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Abstract 

 

Four experiments investigated the extent to which abstract quantitative information can be 

conveyed by basic visual features.  This was done by asking observers to estimate and discriminate 

Pearson correlation in graphical representations where the first data dimension of each element was 

encoded by its horizontal position, and the second by the value of one of its visual features; 

perceiving correlation then requires combining the information in the two encodings via a common 

abstract representation.  Four visual features were examined: luminance, color, orientation, and 

size.  All were able to support the perception of correlation.  Indeed, despite the strikingly different 

appearances of the associated stimuli, all gave rise to performance that was much the same: just 

noticeable difference was a linear function of distance from complete correlation, and estimated 

correlation a logarithmic function of this distance.  Performance differed only in regards to the 

level of noise in the feature, with these values compatible with estimates of channel capacity 

encountered in classic experiments on absolute perceptual magnitudes.  These results suggest that 

quantitative information can be conveyed by visual features that are abstracted at relatively low 

levels of visual processing, with little representation of the original sensory property.  It is proposed 

that this is achieved via an abstract parameter space in which the values in each perceptual 

dimension are normalized to have the same means and variances, with perceived correlation based 

on the shape of the joint probability density function of the resultant elements. 
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Visual Features as Carriers of Abstract Quantitative Information 

  

The area of information visualization concerns itself with the effective display of information in 

graphical form (e.g., Spence, 2014; Ware, 2012).  Here, physical properties such as color and 

orientation—often referred to as visual variables (Bertin, 1967/2011)—are used for four purposes: 

(i) forming spatial groups, (ii) creating items that are visually distinct, (iii) facilitating attentional 

selection of sets of items, and (iv) encoding quantitative information (Card, Mackinlay, & 

Shneiderman, 1999; Roth, 2017).1  The perceptual correlates of these variables are usually referred 

to in vision science as visual features—simple, rapidly-determined properties that support 

operations such as grouping texture perception, and attentional selection (Wolfe & Horowitz, 2004; 

Wolfe & Utochkin, 2019).   

 

But whereas vision science has extensively studied the first three uses of visual variables, it has 

given relatively little attention to the fourth, viz., the use of visual features to convey quantitative 

information.  Perceived orientation, say, can facilitate such things as grouping and attentional 

selection, and various models have been proposed as to how this might be carried out (see Wolfe 

et al., 2002).  But how is orientation able to explicitly convey abstract numerical information, as is 

often done in visualization dashboards and other displays (e.g., Harris, 1999)?  What might be the 

mechanisms involved? 

 

The perception of quantity has, of course, long been studied in the context of perceived sensory 

magnitude.  Starting with the work of Fechner in the 19th century (see e.g., Ross, 1997), this 

 
1 Technically, there is a fifth: conveying order in a series.  For most purposes, however, order can be considered a 

coarse version of quantity: ordinal values can always be conveyed whenever numerical values can be (Roth, 2017). 
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eventually developed into the study of sensory scaling (e.g., Billock & Tsou, 2011; Stevens, 1966).  

A related approach, based on information-theoretic considerations, examined the number of 

distinct levels or categories of perceived magnitude, yielding the capacity—essentially the signal-

to-noise ratio—for the perceptual channels corresponding to various properties (Miller, 1956; 

Nizami, 2010).  But while valuable, such investigations generally focused on the perception of a 

single sensory property; the quantities involved were usually taken as linked with their sensory 

qualities in some way (as suggested by conscious experience), with abstraction into pure number 

occurring at a higher, cognitive level.2  It has been found that abstract quantity—viz., the number 

of items in a set—can be perceived within half a second (Burr & Ross, 2008; Cheyette & 

Piantadosi, 2020).  But the relevant quantity here is an integer rather than a continuous number.  

Moreover, the quantities investigated are the outputs of processes rather than inputs, so that little 

can be said about the extent to which abstract information might already be available to low-level 

processes operating in parallel across space. 

 

The goal of this paper, then, is to investigate the extent to which continuous (or at least, non-integer) 

quantitative information can be carried by visual features, and in particular, the extent to which it 

can be represented in an abstract form, one not tied to any sensory quality.  Towards this end, it is 

useful to consider perception not within perceptual dimensions, but between them—in particular, 

to consider the perception of the Pearson correlation r between information conveyed by two 

different properties.  If quantitative information can be combined to support the perception of 

correlation, it would imply a common form in which the representation of this information has 

 
2 Similarly, ensemble processes that rapidly estimate the mean value of some property of set of items (Alvarez, 2011; 

Whitney & Leib, 2018) are also generally examined using j one property at a time. 
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been separated from the representation of the original sensory properties, allowing it to be 

combined in the dense fashion typical of low levels of visual processing,  

 

Approach 

To see how an approach of this kind might be implemented, consider first the scatterplot, a 

graphical representation where each ordered pair of a dataset is mapped to a dot, with the value of 

the first data dimension encoded by its horizontal position, and the second its vertical position 

(Figure 1a).  In such a representation, Pearson correlation r can be assessed by combining 

information about the horizontal and vertical position of each dot.  Both properties used in this 

representation are the same (viz., position), and so the information they carry can be combined in 

a straightforward way.   

 
Figure 1.  Bivariate stripplot representation.  (a) Standard scatterplot.  Here, horizontal position represents the value 

of the first data dimension, and vertical position the second.  (b) Bivariate stripplot (position-luminance).  Here, 

horizontal position represents the value of the first data dimension and luminance the second.  (Dots in gray show 

equivalent representation as a scatterplot.) 

Consider now a bivariate stripplot of the type shown in Figure 1b.  Here, the first dimension of 

each data element is again represented by horizontal position, but the second is now represented 

(a) Scatterplot (b) Stripplot
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by the value of some other property of the corresponding graphical element (in this case, the 

luminance of the line segment).  To perceive correlation, it is necessary to use the joint values 

carried by the two features, which must then require a common amodal substrate in which the 

information from different dimensions can be combined on an item-by-item basis.  The issue of 

whether quantitative information carried by luminance can be combined with that carried by 

position then takes the form of whether correlation can be perceived in such a stripplot, and if so, 

whether performance matches—despite the differences in appearance—that for scatterplots.   

 

Perception of Correlation in Scatterplots 

For scatterplots, the estimation of correlation—at least when done casually—is largely perceptual, 

being relatively rapid and much the same for most observers, regardless of their level of statistical 

training (Doherty, Anderson, Angott, & Klopfer, 2007; Lane, Anderson, & Kellam, 1985; Meyer 

& Shinar, 1992).  Discrimination of perceived correlation—characterized by just noticeable 

difference (JND)—can be described by (Rensink & Baldridge, 2010; Rensink, 2017) 

       JND(r) = k (1/ bdisc – r)    (1) 

where variability k and discrimination bias bdisc are such that 0 < k, bdisc < 1.  Multiplying both 

sides by bdisc and setting u = 1– bdiscr, this becomes JND(u) = ku, an instance of Weber’s Law (see 

Ross, 1997).  Meanwhile, the magnitude of perceived correlation g(r) can be described by 

    g(r) = ln(1 – best r) / ln(1 – best)   (2) 

where estimation bias best is such that 0 < best < 1; again setting u = 1 – best r, this becomes g(u) = 

ln(u) / (ln(1 – best)), an instance of Fechner’s Law.  For a scatterplot, the values of bdisc and best do 

not reliably differ from each other, indicating a bias b common to both equations (Figure 2).   
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Figure 2.  Perception of correlation in scatterplots.  (a) Just noticeable difference (JND), via eq. (1).  JND decreases 

as r increases, in direct proportion to distance from r = 1/bdisc.  (b) Perceived magnitude g(r), via eq. (2).  This increases 

as r approaches 1, with the amount of “bend” given by best.  Note that g(r) is never greater than r, with the greatest 

difference between g(r) and r being for 0.4 ≤ r ≤ 0.6.  For scatterplots, the two curves are linked, with bdisc = best = b. 

In this figure, k ≈ 0.2 and b ≈ 0.9, values typical of scatterplots (Rensink, 2017). 

In the situation where bdisc = best = b, the derivative of (eq. 2) can take the form  

       dg/dr = -[1/(ln(1-b)] / [1/b-r].    

Approximating dr and dg by their finite equivalents Dr and Dg, and rearranging terms, 

      Dr = -Dg ln(1-b) [1/b – r].    (3) 

Assuming that Dg is some threshold constant TC > 0 for each Dr = JND (i.e., the Fechner 

assumption), and matching eq. (3) to eq. (1), it follows that eq. (1) is connected to eq. (2), with 

k = -TC  ln (1-b).     (4) 
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Although the physical correlation r of a scatterplot is defined via the values of individual horizontal 

and vertical positions, perceived correlation is not based on the multiplication of these quantities.  

