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1 Informal Summary
1. We start with a propositional language L − consisting of the following

symbols:

Symbol Notation Type
propositional variables p1, p2, . . . 〈〉

plural variables pp1, pp2, . . . 〈〉〈〉

operator variables O1, O2, . . . 〈〈〉〉

identity symbol = 〈〈〉 , 〈〉〉

inclusion symbol ≺ 〈〈〉 , 〈〉〈〉〉

existential quantifier ∃ 〈〈〉〉

negation symbol ¬ 〈〈〉〉

conjunction symbol ∧ 〈〈〉 , 〈〉〉

parentheses (, ) -

We also introduce some abbreviations:

1



Notation Abbreviates
⊥ ∃p1(p1 ∧ ¬p1)

♦φ ¬(φ = ⊥)

2. We enrich L − to a language L , by adding the following symbols:

Symbol Notation Type
condition constants Q1, . . . ,Qr 〈〈〉〉

resolution increase ↑ 〈〈〉〉

resolution decrease ↓ 〈〈〉〉

The condition constants are used to express “procedures”. Intuitively,
a procedure Q might be used to characterize an operator OC , relative
to a space of propositions.

I’ll say more about the arrows below.

3. We work with a hierarchy of sets of “worlds”, of increasing levels of
resolution:

• For W a non-empty set,

– W 0 = W

– P n
W = ℘(W n)

– W n+1 = {〈w, en1 , . . . , enr 〉 : w ∈ W ∧ eni ⊆ P n
W} 1

4. This allows us to define “superworlds”:

• A superworld is a sequence 〈w0, w1, w2, . . .〉 such that:

– wk ∈ W k
W

– each wk is “refined” by wk+1. 2

1Intuitively, eni is the extension of Qi at world 〈w, en1 , . . . , enr 〉 ∈Wn+1.
2Intuitively, wk is refined by wk+1 when it agrees about the extension of each Qi as far

as propositions in Pn
W are concerned.
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• Superworlds are assessed at a given level of resolution.

– A superworld 〈w0, w1, w2, . . .〉 assessed at resolution level k
behaves like wk.

5. The arrows, ↑ and ↓

• ↑ increases by 1 the level of resolution with respect to which su-
perworlds are assessed.

• ↓ decreases by 1 the level of resolution with respect to which su-
perworlds are assessed. 3

6. The result is a well-behaved system:

• One gets standard axioms, when attention is restricted to L −.

• One gets sensible axioms for the general case, including a nice
comprehension principle.

7. One gets a system that does not encourage lapsing into nonsense

• If logical space is genuinely open-ended, talking about “all possible
refinements” is problematic. (For example, it can lead to revenge
issues.) But having ↑ and ↓ instead of ♦ allows us to stay well
within the range of sense.

2 The language
Definition 1 L is a language built from the following symbols:

• the propositional variables p1, p2, . . . , which are of type 〈〉;

• the plural propositional variables pp1, pp2, . . . , which are of type 〈〉〈〉;

• the propositional identity symbol, =, which is of type 〈〈〉 , 〈〉〉;

• the propositional inclusion relation ≺, which is of type 〈〈〉 , 〈〉〈〉〉

• the operator variables O1, O2, . . . , which are of type 〈〈〉〉;
3Unless it is already 0, in which case ↓ does nothing.
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• for r > 0, the indefinitely extensible constants Q1, . . . ,Qr, which are of
type 〈〈〉〉;

• the existential quantifier, ∃, which binds variables of any type;

• the negation symbol, ¬, the conjunction symbol, ∧, and parentheses;

• the refinement operator, ↑, and unrefinement operator, ↓, which are of
type 〈〈〉〉.

Definition 2 The expressions “⊥”, “>”, “∀”, “∨”, “→”, and “↔” are defined,
in the usual way. In addition:

• ♦φ := ⊥ 6= φ �φ := φ = >

• φ� ψ := (φ = (φ ∧ ψ))

Definition 3 The formulas of L are defined recursively, in the obvious way.
A sentence is a formula in which every occurrence of a variable is bound by
a quantifier.

3 Some Results
Here are some results, which presuppose that attention is restricted to “nat-
ural” models:

For

• E+ := ∃p(Op ∧ p)
• E− := ∃p(Op ∧ ¬p)

Prior |= O(E−)→ (E+ ∧ E−)

Extensional Prior |= ∀p[(p↔ E−)→ (Op→ (E+ ∧ E−))]

An immediate consequence of Prior is:

Modal Prior |= ¬∀p♦∀q(Oq ↔ (q = p))

But we can also show:
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Modal Prior Next: |= ∀p↑♦∀q(Qiq ↔ (q = p))

or, equivalently:

Modal Prior Next: |= ∀p♦∀q(↑Qiq ↔ (q = p))

There are obvious generalizations of Modal Prior and Modal Prior Next:

Kaplan |= ¬∀pp♦∀q(Oq ↔ (q ≺ pp))

Kaplan Next |= ∀pp↑♦∀q(Qiq ↔ q ≺ pp)

or, equivalently:

Kaplan Next: |= ∀pp♦∀q(↑Qiq ↔ q ≺ pp)

The intensional case yields different results. With no need to restrict to
natural models, we have:

|= ↑∃O�∃p(↑Qip 6↔ Op)

and therefore

6|= ∀O♦∀p(↑Qip↔ Op)

Regarding Russell-Myhill, we have:

Russell-Myhill |= ∃O∃P (Op = Pp ∧ ¬∀q(Oq ↔ Pq))

But also:

Russell-Myhill Next Whenever Qi and Qj are independent, |=↑ (Qip 6=
Qjp)

Here is an outline of the behavior of ↑ and ↓:

• |= (¬ ↑φ)↔ (↑¬φ)

• |= (♦↑φ)↔ (↑♦φ)

• |= (↑φ ∧ ↑ψ)↔ ↑(φ ∧ ψ)

• |= (↑φ = ↑ψ)↔ ↑(φ = ψ)
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• |= ↑(p)↔ p

• |= ↑(p ≺ pp)↔ p ≺ pp

• |= ↑(Op)↔ Op

• |= (↑↓↑φ)↔ (↑↑↓φ)

• |= φ ⇒ |= ↑φ

Existential Generalization Let ψ be free for p in φ. For k = v0(ψ),4

|= φ[ψ/p]→ ↑k ∃p ↓kφ

Comprehension Let k = v0(φ) and let p be a variable not occurring free
in φ. Then:

|= ↑k ∃p(p =↓kφ)

4 Frames
We use a non-empty set of “worlds” W to characterize a hierarchy with one
level for each natural number. At level n, we introduce a set of n-level worlds
(W n), a set of n-level propositions (P n), a set of n-level “extensions” (En),
and a set of n-level intensions (In). (An n-level proposition is a set of n-
level worlds; an n-level extension is a set of n-level propositions; an n-level
intension is a function from n-level propositions to n-level propositions.) The
0-level worlds are just the members of W . An (n + 1)-level world wn+1 is
a sequence consisting of a 0-level world and an n-level extension for each
indefinitely extensible constaint Q1, . . . ,Qr. Formally,

Definition 4 (Worlds, propositions, extensions, intensions)
For W a non-empty set,

4↑k := ↑ . . . ↑︸ ︷︷ ︸
k times

↓k := ↓ . . . ↓︸ ︷︷ ︸
k times

. The valence of ψ, v0(ψ), is a syntactically character-

ized upper bound on the resolution that is needed to describe the proposition expressed
by ψ, when evaluated externally at resolution 0 (assuming a variable assignment of level
0).
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• W 0 = W

• P n
W = ℘(W n)

• En
W = ℘(P n

W )

• InW = {f : P n
W → P n

W}

• W n+1 = {〈w, en1 , . . . , enr 〉 : w ∈ W ∧ eni ∈ En
W}

• W∞ =
⋃
n∈NW

n

In some applications we may not want to count some worlds in W∞ as “in-
admissible”, on metaphysical grounds. We therefore introduce the following
additional definitions:

Definition 5 (Frames) A frame is a pair 〈W,A〉, whereW is a non-empty
set and A ⊆ W∞.

Definition 6 (Admissible Worlds) For 〈W,A〉 a frame, we let:

• W 0
A = W

• W n+1
A =

{
〈w, en1 , . . . , enr 〉 ∈ A : w ∈ W ∧ eni ∈ En

WA

}
• P n

WA
= ℘(W n

A)

• En
WA

= ℘(P n
WA

)

• InWA =
{
f : P n

WA
→ P n

WA

}
Definition 7 (Refinements) Fix a frame 〈W,A〉. Intuitively speaking,

• For wn ∈ W n
A and wn+1 ∈ W n+1

A , wn BWA wn+1 states that world wn
is “refined” by world wn+1, relative to 〈W,A〉.

• For pn ∈ P n
WA

and pn+1 ∈ Pm
WA

, the (n+ 1)-level proposition [pn]n+1
WA

is
the set of worlds in W n+1

A that are “refinements” of some world in pn.

Formally:

• w0 BWA w
1 := ∃e01 . . . e0r ∈ E0

WA
(w1 = 〈w0, e01, . . . , e

0
r〉)
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• [pn]n+1
WA

:=
{
wn+1 ∈ W n+1

A : ∃wn ∈ pn(wn BWA wn+1)
}

•

wn+1 BWA w
n+2 := ∃w ∈ W ∃en1 . . . enr ∈ En

WA
∃en+1

1 . . . enr ∈ En+1
WA(

wn+1 = 〈w, en1 , . . . , enr 〉 ∧ wn+1 =
〈
w, en+1

1 , . . . , en+1
r

〉
∧

∀pn
(
pn ∈ en1 ↔ [pn]n+1

WA
∈ en+1

1

)
∧

...

∀pn
(
pn ∈ enr ↔ [pn]n+1

WA
∈ en+1

r

))
Definition 8 (Admissible Frames) A frame 〈W,A〉 is admissible iff for
any n ∈ N and wn ∈ W n

A:

• if n > 0, wn refines some world in W n−1
A

(i.e. there is some wn−1 ∈ W n−1
A is such that wn−1 BWA wn);

• wn is refined by some world in W n+1
A

(i.e. there is some wn+1 ∈ W n+1
A is such that wn BWA wn+1);

Proposition 1 (There are admissible frames) The frame 〈W,A〉 is ad-
missible whenever A = W∞.

Proof For n ∈ N, let wn ∈ W n
WA

. We need to verify two claims:

• if n > 0, then wn refines some world in W n−1
A

Since n > 0, we can let wn =
〈
w, en−11 , . . . , wn−1r

〉
. If n = 1, the result

is trivial, since we can let wn = w. So we may suppose that n > 1. For
each i ≤ r let

en−2i =
{
pn−2 ∈ P n−2

WA
: [pn−2]n−1WA

∈ en−1i

}
Let wn−1 =

〈
w, en−21 , . . . , wn−2r

〉
. Since A = W∞, wn−1 ∈ W n−1

A .

In addition, since A = W∞, P n
W = P n

WA
. So:

∀pn−2
(
pn−2 ∈ en−2i ↔ [pn−2]n−1WA

∈ en−1i

))
So it follows from the definition of BWA that wn−1 BWA wn.
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• wn is refined by some world in W n+1
A

Suppose, first, that n = 0, and let wn+1 = 〈wn, ∅, . . . , ∅〉. Since A =
W∞, wn+1 ∈ W n+1

A . And it follows immediately from the definition of
BWAthat wn BWA wn+1.

Now suppose that n > 0 and let wn =
〈
w, en−11 , . . . , en−1r

〉
. For each

i ≤ r let
eni =

{
[pn−1]n ∈ P n

WA
: pn−1WA

∈ en−1i

}
Let wn+1 = 〈w, en1 , . . . , wnr 〉. Since A = W∞, wn+1 ∈ W n+1

A .

In addition, since A = W∞, P n
W = P n

WA
. So:

∀pn−1
(
pn−1 ∈ en−1i ↔ [pn−1]nWA ∈ e

n
i

))
So it follows from the definition of BWA that wn BWA wn+1.

