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Stress profoundly impacts quality of life and may lead to various diseases and conditions. 
Understanding the underlying physiological and neurological processes that take place during stress and 
meditation techniques may be critical for effectively treating stress-related diseases. The article examines 
a hypothetical physiological homeostatic response that compares and contrasts changes in central and 
peripheral oscillations during stress and meditation, and relates these to changes in the autonomic system 
and neurological activity. The authors discuss how cardiorespiratory synchronization, which occurs 
during the parasympathetic response and meditation, influences and modulates activity and oscillations 
of the brain and autonomic nervous system.  Evidence is presented on how synchronization of cardiac 
and respiratory rates during meditation may lead to a homeostatic increase in cellular membrane 
potentials in neurons and other cells throughout the body. These potential membrane changes may 
underlie the reduced activity in the amygdala, and other cortical areas during meditation, and research 
examining these changes may foster better understanding of the restorative properties and health 
benefits of meditation.

Modern life’s demands lead to chronic stress and 
increased prevalence of stress-related conditions 
and stress has been found to be a contributing factor 
in human disease (1).  Extensive research has been 
conducted on stress and the anxiety-reducing effects 
of meditation (2) but very little is known about the 
underlying processes. This article aims to provide 
insight into the physiological activity behind the 
stress response by comparing stress and meditation 
states in terms of oscillatory activity throughout 
the body and brain. This activity is then related 
to the proposed hypothesis of changes in cellular 
membrane potentials.  These changes are suggested 
to underlie the restorative and health benefits of 

meditation. This proposed mechanism is similar to 
the widespread hyperpolarization that may underlie 
the restorative properties of sleep (3). Deeper 
knowledge of respiratory homeostasis may foster 
better understanding of physiological rhythms of the 
body in various states of consciousness. Additionally, 
it may further knowledge regarding the efficacy of 
interventions, such as meditation, for stress-related 
conditions.  

 
Heart rate variability: influence of respiratory and 
cardiac oscillations

Respiratory and heart rate variations influence 
sympathovagal balance which in turn influences 

MIND-BODY RESPONSE AND NEUROPHYSIOLOGICAL CHANGES DURING STRESS 
AND MEDITATION: CENTRAL ROLE OF HOMEOSTASIS

 
R. JERATH1, V.A. BARNES2 and M.W. CRAWFORD1

1Augusta Women’s Center, Augusta, GA, USA; 2Georgia Prevention Institute, Georgia Regents 
University, Augusta, GA, USA

Received December 17, 2013 – Accepted July 31, 2014



PROOF
PROOF

546 R. JERATH ET AL.

different areas of the body revealed fluctuations of 
0.1 Hz that increased in amplitude when subjects 
were standing. The synchronization between BP 
and 0.1 Hz oscillations was unrelated to respiration 
and suggested a common neural, non-local origin 
(15). During the sympathetic dominant state, BP 
and HRV are associated with low frequency Mayer 
waves ranging from 0.05 to 0.15 Hz (16) whereas 
during the parasympathetic state, HRV is at a higher 
frequency (0.3 Hz).  

According to our model, sympathetic activation 
during stress and the resulting decrease in membrane 
potential results in peripheral responses such as 
increases in skin conductance, heart rate, and BP 
(Fig. 1). Peripheral microcirculation observed 
with Doppler flow studies and BP correlates with 
sympathetic activity (17). Because skin conductance 
is measured in relation to sweat gland activity 
innervated by the sympathetic nervous system, it is 
used as an indicator of sympathetic response (18). 
During stressed states, peripheral responses are 
widespread. Skin conductivity (19) and BP (17) 
increase, and HRV decreases (20). For example 
during surgery, BP, epinephrine, and norepinephrine 
levels positively correlate with changes in skin 
conductance and can be used as an indicator of 
patient stress (19). Changes in HRV are indicative 
of autonomic balance and are strongly related to 
the central nervous system (21).  For the purpose 
of this paper, oscillations in the brain less than 1.5 
Hz are referred to as very slow waves and waves 
from 1.5 – 10 Hz (theta and slow alpha waves) are 
termed slow waves, while fast oscillations refer to 
oscillations greater than 10 Hz (beta, gamma, and 
theta waves.)  Slow cardiac, respiratory, and other 
non-neural waves refer to oscillations less than 1 
Hz and fast oscillations refer to oscillations greater 
than 1 Hz. fMRI brain scans show increased 0.1 
Hz oscillations during stress associated with mind 
wandering and decreased functional connectivity in 
other brain areas (22) and is also supported by fMRI 
scans revealing decreased cortical activation during 
stress (23).