Instead, it appears to be based on a perceptual proxy: the shape of the probability density function 

f (x,y) that describes the number of elements likely to be encountered at each two-dimensional 

location in the image; in essence, multiplication is replaced by colocation.  More precisely, entropy 

theory (Rensink, 2017) asserts that perceived correlation g(r) is proportional to the entropy of the 

density function f (x,y), where entropy is a measure of disorder (or dispersion) that is proportional 

to average Shannon information (Ben-Naim, 2008; Stone, 2015).  As shown in Appendix A, the 

entropy for a gaussian distribution is approximately proportional to the logarithm of the width of 

an isofraction ellipse, the set of points at a fixed fraction of the height of f  (Figure 3).  Given the 

characterization of g(r) as entropy, the Fechner assumption of a constant Dg for each Dr takes the 

form of a constant number of bits for each JND. 

 
Figure 3.  Probability density function f(x,y) for scatterplot dot cloud. (a) Two-dimensional view of a scatterplot 

with several isopleths (iso-probability contours).  (b) Density function f(x,y), inferred from the set of dots, showing an 

isofraction ellipse.  Perceived correlation entropy is proportional to the entropy of f(x,y), which is approximately the 

logarithm of the width of an isofraction ellipse. (Based on Rensink, 2017). 

 

In what follows, the ability of visual features to convey abstract quantitative information is 

explored by determining the extent to which the perception of correlation in bivariate stripplots 

f(x,y)

x

y

x xx

y
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follows eqs. (1) and (2), and whether the Fechner assumption still applies.  To the extent that such 

behavior holds, the feature involved can be considered an information carrier—a property able to 

convey quantitative information in the same way as perceived position, with this information 

abstracted in a common space in which the information from both perceptual dimensions can be 

combined.  This possibility is investigated for four commonly-used features: luminance, color, 

orientation, and size.   

General Methods 

The design of the experiments here is similar to that of Rensink (2017).  Each observer was given 

a discrimination task and an estimation task based on stripplots of various kinds.  For the 

discrimination task, observers were asked to select which of two above-and-below plots was more 

correlated; for estimation, a test plot positioned between two reference plots was adjusted until its 

perceived correlation was halfway between those of the references (Figure 4).   

 
              (a)                 (b)   

Figure 4.  Schematics of discrimination and estimation tasks.  Examples here use stripplots of the type shown in 

Figure 1.  (a) Discrimination.  Two above-and-below plots were shown to each observer.  Observers were asked to 

choose the one which appeared more correlated.  (b) Estimation.  Three stripplots were shown to each observer.   

Observers adjusted the middle test plot so that its correlation appears to be midway between those of the reference 

plots at the top (r = 1.0) and bottom (r = 0.0). 
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All observers carried out both tasks; order was counterbalanced.  Observers were told that accuracy 

was important, but that they could take as much time as needed.  To familiarize each observer with 

the discrimination task, practice trials (with feedback) were given beforehand, starting with r = 0.0 

and 1.0, and continuing until the observer reached 75% accuracy, or 32 trials had been run.  For 

estimation, 16 practice trials were given; owing to the nature of the task, no feedback could be given 

for these. 

Observers 

Each condition had 20 observers, a number chosen to match that used in Rensink (2017).  Post-hoc 

analysis using G*Power (Faul, Erdfelder, Lang, & Buchner, 2007) shows that for this number, an 

a of 0.05 and effect size d of 0.8 yields power 1-b = 0.92.  Different individuals were used in each 

condition. All were undergraduates at the University of British Columbia, with normal or corrected-

to-normal vision; all were paid $10 for a single one-hour session.  None had extensive experience 

with information visualization, although about a quarter had had some exposure to the topic, and 

almost all had experience with scatterplots.  Slightly over half had no formal training in statistics, 

while most of the remainder had only an introductory course in statistics.   

Stimuli 

Observers were seated 67 cm from a screen 38.6° × 22.4° in extent, displaying plots that contained 

gaussian distributions with fixed means and standard deviations.  100 pseudo-random number pairs 

were generated for each set of data displayed.  (For details see Rensink, 2017.)  The same 

dimensions were used for all stimuli.  Stripplot axes were 15° wide × 4.2° high, with no tick marks 

or labels.  Stripplot elements (usually line segments) were centered on the horizontal axis, with a 
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maximum horizontal range of 14.6°.  For discrimination, the axes of the stripplots were separated 

by a vertical distance of 6.8°; for estimation, their separation was 5.0°.   

 

Each dataset had a fixed range of values, with extremes of the numerical range—set here to be 0.0 

to 1.0—mapped to the extremes of the range of the visual feature tested.  Means were 0.5 of this 

range, and standard deviations were 0.2, with a straightforward mapping of value to feature.  To 

prevent values from exceeding the bounds of the range [0, 1], any value more than 2.5 standard 

deviations from the mean was eliminated and a new datapoint generated to take its place.   

 

Procedure - Discrimination 

Discrimination was measured via JND, the value D for which stripplots containing correlations r 

and r ± D can be correctly discriminated about 75% of the time.  JND is a measure of percept 

variability: the greater the JND, the greater the separation needed to see that two plots have different 

correlations, indicating a greater variability of perceptual estimates; JND is essentially a measure of 

the “resolution” of the perceptual representation involved. 

 

The procedure to measure JND was that of Rensink (2017).  A set of base correlations was selected, 

ranging from 0.0 to 0.9, in steps of 0.1.  For each, JND was measured using a series (or run) of 

trials.  In each trial, observers were shown two stripplots: one with the base correlation, and the 

other a test correlation either above or below it (Figure 4).  Observers were asked to select the plot 

that appeared more correlated.  If the answer was correct, absolute difference in correlation was 

decreased by 0.01, making the task more difficult; if incorrect, it was increased by 0.03.  (Since 3 

steps for each correct answer matched a single step for each incorrect answer, steady-state 
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performance was approximately 75% correct.)  Feedback was provided after each response.  New 

instances were generated every time a response was made, with the relative position of the base and 

test plots again randomly assigned each time.  Performance was assessed via a moving window of 

24 consecutive trials, divided into 3 sub-windows of 8 trials each.  After 24 trials, average variance 

within the sub-windows was continually compared to the variance of the sub-window averages 

(somewhat akin to an F-test). Testing halted when this value became sufficiently low (≤ 0.25), or 

52 trials had been run; the average of the sub-windows was then taken as the JND.3  This procedure 

proved fairly effective, converging for 62% of the runs, and yielding results within 34.9 trials on 

average. 

 

Order of testing was determined via a latin square design (Kirk, 1995) that counterbalanced base 

correlations and direction of JND (above vs. below) across the observers; the location of the base 

correlation stripplot (top vs. bottom) was randomly selected in each trial.  To minimize boundary 

effects (Kay & Heer, 2015), no tests from below were run for base correlations of r = 0.2 or less. 

Procedure - Estimation 

The extent to which an observer can correctly estimate correlation was measured using a bisection 

technique (Rensink, 2017).  Observers were shown two reference plots (one with a high level of 

correlation, one with a low), with a test plot in between (Figure 4).  The initial value of the test plot 

alternated between those of the two reference plots, with its correlation adjusted on subsequent 

presentations until its value appeared to the observer to be halfway between those of the references.  

All plots (both reference and test) were replaced by new instances every time an adjustment was 

 
3 For these, the value used was the average of the last 24 trials 
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made, or 1 second had elapsed4.  As in the discrimination task, the relative positions of the high and 

low plots were randomly selected each time to prevent any directional bias, or any accumulation of 

usable information at the reference locations. 

 

For testing, observers first determined the point subjectively halfway between r = 0 and r = 1.  

(These corresponded to g = 0 and g = 1, respectively).  This was done four times, with the mean 

taken as the physical correlation r corresponding to perceived correlation g = 1/2.  A second round 

applied this recursively: observers estimated the point between g = 0 and 1/2 and between g = 1/2 

and 1; the order of these was counterbalanced.  Measurements were again made four times for each 

subcondition, with averages taken as the values corresponding to g = 1/4 and g = 3/4.  A third round 

determined the values of r corresponding to subjective estimates g = 1/8, 3/8, 5/8, and 7/8; these 

subconditions were presented in random order.   