Proposition 2 (Injectivity of Refinement) Fix a frame 〈W,A〉. For vn, wn ∈
W n
A and wn+1 ∈ W n+1

A ,

vn BWA w
n+1 ∧ wn BWA wn+1 → vn = wn

Proof Since the result is trivial if n = 0, we assume n > 0. Let wn+1 =
〈w, en1 , . . . , enr 〉. Since wn BWA wn+1, wn must be

〈
w, en−11 , . . . , en−1r

〉
for some

en−11 , . . . , en−1r . Since vn BWA wn+1 ,vn must be
〈
w, fn−11 , . . . , fn−1r

〉
for some

fn−11 , . . . , fn−1r .
Suppose, for reductio, that vn 6= wn. Then it must be the case that

en−1i 6= fn−1i for i ≤ r. We may assume with no loss of generality that for
some pn−1 ∈ P n−1

WA
, pn−1 ∈ en−1i but pn−1 /∈ fn−1i . Since wn BWA wn+1 and

pn−1 ∈ en−1i , it follows from the definition of BWA that [pn−1]n ∈ eni . But
since vn BWA wn+1 and pn−1 /∈ fn−1i , it follows from the definition of BWA
that [pn−1]n /∈ eni , which contradicts an earlier assertion.

5 Superworlds
Definition 9 (Superworlds) Fix a frame 〈W,A〉. A superworld ~w of
〈W,A〉 is an infinite sequence 〈w0, w1, w2, . . .〉 (wn ∈ W n

A) such that:

w0 BWA w
1 BWA w

2 BWA . . .

Some additional notation:
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• WA is the set of superworlds of 〈W,A〉.

• For ~w ∈ WA, ~w(n) is the nth member of ~w.

Proposition 3 (Every world is part of a superworld) Fix an admissi-
ble frame 〈W,A〉. For any wn ∈ W n

A, there is some ~w ∈ WA such that
~w(n) = wn.

Proof Since 〈W,A〉 is admissible, there must be a sequence〈
v0, . . . , vn−1, wn, vn+1, vn+2, . . .

〉
such that

v0 BWA v
n−1 BWA w

n BWA v
n+1 BWA v

n+1 BWA . . .

Proposition 4 (No backwards divergence for superworlds) For ~w,~v ∈
WA and n, k ∈ N, ~v(n+ k) = ~w(n+ k) entails ~v(n) = ~w(n).

Proof Assume ~v(n) 6= ~w(n). By proposition 2, ~v(n+ 1) 6= ~w(n+ 1). Again
by proposition 2, ~v(n + 2) 6= ~w(n + 2). After k iterations of this procedure,
we get ~v(n+ k) 6= ~w(n+ k).

Definition 10 (Superpropositions)

• A superproposition ~p of 〈W,A〉 is a set of superworlds in WA.

• PWA = {~p : ~p ⊆ WA}.

• P n
WA = {~p ∈ PWA : ~w(n) = ~v(n)→ (~w ∈ ~p↔ ~v ∈ ~p)}

• For ~p ∈ PWA, we let ~p(n) = {~w(n) : ~w ∈ ~p}.5

Proposition 5 (Monotonicity of Superpropositions) For n ∈ N, ~p ∈
P n
WA → ~p ∈ P n+1

WA .

Proof Assume ~p ∈ P n
WA . We suppose ~w(n + 1) = ~v(n + 1) and ~w ∈ ~p, and

we show ~v ∈ ~p. By proposition 4, ~w(n + 1) = ~v(n + 1) entails ~w(n) = ~v(n).
So ~w ∈ ~p guarantees ~v ∈ ~p.

5Note that {~w(n) : ~w ∈ ~p} =
{
vn ∈ Pn

WA
: ∃~v ∈ ~p(vn = ~v(n))

}
.
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Proposition 6 (~p(n) is well-behaved, part 1) If ~p,∈ P n
WA, then ~w ∈

~p↔ ~w(n) ∈ ~p(n).

Proof Suppose, first, that ~w ∈ ~p. By definition, ~p(n) =
{
vn ∈ P n

WA
: ∃~v ∈ ~p(vn = ~v(n))

}
.

Since ~w is a true instance of the following existential:

∃~v ∈ ~p(~w(n) = ~v(n))

we have ~w(n) ∈ ~p(n).
Now suppose that ~w(n) ∈ ~p(n). By definition, ~p(n) =

{
vn ∈ P n

WA
: ∃~v ∈ ~p(vn = ~v(n))

}
.

So the fact that ~w(n) ∈ ~p(n) entails that there must be some ~z ∈ ~p such that
~z(n) = ~w(n). But since ~p,∈ P n

WA , ~z ∈ ~p and ~z(n) = ~w(n) entail that ~w ∈ ~p.

Proposition 7 (~p(n) is well-behaved, part 2) If ~p, ~q ∈ P n
WA, then ~p(n) =

~q(n) entails ~p = ~q.

Proof
~w ∈ ~p ↔ ~w(n) ∈ ~p(n) by proposition 6

↔ ~w(n) ∈ ~q(n) since ~p(n) = ~q(n)
↔ ~w ∈ ~q by proposition 6

Proposition 8 (~p(n) is well-behaved, part 3) Assume ~p ∈ P n
WA. Then:

~p(n) = pn ↔ ~p = {~w ∈ WA : ~w(n) ∈ pn}

Proof
Left to right: We assume ~p(n) = pn, and therefore

{wn : ∃~w ∈ ~p(wn = ~w(n))} = pn

To verify ~p = {~w ∈ WA : ~w(n) ∈ pn}, it suffices to check each of the
following:

• If ~v(n) ∈ pn, then ~v ∈ ~p
Suppose that ~v(n) ∈ pn. By our initial assumption, there is some ~w ∈ ~p
such that:

~v(n) = ~w(n)

But since ~p ∈ P n
WA , this entails

~w ∈ ~p↔ ~v ∈ ~p

which means that we have ~v ∈ ~p, as desired.
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• If ~v(n) 6∈ pn, then ~v 6∈ ~p.
Suppose that ~v(n) 6∈ pn. By our initial assumption, every ~w ∈ ~p is such
that:

~v(n) 6= ~w(n)

from which it follows that ~v 6∈ ~p.

Right to Left: Assume ~p = {~w ∈ WA : ~w(n) ∈ pn}. By proposition 3:

{~w(n) : ~w(n) ∈ pn} = pn

equivalently:
{~w(n) : ~w ∈ {~w ∈ WA : ~w(n) ∈ pn}} = pn

So, by our assumption,
{~w(n) : ~w ∈ ~p} = pn

which is what we want:
~p(n) = pn

Definition 11 (Superextensions)

• A superextension ~e of 〈W,A〉 is a set of superpropositions of 〈W,A〉.

• EWA = {~e : ~e ⊆ PWA}.

• En
WA =

{
~e : ~e ⊆ P n

WA

}
.

Definition 12 (Superintensions)

• A superintension ~i of 〈W,A〉 is a function from superpropositions of
〈W,A〉 to superpropositions of 〈W,A〉.

• IWA = {~ı :~ı is a function from PWA into PWA}.

• InWA =
{
~ı ∈ IWA : ∀~p ∈ PWA

(
~ı(~p) ∈ P n

WA

)}
.

Proposition 9 (Monotonicity of Superintensions) For n ∈ N,~ı ∈ InWA →
~ı ∈ In+1

WA .

Proof Let ~ı ∈ InWA and ~p ∈ PWA. Since ~ı ∈ InWA, ~ı(~p) ∈ P
n
WA. So proposi-

tion 5 entails that ~ı(~p) ∈ P n+1
WA

~p(n + 1) = ~v(n + 1) and ~w ∈ ~p, and we show ~v ∈ ~p. By proposition 4,
~w(n+ 1) = ~v(n+ 1) entails ~w(n) = ~v(n). So ~w ∈ ~p guarantees ~v ∈ ~p.
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6 Extensions for Qi

Definition 13 (Extension Predicate for Qi) Fix a frame 〈W,A〉. For
~w ∈ WA and n ∈ N, let ~w(n+ 1) = 〈w, en1 , . . . , enr 〉. Then:[W

A Ext
n
Qi

]
(~w) =

{
~p ∈ P n

WA : ∃pn ∈ eni (~p(n) = pn)
}

Proposition 10 (Monotonicity of Extensions) For any ~w ∈ WA and
~p ∈ PWA,

~p ∈
[W
A Ext

n
Qi

]
(~w)→ ~p ∈

[W
A Ext

n+1
Qi

]
(~w)

Proof Let ~w(n + 1) = 〈w, en1 , . . . , enr 〉, ~w(n + 2) =
〈
w, en+1

1 , . . . , en+1
r

〉
. Let

~p ∈
[W
A ExtnQi

]
(~w). We verify that ~p is also in

[W
A Extn+1

Qi

]
(~w).

By the definition of
[W
A ExtnQi

]
(~w), ~p ∈ P n

WA and there is some pn ∈ eni such
that ~p(n) = pn. Since ~p is in P n

WA , it is also in P n+1
w a. So, by the definition

of
[W
A Extn+1

Qi

]
, it suffices to verify each of the following two propositions:

• ~p(n+ 1) = [pn]n+1
WA

Proof: By definition,

[pn]n+1
WA

=
{
vn+1 : ∃wn ∈ pn(wn BWA vn+1)

}
which is equivalent to the following, by proposition 3

[pn]n+1
WA

= {~v(n+ 1) : ~v ∈ WA ∧ ∃wn ∈ pn(wn BWA ~v(n+ 1))}

which is equivalent to the following, by proposition 2,

[pn]n+1
WA

= {~v(n+ 1) : ~v(n) ∈ pn}

But we know that ~p(n) = pn. So:

[pn]n+1
WA

= {~v(n+ 1) : ~v(n) ∈ ~p(n)}

which is equivalent to

[pn]n+1
WA

= {~v(n+ 1) : ~v(n) ∈ {~w(n) : ~w ∈ ~p}}

equivalently:
[pn]n+1

WA
= {~v(n+ 1) : ~v ∈ ~p}

which is what we want:

[pn]n+1
WA

= ~p(n+ 1)
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• [pn]n+1 ∈ en+1

Proof: Since ~w(n+1) BWA ~w(n+2), we know that pn ∈ eni ↔ [pn]n+1
WA ∈

en+1
i . So the result is immediate.

Proposition 11 (Conservativity of Extensions) For any ~w ∈ WA and
~p ∈ P n

WA (n ∈ N),

~p ∈
[W
A Ext

n+1
Qi

]
(~w)→ ~p ∈

[W
A Ext

n
Qi

]
(~w)

Proof Let ~w(n+ 1) = 〈w, en1 , . . . , enr 〉, ~w(n+ 2) =
〈
w, en+1

1 , . . . , en+1
r

〉
. Let ~p

be in both P n
WA and

[W
A Extn+1

Qi

]
(~w). We verify that ~p is also in

[W
A ExtnQi

]
(~w).

