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Abstract
I show that the momentum operator in quantum mechanics, in
the position representation, commonly known to be a derivative with
respect to a spacial z-coordinate, can be derived by identifying mo-
mentum as the generator of space translations.

1 Translation Operator

Given an eigenstate of position |Z), with eigenvalue z, we define a Transla-
tion Operator, T'(@), which transforms an eigenstate of position to another
eigenstate of position, with the eigenvalue increased by a.

I(a)|7) = |7+ a) (1)

By the following argument, we note that the adjoint of 7'(@) moves a state
backward. It transforms an eigenstate of position to another eigenstate of
position, with the eigenvalue decreased by a.

(@ T(a)|z) = @7+ad) (2)
= d(Z+a)—2) (3)

= 07— (@ —a) (4)

= (@ —alz) ()

= (F|T(@) = (7' —d (6)



T'(@)|7) = |7’ - q) (7)

Note that if we translate forwards by some amount, it is the same as trans-
lating backwards by negative that amount.

T(d) = T'(~a) (8)

If we translate a state forwards and then backwards by the same amount,
the state remains unchanged. This implies that the translation operator is
unitary.

T'(a) T(a) |7) = |7) (9)
= T'(a@)=T""(a) (10)
Any unitary operator can be written as

T(d) = e K4 (11)

1 = T'a) T(a) (12)

ezl_(”f-d efzkd (13>

_ ei(l_(‘fff_(‘)-&' (14)

= K=K' (15)

Where evidently, K must be hermitian. In general, when writing a unitary
operator this way, the operators K are known as the generators of what ever
unitary operator one is expressing, in this case: translation.

2 Eigenstates of K

Let us call the eigenstates of K, which are also eigenstates of T(@), |k).
K|k =Fk|E) and T(a)|k) = e % k) (16)

Let us consider the position projection of the translation operator acting
on an eigenstate of translation. Letting the translation operator, operate to
the right, we have

(@T@)|F) = e (@) (17)
= e () (18)



where we have defined the wavefunction to be
V() = (&[k) (19)

Now consider the same projection, replacing T(@) with 77(—a), and let-
ting it operate to the left.

(@ T@lk) = (@' (-a)k) (20)
= (T —dlk) (21)
= p(¥ —a) (22)
Equating the two methods, we have

Vp(T — @) = e Yp() (23)
Letting © = 0, and @ = —y/, we recognize that this gives plane wave solutions

for the wavefunction. .
Ur(y) = ¢g(0) €™ (24)

As hypothesized by de Broglie, and first experimentally verified by elec-
tron diffraction, a particle in an eigenstate of momentum has a wavefunction
with with a wavevector, k, related to its momentum p by

p=hk (25)

This means that the K operator that we have been discussing is indeed the
wavevector operator. We can now write the translation operator as

7(@) = e /" (26)

Aside from the constant, i, momentum is the generator of translation.

3 Matrix Elements of P in the |Z7) Basis

For simplicity, let us now consider translation in only one dimension.
T(a) = e~*Fark (27)

The following clever manipulation reveals how to write the momentum op-
erator in terms of the translation operator.

0

da|,_,

T(a) = —%P (28)
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P =1ih —
zhaa

We should now ask what the matrix elements are of the momentum operator
in the position basis.

. T(a) (29)

@|Pl7) = iho 1T (30)
.0 p

= zh%azoé(x—i—a—a:) (31)

= ho'(x—2a) (32)

4 P Acting on a Wavefunction

We should now take a digression to investigate what is meaning of this deriva-
tive of a delta function, §'(x). We integrate by parts, a ¢’(z — y) acting on
some arbitrary function, f(x). Note that the boundary term is zero because
d(z — y) is zero on the boundary, provided a boundary of integration is not
at position y.

/ 5z —y) fe)de = 0— / 5z — ) f(x) d (33)
— (34)

Evidently, the derivative of a delta function is sort of a tool for evaluating
the derivative of some function at a certain point.

Now we may ask how we can represent the momentum operator in the
position basis. Because the number of states in the position basis are un-
countably infinite, a matrix representation would be awkward. We see by
the following argument that there is a much more elegant way of writing the
momentum operator.

Consider the momentum operator acting on the wavefunction of some
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