Analysis 

Aggregate results were based on averages of individual responses (see Appendix B).  Quantities 

derived from these (such as k) rarely differed more than a few percent from the averages of derived 

quantities for individuals, and so are not discussed in detail.  JNDs were plotted against adjusted 

correlation rA = r + 0.5 JND(r) when test correlation was from above, and rA = r - 0.5 JND(r) when 

from below.  Adjusted correlations are the averages of the base and test correlations; these remove 

the effects of testing direction (Rensink & Baldridge, 2010).  In accord with this, no significant 

effect of JND direction on derived values was found (all p’s > .11); values from both directions 

 
4 This was to ensure that observers did not unduly weight any particular feature, such as an outlier.  It also provided 

an approximate timing match to discrimination trials, where each display typically appeared for only a second or two. 
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were therefore pooled.  Variability k and bias bdisc were obtained via least-squares lines through 

the resulting set of points.  To minimize effects of the boundaries r = 0 and r =1 (Kay & Heer, 

2015), a boundary constraint was imposed: a base correlation was dropped from an experiment if 

the average ± 1.5 standard deviations fell outside these boundaries for all its conditions.  Estimates 

of best for individuals were obtained via least-squares fits to their data.5  Since these estimates 

generally had high skew, each b value was transformed into the value of r corresponding to g = ½; 

this “midpoint transformation” reduced skew considerably.   

 

Following the recommendations of Cumming (2012), effect sizes are emphasized here: 95% 

confidence intervals (CIs; shown in square brackets) are provided for all quantities of interest.  

Unless specified otherwise, comparisons are based on either one-way ANOVAs or two-tailed t-

tests.  The data and materials for all experiments are available at https://osf.io/2wgb7 (Rensink, 

2021a), or upon request.  None of the experiments were preregistered. 

Experiment 1: Luminance 

In this experiment, the value of the first data dimension was encoded by horizontal position and 

the second by the intensity I of the corresponding graphical element.  Intensity is a property often 

used in information visualization (Roth, 2017); it is also considered a basic visual feature (Turatto 

& Galfano, 2000).  To examine whether intensity (and its perceptual counterpart luminance) 

supports behavior similar to that for scatterplots, and to examine the extent to which correlation 

perception is sensitive to the particular mapping used, numerical value v was mapped to intensity 

 
5 Values for an observer were dropped if the difference between the high and low estimates for the first round of 

bisections was greater than 0.75 (taken to indicate that the observer did not understand or could not carry out the task).  
This resulted in 14.5% of observers being dropped, comparable to what was found in studies of scatterplots (e.g., 
Cleveland, Diaconis, & McGill, 1982; Rensink, 2017). 
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via I = vg for several different values of g; these were chosen to be similar to the values used in 

most video systems (Figure 5).  The scaling factor was such that v = 0.0 mapped to the minimum 

luminance of the monitor (1.6 cd/m^2), and v = 1.0 to its maximum (52.7 cd/m^2).6  Values for 

base correlation r = 0.3 from below were dropped due to the boundary constraint. 

Observers 

Observers in this experiment ranged from 18 to 34 years of age, with an average of 21.9 years.  Of 

the 80 observers for the four conditions (20 in each), 30 were male and 50 were female. 

Stimuli 

Black backgrounds were used in all conditions in this experiment, with axes and line segments that 

were white (Figure 5).  Line segments were 3.8° long and 0.17° thick.  Stimuli for the various 

conditions are as follows: 

 
Figure 5.  Examples of position-luminance stripplots for various values of g.   For all examples, r = 0.8.  (a) g = 1, 

corresponding to a direct mapping of value to intensity.  (b) g = 2, corresponding to common usage in video monitors.  

(c) g = 3, corresponding to the mapping of numerical value to perceived intensity.  (d) g = 4, a value rarely used due to 

its extreme nature. 

 
6 Mappings were created via a lookup table, with g of the physical device set to 1.0. 
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Condition 1A: Here, numerical value v was mapped directly to intensity (Figure 5a).  This 

corresponds to the “value” commonly used in information visualization, which is defined as the 

proportion of energy reflected from a surface, viz., reflectance (Roth, 2017); in a black-and-white 

display this corresponds to the proportion of white pixels in a given area (Bertin, 1967/2011). 

Condition 1B: To create an image that is perceptually clear, most monitors use a g between 1.8 and 

2.2 (Kane & Bertalmio, 2016; Smith, 1995).  To test this range of values, this condition used the 

midpoint of the range, viz., g = 2 (Figure 5b).   

Condition 1C: Here, I ∝ v3 (Figure 5c).  Since perceived luminance (or brightness) is roughly 

proportional to Ia, where a ≈ 0.33 under many conditions (Stevens, 1966), this mapping results in 

perceived luminance being approximately proportional to numerical value.   

Condition D: In this condition, g = 4 (Figure 5d), an extreme case that goes beyond the values used 

in most monitors (Smith, 1995). 

Results 

Results for condition 1A are shown in Figure 6; as is evident, both discrimination and estimation 

followed laws similar to those for scatterplots (cf. Figure 2).  JND was a reasonably good fit to eq. 

(1) (R2 = .82; RMSE = 0.028), with variability k = 0.24 [0.18, 0.30], not reliably different from the 

k = 0.21 for scatterplots (p = .335).  However, bdisc = 0.68 [0.58, 0.75] was considerably lower than 

the bdisc = 0.90 encountered there (p <.001).  Meanwhile, perceived correlation was a good fit to 

eq. (2) (RMSE = 0.018), with best = 0.77 [0.46, 0.91], a value somewhat less than that of its 

scatterplot counterplot (p = .049). 
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           (a)          (b)   

Figure 6.  Results for Condition 1A (g = 1).  (a) Discrimination as measured via JND. Error bars denote 95% CIs. 

White dots indicate that comparison is against a test correlation from above; black indicate test correlation from below.  

Best fit of slope to the combined data is k = 0.25, and bdisc = 0.69.  (b) Estimation as measured via bisection.  The 

curve for perceived correlation is g(r) = ln(1 – best r) / ln(1 – best); best fit is for best = 0.77  Dashed line shows g(r) = 

r for reference.  Horizontal error bars are CIs for estimates of r corresponding to the given values of g(r).  Vertical bars 

show g(r ± 1 JND); the similarity of these lengths indicates the degree to which the Fechner assumption holds.  

 

The key results for Conditions 1A-D are shown in Table 1.  (For the aggregate values on which 

these are based, see Appendix B.)  The patterns found in condition 1A clearly extend to the other 

conditions as well: In all cases, JND was a reasonably linear function of correlation (average R2 = 

0.86; RMSE = 0.023), and perceived correlation a logarithmic function (average RMSE = 0.017). 

Moreover, discrimination and estimation biases did not reliably differ: dav (Cohen’s d for paired 

comparisons) was relatively small (average = 0.22), consistent with the Fechner assumption. 
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 Discrimination Estimation Fechner 

Cond k R2 RSME bdisc best RSME p dav 

    S 0.21  
[0.17, 0.25] 0.97 0.008 0.90   

[0.84, 0.94] 
0.91 

[0.86, 0.95] 0.018 .686 0.13 

1A 0.24  
[0.18, 0.30] 0.82 0.028 0.68   

[0.58, 0.75] 
0.77 

[0.46, 0.91] 0.016 .446 0.35 

1B 0.21  
[0.15, 0.27] 0.88 0.020 0.69   

[0.60, 0.77] 
0.72 

[0.43, 0.88] 0.019 .959 0.02 

1C 0.23 
[0.18, 0.27] 0.88 0.020 0.76 

[0.68, 0.83] 
0.65 

[0.33, 0.83] 0.017 .236 0.37 

1D 0.29  
[0.25, 0.34] 0.90 0.023 0.84   

[0.74, 0.91] 
0.78 

[0.54, 0.91] 0.016 .511 0.16 

Avg* 0.23 
[0.20, 0.25] 0.86 0.023 0.71  

[0.65, 0.77]  0.017 .972 0.22 

Table 1: Main results for Experiment 1 (luminance).  Fechner: If the Fechner assumption holds (bdisc = best), the 

difference between them would be statistically insignificant (p ≳ .05) and Cohen’s d small (dav  ≲ 0.2).  Values for 

scatterplots (S) from Experiment 1 of Rensink (2017).  * = Average for conditions 1A-1C.  Average R2, RSME, and 

dav are direct averages; values for k, b, and p from pooled data. 