By the definition of
[W
A Extn+1

Qi

]
(~w), there is some pn+1 ∈ en+1

i such that
~p(n+ 1) = pn+1. Let

pn =
{
wn ∈ W n

A : ∃wn+1 ∈ pn+1(wn BWA w
n+1)

}
We have ~p ∈ P n

WA . So in order to show ~p ∈
[W
A ExtnQi

]
(~w), it suffices to verify

each of the following two propositions:

• ~p(n) = pn

Proof: By definition,

pn =
{
wn ∈ W n

A : ∃wn+1 ∈ pn+1(wn BWA w
n+1)

}
Since ~p(n+ 1) = pn+1,

pn =
{
wn ∈ W n

A : ∃wn+1 ∈ ~p(n+ 1)(wn BWA w
n+1)

}
which is equivalent to:

pn =
{
wn ∈ W n

A : ∃wn+1 ∈ {~w(n+ 1) : ~w ∈ ~p} (wn BWA wn+1)
}

or, equivalently,

pn = {wn ∈ W n
A : ∃~w ∈ ~p (wn BWA ~w(n+ 1))}

which is equivalent to the following, by proposition 2,

pn = {wn ∈ W n
A : ∃~w ∈ ~p (wn = ~w(n))}
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But, by proposition 3, this is equivalent to:

pn = {~v(n) : ~v ∈ WA ∧ ∃~w ∈ ~p (~v(n) = ~w(n))}

But we are assuming that that ~p ∈ P n
WA and, therefore, that, for any

~w,~v ∈ WA,
~v(n) = ~w(n)→ (~v ∈ ~p↔ ~w ∈ ~p)

which allows us to conclude:

pn = {~v(n) : ~v ∈ ~p}

which delivers the desired result:

pn = ~p(n)

• pn ∈ eni
Proof: Since ~w(n+1) BWA ~w(n+2), we know that pn ∈ eni ↔ [pn]n+1

WA ∈
en+1
i . So it suffices to show that [pn]n+1

WA ∈ e
n+1
i . By definition:

[pn]n+1
WA

=
{
vn+1 : ∃wn ∈ pn(wn BWA vn+1)

}
So, brining in the definition of pn,

[pn]n+1
WA

=
{
vn+1 : ∃wn∃wn+1(wn+1 ∈ pn+1 ∧ wn BWA wn+1 ∧ wn BWA vn+1)

}
But, since ~p(n+ 1) = pn+1, we have:

[pn]n+1
WA

=
{
vn+1 : ∃wn∃wn+1(wn+1 ∈ ~p(n+ 1) ∧ wn BWA wn+1 ∧ wn BWA vn+1)

}
equivalently:

[pn]n+1
WA

=
{
vn+1 : ∃wn∃wn+1(wn+1 ∈ {~z(n+ 1) : ~z ∈ ~p} ∧ wn BWA wn+1 ∧ wn BWA vn+1)

}
Simplifying:

[pn]n+1
WA

=
{
vn+1 : ∃wn∃~w ∈ ~p (wn BWA ~w(n+ 1) ∧ wn BWA vn+1)

}
which by proposition 2 is equivalent to:

[pn]n+1
WA

=
{
vn+1 : ∃~w ∈ ~p (~w(n) BWA v

n+1)
}

15



so proposition 3 gives us

[pn]n+1
WA

= {~v(n+ 1) : ∃~w ∈ ~p (~w(n) BWA ~v(n+ 1))}

and again by proposition 2,

[pn]n+1
WA

= {~v(n+ 1) : ∃~w ∈ ~p (~w(n) = ~v(n))}

But we are assuming that that ~p ∈ P n
WA and, therefore, that, for any

~w,~v ∈ WA,
~w(n) = ~v(n)→ (~w ∈ ~p↔ ~v ∈ ~p)

which allows us to conclude:

[pn]n+1
WA

= {~v(n+ 1) : ~v ∈ ~p}

Or, equivalently,
[pn]n+1

WA
= ~p(n+ 1)

which gives us the desired result, since we are assuming that ~p(n+1) =
pn+1 and pn+1 ∈ en+1

i .

7 Models
Definition 14 A model is a quadruple 〈W,A, ~α, k〉, for 〈W,A〉 an admis-
sible frame, ~α ∈ WA, and k ∈ N. (Intuitively, ~α is the actual superworld and
k is a level of “resolution” with respect to which truth is to be assessed.)

Definition 15 A variable assignment for 〈W,A, ~α, k〉 is a function σ
such that:

• σ(pi) ∈ PWA;

• σ(ppi) ⊆ PWA and σ(ppi) 6= ∅;

• σ(Oi) ∈ IWA.

Definition 16 (Truth at a superworld) Fix a model 〈W,A, ~α, k〉. For φ
a formula of L , ~w ∈ WA, and σ a variable assignment for 〈W,A, ~α, k〉, we
define the truth of φ at ~w with respect to σ at resolution k (in symbols: ~w |=k

σ

φ) using the following recursive clauses:

16



• ~w |=k
σ pi iff ~w ∈ σ(pi);

• ~w |=k
σ Qjpi iff

{
σ(pi) ∈

[
W
A Ext

k−1
Qj

]
(~w), if k > 0

⊥, if k = 0

• ~w |=k
σ Ojpi iff ~w ∈ σ(Oj)(σ(pi));

• ~w |=k
σ pi ≺ ppj iff σ(pi) ∈ σ(ppj);

• ~w |=k
σ φ = ψ iff

{
~v ∈ WA : ~v |=k

σ φ
}
=
{
~v ∈ WA : ~v |=k

σ ψ
}

• ~w |=k
σ ¬φ iff ~w 6|=k

σ φ;

• ~w |=k
σ (φ ∧ ψ) iff ~w |=k

σ φ and ~w |=k
σ ψ;

• ~w |=k
σ ∃piφ iff for some ~q ∈ P k

WA, ~w |=
k
σ[~q/pi]

φ;

• ~w |=k
σ ∃ppiφ iff for some ~A ⊆ P k

WA, ~A 6= ∅ and ~w |=k
σ[ ~A/ppi]

φ;

• ~w |=k
σ ∃Ojφ iff for some ~ı ∈ IkWA, ~w |=

k
σ[~ı/Oj ]

φ;

• ~w |=k
σ↑ φ iff ~w |=k+1

σ φ;

• ~w |=k
σ↓ φ iff

{
|=k−1
σ φ, if k > 0

|=0
σ φ, if k = 0

Proposition 12

1. ~w |=k
σ ♦φ iff

{
~v ∈ WA : ~v |=k

σ φ
}
6= ∅;

2. ~w |=k
σ �φ iff

{
~v ∈ WA : ~v |=k

σ φ
}
=WA;

3. ~w 6|=k
σ ⊥;

4. ~w |=k
σ (φ→ ψ) iff: if ~w |=k

σ φ, then ~w |=k
σ ψ;

5. ~w |=k
σ (φ↔ ψ) iff: ~w |=k

σ φ iff ~w |=k
σ ψ;

6. ~w |=k
σ ∀piφ iff for any ~q ∈ P k

WA, ~w |=
k
σ[~q/pi]

φ;

7. ~w |=k
σ ∀ppiφ iff for any ~A ⊆ P k

WA, ~w |=
k
σ[ ~Ak/ppi]

φ;

17



8. ~w |=k
σ ∀Oiφ iff for any ~ı ∈ IkW , ~w |=k

σ[~ı/Oi]
φ;

Proof

1. Recall that ♦φ := ¬(φ = ⊥).

• ~w |=k
σ φ = ⊥ iff

{
~w : ~w |=k

σ φ
}
=
{
~w ∈: ~w |=k

σ ⊥
}
iff
{
~w : wk |=k

σ φ
}
=

∅
• ~w |=k

σ ¬(φ = ⊥) iff
{
~w : ~w |=k

σ φ
}
6= ∅

2. Recall that �φ := (φ = >).

• ~w |=k
σ φ = > iff

{
~w : ~w |=k

σ φ
}
=
{
~w ∈: ~w |=k

σ >
}
iff
{
~w : wk |=k

σ φ
}
=

WA.

The remaining proofs are trivial.

8 Truth and Validity
Definition 17 An n-level variable assignment for 〈W,A, ~α, k〉 is a vari-
able assignment σ such that:

• σ(pi) ∈ P n
WA;

• σ(ppi) ⊆ P n
WA and σ(ppi) 6= ∅;

• σ(Oi) ∈ InWA.

Proposition 13 (Monotonicity of Assignments) For n, k ∈ N, if σ is
an n-level assignment, it is also a (n+ 1)-level assignment.

Proof Assume that σ is an n-level assignment. To show that σ is also an
(n+ 1)-level assignment, we need to verify:

• σ(pi) ∈ P n+1
WA

Proof: Since σ is an n-level assignment, we have σ(pi) ∈ P n
WA . So

proposition 5 entails σ(pi) ∈ P n+1
WA .

18



• σ(ppi) ⊆ P n+1
WA

Proof: Since σ is an n-level assignment, we have σ(ppi) ⊆ P n
WA . So, for

each ~q ∈ σ(ppi), proposition 5 entails ~q ∈ P n+1
WA . So σ(ppi) ⊆ P n+1

WA .

• σ(Oi) ∈ In+1
WA

Proof: Since σ is an n-level assignment, we have σ(Oi) ∈ InWA . So
proposition 9 entails σ(Oi) ∈ In+1

WA .

Definition 18 (Truth) For a formula φ of L to be true at model 〈W,A, ~α, k〉
is for it to be the case that ~α |=k

σ φ for every k-level assignment σ.

Definition 19 (Validity) For φ to be valid (in symbols |= φ) is for it to
be true at every model.

Definition 20 Let L − be the fragment of L that excludes ↑, ↓, and Q1, . . . ,Qr.

Proposition 14 φ ∈ L − is valid in the present framework if and only if it
is valid in a standard higher-order framework.

Proof
Right to Left: Suppose φ fails to be valid in the present framework. Then

there is some model 〈W,A, ~α, k〉 at which φ fails to be true. But when the
clauses for vocabulary outside L −1 are ignored, our semantic clauses are
totally standard. So φ will also fail to be true when 〈W,A, ~α, k〉 is thought
of as a standard higher-order model.

Left to Right: Suppose φ fails to be valid with respect to a standard
higher-order model theory. Then it fails to be true according to some stan-
dard model. But every standard higher-order model of L − is isomorphic to
some model of the form 〈W,A, ~α, 0〉. So φ must fail to be true according to
some model of the present framework.

9 Substitution
Definition 21 (Notation)

• φ[ψ/p] is the result of substituting ψ for each free occurrence of p in φ.
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• σ[~q/p](η) =

{
σ(η), if η 6= p

~q, if η = p

• We say that ψ is free for p in φ iff no free variables in ψ become
bound when substituting ψ for every free occurrence of p in φ.

Proposition 15 (Trivial Substitution) If p does not occur free in φ,

~w |=n
σ φ↔ ~w |=n

σ[~q/p] φ

Proof We proceed by induction on the complexity of φ:

• φ = pi.

Since p does not occur free in φ, p 6= pi. So we have σ(pi) = σ[~q/p](pi)
and therefore:

~w |=n
σ pi ↔ ~w |=n

σ[~q/p] pi

• φ = Qjpi. If n = 0, the result is immediate, by the semantic clause for
Qj:

~w |=0
σ Qjpi ↔ ⊥↔ ~w |=0

σ[~q/p] Qjpi
We therefore assume n > 0. Since p does not occur free in φ, p 6= pi.
So we have σ(pi) = σ[~q/p](pi) and therefore:

~w |=n
σ Qjpi ↔ σ(pi) ∈

[
W
A Extn−1Qj

]
↔ σ[~q/p](pi) ∈

[
W
A Extn−1Qj

]
↔ ~w |=n

σ[~q/p] Qjpi

• φ is Ojpi

Since p does not occur free in φ, p 6= pi. So we have σ(pi) = σ[~q/p](pi)
and therefore:

~w |=n
σ Ojpi ↔ σ(pi) ∈ σ(Oj)↔ σ[~q/p](pi) ∈ σ[~q/p](Oj)↔ ~w |=n

σ[~q/p] Ojpi

• φ is pi ≺ ppj

Since p does not occur free in φ, p 6= pi. So we have σ(pi) = σ[~q/p](pi)
and therefore:

σ(pi) ∈ σ(ppj)↔ σ[~q/p](pi) ∈ σ[~q/p](ppj)

from which the result follows by the semantic clause for ≺.
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• φ is θ = ξ

Since p does not occur free in φ, it must not occur free in θ or ξ. So,
by inductive hypothesis:

~w |=n
σ θ ↔ ~w |=n

σ[~q/p] θ

~w |=n
σ ξ ↔ ~w |=n

σ[~q/p] ξ

and therefore
{~w : ~w |=n

σ θ} ↔
{
~w : ~w |=n

σ[~q/p] θ
}

{~w : ~w |=n
σ ξ} ↔

{
~w : ~w |=n

σ[~q/p] ξ
}

So we have:

{~w : ~w |=n
σ θ} = {~w : ~w |=n

σ ξ} ↔
{
~w : ~w |=n

σ[~q/p] θ
}
=
{
~w : ~w |=n

σ[~q/p] ξ
}

from which the result follows by the semantic clause for =.

• φ is ¬θ
Since p does not occur free in φ, it must not occur free in θ. So, by
inductive hypothesis:

~w |=n
σ θ ↔ ~w |=n

σ[~q/p] θ

and therefore
~w 6|=n

σ θ ↔ ~w 6|=n
σ[~q/p] θ

from which the result follows by the semantic clause for ¬.