HRV recordings distinguish HF markers of 
parasympathetic activity (0.15-0.40 Hz), and LF 
components of sympathetic control (0.04-0.15 
Hz). Spectral analysis of microcirculatory blood 
flow suggests the presence of similar rhythms 

cardio-respiratory activity and hemodynamics (4). 
Respiration profoundly influences sympathetic 
and parasympathetic responses. The shift of low 
frequency (LF, 0.1 Hz) to high frequency (0.3 
Hz) heart rate variability (HRV) is indicative of a 
parasympathetic shift in sympathovagal balance.  
It has been established that HRV can be used as a 
proxy for vagal tone; however, the use of HRV to 
estimate sympathetic tone has been debated (5). 
Following Vipassana meditation, a mindfulness-
based approach, there is a decrease in LF power (6).  
The increase in normalized high frequency (HF) 
which is the ratio of HF to LF and the decrease in 
Traube-Hering Mayer waves (neural oscillations 
coupled with respiration that are associated with 
LF power), indicate that the decrease in LF power 
following Vipassana influences overall HRV by 
increasing the ratio of HF to LF power.  

Mind-body interventions such as yoga and 
mindfulness show significant improvements 
on  stress, sleep quality, and HRV (7). During 
meditation, slow breathing inhibits sympathetic and 
limbic activity. Changes in functional connectivity 
differ between types of meditation and are detectable 
by fMRI (8). 

Influence of oscillations on the autonomic nervous 
system during stress and meditation

The autonomic nervous system features a 
feedback loop with the cardiorespiratory system and 
brain. Under stress, the body shifts to a sympathetic 
state and cardiorespiratory synchronization 
decreases (9). However, slow, deep breathing, as in 
Dharma-Chan meditation, leads to cardiorespiratory 
synchronization and parasympathetic activation (10). 
Levels of cardiorespiratory synchronization increase 
as breathing rates decrease (11). During meditation, 
cardio-respiratory synchronization is predominantly 
at a ratio of 4:1 or 5:1, that is, 4 or 5 heartbeats for 
every 1 breath (12).

Laser Doppler cutaneous blood flow studies show 
respiration influences BP oscillations at 0.3 Hz (13). 
Studies have also found spontaneous correlation 
of slow rhythms of 1 Hz with cardiac and 0.1 Hz 
with intrinsic myogenic activity. The slowest 0.04 
Hz rhythm was attributed to neurogenic factors 
(14). In another study assessing autonomic control 
of skin microvessels using a photoplethysmograph, 
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synchronization even during rapid breathing (10). 
High levels of cardiorespiratory synchronization 
are also seen during Zen and Kinhin meditation 
(29). Decreased breathing rate during meditation 
mediates cardiorespiratory synchronization and 
a parasympathetic response (30) (Fig. 2) while 
decreased synchronization of hemodynamic and 
respiratory rhythms is seen during stress (31). 
Conversely, meditation has been shown to provide 
significant benefit for the cardiovascular system (32). 
Meditation has also been shown to improve anxiety, 
pain, stress, mental health, and quality of life (33).  
In addition, after stress, mindfulness meditation 
results in significantly less neurogenic inflammation 
than in controls, despite equivalent amounts of stress 

(24). The pattern characterizing the spectral profile 
of heart rate and arterial pressure variability consists 
of LF and HF markers related to vasomotor and 
respiratory activity, respectively (25). For example, 
decreased HRV in response to a stressor is related 
to anxiety and depression (26). Wavelet analysis of 
HRV reveals the existence of frequencies between 
0.145 and 0.6 Hz corresponding to respiration 
and shows modulation of heart rate by respiration 
(respiratory sinus arrhythmia) (27). Indeed, Tang 
et al. (2009) demonstrated sympathetic markers 
decreased in subjects after training in mind-body 
techniques compared to a control group (28). In 
Dharma-Chan meditation, advanced practitioners 
exhibit a high degree of cardiorespiratory 