 

Analysis of combined results fails to show a reliable tendency for g to affect k (F(3,76) = 1.858; p 

= .144), although it did have a clear effect on bdisc (F(3,76) = 3.907; p = .012).    For 1 ≤ g ≤ 3, no 

dependence on g was evident for k (F(2,57) = 0.235; p = .791) or bdisc (F(2,57) = 1.445; p = .244). 

For g = 4, k was significantly higher than for the other conditions (k = 0.29 [0.25, 0.34]; p = .026), 

as was discrimination bias (bdisc = 0.84 [0.74, 0.91]; p = .003).  No significant effect of g on best was 

evident (F(3,56) = 0.379; p = .768).   
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Discussion 

In spite of their different appearance, position-luminance stripplots give rise to behavior strikingly 

similar to that for scatterplots: precision and accuracy are described reasonably well by linear and 

logarithmic laws respectively, and discrimination and estimation biases did not markedly differ, in 

line with the Fechner assumption.  Luminance therefore appears to be an information carrier, with 

performance much the same for 1 ≤ g ≤ 3.  For g = 4, the higher JNDs (reflected in greater k and 

bdisc) may arise from the distortions created by this extreme mapping; such distortions, however, 

do not appear to significantly affect perception of correlation magnitude. 

Experiment 2 – Color 

The next feature examined was color.  Color differs from luminance in that it varies in quality (hue) 

rather than quantity (intensity).  Nevertheless, color is widely used in information visualization 

(Roth, 2017) as well as being a well-known visual feature (Turatto & Galfano, 2000; Wolfe & 

Horowitz, 2004).  Given the results for luminance, it might then be expected that similar 

performance would be encountered.  To test this, three mappings were examined: two based on 

approximations of the basic “opponent” dimensions believed to exist for color (Ware, 2012), and 

the third a rainbow map, a popular design that maps values to the wavelength of the colors, which 

involve multiple color dimensions (Reda & Szafir, 2021).  Values for all base correlations were 

consistent with the boundary constraint. 
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Observers 

Ages ranged from 18 to 35, with an average of 21.3 years.  Only observers who reported themselves 

as color-normal were used.  Of the 60 observers (20 in each condition), 18 were male and 42 female. 

 

Stimuli 

Stimuli here were much like those in Experiment 1, except with numerical values mapped to 

positions on a color continuum rather than intensity (Figure 7).  White backgrounds were used in 

all conditions, with black axes.  Lines were vertical segments 3.8° long and 0.17° wide, so that 

apart from their color, the graphical representations were similar to those used for luminance.  

Stimuli for the individual conditions are as follows: 

 

Figure 7.  Examples of position-color stripplots for various color maps.  For all examples, r = 0.8.  (a) Red-green, 

loosely corresponding to one of the two color dimensions in human perception.  (b) Blue-yellow, loosely corresponding 

to the second color dimensions.  (c) Rainbow map, a common design used in information visualization, in which colors 

are arranged according to wavelength. 
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Condition 2A: Numerical value was mapped to a red-green continuum formed by linearly 

interpolating endpoint colors red (L*a*b* = 60.1, 47.8, 28.0) and green (L*a*b* = 77.7, -44.9, 50.4), 

with these being approximately isoluminant. 

Condition 2B: The same as condition 2A, except the endpoints of the continuum were blue (L*a*b* 

= 49.1, 33.7, -87.1) and yellow (L*a*b* = 84.7, -13.3, 74.7).  Together with the red-green continuum 

of Condition 2A, these colors roughly approximate the two opponent color dimensions believed to 

exist in human vision (Buchsbaum & Gottschalk, 1983; Ware, 2012).   

Condition 2C: This used a rainbow map, a popular scheme in which colors are mapped to physical 

wavelength; in contrast to the previous two color conditions, this does not correspond to a well-

defined perceptual dimension.  Although such a mapping often leads to poor performance, possibly 

due to the grouping of distant numerical values represented by colors that are perceptually close, 

rainbow maps are still commonly used in visualization (Borland & Taylor, 2007; Reda & Szafir, 

2021; Ware, 1988). 

Results 

Results for condition 2A are shown in Figure 8.  JND was again a good fit to eq. (1) (R2 = .87; 

RMSE = 0.016).  Variability k = 0.17 [0.12, 0.21] was not found to differ significantly from that 

for scatterplots (p = .144), while bdisc = 0.67 [0.57, 0.75] was considerably lower (p < .001). 

Perceived correlation also fit eq. (2) reasonably well: RMSE = 0.041.  Bias best = 0.60 [0.22, 0.80] 

was also significantly lower than its scatterplot counterpart (p = .001). Its value did not differ 

significantly from bdisc (p = .568).  
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                   (a)                (b)   

Figure 8.  Results for Condition 2A (color; isoluminant red-green).  (a) Discrimination as measured via JND. Error 

bars denote 95% CIs. White dots indicate that comparison is made against a test correlation from above; black indicate 

test correlation from below.  Best fit of slope to the combined data is k = 0.17, and bdisc = 0.68.  (b) Estimation as 

measured via bisection.  The curve for perceived correlation is g(r) = ln(1 – best r) / ln(1 – best); best fit is for best = 

0.74  Dashed line shows g(r) = r for reference.  Horizontal error bars are CIs for estimates of r corresponding to the 

given values of g(r).  Vertical bars show g(r ± 1 JND); similarity indicates the degree to which the Fechner assumption 

holds.  

 

The main results for all conditions are shown in Table 2 (see Appendix B for aggregate values).  In 

general, JND was a clear linear function of r (average R2 = 0.86 and RMSE = 0.016), and perceived 

correlation a logarithmic function (average RMSE = 0.037).  No significant differences were found 

between the two axes (k: p = .448; bdisc: p = .545; best: p = .972), nor were significant differences 

found between bdisc and best for either axis (p > .5 for both).  The rainbow map, however, differed 

reliably from these in k and bdisc (both p’s < .001), although not best (p = .838).  In contrast to earlier 

conditions, a significant difference was now found between bdisc and best (p = .038; dav= 0.70), 
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suggesting that the Fechner assumption did not hold in this condition.  No significant overall effect 

of condition was found for best (F(2,50) = 0.021; p = .979).   

 
 Discrimination Estimation Fechner 

Cond k R2 RSME bdisc best RSME p dav 

    S 0.21  
[0.17, 0.25] 0.97 0.008 0.90   

[0.84, 0.94] 
0.91 

[0.86, 0.95] 0.018 .686 0.13 

2A 0.17  
[0.12, 0.21] 0.87 0.016 0.67   

[0.57, 0.75] 
0.60 

[0.22, 0.80] 0.041 .563 0.20 

2B 0.14  
[0.11, 0.18] 0.85 0.016 0.63   

[0.52, 0.72] 
0.60 

[0.17, 0.82] 0.032 .746 0.11 

2C 0.27 
[0.23, 0.32] 0.93 0.013 0.85   

[0.77, 0.90] 
0.63 

[0.25, 0.83] 0.016 .038 0.70 

Avg* 0.15  
[0.13, 0.18] 0.86 0.016 0.63 

[0.52, 0.71] 0.037 .556 0.15 

Table 2: Main results for Experiment 2 (color).  Fechner: If the Fechner assumption holds (bdisc = best), the 

difference between them would be statistically insignificant (p ≳ .05) and Cohen’s d small (dav  ≲ 0.2).   Values for 

scatterplots (S) from Experiment 1 of Rensink (2017).  * = Average for conditions 2A and 2B.  Average R2, RSME, 

and dav are direct averages; values for k, b, and p from pooled data. 

Discussion 

Each color axis supported behavior much like those for luminance and position, pointing to all 

three being information carriers.  In addition, the two opponent-color axes give rise to performance 

similar to each other in all regards, suggesting that they convey information in much the same way.  

The JNDs for the rainbow mapping are much higher than for the other two conditions and do not 

obey the Fechner assumption, suggesting that some additional factor may be at play when stimuli 

do not correspond to single perceptual dimension. 
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Experiment 3: Orientation 

The next set of conditions examined the representation of quantity by orientation.  As for the case 

of color, orientation encodes values via location along a finite continuum; however, orientation is a 

geometric rather than a radiometric property.  Orientation is often used in information visualization 

to convey quantitative information (Roth, 2017) and is also a basic visual feature (Wolfe & 

Horowitz, 2004).  Given these considerations (and the results of the previous experiment), it may 

be expected that results here will resemble those for position, luminance, and color.  Because 

orientation requires a line, and the length of the lines could impact performance, three different 

mappings were examined: (a) constant length of lines, (b) random length of lines, and (3) constant 

height of the outline of the set of lines (Figure 9).  For all of these, orientations ranged from -45° to 

45°, with mean quantitative value (0.5) mapped to vertical.  Values for base correlations r = 0.3 and 

r = 0.4 from below were dropped due to the boundary constraint. 