• φ is (θ ∧ ξ)
Since p does not occur free in φ, it must not occur free in θ or ξ. So,
by inductive hypothesis:

~w |=n
σ θ ↔ ~w |=n

σ[~q/p] θ

~w |=n
σ ξ ↔ ~w |=n

σ[~q/p] ξ

So we have:

(~w |=n
σ θ ∧ ~w |=n

σ ξ)↔ ~w |=n
σ[~q/p] θ ∧ ~w |=n

σ[~q/p] ξ ()

from which the result follows by the semantic clause for ∧.
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• φ is ∃piθ
By the semantic clause for ∃:

~w |=n
σ ∃piθ ↔ ∃~r ∈ P n

WA ~w |=
n
σ[~r/pi]

~w |=n
σ[~q/p] ∃piθ ↔ ∃~r ∈ P n

WA ~w |=
n
σ[~q/p][~r/pi]

There are two cases:

– Suppose p = pi. Then σ[~r/pi] = σ[~q/p][~r/pi]. So, merging the
above biconditionals gives us:

~w |=n
σ ∃piθ ↔ ~w |=n

σ[~q/p] ∃piθ

which is what we want.
– Suppose p 6= pi. Then the fact that p does not occur free in ψ

entails that it does not occur free in θ. So, by inductive hypothesis:

~w |=n
σ[~r/pi]

θ ↔ ~w |=n
σ[~r/pi][~q/p]

θ

But since p 6= pi, σ[~r/pi][~q/p] = σ[~q/p][~r/pi]. So we have:

~w |=n
σ[~r/pi]

θ ↔ ~w |=n
σ[~q/p][~r/pi]

θ

So, merging the above biconditionals gives us:

~w |=n
σ ∃piθ ↔ ~w |=n

σ[~q/p] ∃piθ

which is what we want.

• φ is ∃ppiθ or ∃Oiθ

Analogous to the second case of the preceding item.

• φ is ↑ θ
Since p does not occur free in φ, it must not occur free in θ. So, by
inductive hypothesis:

~w |=n+1
σ θ ↔ ~w |=n+1

σ[~q/p] θ

But, by the semantic clause for ↑:

~w |=n
σ (↑θ)↔ ~w |=n+1

σ θ

~w |=n
σ[~q/p] (↑θ)↔ ~w |=n+1

σ[~q/p] θ

So the result is immediate.
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• φ is ↓ θ
Suppose, first that n = 0. Then:

~w |=n
σ (↓θ)↔ ~w |=n

σ θ

~w |=n
σ[~q/p] (↓θ)↔ ~w |=n

σ[~q/p] θ

Since p does not occur free in φ, it must not occur free in θ. So by
inductive hypothesis:

~w |=n
σ θ ↔ ~w |=n

σ[~q/p] θ

So the result is immediate.

Since p does not occur free in φ, it must not occur free in θ. So, by
inductive hypothesis:

~w |=n−1
σ θ ↔ ~w |=n−1

σ[~q/p] θ

But, by the semantic clause for ↓:

~w |=n
σ (↓θ)↔ ~w |=n−1

σ θ

~w |=n
σ[~q/p] (↓θ)↔ ~w |=n−1

σ[~q/p] θ

So the result is immediate.

Proposition 16 (Substitution Principle) Let φ and ψ be formulas with
no free variables in common. For ~w ∈ WA and ~q = {~w : ~w |=n

σ ψ},

~w |=n
σ φ[ψ/p]↔ ~w |=n

σ[~q/p] φ

Proof If p does not occur free in φ, φ[ψ/p] = φ, which means that the result
is immediate, since by proposition 15, we have:

~w |=n
σ φ↔ ~w |=n

σ[~q/p] φ

We shall therefore assume that p occurs free in φ. We proceed by induction
on the complexity of φ:
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• φ = pi.

Since p occurs free in φ, it must be that pi = p. So φ = p and φ[ψ/p] =
ψ. We can therefore argue as follows:

~w |=n
σ ψ ↔ ~w ∈ {~w : ~w |=n

σ ψ}

~w |=n
σ ψ ↔ ~w ∈ ~q

~w |=n
σ ψ ↔ ~w |=n

σ[~q/p] p

~w |=n
σ φ[ψ/p]↔ ~w |=n

σ[~q/p] φ

• φ = Qjpi. If n = 0, the result is immediate, by the semantic clause for
Qj:

~w |=0
σ Qjpi[ψ/p]↔ ⊥↔ ~w |=0

σ[~q/p] Qjpi
We therefore assume n > 0. Since p occurs free in φ, it must be the
case that p = pi. So φ = Qjp and φ[ψ/p] = Qjψ, which means that ψ
must itself be a variable, which we call pl. We can therefore argue as
follows:

σ(pl) ∈
[
W
A Extn−1Qj

]
(~w)↔ {~w : ~w |=n

σ pl} ∈
[
W
A Extn−1Qj

]
(~w)

σ(pl) ∈
[
W
A Extn−1Qj

]
(~w)↔ ~q ∈

[
W
A Extn−1Qj

]
(~w)

σ(pl) ∈
[
W
A Extn−1Qj

]
(~w)↔ σ[~q/p](p) ∈

[
W
A Extn−1Qj

]
(~w)

~w |=n
σ Qjpl ↔ ~w |=n

σ[~q/p] Qjp
~w |=n

σ φ[ψ/p]↔ ~w |=n
σ[~q/p] φ

• φ is Ojpi

Since p occurs free in φ, it must be that pi = p and therefore that φ is
Ojp and ψ is a variable, which we call pl. We may therefore argue as
follows:

σ(pl) ∈ σ(Oj)↔ {~w : ~w |=n
σ pl} ∈ σ(Oj)

σ(pl) ∈ σ(Oj)↔ ~q ∈ σ(Oj)

σ(pl) ∈ σ(Oj)↔ σ[~q/p](p) ∈ σ[~q/p](Oj)

~w |=n
σ Ojpl ↔ ~w |=n

σ[~q/p] Ojp

~w |=n
σ φ[ψ/p]↔ ~w |=n

σ[~q/p] φ
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• φ is pi ≺ ppj

Since p occurs free in φ, it must be that pi = p and therefore that φ is
p ≺ ppj and ψ is a variable, which we call pl. We may therefore argue
as follows:

σ(pl) ∈ σ(ppj)↔ {~w : ~w |=n
σ pl} ∈ σ(ppj)

σ(pl) ∈ σ(ppj)↔ ~q ∈ σ(ppj)

σ(pl) ∈ σ(ppj)↔ σ[~q/p](p) ∈ σ[~q/p](ppj)

~w |=n
σ pl ≺ ppj ↔ ~w |=n

σ[~q/p] p ≺ ppj

~w |=n
σ φ[ψ/p]↔ ~w |=n

σ[~q/p] φ

• φ is θ = ξ

Since ψ is free for p in φ, it must also be free for p in θ or ξ. So, by
inductive hypothesis:

~w |=n
σ θ[ψ/p]↔ ~w |=n

σ[~q/p] θ

~w |=n
σ ξ[ψ/p]↔ ~w |=n

σ[~q/p] ξ

So we can argue as follows:

{~w : ~w |=n
σ θ[ψ/p]} = {~w : ~w |=n

σ ξ[ψ/p]} ↔
{
~w : ~w |=n

σ[~q/p] θ
}
=
{
~w : ~w |=n

σ[~q/p] ξ
}

~w |=n
σ (θ[ψ/p] = ξ[ψ/p])↔ ~w |=n

σ[~q/p] (θ = ξ)

~w |=n
σ (θ = ξ)[ψ/p]↔ ~w |=n

σ[~q/p] (θ = ξ)

• φ is ¬θ
Since ψ is free for p in φ, it must also be free for p in θ. So, by inductive
hypothesis:

~w |=n
σ θ[ψ/p]↔ ~w |=n

σ[~q/p] θ

Equivalently:
~w 6|=n

σ θ[ψ/p]↔ ~w 6|=n
σ[~q/p] θ

So, by the relevant semantic clause:

~w |=n
σ ¬θ[ψ/p]↔ ~w |=n

σ[~q/p] ¬θ
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• φ is (θ ∧ ξ)
Since ψ is free for p in φ, it must also be free for p in θ or ξ. So, by
inductive hypothesis:

~w |=n
σ θ[ψ/p]↔ ~w |=n

σ[~q/p] θ

~w |=n
σ ξ[ψ/p]↔ ~w |=n

σ[~q/p] ξ

So we can argue as follows:

(~w |=n
σ θ[ψ/p] ∧ ~w |=n

σ ξ[ψ/p])↔
(
~w |=n

σ[~q/p] θ ∧ ~w |=n
σ[~q/p] ξ

)
~w |=n

σ θ[ψ/p] ∧ ξ[ψ/p]↔ ~w |=n
σ[~q/p] (θ ∧ ξ)

~w |=n
σ (θ ∧ ξ)[ψ/p]↔ ~w |=n

σ[~q/p] (θ ∧ ξ)

• φ is ∃piθ
By the semantic clause for ∃:

~w |=n
σ (∃piθ)[ψ/p]↔ ~w |=n

σ ∃pi(θ[ψ/p])↔ ∃~q′ ∈ P n
WA

(
~w |=n

σ[~q′/pi]
(θ[ψ/p])

)
Since ψ is free for p in φ, pi cannot occur free in ψ. So, by proposition 15:

~w |=n
σ ψ ↔ ~w |=n

σ[~q′/pi]
ψ

which means that:{
~w : ~w |=n

σ[~q′/pi]
ψ
}
= {~w : ~w |=n

σ ψ} = ~q

Since ψ is free for p in φ, it must also be free for p in θ. So, by inductive
hypothesis:

~w |=n
σ[~q′/pi]

θ[ψ/p]↔ ~w |=n
σ[~q′/pi][~q/p]

θ

Since p occurs free in φ, p 6= pi. So

~w |=n
σ[~q′/pi][~q/p]

θ ↔ ~w |=n
σ[~q/p][~q′/pi]

θ

Putting all of this together:

~w |=n
σ (∃piθ)[ψ/p]↔ ∃~q′ ∈ P n

WA

(
~w |=n

σ[~q/p][~q′/pi]
θ
)

But, by the semantic clause for ∃,

~w |=n
σ[~q/p] ∃piθ ↔ ∃~q′ ∈ P n

WA

(
~w |=n

σ[~q/p][~q′/pi]
θ
)

So the desired result follows.
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• φ is ∃ppiθ or ∃Oiθ

Analogous to the preceding case.

• φ is ↑ θ
Since ψ is free for p in φ, it must also be free for p in θ. So, by inductive
hypothesis:

~w |=n+1
σ θ[ψ/p]↔ ~w |=n+1

σ[~q/p] θ

But, by the semantic clause for ↑:

~w |=n
σ (↑θ)[ψ/p]↔ ~w |=n

σ↑(θ[ψ/p])↔ ~w |=n+1
σ θ[ψ/p]

~w |=n
σ[~q/p] (↑θ)↔ ~w |=n+1

σ[~q/p] θ

So the result is immediate.

• φ is ↓ θ
Suppose, first that n = 0. Then:

~w |=n
σ (↓θ)[ψ/p]↔ ~w |=n

σ↓(θ[ψ/p])↔ ~w |=n
σ θ[ψ/p]

~w |=n
σ[~q/p] (↓θ)↔ ~w |=n

σ[~q/p] θ

Since ψ is free for p in φ, it must also be free for p in θ. So the result
follows immediately from our inductive hypothesis:

~w |=n
σ θ[ψ/p]↔ ~w |=n

σ[~q/p] θ

Now suppose n > 0. Since ψ is free for p in φ, it must also be free for
p in θ. So, by inductive hypothesis:

~w |=n−1
σ θ[ψ/p]↔ ~w |=n−1

σ[~q/p] θ

But, by the semantic clause for ↓:

~w |=n
σ (↓θ)[ψ/p]↔ ~w |=n

σ↓(θ[ψ/p])↔ ~w |=n−1
σ θ[ψ/p]

~w |=n
σ[~q/p] (↓θ)↔ ~w |=n−1

σ[~q/p] θ

So the result is immediate.
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Proposition 17 (Validity Substitution) Let φ have no variables in com-
mon with ψ or θ and suppose that |= ψ ↔ θ. Then:

~w |=n
σ φ[ψ/p]↔ ~w |=n

σ φ[θ/p]

Proof Let ~p = {~w : ~w |=n
σ ψ} and ~q = {~w : ~w |=n

σ θ}. Then, by proposi-
tion 16,

~w |=n
σ φ[ψ/p]↔ ~w |=n

σ[~p/p] φ ~w |=n
σ φ[θ/p]↔ ~w |=n

σ[~q/p] θ

But since we have |= ψ ↔ θ, it must be the case that ~p = ~q and therefore
that σ[~p/p] = σ[~q/p], which allows us to conclude:

~w |=n
σ φ[ψ/p]↔ ~w |=n

σ φ[θ/p]

10 Comprehension
Definition 22 (Valence)

Intuitively, the valence of a formula φ, relative to a level of resolution k,
is a syntactically characterized upper bound on the resolution that is needed
to describe the proposition expressed by φ, when evaluated externally at res-
olution k (assuming a variable assignment of level 0).

