
what (NI) prescribes, we conclude that Rd satisfies (NI).

This completes the proof that L
Λ
d jointly satisfies (NC) and (NI)

regardless of the specification of Λ. In other words, L
Λ
d describes agents

as being logically non-omniscient and logically non-ignorant in the right
way. As such, Ld is on the table as a novel solution to the problem of
logical omniscience.

4. Conclusions and Future Work

I have argued that a proper solution to the problem of logical omni-
science should treat agents as logically non-omniscient and logically non-
ignorant at the same time. I also argued that many of the most popular
responses to logical omniscience falter in this respect, because the con-
cepts of knowledge and reasoning are not formally separated. I went on
to axiomatize a dynamic epistemic logic that models an agent’s epistemic
state as it evolves over the course of reasoning. As I showed, this logic
treats agents as logically non-omniscient and logically non-ignorant in
the right way. As such, the presented dynamic framework is on the table
as a novel solution to the problem of logical omniscience.

For future work, I plan to develop a model theory for which the
logic presented in this paper is sound and complete. While such a model
theory cannot be based on possible worlds on pain of logical omniscience,
it is my hope to retain the core of the impossible worlds framework
and model knowledge as “truth in all epistemically possible worlds”. In
light of the arguments presented in Section 2, we must allow impossible
worlds to be arbitrarily logically ill-behaved in order to avoid all traits
of logical omniscience. To ensure that agents are still characterized as
logically competent, we then need to provide an interesting semantics
for sentences of the form 〈R〉λϕ (and derivatively, [R]λϕ). While a full
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exposition of such a semantics must wait for future work, let me here
outline how I intend to proceed.

The key starting-point is that reasoning issues a change in an agent’s
epistemic state. And since an epistemic model (consisting of a set
of worlds, an accessibility relation, and a valuation function) can be
thought of as a complete description of an agent’s epistemic state in
terms of indistinguishability between worlds, we need to develop a se-
mantics of 〈R〉λϕ that appeals to a suitable relation between epistemic
models. This relation should then be thought of as a transition from
one epistemic model to another epistemic model, or, equivalently, from
one epistemic state to another epistemic state. Roughly, the relevant
transition between epistemic states S and S′ should ensure that when-
ever an agent has performed an inference in state S, the agent knows
the conclusion of this inference in state S′. This will allow us to capture
a sufficiently strong notion of logical competence, despite that epistemic
states themselves are not closed under any weak or strong notion of
logical consequence.

To the best of the author’s knowledge, this kind of dynamic model
theory has not yet been developed to deal with logical omniscience. How-
ever, the general idea of modelling epistemic actions in terms of relations
between models has been studied in quite some detail in the literature.
For instance, Ditmarsch et al. [13] show how epistemic actions such as
public announcement can be modelled using relations between models.
There is reason to be optimistic that the tools developed in these studies
can be fruitfully utilized in the context of developing a dynamic model
theory of knowledge that solves the problem of logical omniscience.
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