Fig. 1. Responses associated with sympathetic dominance. The dual-sided autonomic nervous system is shown in which 
sympathetic activation outweighs the parasympathetic branch. Sympathetic dominance, as seen during the stressed state, 
leads to a variety of peripheral responses associated with depolarization of target organs. Functional connectivity and 
alpha waves decrease, while limbic and amygdala activity increase. Brainstem activity also increases, reflected by the 
increased respiratory center and cardiovascular center rates. Respiration and heart rate increase. Heart rate variability 
measures are dominated by low frequency components. Blood pressure, skin conductivity, and muscle tension increase. 
Bowel motility and salivary gland secretion are also hindered. The body is in a relatively depolarized state, including the 
various target organs and spinal cord. Facial expression depicts a stressed or unpleasant state. 
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of emotion centers and increased functional 
connectivity of the medial prefrontal cortex, thereby 
increasing focus, memory, and feelings of well-
being (35). Another way that mindfulness meditation 
differs from simple relaxation is that the meditator 
is aware of moment-to-moment thoughts, feelings, 
and sensations. We propose that by decreasing 
stressful or anxious thoughts, that involve greater 
depolarizations, the practice of mindfulness 
involves widespread inhibition and membrane 
hyperpolarization of neurons and in turn contributes 
to the shift towards parasympathetic activity. Overall, 
relaxation may be involved in meditation but simply 
trying to relax does not always relax the mind or 
stop stressful thoughts. Therefore, we propose that 

hormones (34).

Influence of neural oscillations during stress and 
meditation

Meditation is generally associated with 
relaxation but many of the changes that occur during 
meditation do not occur during relaxation alone. For 
example, relaxation is not associated with the typical 
hemodynamic changes associated with meditation. 
Higher levels of cardiorespiratory synchronization 
that occur during meditation are hypothesized 
to lead to increases in membrane potential in the 
cardiovascular system, brainstem, limbic system and 
higher cortex. The subsequent homeostatic increases 
in membrane potential may lead to inhibition 

Fig. 2. Responses associated with parasympathetic dominance. The dual-sided autonomic nervous system is shown, in 
which parasympathetic activation outweighs the sympathetic branch. In contrast to sympathetic dominance, a shift to 
prominent parasympathetic activation leads to peripheral responses associated with membrane potential hyperpolarization 
and the reversal of the effects seen in Fig. 1. In this state, there is an increase in functional connectivity and alpha waves 
and a decrease in limbic and amygdala activity. Brain stem activity decreases, which is reflected in decreased respiratory 
center and cardiovascular center rates. Heart rate, respiratory rate, blood pressure, and muscle tension all decrease. 
High frequency heart rate variability is increased. This parasympathetic shift can be readily achieved through meditation 
and deep breathing techniques. A pleasant facial expression and widespread hyperpolarization is associated with this 
state compared to the relatively depolarized state in Fig. 1.

R. JERATH ET AL.
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glutamate induced a sympathetic response (49).  This 
study suggests that increased levels of GABA in the 
brain are involved in the parasympathetic response. 
In addition, stress has been shown to attenuate 
GABAergic inhibition in the amygdala (50). During 
stress, there is increased activity in the hypothalamo-
pituitary-adrenocortical axis (51) and an increase 
in activity and stimulation of the amygdala (52). 
Studies have found a decrease in amygdala activity 
during mindfulness meditation (53) and during non-
meditative states, after participating in mindfulness 
or compassion meditation training (54).  Also, 
reduced activity in the hippocampus, thalamus, and 
occipital lobe has been shown after practice of TM 
(55). During stress, the adrenal medulla increases 
secretion of the neurotransmitter epinephrine, which 
reaches the hypothalamus and acts on the central 
nervous system (56) and elevated cortisol levels 
from stress (57) may be responsible for decreased 
serotonin function in the brain during depression 
(58). During meditation, these neurotransmitters 
levels reverse.  Studies have found decreased levels 
of stress hormones such as cortisol (59), epinephrine 
and norepinephrine (60) after meditation. In addition, 
a stress management study training subjects in deep 
breathing, relaxation response, and meditation, 
found reduced anxiety and salivary cortisol levels 
(61). Levels of the anti-depressant and feel good 
hormones serotonin (62) and dopamine (60) increase 
during meditation.