Formally, for φ a formula and l ∈ N, the valence of φ relative to k,
written vk(φ), is defined recursively, as follows:

• vk(φ) = k, if φ is atomic;

• vk(φ = ψ) = 0

• vk(¬φ) = vk(φ);

• vk(φ ∧ ψ) = max(vk(φ), vk(ψ))

• vk(∃piφ) = max(k, vk(φ))

• vk(∃ppiφ) = max(k, vk(φ))

• vk(∃Oiφ) = max(k, vk(φ))

• vk(↑φ) = vk+1(φ);
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• vk(↓φ) =

{
vk−1(φ), if k > 0;
v0(φ), if k = 0.

Lemma 1 (Level Lemma) Let φ be a formula of L. For any n,m ∈ N,
let σ be an assignment of level m and let k = max(m, vn(φ)). We then have:

{~w : ~w |=n
σ φ} ∈ P k

WA

Proof We proceed by induction on the complexity of φ.

For each of the base cases, we proceed by supposing that ~w(k) = ~v(k)
and ~w |=n

σ φ, and verifying that ~v |=n
σ φ.

• φ = pi. The relevant semantic clause gives us ~w ∈ σ(pi). Since σ is
a level-m assignment and m ≤ k, it is also a level-k assignment. So
the fact that ~w(k) = ~v(k) guarantees that we also have ~v ∈ σ(pi) and
therefore ~v |=m

σ φ.

• φ = Qjpi. If n = 0, the result is immediate, since

~w |=0
σ Qjpi ↔ ⊥↔ ~v |=0

σ Qjpi

So let us assume that n > 0. By the definition of valence, vn(Qjpi) =
n. So we have k = max(m,n) and therefore n ≤ k. Since ~w(k) =
~v(k), it follows that ~w(n) = ~v(n) (by proposition 4). Let ~w(n) =
~v(n) =

〈
w, en−11 , . . . , en−1r

〉
. By the semantic clause for Qjpi, ~w |=n

σ φ is
equivalent to

σ(pi) ∈
[
W
A Extn−1Qj

]
(~w)

which, by the definition of
[
W
A Extn−1Qj

]
(~w) is equivalent to

σ(pi) ∈
{
~p ∈ P n

WA : ∃pn−1 ∈ en−1j (~p(n− 1) = pn−1)
}

which, by the definition of
[
W
A Extn−1Qj

]
(~v) is equivalent to

σ(pi) ∈
[
W
A Extn−1Qj

]
(~v)

which is equivalent to ~v |=n
σ φ.
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• φ = Ojpi. By the relevant semantic clause, ~w |=n
σ φ is equivalent to

~w ∈ σ(Oj)(σ(pi)). Since σ is a level-m assignment and m ≤ k, it is also
a level-k assignment. So the fact that ~w(k) = ~v(k) guarantees that we
also have ~v ∈ σ(Oj)(σ(pi)) and therefore ~v |=n

σ Ojpi.

• φ is (ψ = θ) or pi ≺ ppj. The result follows from the fact that ~w |=n
σ φ

does not depend on ~w.

For the remaining cases, we assume our inductive hypothesis for arbitrary σ,
m, and n:

• φ = ¬ψ. By inductive hypothesis,

{~z : ~z |=n
σ ψ} ∈ P k

WA

But if a subset of WAis in P k
WA , then so is its complement. So:

{~z : ~z 6|=n
σ ψ} ∈ P k

WA

which is what we want.

• φ = (ψ ∧ θ). For k′ = max(m, vn(ψ)) and k′′ = max(m, vn(θ)) our
inductive hypothesis gives us:

{~z : ~z |=n
σ ψ} ∈ P k′

WA {~w : ~w |=n
σ θ} ∈ P k′′

WA

Let k∗ = max(k′, k′′). By proposition 5, we have:

{~z : ~z |=n
σ ψ} , {~w : ~w |=n

σ θ} ∈ P k∗

WA

Now recall that k = max(m, vn(ψ ∧ θ)). By the definition of valence,
vn(ψ ∧ θ) = max(vn(ψ), vn(θ)). So:

k = max(m,max(vn(ψ), vn(θ)))
= max(max(m, vn(ψ)),max(m, vn(θ)))
= max(k′, k′′)
= k∗

We therefore have:

{~z : ~z |=n
σ ψ} , {~w : ~w |=n

σ θ} ∈ P k
WA

But if two subsets of WAare in P k
WA , then so is their intersection. So:

{~z : ~z |=n
σ ψ ∧ θ} ∈ P k

WA

which is what we want.
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• φ = ∃piψ. Let ~w(k) = ~v(k) and assume ~w |=n
σ φ. By the semantic

clause for ∃, we know that for some ~q ∈ P n
WA , ~w |=

n
σ[~q/pi]

ψ. Since σ is
an assignment of level m, σ[~q/pi] is an assignment of level max(n,m).
Let k′ = max(max(n,m), vn(ψ)). Our inductive hypothesis gives us:{

~z : ~z |=n
σ[~q/pi]

ψ
}
∈ P k′

WA

But, by the definition of valence, vn(∃piψ) = max(n, vn(ψ)). So

k = max(m, vn(∃piψ))
= max(m,max(n, vn(ψ)))
= max(m,n, vn(ψ))
= max(max(m,n), vn(ψ))
= k′

We therefore have: {
~z : ~z |=n

σ[~q/pi]
ψ
}
∈ P k

WA

Since ~w(k) = ~v(k), this means that ~w |=n
σ[~q/pi]

ψ entails ~v |=n
σ[~q/pi]

ψ. In
other words: we know that for some ~q ∈ P n

WA , ~v |=
n
σ[~q/pi]

ψ. So, by the
semantic clause for ∃, ~v |=n

σ ∃piψ.

• φ = ∃ppiψ or φ = ∃Ojψ. Analogous to previous case.

• φ = ↑ψ Let ~w(k) = ~v(k) and assume that ~w |=n
σ↑ψ. By the semantic

clause for ↑, we have ~w |=n+1
σ ψ.

By the definition of valence, vn(↑ ψ) = vn+1(ψ) and therefore k =
max(m, vn(↑ψ)) = max(m, vn+1(ψ)). So our inductive hypothesis gives
us: {

~z : ~z |=n+1
σ ψ

}
∈ P k

WA

So the fact that ~w(k) = ~v(k) gives us ~v |=n+1
σ ψ and therefore ~v |=n

σ ↑ψ,
which is what we wanted.

• φ = ↓ ψ. Let ~w(k) = ~v(k) and assume that ~w |=n
σ↓ ψ. We show that

~v |=n
σ↓ψ.

First, suppose n = 0. By the semantic clause for ↓,

~w |=n
σ↓ψ ↔ ~w |=0

σ ψ
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So we have ~w |=0
σ ψ. The definition of valance gives us v0(↓ψ) = v0(ψ)

and therefore k = max(m, v0(↑ψ)) = max(m, v0(ψ)). So our inductive
hypothesis gives us: {

~z : ~z |=0
σ ψ
}
∈ P k

WA

So the fact that ~w(k) = ~v(k) gives us ~v |=0
σ ψ and therefore ~v |=0

σ ↓ψ,
which is what we wanted.

Now suppose n > 0. By the semantic clause for ↓,

~w |=n
σ↓ψ ↔ ~w |=n−1

σ ψ

So we have ~w |=n−1
σ ψ. Since n > 0, the definition of valence gives us

vn(↓ψ) = vn−1(ψ) and therefore k = max(m, vn(↓ψ)) = max(m, vn−1(ψ)).
So our inductive hypothesis gives us:{

~z : ~z |=n−1
σ ψ

}
∈ P k

WA

So the fact that ~w(k) = ~v(k) gives us ~v |=n−1
σ ψ and therefore ~v |=n

σ ↓ψ,
which is what we wanted.

Proposition 18 (Level Advance) For any k ∈ N and formula φ,

vk+1(φ) = vk(φ) ∨ vk+1(φ) = vk(φ) + 1

Proof We proceed by induction on the complexity of φ:

• φ atomic

Then vk+1(φ) = k + 1 and vk(φ) = k. So the result is immediate.

• φ is ψ = θ

Then vk+1(φ) = 0 = vk(φ) = k. So the result is immediate.

• φ is ¬ψ
By the definition of valence,

vk+1(¬ψ) = vk+1(ψ) vk(¬ψ) = vk(ψ)

And, by inductive hypothesis:

vk+1(ψ) = vk(ψ) ∨ vk+1(ψ) = vk(ψ) + 1

So the result is immediate.
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• φ is ψ ∧ θ
By the definition of valence,

vk(ψ ∧ θ) = max(vk(ψ), vk(θ))

vk+1(ψ ∧ θ) = max(vk+1(ψ), vk+1(θ))

And by inductive hypothesis:

vk+1(ψ) = vk(ψ) ∨ vk+1(ψ) = vk(ψ) + 1

vk+1(θ) = vk(θ) ∨ vk+1(θ) = vk(θ) + 1

Assume, with no loss of generality, that vk(ψ) ≥ vk(θ). So

vk(ψ ∧ θ) = max(vk(ψ), vk(θ)) = vk(ψ)

If vk+1(ψ) = vk(ψ) + 1, it follows from our inductive hypotheses that

vk+1(ψ∧θ) = max(vk+1(ψ), vk+1(θ)) = vk+1(ψ) = vk(ψ)+1 = vk(ψ∧θ)+1

which gives us what we want.

So we may assume both vk(ψ) ≥ vk(θ) and vk+1(ψ) = vk(ψ). If
vk+1(θ) = vk(θ), it follows from our inductive hypotheses that

vk+1(ψ ∧ θ) = max(vk+1(ψ), vk+1(θ)) = vk+1(ψ) = vk(ψ) = vk(ψ ∧ θ)

which, again gives us what we want.

So we may assume vk(ψ) ≥ vk(θ), vk+1(ψ) = vk(ψ), and vk+1(θ) =
vk(θ) + 1. Since vk(ψ) ≥ vk(θ) and vk+1(ψ) = vk(ψ), our inductive
hypothesis entails that are only two remaining options:

– vk+1(ψ) ≥ vk+1(θ), in which case it follows from our inductive
hypotheses that

vk+1(ψ∧θ) = max(vk+1(ψ), vk+1(θ)) = vk+1(ψ) = vk(ψ) = vk(ψ∧θ)

which gives us what we want.
– vk+1(θ) = vk+1(ψ) + 1 (and therefore vk(ψ) = vk(θ)). So we have:

vk+1(ψ∧θ) = max(vk+1(ψ), vk+1(θ)) = vk+1(θ) = vk(θ)+1 = vk(ψ)+1 = vk(ψ∧θ)+1

which gives us what we want.
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• φ is ∃pψ
By the definition of valence,

vk(∃pψ) = max(k, vk(ψ)) vk+1(∃pψ) = max(k + 1, vk+1(ψ))

And by inductive hypothesis:

vk+1(ψ) = vk(ψ) ∨ vk+1(ψ) = vk(ψ) + 1

Suppose first that k ≥ vk(ψ), and therefore:

vk(∃pψ) = max(k, vk(ψ)) = k.

By our inductive hypothesis, it must be the case that k+1 ≥ vk+1(ψ).
So we have

vk+1(∃pψ) = max(k + 1, vk+1(ψ)) = k + 1 = vk(∃pψ) + 1

which gives us what we want.