 
Observers 

Ages ranged from 18 to 33, with an average of 22.3 years.  Of the 60 observers (20 in each 

condition), 24 were male and 36 female. 

Stimuli 

All conditions used white backgrounds, with axes and line segments that were black.  Line 

segments were 1 pixel (0.02°) wide, resulting in graphical representations of the form shown in 

Figure 9.  The particular stimuli for the various conditions are as follows: 

Condition 3A: Line lengths were set to 4.0°.  Although this controlled for line length, the resulting 

line arrays had outlines that could potentially give information about r (Figure 9a).   
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Condition 3B: To determine if the outlines of the arrays influence performance, line lengths were 

randomly varied between 0.8° and 4.0° (uniform distribution); this resulted in representations 

where outlines are no longer distinct (Figure 9b).   

Condition 3C: As an alternate way of reducing the possible effect of the outlines, the lengths of 

lines were adjusted to that the outline had a fixed height of 4.0°, and so unable to contain any 

information about correlation (Figure 9c). 

 
Figure 9.  Examples of position-orientation stripplots.  For all examples, r = 0.8.   (a) Fixed length of lines.  (b) 

Random length of lines.  (c) Fixed height of outline.  

Results 

Performance for condition 3A is shown in Figure 10.  JND was again a good fit to eq. (1) (R2 = .91; 

RMSE = 0.030).  Variability k = 0.39 [0.30, 0.49] was significantly higher than its counterpart for 

scatterplots (p < .001), but not so for bdisc = 0.90 [0.80, 0.96] (p = .951), and best = 0.92 [0.82, 0.97] 

(p = .772).    Perceived correlation was again a reasonably good fit to eq. (2): RMSE = 0.029, with 

best not significantly different from bdisc (p = .725). 
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                  (a)                 (b)   

Figure 10.  Results for Condition 3A (orientation; fixed length).  (a) Discrimination as measured via JND. Error 

bars denote 95% CIs. White dots indicate that comparison is made against a test correlation from above; black indicate 

test correlation from below.  Best fit of slope is k = 0.40, and bdisc = 0.87.  (b) Estimation as measured via bisection.  

The curve for perceived correlation is g(r) = ln(1 – best r) / ln(1 – best); best fit is for best = 0.94.  Dashed line shows 

g(r) = r for reference.  Horizontal error bars are CIs for estimates of r corresponding to the given values of g(r).  

Vertical bars show g(r ± 1 JND); their similarity in length indicates the degree to which the Fechner assumption holds.  

The main results for all conditions are presented in Table 3.  (For aggregate values, see Appendix 

B.)  In all cases, JND was a clear linear function (average R2 = 0.92; RMSE = 0.027), and perceived 

correlation a logarithmic function (average RMSE = 0.020).  No reliable effect of condition was 

found on variability k (F(2,57) = 1.362; p = .264), bdisc (F(2,57) = 0.121; p = .886), or best (F(2,52) 

= 0.019; p = . 981).  And as in the case of position, luminance, and color, no reliable difference was 

found between bdisc and best in general (p = .234), nor was dav very large (= 0.17), consistent with 

the Fechner assumption. 
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 Discrimination Estimation Fechner 

Cond k R2 RSME bdisc best RSME p dav 

    S 0.21  
[0.17, 0.25] 0.97 0.008 0.90   

[0.84, 0.94] 
0.91 

[0.86, 0.95] 0.018 .686 0.13 

3A 0.39  
[0.30, 0.49] 0.91 0.030 0.90   

[0.80, 0.96] 
0.92 

[0.82, 0.97] 0.029 .725 0.10 

3B 0.38  
[0.32, 0.44] 0.95 0.027 0.90   

[0.83, 0.95] 
0.92 

[0.87, 0.96] 0.019 .648 0.15 

3C 0.32  
[0.25, 0.38] 0.90 0.025 0.88   

[0.77, 0.95] 
0.93 

[0.87, 0.97] 0.012 .460 0.26 

Avg 0.36  
[0.32, 0.40] 0.92 0.027 0.91   

[0.88, 0.94] 0.020 .234 0.17 

Table 3: Main results for Experiment 3 (orientation).  Fechner: If the Fechner assumption holds (bdisc = best), the 

difference between them would be statistically insignificant (p ≳ .05) and Cohen’s d small (dav  ≲ 0.2).  Values for 

scatterplots (S) from Experiment 1 of Rensink (2017).  Averages for all conditions.  Average R2, RSME, and dav are 

direct averages; values for k, b, and p from pooled data. 

Discussion 

Once again, performance followed much the same laws as those for the other features.  Performance 

was much the same for all conditions, indicating that neither the outlines of the stimuli in condition 

3A nor the random changes in length in conditions 3B had much effect.  As such, these results 

indicate that orientation was indeed the main factor governing performance, and that—like position 

and luminance—it is an information carrier. 

 

Experiment 4 – Size 

A final experiment examined size.  Size differs from the other features examined here in that it is 

extensive—i.e., given the right conditions, values assigned to adjoining components in the image 

can be added together (see e.g., Carnap, 1966).  Nevertheless, size is often used to convey 
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quantitative information (Roth, 2017) and is also considered a basic visual feature (Wolfe & 

Horowitz, 2004).  Consequently, it might still be expected that performance would be similar to 

that for the other features examined here.  Note that an ambiguity exists when referring to ‘size’, 

since this could mean either length or area.  To be clear, then, values here were mapped to the 

length of one-dimensional lines, as well as to the diameter of two-dimensional circles, with lengths 

and diameters varying between 0.08° – 4.0°.  Values for base correlation r = 0.3 from below were 

dropped due to the boundary constraint. 

Observers 

Ages ranged from 18 to 26, with an average of 20.4 years.  Of the 40 observers for the two 

conditions (20 in each), 5 were male and 35 female. 

Stimuli 

 

Figure 11.  Examples of position-size stripplots.  For all examples, r = 0.8.  (a) Vertical lines varying length.  (b) 

Circles of varying diameter. 

White backgrounds were again used, with axes and lines that were black and 1 pixel (0.02°) wide.   

Condition 4A: This examined the direct mapping of value v to length, with the graphical elements 

being thin vertical lines (Figure 11a).   

Condition 4B: This used stripplots where value v was mapped to the diameter of a circle (Figure 

11b).  Diameters had the same range of sizes as the lengths in condition A. 
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Results 

Results for condition 4A are shown in Figure 12.  JND was again a good fit to eq. (1) (R2 = .91; 

RMSE = 0.020), with variability k = 0.26 [0.21, 0.31] and bias bdisc = 0.83 [0.76, 0.89].  Perceived 

correlation was also a good fit to eq. (2): RMSE = 0.010, and best = 0.73 [0.50, 0.86], a value not 

significantly different from bdisc (p = .133). 

 
                  (a)                 (b)   

Figure 12.  Results for Condition 4A (size; line length).  (a) Discrimination as measured via JND. Error bars denote 

95% CIs. White dots indicate that comparison is made against a test correlation from above; black indicate test 

correlation from below.  Best fit of slope to the combined data is k = 0.28, and bdisc = 0.85.  (b) Estimation as measured 

via bisection.  The curve for perceived correlation is g(r) = ln(1 – best r) / ln(1 – best); best fit is for best = 0.73.  Dashed 

line shows g(r) = r for reference.  Horizontal error bars are CIs for estimates of r corresponding to the given values of 

g(r).  Vertical bars show g(r ± 1 JND); their similarity indicates the degree to which the Fechner assumption holds.  

Main results for both conditions are shown in Table 4.  (Underlying aggregate values are given in 

Appendix B.)  In all cases, JND was again alinear function of r (average R2 = 0.92 and RMSE = 

0.019), and perceived correlation a good fit to the logarithmic function (average RMSE = 0.021).  

No reliable difference was found between the two in variability k (p = .907) or discrimination bias 
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bdisc (p = .747).  While no significant difference was found between bdisc and best for the lines (p = 

.13), a much larger and more reliable difference was found for the circles, with best significantly 

higher than bdisc (p = .029), and dav approaching a value of 1. 