  Concentration, Loving-Kindness, and Choiceless 
Awareness forms of meditation have all been shown 
to increase functional connectivity in areas involved 
with self-monitoring and cognition (63). The 
differences in EEG and neuroanatomical activation 
in fMRI studies reflect the different meditation 
approaches being used such as loving kindness, 
concentration, open monitoring, or focused attention, 
as well as cardio-respiratory events. For example, 
in Loving-Kindness meditation, the practitioner 
focuses on heartfelt compassionate feelings which 
lead to decreased amygdala activity (63) and 
activation in the insular and anterior cingulate 
fMRI signals with associated theta waves.  Focused 
attention meditation leads to activation of more 
executive function areas and beta/gamma activity 
(38) supported by cardiorespiratory synchronization, 
while TM is associated with increased medial 

mindfulness meditation is associated with greater 
widespread hyperpolarization and inhibition than 
relaxation alone.

Alpha oscillations have frequencies 
ranging from 8-13 Hz (36). In a study, using 
magnetoencephalography, Yamamoto et al. found 
an increase of alpha wave activity in the medial 
prefrontal cortex and anterior cingulate cortex during 
Transcendental Meditation® or automatic self-
transcending meditation (TM) (37). Examination of 
EEGs during automatic self-transcending meditation 
has shown that there is an increase in alpha-1 wave 
activity in the brain (38). Alpha waves have been 
associated with suppressing irrelevant brain activity 
and improving mental focus (39). Also, it has been 
suggested that alpha waves play an important role 
in selective attention and information processing 
(40). A study by Saggar et al. using EEG found a 
reduction in beta waves among subjects performing 
focused attention meditation when compared to the 
control groups (41). In addition, increases in left 
hemisphere activity are seen during meditation, 
which is associated with stronger immunity (42) and 
increased vaccination response (43).

Meditation practice has been linked to GABAergic 
cortical inhibition, which has been shown to be 
associated with improved cognition and regulation 
of emotions (44). A reduction in GABAergic 
cortical inhibition has been shown to be linked with 
memory impairment in schizophrenic patients (45). 
GABAergic neurons tonically inhibit supraoptic 
neurons in the hypothalamus and modulate the 
excitatory effects induced by interleukin-1 (46), 
suggesting that that the increased cortical GABA 
modulation associated with meditation (44) may 
underlie the decreases in interleukins-6 levels (47). 
GABAergic neurons are important in the process of 
generating respiratory rhythms and communication 
between the cardiovascular and respiratory centers 
in the brainstem. GABAergic neurons  have been 
shown to work as inhibitory neurons that increase 
their spontaneous firing during inspiration.  This 
suggests that inspiration promotes inhibitory activity 
in the brainstem and decreases  cardiovascular 
and respiratory center oscillation rates during 
parasympathetic dominance (48). Injecting GABA 
into the amygdala increased HRV, consistent with 
a parasympathetic response, and the injection of 
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prefrontal cortex activity and alpha wave appearance 
(64). Autogenic meditation is a practice in which the 
person uses verbal cues to help induce a feeling of 
warmth and relaxation.   

Do homeostatic changes in neuronal membrane 
potentials modify the neurotransmitter release that 
underlies stress, anxiety, and meditation responses?

Membrane potential changes can create currents 
that synchronize various oscillations throughout 
the body.  The process by which cardiovascular 
and respiratory rhythms synchronize is not well 
understood. However, hyperpolarization-activated 
currents have been shown to synchronize rhythmic 
cellular activity between the cardiovascular and 
respiratory centers in the brainstem (65) and within 
the central nervous system (66). This suggests that 
cardiorespiratory synchronization is associated with 
hyperpolarization.  