Now suppose vk(ψ) > k, and therefore:

vk(∃pψ) = max(k, vk(ψ)) = vk(ψ).

By our inductive hypothesis, it must be the case that vk+1(ψ) ≥ k+1.
So we have

vk+1(∃pψ) = max(k + 1, vk+1(ψ)) = vk+1(ψ)

By our inductive hypothesis, this means that:

vk+1(∃pψ) = vk(ψ) ∨ vk+1(∃pψ) = vk(ψ) + 1

Since vk(∃pψ) = vk(ψ), this gives us what we want.

• φ is ∃ppψ or ∃Oψ
Analogous to preceding case

• φ is ↑ψ
By the definition of valence,

vk(↑ψ) = vk+1(ψ) vk+1(↑ψ) = vk+2(ψ)
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And by inductive hypothesis:

vk+2(ψ) = vk+1(ψ) ∨ vk+2(ψ) = vk+1(ψ) + 1

Putting the two together gives us what we want:

vk+1(↑ψ) = vk(↑ψ) ∨ vk+1(↑ψ) = vk(↑ψ) + 1

• φ is ↓ψ
Suppose, first, that k = 0. Then, by the definition of valence,

vk(↓ψ) = vk(ψ) vk+1(↓ψ) = vk(ψ)

which gives us what we want.

Now suppose that k > 0. By the definition of valence,

vk(↓ψ) = vk−1(ψ) vk+1(↓ψ) = vk(ψ)

And by inductive hypothesis:

vk(ψ) = vk−1(ψ) ∨ vk(ψ) = vk−1(ψ) + 1

Putting the two together gives us what we want:

vk+1(↓ψ) = vk(↓ψ) ∨ vk+1(↓ψ) = vk(↓ψ) + 1

Proposition 19 (Level Advance Corollary) For any formula φ and k ∈
N,

v0(ψ) ≤ vk(φ) ≤ v0(φ) + k

Proof By proposition 18,

v0(φ) ≤ v1(φ) ≤ v0(φ) + 1
v1(φ) ≤ v2(φ) ≤ v1(φ) + 1

...
vk−1(φ) ≤ vk(φ) ≤ vk−1(φ) + 1

which together entail

v0(ψ) ≤ vk(φ) ≤ v0(φ) + k
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Definition 23
↑k := ↑ . . . ↑︸ ︷︷ ︸

k times

↓k := ↓ . . . ↓︸ ︷︷ ︸
k times

Theorem 1 (Existential Generalization) Let φ and ψ be such that ψ is
free for p in φ. For k = v0(ψ),

|= φ[ψ/p]→ ↑k ∃p ↓kφ

Proof Fix a model 〈W,A, ~α, n〉. It suffices to verify the following for an
arbitrary n-level assignment σ:

~α |=n
σ φ[ψ/p]→ ↑k ∃p ↓kφ

We assume ~α |=n
σ φ[ψ/p] and show ~α |=n

σ ↑k ∃p ↓k φ. For l = max(n, vn(ψ)),
lemma 1 gives us:

{~w : ~w |=n
σ ψ} ∈ P l

WA

Note that it must be the case that l ≤ (n+k): if l = n the result is immediate;
and if l = vn(ψ), we can use proposition 19 to show:

l = vn(ψ) ≤ v0(ψ) + n = k + n

So, by proposition 5, we have:

{~w : ~w |=n
σ ψ} ∈ P n+k

WA

Accordingly, there exists ~q ∈ P n+k
WA such that

~q = {~w : ~w |=n
σ ψ}

By proposition 16,
~α |=n

σ φ[ψ/p]↔ ~α |=n
σ[~q/p] φ

So, by our initial assumption:

~α |=n
σ[~q/p] φ

which is equivalent to the following, by the semantic clause for ↓:

~α |=n+k
σ[~q/p]↓

kφ
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Since ~q ∈ P n+k
WA , the semantic clause for ∃ entails that

~α |=n+k
σ ∃p ↓kφ

which gives us our desired conclusion, by the semantic clause for ↑,

~α |=n
σ ↑k ∃p ↓kφ

Corollary 1 (Comprehension) For φ a formula, let k = v0(φ) and let p
be a variable not occurring free in φ. Then:

1. |= ↑k ∃p ↓k(p = φ)

2. |= ↑k ∃p(p =↓kφ)

Proof Since p does not occur free in φ, φ is free for p in p = φ. So, by
Theorem 1,

|= (p = φ)[φ/p]→ ↑k ∃p ↓k (p = φ)

Since (p = φ)[φ/p] = (φ = φ), part 1 follows immediately by the semantic
clauses for = and →.

To verify part 2, fix a model 〈W,A, ~α, n〉. It suffices to verify the following
for an arbitrary n-level assignment σ:

~α |=n
σ ↑k ∃p(p = ↓kφ)

By part 1, we know that:

~α |=n
σ ↑k ∃p ↓k (p = φ)

which, by the semantic clause for ↑, is equivalent to:

~α |=n+k
σ ∃p ↓k (p = φ)

So, by the semantic clause for ∃, there is some ~q ∈ P n+k
WA such that:

~α |=n+k
σ[~q/p]↓

k (p = φ)

which, by the semantic clause for ↓, is equivalent to:

~α |=n
σ[~q/p] p = φ
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which, by the semantic clause for =, is equivalent to:{
~w : ~w |=n

σ[~q/p] p
}
=
{
~w : ~w |=n

σ[~q/p] φ
}

which is just
~q =

{
~w : ~w |=n

σ[~q/p] φ
}

which, by the semantic clause for ↓, is equivalent to:

~q =
{
~w : ~w |=n+k

σ[~q/p] ↓
kφ
}

which is just {
~w : ~w |=n+k

σ[~q/p] p
}
=
{
~w : ~w |=n+k

σ[~q/p] ↓
kφ
}

which, by the semantic clause for =, is equivalent to:

~α |=n+k
σ[~q/p] p = ↓

kφ

Since ~q ∈ P n+k
WA , the semantic clause for ∃ entails that this is equivalent to:

~α |=n+k
σ ∃p(p = ↓kφ)

which, by the semantic clause for ↑, is equivalent to:

~α |=n
σ ↑k ∃p(p = ↓kφ)

Proposition 20 (Non-triviality) There is a frame 〈W,A〉, a level-n as-
signment σ (n ∈ N), and a formula φ of L such that

{~w : ~w |=n
σ φ} /∈ P n

WA

Proof Let W = {0} and A = W∞. Let w1 =

〈
0, {{0}} , . . . , {{0}}︸ ︷︷ ︸

r times

〉
and

v1 =

〈
0, ∅, . . . , ∅︸ ︷︷ ︸

r times

〉
. Let ~w and ~v be such that ~w(1) = w1 and ~v(1) = v1. Let

σ be a level-0 assignment such that σ(p1) = WA, and let φ =↑Q1(p1). Our
semantic clauses then entail:

~w |=0
σ↑Q1(p1)↔ ~w |=1

σ Q1(p1)↔WA ∈
[W
A Ext0Q1

]
(~w)
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But by the definition of
[W
A Ext0Q1

]
and the fact that w1 =

〈
0, {{0}} , . . . , {{0}}︸ ︷︷ ︸

r times

〉
:

~p ∈
[W
A Ext0Q1

]
(~w) ↔ ~p ∈ P 0

WA ∧ ∃p
0 ∈ {{0}} (~p(0) = p0)

↔ ~p ∈ P 0
WA ∧ ~p(0) = {0}

↔ ~p =WA

So we have ~w |=0
σ↑ Q1(p1). In contrast, we don’t have ~v |=0

σ↑ Q1(p1). For,
again by our semantic clauses,

~v |=0
σ↑Q1(p1)↔ ~v |=1

σ Q1(p1)↔WA ∈
[W
A Ext0Q1

]
(~v)

And we know from the definition of
[W
A Ext0Q1

]
and the fact that v1 =〈

0, ∅, . . . , ∅︸ ︷︷ ︸
r times

〉
that

~p ∈
[W
A Ext0Q1

]
(~v) ↔ ⊥

Since ~w(0) = ~v(0) = 0, we may conclude that{
~z : ~z |=0

σ↑Q1(p1)
}
/∈ P 0

WA

11 Axioms and Rules
Proposition 21 (Quantifiers)

1. Universal instantiation (propositional): |= ∀p(φ)→ φ

2. Universal instantiation (plural): |= ∀pp(φ)→ φ

3. Universal instantiation (intensional): |= ∀O(φ)→ φ

4. Existential generalization (propositional): |= φ→ ∃p φ.

5. Existential generalization (plural): |= φ→|= ∃pp φ.

6. Existential generalization (intensional): |= φ→|= ∃O φ.

Proof
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1. Universal Instantiation (we focus on the propositional case; the others
are analogous)

Fix a model 〈W,A, ~α, n〉. For an arbitrary n-level assignment σ, we
assume ~α |=n

σ ∀p(φ) and show ~α |=n
σ φ. Using the (derived) semantic

clause for ∀, our assumption entails that for any ~q ∈ P n
WA :

~α |=n
σ[~q/p] φ

So this is true, in particular, when ~q = σ(p) and therefore σ = σ[~q/p],
which means that we have:

~α |=n
σ φ

as desired.

4. Existential Generalization (we focus on the propositional case; the oth-
ers are analogous)

Fix a model 〈W,A, ~α, n〉. For an arbitrary n-level assignment σ, we
assume ~α |=n

σ φ and show ~α |=n
σ ∃pφ. By the semantic clause for ∃, it

therefore suffices to verify that for some ~q ∈ P n
WA :

~α |=n
σ[~q/p] φ

Let ~q = σ(p). Accordingly, σ = σ[~q/p]. So all we need to verify is

~α |=n
σ φ

which is precisely what we had assumed.

Proposition 22 (Rules)

1. Modus Ponens: if |= φ and |= φ→ ψ, then |= ψ.

2. Universal generalization (propositional): if |= φ, then |= ∀p φ.

3. Universal generalization (plural): if |= φ, then |= ∀pp φ.

4. Universal generalization (intensional) if |= φ, then |= ∀O φ.

5. Existential generalization (propositional): if |= φ→ ∃p φ.
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6. Existential generalization (plural): if |= φ→|= ∃pp φ.

7. Existential generalization (intensional): if |= φ→|= ∃O φ.

8. Next Introduction: if |= φ, then |=↑φ.

9. Necessitation: if |= φ, then |= �φ.

Proof

1. Modus Ponens

Fix a model 〈W,A, ~α, n〉. It suffices to verify the following for an arbi-
trary n-level assignment σ: if ~α |=n

σ φ and ~α |=n
σ φ→ ψ, then ~α |=n

σ ψ,
which follows immediately from the (derived) semantic clause for →.

2. Universal Generalization (we focus on the propositional case; the others
are analogous)

Assume |= φ and fix a model 〈W,A, ~α, n〉. It suffices to verify the
following for an arbitrary n-level assignment σ: ~α |=n

σ ∀pφ. By the
(derived) semantic clause for ∀, it therefore suffices to verify that for
any ~q ∈ P n

WA :
~α |=n

σ[~q/p] φ

But this is an immediate consequence of |= φ, since σ[~q/p] is an assign-
ment of level n.

5. Next Introduction

Assume |= φ and fix a model 〈W,A, ~α, n〉. It suffices to verify the
following for an arbitrary n-level assignment σ: ~α |=n

σ ↑ φ. By the
semantic clause for ↑ it therefore suffices to verify:

~α |=n+1
σ φ

But since σ is a level-n assignment, proposition 13 entails that it is also
a level-(n + 1) assignment. So the result is an immediate consequence
of |= φ.

6. Necessitation Assume |= φ and fix a model 〈W,A, ~α, n〉. It suffices to
verify the following for an arbitrary n-level assignment σ: ~α |=n

σ �φ.
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By the (derived) semantic clause for � it therefore suffices to verify
that, for arbitrary ~w ∈ WA:

~w |=n
σ φ

which follows immediately from |= φ.