 Discrimination Estimation Fechner 

Cond k R2 RSME bdisc best RSME p dav 

    S 0.21  
[0.17, 0.25] 0.97 0.008 0.90   

[0.84, 0.94] 
0.91 

[0.86, 0.95] 0.018 .686 0.13 

4A 0.26 
[0.21, 0.31] 0.92 0.020 0.83   

[0.76, 0.89] 
0.73 

[0.50, 0.86] 0.010 .130 0.50 

4B 0.25  
[0.20, 0.31] 0.92 0.018 0.82  

[0.73, 0.88] 
0.93 

[0.88, 0.96] 0.031 .029 0.89 

Avg 0.26  
[0.22, 0.29] 0.92 0.019 0.83 

[0.77, 0.87] — 0.021 — — 

Table 4: Main results for Experiment 4 (size).  Fechner: If the Fechner assumption holds (bdisc = best), the difference 

between them would be statistically insignificant (p ≳ .05) and Cohen’s d small (dav  ≲ 0.2).  Values for scatterplots 

(S) from Experiment 1 of Rensink (2017).  Averages do not include best (and related measures), since that value differs 

significantly from bdisc.  Average R2, RSME, and dav are direct averages; values for k, b, and p from pooled data. 

 

Discussion 

For the most part, behavior followed the same laws as for other features, the only exception being 

that for circles, best was markedly higher than bdisc.  The similarity may have been due to the relevant 

property for circles involving separate width and height estimates (Morgan, 2005), with the result 

treated as something like length (Raidvee, Toom, Averik, & Allik, 2020); the inequality may have 

been due to the greater overlap in the circles creating additional noise in discrimination, and so 

lowering bdisc relative to best.  
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General Discussion 

The experiments here show that visual features can support the perception of correlation, and that 

despite the strikingly different appearances of the stimuli involved, behavior for all features is 

largely the same (and the same as for scatterplots).  In particular, discrimination follows the Weber-

like law described by eq (1), while perceived magnitude follows the Fechner-like law described by 

eq. (2).  (The Weber-like law for discrimination also seems to hold for several other visualization 

designs (Harrison, Yang, Franconeri, & Chang, 2014).)  And for the case of single visual features, 

the two equations are connected via the Fechner assumption, with no significant difference found 

between discrimination bias bdisc and estimation bias best, which can then be taken to describe a 

common bias b.  It therefore appears that the features of luminance, color, orientation, and size are 

all carriers, able to convey abstract quantitative information and combine it across different 

perceptual dimensions in much the same way as spatial position, with performance differing only 

in the values of parameters k and b (Figure 13).  More complex properties also appear to give rise 

to similar behavior, except that the Fechner assumption no longer holds.   
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Figure 13. Overview of perception of correlation in various carriers.  (a) Position (scatterplots).  Data from Rensink 

(2017).  (b) Luminance.  Results for condition A (g = 1) of Experiment 1.  (c) Color. Results for condition A (red-

green) of Experiment 2.  (d) Orientation.  Results for condition A (fixed length) of Experiment 3.  (e) Size.  Results 

for condition A (length) of Experiment 4.  As is evident, performance for all carriers appears to follow the same general 

laws, varying only in the parameters k, bdisc, and best, with the latter two not appearing to reliably differ. 
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Theoretical Implications 

To develop the implications of these results, consider first how a visualization system is able to 

convey quantitative information from a dataset to an observer.  This involves a series of stages that 

essentially form a transmission pipeline, mapping information from a numerical space in the dataset 

to a perceptual space in the observer (Figure 14).  Three perspectives are relevant : 

i. the signal—the quantitative information conveyed to the observer, viz., the numerical 

value(s) attached to each item.  Ideally, this information remains uncorrupted across all 

stages of the visualization process, with little noise or distortion introduced during 

transmission from dataset to perceiver. 

ii. the carrier—the property that encodes the signal.  It has two aspects: the physical 

property that encodes information (e.g., the intensity of a line segment), and the 

corresponding perceptual property in the observer (e.g., its luminance).  Note that the 

encoding conveys quantitative information implicitly—it uses the representation of the 

carrier property itself (e.g., its intensity). 

iii. the substrate—the structure that contains the carrier.  In the case of a stripplot, for 

example, this could be a line element, with properties such as luminance, orientation, 

and position.  Again, two aspects can be distinguished: the physical structure (e.g., the 

line segment in the image), and the corresponding perceptual representation of that 

segment. 
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Figure 14.  Information visualization pipeline.  The transmission of information from one numerical space (that in 

the dataset) to another (that in the observer) is often viewed as involving three stages: data encoding, optical projection, 

and perceptual processing,  The results here show the need for a fourth stage: an abstraction (or decoding) stage, in 

which the representation of sensory quantities is removed, with representation only of abstract numerical quantity 

remaining.  Ideally, the overall process ensures that equal distances between elements in the numerical space in the 

dataset (e.g., d1 to d2, and d3 to d4) map to equal distances in the numerical space in the perceiver (corresponding 

circles).  The effectiveness of the mapping depends on how well encoding / decoding can compensate for the effects 

of optical and perceptual distortions. 

In a scatterplot, for example, the two values of each data element (initially abstract quantities) are 

encoded by the horizontal and vertical co-ordinates of the corresponding dot on the computer 

screen; when viewed, the resulting graphical representation yields a low-level perceptual map—

e.g., a primal sketch (Marr, 1982)—in which the values in each element are now represented by 

the two-dimensional location of its corresponding perceptual substrate (i.e., the representation of 

the corresponding dot).  The finding that information from different perceptual dimensions can be 

combined in a carrier-indifferent form implies that the contents of this perceptual space can be 

transformed back into abstract form via a decoding process of some kind, resulting in a two-

dimensional numerical space with no direct linkage to the properties of the carriers used.   

Ideally, the mapping between the numerical spaces in the dataset and in the observer should be 

isometric: equal distances in the original numerical space should map to equal distances in the 
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numerical space of the observer (Figure 14).  To the extent that the decoding process can 

compensate for the various optical and perceptual effects encountered along the way, distortion 

will be minimal, and accuracy highest.   

What might such a process involve?  Among other things, it would likely retain information about 

the center of mass of each perceptual element (the substrate) along with the value of the relevant 

carrier (its luminance, say), with all other information likely being discarded.  (This might, for 

example, explain why the variation in length of the segments in the position-orientation stripplots 

of Experiment 3 had no reliable effect—such information was simply not represented.)  And to 

enable correlation to be perceived, this information must be integrated via an element-by-element 

binding similar to that of individual horizontal and vertical co-ordinates in a scatterplot.   The 

existence of a dense binding of this form across space suggests that the processes involved are 

likely carried out at relatively low levels of visual processing, which typically involve a 

considerable degree of parallel processing (see e.g., Marr, 1982). 

Parameter Space Theory 

One way to implement abstraction and binding of the kind described above is via parameter space, 

a low-level map in which the representation of sensory qualities is entirely abstract.7  For a position-

luminance stripplot of the type shown in Figure 1, for example, parameter space would be a two-

dimensional subspace spanned by the dimensions of horizontal position and luminance value 

(Figure 15). 

 
7 Parameter space itself does have a spatial structure in terms of the distances between its elements (hence its name).  

But the values represented this way are abstract, in that they are not linked to any representation of geometric space or 
any other sensory quality.  Geometric space may be represented directly via a map of some kind, but if so, it is the only 
such property. 
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Figure 15.  Parameter space.  (a) Two-dimensional geometric space formed via two dimensions of spatial position.  

Values are anchored to position in both dimensions; this is the basis of representations for scatterplots; a probability 

density function would describe the likelihood of a dot at a particular horizontal and vertical location.  (b) Two-

dimensional subspace formed via a slice through a three-dimensional parameter space composed of two spatial and 

one carrier dimension; the probability density function here would describe the likelihood of an element at a particular 

(one-dimensional) location along the slice, together with a particular luminance value.  Values are anchored to position 

in the spatial dimension, while values in abstract dimensions are normalized to form a gaussian distribution with a 

fixed mean and variance (taken to be the same in all dimensions). 
 