According to our hypothesis, respiration 
and cardiorespiratory synchronization influence 
hemodynamic elements, as well as the autonomic 
nervous system, cerebral blood vessels, and neural 
elements, by increasing the membrane potential 
of excitable and non-excitable cells. In animal 
studies, repetitive parasympathetic stimulation of 
taste cells led to a hyperpolarization of -9 mV (67) 
while sympathetic stimulation depolarized toad 
sinus venosus cells (68).  In addition, low-intensity 
stimulation of the vagus nerve causes long lasting, 
slow hyperpolarization of cortical neurons. This 
inhibits neuronal firing and may involve activation 
of potassium channels by acetylcholine and GABA 
receptor activity. In humans, inhibition of cortical 
neurons may be sustained if vagal stimulation is 
repeated before the last inhibition response has 
ended (69) suggesting that slow, deep breathing 
during meditation that stimulates the vagus may 
sustain this inhibition. These studies suggest that 
parasympathathetic drive leads to increased cellular 
membrane potentials and sympathetic drive may 
lead to decreased membrane potentials, as seen 
when sympathetic activation during stress leads to 
decreased membrane potentials of heart cells (70).  

Studies monitoring membrane potential changes 
during sympathetic or parasympathetic states 
are needed to further understand the homeostatic 
modulation of cardiac, respiratory, blood pressure 

(BP) rhythms. An animal study examining the 
somatosensory cortex found that neurons at -55 
mV were almost completely silent while pyramidal 
neurons at -85 mV had very reliable transmissions 
(71). This study suggests that cortical neurons with 
higher membrane potentials may have more reliable 
transmissions than those with lower membrane 
potentials. The typical resting state potential of 
pyramidal neurons is -85 mV to -60 mV (72) 
therefore if this study had examined transmissions 
at around -65 mV or -70 mV, we propose that 
the neurons would have fired more rapidly. We 
suggest that the increased membrane potentials 
during meditation in human subjects may increase 
transmission efficiency and functional connectivity 
via decreased firing rates while more depolarized 
neurons fire rapidly, resulting in less efficient and 
more chaotic transmissions. 

 We propose hemodynamic de-synchronization 
leads to a global decrease in membrane potential 
during stress and hemodynamic synchronization 
during meditation allows an increased potential to be 
conducted to all cells. This is reflected peripherally 
by decreased skin conductivity, BP, heart rate 
and increased HRV (28) which may be due to the 
hemodynamic synchronization brought on by 
the shift to parasympathetic dominance (35) and 
membrane hyperpolarization.

Our hypothesis focuses on mindfulness 
meditation but increased levels of cardiorespiratory 
synchronization are experienced during forms of 
meditation such as inward-attention (12), Chan 
(10), Zen, and Kinhin meditation (29), and further 
research is needed to measure synchronization in 
other forms of meditation involving slow, deep 
breathing. Increased levels of synchronization 
and hemodynamic changes lead to widespread 
hyperpolarization and inhibition which modulate the 
autonomic nervous system and brain activity. We 
propose that eyes closed, open-monitoring, inward-
attention, and mindfulness practices may enhance 
this widespread inhibition.

CONCLUSION

Physiological  and behavioral changes differ 
profoundly between states of meditation and anxiety.  
During anxiety, heart rate increases, breathing 

R. JERATH ET AL.
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becomes irregular, and  HRV decreases. These 
changes are accompanied by faster EEG rhythms and 
changes in neurotransmitters associated with negative 
emotions. In comparison, the mind-body relaxation 
response is associated with reverse changes and calm, 
focused thoughts. What causes these global changes 
in rhythms and thought processes? Is it a central 
process regulated by the hypothalamus and brain 
or by specific neurotransmitters? According to our 
hypothesis and review of literature, the mechanism is 
based on homeostatic modulation of intrinsic cellular 
excitability. Decreases in homeostatic membrane 
potentials during anxiety increase intrinsic cellular 
excitability, which in turn brings about changes in 
neuronal firing, neurotransmitters, and peripheral 
rhythms. Cardiorespiratory synchronization, during 
the mind-body response, leads to increases in 
homeostatic membrane potentials and decreased 
intrinsic cellular excitability that underlies the 
changes that modulate the autonomic nervous 
system and brain activity. Further studies are needed 
to confirm this hypothesis and elucidate the specific 
role of the hypothalamus in stabilizing the membrane 
potential set points of dynamic homeostasis during 
anxiety and the mind-body response.
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