Proposition 23 (The behavior of ↑)

1. |= (¬ ↑φ)↔ (↑¬φ)

2. |= (♦↑φ)↔ (↑♦φ)

3. |= (↑φ ∧ ↑ψ)↔ ↑(φ ∧ ψ)

4. |= (↑φ = ↑ψ)↔ ↑(φ = ψ)

5. |= ↑(p)↔ p

6. |= ↑(p ≺ pp)↔ p ≺ pp

7. |= ↑(Op)↔ Op

8. |= (↑↓↑φ)↔ (↑↑↓φ)

Proof Fix a model 〈W,A, ~α, n〉. For an arbitrary n-level assignment σ:

1. |= (¬ ↑ φ)↔ (↑ ¬φ)

~α 6|=n+1
σ φ↔ ~α 6|=n+1

σ φ

~α 6|=n
σ↑ φ↔ ~α |=n+1

σ ¬φ

~α |=n
σ ¬↑ φ↔ ~α |=n

σ ↑ ¬φ

2. |= (♦↑φ)↔ (↑♦φ)

{
~w : ~w |=n+1

σ φ
}
6= ∅ ↔

{
~w : ~w |=n+1

σ φ
}
6= ∅

{~w : ~w |=n
σ ↑φ} 6= ∅ ↔ ~α |=n+1

σ ♦φ

~α |=n
σ ♦↑φ↔ ~α |=n

σ↑♦φ
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3. |= (↑φ ∧ ↑ψ)↔ ↑(φ ∧ ψ)

(~α |=n+1
σ φ ∧ ~α |=n+1

σ ψ)↔ (~α |=n+1
σ φ ∧ ~α |=n+1

σ ψ)

(~α |=n
σ ↑φ ∧ ~α |=n

σ ↑ψ)↔ ~α |=n+1
σ (φ ∧ ψ)

~α |=n
σ (↑φ ∧ ↑ψ)↔ ~α |=n

σ ↑(φ ∧ ψ)

4. |= (↑φ = ↑ψ)↔ ↑(φ = ψ)

{
~w : ~w |=n+1

σ φ
}
=
{
~w : ~w |=n+1

σ ψ
}
↔
{
~w : ~w |=n+1

σ φ
}
=
{
~w : ~w |=n+1

σ ψ
}

{~w : ~w |=n
σ ↑φ} = {~w : ~w |=n

σ ↑ψ} ↔ ~α |=n+1
σ φ = ψ

~α |=n
σ (↑φ = ↑ψ)↔ ~α |=n

σ ↑(φ = ψ)

5. |= ↑(p)↔ p

~α ∈ σ(p)↔ ~α ∈ σ(p)

~α |=n+1
σ p↔ ~α |=n

σ p

~α |=n
σ ↑(p)↔ ~α |=n

σ p

6. |= ↑(p ≺ pp)↔ p ≺ pp

σ(p) ∈ σ(pp)↔ σ(p) ∈ σ(pp)

~α |=n+1
σ (p ≺ pp)↔ ~α |=n

σ p ≺ pp

~α |=n
σ ↑(p ≺ pp)↔ ~α |=n

σ p ≺ pp

7. |= ↑(Op)↔ Op

~α ∈ σ(O)(σ(p))↔ ~α ∈ σ(O)(σ(p))

~α |=n+1
σ (Op)↔ ~α |=n

σ Op

~α |=n
σ ↑(Op)↔ ~α |=n

σ Op
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8. |= (↑↓↑φ)↔ (↑↑↓φ)

~α |=n+1
σ φ↔ ~α |=n+1

σ φ

~α |=n
σ (↑φ)↔ ~α |=n+2

σ (↓φ)

~α |=n+1
σ (↓↑φ)↔ ~α |=n+1

σ (↑↓φ)

~α |=n
σ (↑↓↑φ)↔ ~α |=n

σ (↑↑↓φ)

12 The behavior of Q
Definition 24 A natural model is a model 〈W,A, ~α, n〉 such that A =
W∞.

Proposition 24 (Non-functionality of Refinement) Fix a natural model
〈W,A, ~α, n〉. For any wn ∈ W n

A, there are and wn+1, vn+1 ∈ W n+1
A such that

vn+1 6= wn+1 but
wn BWA w

n+1 ∧ wn BWA vn+1

Proof Suppose, first, that n = 0 and therefore that wn = w ∈ W . Let
e01 = ∅ and f 0

1 = {W}. For i such that 1 < i ≤ r, let e0i = f 0
i = ∅. Let

wn+1 = 〈w, e01, . . . , w0
r〉 and vn+1 = 〈w, f 0

1 , . . . , f
0
r 〉. Since 〈W,A, ~α, n〉 is a

natural model, wn+1, vn+1 ∈ W n+1
A . And since e01 6= f 0

1 , wn+1 6= vn+1. But it
follows from the definition of BWAthat

wn BWA w
n+1 ∧ wn BWA vn+1

Now suppose that n > 0 and let wn =
〈
w, en−11 , . . . , en−1r

〉
. Since 〈W,A, ~α, n〉

is a natural model (and therefore A = W∞), it follows from Cantor’s The-
orem that |P n−1

WA
| > |P n

WA
|. So there must be some pn ∈ P n

WA
that is

not identical to [pn−1]nWA for pn−1 ∈ P n−1
WA

. For each i ≤ r, let fni ={
[pn−1]nWA : pn−1 ∈ en−1i

}
. Let en1 = fn1 ∪ {pn}, and for i such that 1 < i ≤ r,

let eni = fni . Let wn+1 = 〈w, en1 , . . . , wnr 〉 and vn+1 = 〈w, fn1 , . . . , fnr 〉. Since
〈W,A, ~α, n〉 is a natural model, wn+1, vn+1 ∈ W n+1

A . And since en1 6= fn1 ,
wn+1 6= vn+1. But it follows from the definition of BWAthat

wn BWA w
n+1 ∧ wn BWA vn+1
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Proposition 25 (Non-triviality of the Superproposition Hierarchy)
Fix a natural model 〈W,A, ~α, n〉. For any n ∈ N, there is a super-proposition
~q such that ~q ∈ P n+1 but ~q 6∈ P n

WA.

Proof Let ~w be an arbitrary world in WA. By proposition 24, there are
vn+1, zn+1 ∈ W n+1

A such that vn+1 6= zn+1 but

~w(n) BWA v
n+1 ∧ ~w(n) BWA zn+1

By proposition 3, wn+1 and vn+1 we may assume that there are superworlds
~v and ~z such that ~v(n + 1) = vn+1 and ~z(n + 1) = zn+1 and therefore such
that ~v(n+ 1) 6= ~z(n+ 1). And by proposition 2, ~v(n) = ~w(n) = ~z(n).

Let ~q = {~y ∈ WA : ~y(n+ 1) = v(n+ 1)}. Trivially, ~q ∈ P n
WA . But ~q /∈

P n
WA , since ~z /∈ ~q even though ~v(n) = ~z(n).

Proposition 26 (Prior and Kaplan) When attention is restricted to nat-
ural models:

1. No Same Level: |= ∃p¬Qip

2. Kaplan Next: |= ∀pp↑♦∀q(Qiq ↔ q ≺ pp)

3. Kaplan Next: |= ∀pp♦∀q(↑Qiq ↔ q ≺ pp)

4. Modal Prior Next: |= ∀p↑♦∀q(Qiq ↔ q = p)

5. Modal Prior Next: |= ∀p♦∀q(↑Qiq ↔ q = p)

Proof

1. |= ∃p¬Qip
Fix a natural model 〈W,A, ~α, n〉. Suppose, first, that n = 0 and let σ
be an arbitrary n-level assignment. By the semantic clause for Q

~α 6|=n
σ Qip

So, by the semantic clause for ¬,

~α |=n
σ ¬Qip
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So, by existential generalization (proposition 21),

~α |=n
σ ∃p¬Qip

Now assume n > 0 and let ~q be in P n
WA but not P n−1

WA (since 〈W,A, ~α, n〉
is a natural model, proposition 25 entails that such a ~q must exist).
Suppose, for reductio, that for some n-level assignment σ, ~α |=n

σ Qip.
By the semantic clause for Qi,

~q ∈
[W
A Extn−1Qi

]
(~α)

Now let let ~α(n) =
〈
w, en−11 , . . . , en−1r

〉
. By the definition of

[W
A Extn−1Qi

]
,

~q ∈
[W
A Extn−1Qi

]
(~α)↔

(
~q ∈ P n−1

WA ∧ ∃p
n−1 ∈ en−1i (~q(n− 1) = pn−1)

)
So we have ~q ∈ P n−1

WA , which contradicts an earlier assumption. It
follows that for every n-level assignment σ:

~α 6|=n
σ Qip

So we can get the desired result by replicating the reasoning we de-
ployed in the case n = 0.

2. |= ∀pp ↑ ♦∀q(Qiq ↔ q ≺ pp)

Fix a natural model 〈W,A, ~α, n〉. Fix arbitrary v ∈ W and ~B ⊆ P n
WA

( ~B 6= ∅) and let

Bn =
{
pn ∈ P n

WA
: ∃~p ∈ ~B(pn = ~p(n))

}
vn+1 = 〈v, en1 , . . . , enr 〉

where enj = Bn for each j 6= r. Since 〈W,A, ~α, n〉 is a natural model,
vn+1 ∈ W n+1

A . So, by proposition 3, there is a superworld ~v ∈ WA such
that ~v(n+ 1) = vn+1.

Now pick an arbitrary ~q ∈ P n+1
WA . We verify:

~q ∈
[W
A ExtnQi

]
(~v)↔ ~q ∈ ~B

• →
Assume ~q ∈

[W
A ExtnQi

]
(~v). By the definition of

[W
A ExtnQi

]
, we have:

~q ∈ P n
WA ∧ ∃p

n ∈ eni (~q(n) = pn)
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and therefore
∃pn ∈ Bn(~q(n) = pn)

So, by the definition of Bn:

∃pn ∈
{
pn ∈ P n

WA
: ∃~p ∈ ~B(pn = ~p(n))

}
(~q(n) = pn)

equivalently

∃pn ∈ P n
WA
∃~p ∈ ~B(pn = ~p(n) ∧ ~q(n) = pn)

We may therefore fix pn ∈ P n
WA

and ~p ∈ ~B such that

pn = ~p(n) ∧ ~q(n) = pn

and therefore
~p(n) = ~q(n).

But since ~q ∈ P n
WA and ~p ∈ ~B (and therefore ~p ∈ P n

WA), proposi-
tion 7 entails:

~p = ~q

which is what we wanted.

• ←
Assume ~q ∈ ~B. Since ~B ⊆ P n

WA , ~q ∈ P
n
WA . So our assumption is

equivalent to:
∃~p ∈ ~B(~p(n) = ~q(n))

which is equivalen to:

∃pn ∈ P n
WA
∃~p ∈ ~B(pn = ~p(n) ∧ ~q(n) = pn)

and therefore

∃pn ∈
{
pn ∈ P n

WA
: ∃~p ∈ ~B(pn = ~p(n))

}
(~q(n) = pn)

which, by the definition of Bn, is equivalent to:

∃pn ∈ Bn(~q(n) = pn)

which is equivalent to

∃pn ∈ eni (~q(n) = pn)
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Since ~q ∈ P n
WA , we may conclude:

~q ∈ P n
WA ∧ ∃p

n ∈ eni (~q(n) = pn)

which gives us what we want, by the definition of
[W
A ExtnQi

]
:

~q ∈
[W
A ExtnQi

]
(~v)

We have shown that for arbitrary ~q ∈ P n+1
WA and ~B ⊆ P n

WA ( ~B 6= ∅),

~q ∈
[W
A ExtnQi

]
(~v)↔ ~q ∈ ~B

So, by the semantic clause for Q and ≺, we have the following for an
arbitrary level n assignment σ:

~v |=n+1

σ[ ~B/pp][~q/p]
Qp↔ p ≺ pp

But since ~q was an arbitrary member of P n+1
WA , the (derived) semantic

clause for ∀ gives us:

~v |=n+1

σ[ ~B/pp]
∀p(Qp↔ p ≺ pp)

Since ~v ∈ WA, this gives us:{
~w : ~w |=n+1

σ[ ~B/pp]
∀p(Qp↔ p ≺ pp)

}
6= ∅

So, by the (derived) semantic clause for ♦,

~α |=n+1

σ[ ~B/pp]
♦∀p(Qp↔ p ≺ pp)

So, by the semantic clause for ↑,

~α |=n
σ[ ~B/pp]