Two considerations are particularly important in regards to this mapping.  The first is the 

considerable invariance of performance found for variations in most mappings (e.g., different 

values of g), which suggests a normalization process of some kind.  A simple form of this would 

be a linear rescaling of carrier values to a particular mean and variance; to deal with distortions 

such as those created by the power functions typical of perceived physical quantities (Ross, 1997), 

a more sophisticated mapping might be used—e.g., assume a gaussian distribution and take the 

most common carrier value to be the mean, with other values assigned accordingly.  (The increase 

in JNDs for g = 4 and for the rainbow map may reflect the limits of this process.)  Such 

normalization would allow the information carried by sensory magnitude or position to be replaced 

by dimensionless quantities that are expressed in terms of standard deviations (akin to, say, z-scores 

in statistics).  Also important is the relative size of the quantities in different dimensions; if the 

standard deviations in both dimensions are set to be the same, the resulting equalization would 
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create a common scale between different carriers.8  The net result of such normalization and 

equalization would be a data-to-perception mapping that is largely isometric, providing good—and 

possibly maximal—sensitivity to the statistical structure present (cf. Simoncelli & Olshausen, 

2001). 

 

Limited—but interesting—evidence exists for a space of this type.  To begin with, representations 

at early levels of visual processing can describe shape in a manner indifferent to the medium used 

(e.g., Cavanagh, Arguin, & von Grünau, 1989; Kasai, Morita, & Kumada, 2007), in accord with an 

abstract representation of the type posited here.  In addition, variance appears to be estimated at 

relatively low levels of vision (Norman, Heywood, & Kentridge, 2015), with variance in one 

feature dimension influencing the perception of variance in others (Maule & Franklin, 2020), again 

supporting the possible existence of a representation indifferent to carrier.    

 

As to the nature of parameter-space dimensions, all could in principle be entirely abstract, and 

treated the same way.  Position, however, appears to have a special status in visual perception, its 

coding being involuntary and central to many representations (Cave & Pashler, 1995; Chen, 2009).  

As such, spatial positions may be anchored in a geometric map, with normalization limited to linear 

rescaling; if so, distortions of space could affect performance more severely than distortions of 

other carriers.   

  

 
8 Alternatively, this might be done by equalizing the ranges of the values.  Since the ratio between standard deviation 

and range was always set to the same value (viz., 0.2) in all the stimuli here, this issue cannot be investigated using the 
data in this study. 
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Extended Entropy Theory 
 

While parameter space can account for the similarity of correlation perception across different 

carriers, it does not account for their particular form, viz., eqs. (1) and (2).  Given that similar 

representations are involved, the mechanisms involved may also be similar to each other, and 

similar to those used for determining correlation in scatterplots.  A natural step is then to consider 

adapting the entropy theory originally developed for scatterplots to parameter space.  Entropy 

theory asserts that perceived correlation is proportional to the entropy of the probability density 

function that describes the likelihood of an element at any two-dimensional location in space 

(Appendix A).  This can be extended in a straightforward way to the entropy of the density function 

describing the likelihood of an element with a particular (one-dimensional) location and carrier 

value; entropy could then be determined in the same way as for scatterplots.  Given the 

normalization and equalization processes posited here, the situation would be much the same as 

for scatterplots of equal horizontal and vertical extent.  The result would then be performance as 

described by eqs. (1) and (2). 9 

Carrier Characteristics 

The perception of correlation in all the stripplots examined here—as well as the scatterplots in 

(Rensink, 2017)—appears to be described reasonably well by eqs. (1) and (2), with performance 

differing only in the values of k and b.  Can the values of these parameters say anything about the 

nature of the particular carriers involved? 

 
9 Another possibility might be mutual information I, a general measure of the association between random variables.  

For a bivariate gaussian, I(x,y) is proportional to bivariate entropy H(x,y), and so would give rise to the same behavior.  
However, I(x,y) is a more derived quantity, generally being defined in terms of H(x,y) and not the other way around;  
it is difficult to see how it could be computed without recourse to the mechanisms of the kind described here.  
Moreover, humans do not appear sensitive to mutual information per se when detecting general relationships between 
variables, using more limited measures instead (Fass, 2006).  Entropy may be one of these measures. 
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Variability 

According to eq. (4), variability k = - TC  ln(1-b), where TC  > 0  is a threshold constant. As is 

evident (Table 5), values for TC within any carrier show no reliable differences across conditions. 

Nor does TC differ much across the various carriers (F(11, 228) = 1.793; p = .06); average TC = 

0.16 [0.15, 0.17], suggesting that TC is largely if not entirely independent of the carrier used,10 

with k—for a given threshold level and number of elements—essentially a function of b alone.   

Note that for the case of scatterplots, eq. (4) predicts k ≈ 0.4, far from the value of 0.21 

encountered in Rensink (2017).  It may be that the factor TC for an abstract carrier must be 

replaced by a different factor TS ≈  0.09 when both dimensions are spatial; if so, this would be 

further evidence of a special status for spatial position. 

Carrier Cond k b Difference TC 

   Luminance 

1A 0.24  
[0.18, 0.30] 

0.68   
[0.58, 0.75] 

F(3,76) = 1.832 
p = .149 

0.19 
[0.17, 0.20] 

1B 0.21  
[0.15, 0.27] 

0.69   
[0.60, 0.77] 

1C 0.23 
[0.18, 0.27] 

0.76   
[0.68, 0.83] 

1D 0.29  
[0.25, 0.34] 

0.84  
[0.74, 0.91] 

   Color 

2A 0.17  
[0.12, 0.21] 

0.67   
[0.57, 0.75] 

F(2,57) = 0.301 
p = .741 

0.15 
[0.13, 0.16] 2B 0.14  

[0.11, 0.18] 
0.63   

[0.52, 0.72] 

2C 0.27 
[0.23, 0.32] 

0.85 
[0.77, 0.90] 

   Orientation 

3A 0.39  
[0.30, 0.49] 

0.90  
[0.80, 0.96] 

F(2,57) = 0.089 
p = .915 

0.16 
[0.14, 0.19] 3B 0.38  

[0.32, 0.44] 
0.90   

[0.83, 0.95] 

3C 0.32  
[0.25, 0.38] 

0.88  
[0.77, 0.95] 

   Size 
4A 0.26 

[0.21, 0.30] 
0.83   

[0.76, 0.89] F(1,38) = 0.025 
p = .876 

0.15 
[0.13, 0.16] 4B 0.25  

[0.20, 0.31] 
0.82 

[0.73, 0.88] 
 

10 Omitting condition 1 A, differences are even less pronounced: F(10,209) = 0.792; p = .636. 
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Table 5: Values of TC for different carriers.  Values for TC via eq. (4), using values for k and bdisc from Tables 1-4. 

For each carrier, values are similar, supporting eq. (4). 

Bias 

Entropy theory views bias b as reflecting the residual noise of the carrier involved.  More precisely, 

assuming that the density function for position has a residual width wres (inherent noise) about the 

y = x axis when r = 1 (Figure 16a), bias can be expressed as (Appendix A, eq. A6): 

𝑏 = 	1 (1 + 𝑐!)⁄  ,    (5) 

where c > 0 is proportional to the ratio of wres to the standard deviation s of the distribution.  Given 

two values b and b′, eq. (5) implies that their residual noise levels wres differ by a factor  

    𝑞 = 	-1 𝑏′ − 1⁄ -1 𝑏⁄ − 1	.0    (6) 

Let a > 0 be the factor by which wres is increased in the carrier dimension compared to position.  

The increase q in width of the area swept along a 45° angle (the y = x axis) by an ellipse of axes 

wres and awres is then (Figure 16b) 

            𝑞 = 	-(1 + 𝛼!)/2.    (7) 

 
Figure 16.  Residual noise.  (a) Signals in both spatial dimensions have the same level of noise, corresponding to a 

residual width wres (or variance wres2).  (b) If one of the signals has a greater amount of noise (corresponding to a 

lengthening of the ellipse by a factor a  > 0 in the abstract dimension), the result is a residual width q wres.  Since the 

width swept out by an ellipse with axes A and B along a 45° diagonal is #(𝐴! +	𝐵!)/2, q wres   = #(1 +	𝛼!)/2 wres .  
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Combining eqs. (6) and (7) then yields the relative increase in noise for a given carrier: 

         𝛼 = 	4! ""#	!⁄
&/"	#	&

− 1 .    (8) 

The relative efficiency h of a carrier can be defined as its signal-to-noise ratio relative to that for 

position.  Since (by definition) a = 1 for position, it follows that for any given signal strength, 

																				𝜂 = 	1/𝛼.     (9) 

Using eqs. (8) and (9) with b = 0.90 for spatial position (Rensink, 2017), the values of a and h for 

various carriers follow.  These are shown in Table 6.   

Carrier a h Levels (noise) Levels (S-H) Levels (obs.) Qual. (vis.) 