↑♦∀p(Qp↔ p ≺ pp)

But since ~B ⊆ P n
WA was chosen arbitrarily, the (derived) semantic

clause for ∀ gives us:

~α |=n
σ ∀pp↑♦∀p(Qp↔ p ≺ pp)

which is what we wanted.
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3. |= ∀pp♦∀q(↑(Qiq)↔ q ≺ pp)

Fix a natural model 〈W,A, ~α, n〉. Fix arbitrary v ∈ W and ~B ⊆ P n
WA

( ~B 6= ∅) and define ~v as in the previous case. As in the previous case,
we can show for arbitrary ~q ∈ P n+1

WA

~q ∈
[W
A ExtnQi

]
(~v)↔ ~q ∈ ~B

So, by the semantic clause for Q and ≺, we have the following for an
arbitrary level n assignment σ:

~v |=n+1

σ[ ~B/pp][~q/p]
Qp↔ ~v |=n

σ[ ~B/pp][~q/p]
p ≺ pp

So, by the semantic clause for ↑,

~v |=n
σ[ ~B/pp][~q/p]

↑(Qp)↔ ~v |=n
σ[ ~B/pp][~q/p]

p ≺ pp

and therefore
~v |=n

σ[ ~B/pp][~q/p]
↑(Qp)↔ p ≺ pp

But since ~q was chosen arbitrarily from P n+1
WA , proposition 5 guarantees

that the result also holds when ~q is chosen arbitrarily from P n
WA . So

the (derived) semantic clause for ∀ gives us:

~v |=n
σ[ ~B/pp]

∀p( ↑(Qp)↔ p ≺ pp)

Since ~v ∈ WA, this gives us:{
~w : ~w |=n

σ[ ~B/pp]
∀p( ↑(Qp)↔ p ≺ pp)

}
6= ∅

So, by the (derived) semantic clause for ♦,

~α |=n
σ[ ~B/pp]

♦∀p( ↑(Qp)↔ p ≺ pp)

But since ~B ⊆ P n
WA was chosen arbitrarily, the (derived) semantic

clause for ∀ gives us:

~α |=n
σ ∀pp♦∀p( ↑(Qp)↔ p ≺ pp)

which is what we wanted.
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4. |= ∀pp↑♦∀q(Qiq ↔ q ≺ pp)

Analogous to the proof of more general result.

5. |= ∀p♦∀q(↑Qiq ↔ q = p)

Analogous to the proof of more general result.

Definition 25 Fix a model 〈W,A, ~α,m〉. Qi and Qj are independent (rel-
ative to the relevant model) if and only if, for any ~p ∈ P n

WA (n ∈ N), there is
~w ∈ WA such that

~p ∈
[W
A Ext

n
Qi

]
(~w)↔ ~p 6∈

[
W
A Ext

n
Qj

]
(~w)

Proposition 27 (Some models exemplify independence) Whenever i 6=
j, Qi and Qj and independent relative to any natural model.

Proof Assume, with no loss of generality, that i = 1 and j = 2. Let
〈W,A, ~α,m〉 be a natural model and let ~p ∈ P n

WA (n ∈ N). For any w ∈ W ,
let

wn+1 =

〈
w, {~p(n)} , ∅, . . . , ∅︸ ︷︷ ︸

(r − 1) times

〉

Since 〈W,A, ~α,m〉 is a natural model, wn+1 ∈ W n+1
A . So, by proposition 3,

there is ~w ∈ WA such that ~w(n+ 1) = wn+1. We then have:

~p ∈ P n
WA ∧ ~p(n) = ~p(n), ¬(⊥)

~p ∈ P n
WA ∧ ∃p

n ∈ {~p(n)} (~p(n) = pn), ¬(~p ∈ P n
WA ∧ ∃p

n ∈ ∅(~p(n) = pn))

~p ∈
[W
A ExtnQ1

]
(~w), ~p 6∈

[W
A ExtnQ1

]
(~w)

Proposition 28 (Russell-Myhill Next) Whenever Qi and Qj are inde-
pendent, |=↑(Qip 6= Qjp)

Proof Let Qi and Qj be independent and assume, for reductio, that 6|=↑
¬(Qip = Qjp). By our assumption, there is a model 〈W,A, ~α, n〉 and an
n-level assignment σ such that:

~α 6|=n
σ↑¬(Qip = Qjp)
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which, by proposition 23, is equivalent to:

~α 6|=n
σ ¬ ↑ (Qip = Qjp)

which, by the semantic clause for ¬, is equivalent to:

~α |=n
σ↑ (Qip = Qjp)

which, by the semantic clause for ↑, is equivalent to:

~α |=n+1
σ Qip = Qjp

which, by the semantic clause for =, is equivalent to:{
~w : ~w |=n+1

σ Qip
}
=
{
~w : ~w |=n+1

σ Qjp
}

So, for any ~w ∈ WA,

~w |=n+1
σ Qip↔ ~w |=n+1

σ Qjp

So, by the semantic clause for Q, the following holds for any ~w ∈ WA,

σ(p) ∈
[W
A ExtnQ1

]
(~w)↔ σ(p) ∈

[W
A ExtnQ2

]
(~w)

which contradicst the assumption that Qi and Qj are independent.

Proposition 29 (Intensional Cases)

1. |= ↑∃O�∃p(↑(Qip) 6↔ Op)

2. 6|= ∀O♦∀p(↑(Qip)↔ Op)

Proof

1. |= ↑∃O�∃p(↑(Qip) 6↔ Op)

Fix a model 〈W,A, ~α, n〉 and an arbitrary n-level assignment, σ. Let
~ı ∈ IWA be defined as follows:

~ı(~q) =
{
~w ∈ WA : ~w 6|=n+1

σ[~q/p] Qip
}

Let us verify that ~ı ∈ In+1
WA :
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We assume ~q ∈ P n+1
WA and show ~ı(~q) ∈ P n+1

WA . Since ~q ∈
P n+1
WA , and since σ is an assignment of level n, σ[~q/p] is an

assignment of level n+1. So Lemma 1 gives us:{
~w ∈ WA : ~w 6|=n+1

σ Qip
}
∈ P n+1

WA

which is what we wanted.

So we know that ~ı ∈ In+1
WA and therefore that σ[~ı/O] is an assignment

of level n+ 1.

Choose ~v ∈ WA arbitrarily and let ~q ∈ P n
WA . Then propositions 10

and 11 give us:

~q ∈
[W
A Extn+1

Qi

]
(~v)↔ ~q ∈

[W
A ExtnQi

]
(~v)

So, by the semantic clause for Qi,

~v |=n+2
σ[~ı/O][~q/p] Qip↔ ~v |=n+1

σ[~q/p] Qip

which is equivalent to:

~v |=n+2
σ[~ı/O][~q/p] Qip 6↔ ~v 6|=n+1

σ[~q/p] Qip

which is equivalent to:

~v |=n+2
σ[~ı/O][~q/p] Qip 6↔ ~v ∈

{
~w ∈ WA : ~w 6|=n+1

σ[~q/p] Qip
}

so, by the definition of ~ı,

~v |=n+2
σ[~ı/O][~q/p] Qip 6↔ ~v ∈~ı(~q)

So, by the semantic clauses for ↑ and Op,

~v |=n+1
σ[~ı/O][~q/p]↑(Qip) 6↔ ~v |=n+1

σ[~ı/O][~q/p] Op

So, by the semantic clauses for Boolean operators,

~v |=n+1
σ[~ı/O][~q/p]↑(Qip) 6↔ Op

Since ~q is in P n
WA and therefore in P n+1

WA , the semantic clause for ∃ gives
us:

~v |=n+1
σ[~ı/O] ∃p(↑(Qip) 6↔ Op)
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Since ~v ∈ WA was chosen arbitrarily, this gives us:{
~v : ~v |=n+1

σ[~ı/O] ∃p(↑(Qip) 6↔ Op)
}
=WA

So, by the (derived) semantic clause for �,

~α |=n+1
σ[~ı/O] �∃p(↑(Qip) 6↔ Op)

But since ~ı ∈ In+1
WA , the semantic clause for ∃ gives us

~α |=n+1
σ ∃O�∃p(↑(Qip) 6↔ Op)

So, by the semantic clause for ↑,

~α |=n
σ ↑∃O�∃p(↑(Qip) 6↔ Op)

which is what we wanted.

2. 6|= ∀O♦∀p(↑(Qip)↔ Op)

Suppose otherwise:

|= ∀O♦∀p(↑(Qip)↔ Op)

By proposition 22, this means that:

|=↑ ∀O♦∀p(↑(Qip)↔ Op)

But by the previous result, we have

|= ↑∃O�∃p(↑(Qip) 6↔ Op)

which is equivalent to:

|= ¬↑∀O♦∀p(↑(Qip)↔ Op)

Proposition 30 (Validity Failures)

• 6|= ↑φ→ φ

Proof

53



• Consider a model 〈W,A, ~α, 0〉, where W = {0}, A = W∞, w1 =〈
0, {∅} , . . . , {∅}︸ ︷︷ ︸

r times

〉
, and ~α is such that ~α(1) = w1. Let σ be an as-

signment such that σ(p) = ∅. So we have σ(p) ∈ P 0
WA and σ(p)(0) =

{~w(0) : ~w ∈ σ(p)} = ∅. We verify that ~α |=0
σ ↑Qi(p) but ~α 6|=0

σ Qi(p):
The latter is an immediate consequence of the semantic clause for Qi.
So it suffices to verify the former. But, trivially,

∃p0 ∈ {∅} (∅ = p0)

And since σ(p) ∈ P 0
WA and σ(p)(0) = ∅, this gives us:

σ(p) ∈ P 0
WA ∧ ∃p

0 ∈ {∅} (σ(p)(0) = p0)

equivalently,

σ(p) ∈
{
~p ∈ P 0

WA : ∃p0 ∈ {∅} (~p(0) = p0)
}

So, by the definition of
[W
A Ext0Qi

]
σ(p) ∈

[W
A Ext0Qi

]
So, by the semantic clause for Qi

~α |=1
σ Qi(p)

So, by the semantic clause for ↑:

~α |=0
σ ↑Qi(p)

13 Examples
A proof of Prior : |= OE− → (E+ ∧ E−)

• E+ := ∃p(Op ∧ p)

• E− := ∃p(Op ∧ ¬p)

1. OE− (assumption) [1]
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2. ¬E− (assumption) [2]

3. ¬¬∀p(Op→ p) (from 2, by definition) [2]

4. ∀p(Op→ p) (from 3, by Double Negation Elimination) [2]

5. (OE− → E−) (from 4, by Universal Instantiation) [2]

6. E− (from 1 and 5, by Modus Ponens) [2, 1]

7. E− (from 6 discharging 2, by Conditional Proof) [1]

8. (O(E−) ∧ E−) (from 7 and 1, by Conjunction Introduction) [1]

9. ∃p(Op ∧ p) (from 8, by Existential Generalization) [1]

10. (E+ ∧ E−) (from 7 and 9, by Conjunction Introduction) [1]

11. OE− → (E+ ∧ E−) (from 10, discharging 1, by Conditional Proof)

A proof of Modal Prior : |= ∃p�¬∀q(Oq ↔ (q = p))

1. ∀q(Oq ↔ (q = E−)) (assumption) [1]

2. OE− ↔ (E− = E−)) (from 1, by UG) [1]

3. OE− (from 1, by MP and reflexivity of identilty) [1]

4. OE− → (E+ ∧ E−) (Prior) []

5. E+ ∧ E− (from 3 and 4 by MP) [1]

6. ∃p(Op ∧ ¬p) (from 5, by conjunction elimination) [1]

7. (Op ∧ ¬p) (from 6, by EI) [1]

8. Op↔ (p = E−) (from 1, by UG) [1]

9. p = ¬E− (from 7 and 8), by MP and conj. elim.) [1]

10. ¬E− (from 7 and 9), by identity subs. and conj. elim.) [1]

11. ¬∀q(Oq ↔ (q = E−)) (by reductio, from 5 and 10, discharging 1) []

12. �¬∀q(Oq ↔ (q = E−)) (from 11, by Necessitation) []

13. ∃p�¬∀q(Oq ↔ (q = p)) (from 12, by Existential Generalization) []
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