 Luminance 2.59 0.39 4.3 [3.8, 4.9] 3.8 [3.2, 4.4] 2.7 – 4.8  Poor 

 Color (axis) 3.18 0.31 3.7 [3.1, 4.3] 3.1 [2.6, 3.8] —  Poor 

 Color (rainbow) 1.56 0.64 6.5 [4.9, 9.5] 6.2 [4.4, 9.5] 3.1 – 9.6  Medium 

 Orientation 0.90 1.11 10.4 [8.0, 16.5] 10.5 [7.8, 17.2] 6.3 – 9.4  Medium-good 

 Size (length) 2.01 0.50 5.2 [4.1, 6.8] 4.8 [3.6, 6.5] 2.1 – 7.4  Medium 

 Position 1.0 1.0 — — 9.5  Good 

Table 6: Characteristics of individual carriers, relative to position.  Values for a and h via eqs. (8) and (9), using 

values of b taken from Tables 1-4.  Levels (noise): number of levels based on residual noise (wres), via eq. (10).  Levels 

(S-H): number of levels based on Shannon-Hartley theorem, via eq. (11).  Square brackets show 95% confidence 

intervals. Levels (obs): Representative numbers of observed levels of perceptual magnitude, from the references in 

Miller (1956), Card et al. (1999), Nizami (2010), and Ward, Grinstein, & Keim (2015), with the estimated number of 

bits converted to the number of levels (categories); values are plus or minus the standard deviation of the set of results.  

Values for color axes are not available; estimates for rainbow are based on those for two-dimensional color “hue”.  

Part of the variability in observed values is likely due to the dependence of performance on exposure time, which 

differs across studies (Miller, 1956).  Qual. (vis): Qualitative ratings of carrier quality from information visualization 

studies, based on Cleveland & McGill (1987), Ware (1988), and Roth (2017). 
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Complexity 

The preceding discussion focused largely on single perceptual dimensions (simple features) that 

map to single dimensions in parameter space.  The rainbow map and the mapping to circles, 

however, involve multiple dimensions; interestingly, the results for these generated the only effects 

that the proposal here does not entirely account for—viz., reliable differences between bdisc and 

best.  Although a framework for multiple dimensions is beyond the scope of the current work, a few 

tentative observations might still be made about some of the issues involved. 

 

To begin with, the efficiency h of a rainbow map (based on discrimination) is greater than for a 

color axis (Table 6).  This points to a relatively low level of residual noise, suggesting that for this 

mapping, the red-green and blue-yellow signals are components of a compound signal of some 

kind.  In line with this, the ratio of h for the rainbow map to that of a color axis is 0.64 / 0.31 ≈ 2, 

suggesting that the information in these components is added in some way.  The greater signal-to-

noise ratio for the rainbow map may account for the finding that it—and more generally, color 

mappings involving multiple dimensions—is more effective at conveying quantity than mappings 

that involve a single color dimensions; this may account for its popularity in visualization despite 

several problems in its use (Borland & Taylor, 2007; Reda &Szafir, 2021).  In any event, the finding 

that bdisc ≠ best for the rainbow map (contrary to what is found for features like luminance and 

orientation) shows that not all perceptual continua give rise to exactly the same behavior.  In this 

regard, it may be worth defining a simple carrier as one which follows eqs. (1) and (2) and for 

which bdisc = best; a complex carrier in contrast would be one which obeys eqs. (1) and (2), but for 

which the biases are not equal.  The findings here would then indicate that single color dimensions 

are simple carriers, whereas rainbow maps, containing two such dimensions, are complex. 
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The results in regards to the circles (condition 4B) are consistent with this view, in that the carrier 

may be composed of separate width and height measures (Morgan, 2005; Raidvee et al., 2020).  

The efficiency h for circles in regards to estimation is greater than for line segments, consistent 

with the idea that the information in its constituent dimensions has been combined in some way.  

Interestingly, the difference between bdisc and best for circles goes in the opposite direction as for 

the rainbow map.  This may be due to the dimensions involved with circles being co-ordinated, 

something that does not occur for the rainbow map.  Alternatively, it might reflect the feature being 

separable or integral (i.e., its component features can or cannot be individually selected): color is 

a well-known integral property, whereas width and height can be separated for at least some tasks 

(Pramod & Arun, 2014).  If the latter case, the size of the difference between bdisc and best may 

indicate the degree to which integrality or separability exists.  More work on this is needed.   

Connection to Channel Capacity 

The ability of a visual property to convey information is often characterized via its channel 

capacity, defined as the maximum number of bits that can be effectively transmitted by the 

corresponding perceptual channel (Miller, 1956).  Capacity can be expressed as the logarithm of 

the number of distinct perceptual levels (or quantitative categories) supported by the channel, 

which is governed by its signal-to-noise ratio (see e.g., Nizami, 2010).  Given this, how might these 

estimates connect to the results for the carriers obtained here? 

Perceptual Levels 

To determine the number of distinct levels m in a carrier, recall that in parameter space, numerical 

values are mapped to a carrier space of maximum range M > 0, and residual noise 𝛼𝑤()*.  If the 
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average separation between distinct levels of a carrier is approximately equal to the magnitude of 

residual noise, the number of distinct levels will be approximately 𝑚 = 𝑀 𝛼𝑤()*⁄ + 1 (Figure 17).  

Taking the ratio of m to mp (the number of distinct levels for position, where a = 1) allows M/wres 

to be factored out, yielding 

𝑚 = 	𝜂9𝑚+ − 1: + 1.    (10) 

The resulting estimates (using mp = 9.5; Miller, 1956) are shown in Table 6.  These values are 

consistent with those encountered in classic experiments on the perceived number of levels for 

individual visual properties.  Indeed, the relatively good match with the latter suggests that 

parameter-space representation may be directly involved in the perception of sensory magnitude.   

 
Figure 17.  Number of levels as a function of residual noise.  Each value is mapped to a particular quantitative 

category, or level; thicker lines represent category boundaries.  Given a set of values normalized to range from 0 to M, 

each having a noise ±awres/2 about its average value, the number of distinct levels m ≈ R/awres + 1. 

 

A slightly different formula for m can be obtained via the Shannon-Hartley theorem of information 

theory, which states that m = -1 + 𝑆/𝑁 , where S is the average signal energy, and N the energy 

of inherent noise (Pierce, 1980).  Given that energy is proportional to the square of signal 
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magnitude, and N is proportional to the energy of the residual noise 𝛼𝑤()*, the value of 𝑆/𝑁 for a 

carrier relative to that for position is 𝜂!.  Thus, again denoting the number of levels for position by 

mp, the Shannon-Hartley theorem yields 

𝑚 =	-1 + 𝜂!(𝑚+
! − 1).		   (11) 

The results are shown in Table 6.  Although the matches are not exact, the two sets of values are 

reasonably close to each other, as well as to the observed number of levels of absolute perceptual 

magnitude.   

Qualitative Ratings 

The estimates of residual noise wres (and corresponding number of perceptual levels) obtained here 

are also consistent with ratings of carrier quality from work in information visualization (Table 6).  

In the case of luminance, for example, the estimate of about 4 levels is in line with 

recommendations made in the information visualization literature, where luminance is regarded a 

relatively poor visual variable for conveying quantitative information, useful mainly for conveying 

ordinal values (e.g., Bertin, 1967/2011; Cleveland & McGill, 1987; Roth, 2017). 

 

The estimate of about 3 distinct levels for a color axis is the lowest of the carriers examined here.  

This is consistent with opinion in information visualization that color—at least, along these axes—

should not be used to convey quantitative information, instead being confined to ordinal or even 

just nominal data (Roth, 2017).  It is also worth noting that the estimates for both color axes are 

much the same, and are also not far from that for luminance.  (Results consistent with this were 

also found by Ware, 1988).  It has been suggested that color is recoded from its three-color RGB 

representation in the retina into three orthogonal channels of equal capacity, so as to enable efficient 
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transmission of information (Buchsbaum & Gottschalk, 1983); the results here support this to an 

extent, indicating that all three channels convey roughly similar amounts of information.  In regards 

to the rainbow map, the finding of about 6 distinct colors falls within the range of 5–7 colors 

estimated from studies on isoluminant target identification (Healey, 1996); this suggests that the 

results for the rainbow map may be representative of mappings to various two-dimensional color 

(hue) spaces (cf. Reda &Szafir, 2021).  Note that while the higher signal-to-noise ratio for the 

rainbow map does enable more quantitative levels to be discerned, it also corresponds to a greater 

bias, making the rainbow stripplot less suitable for accurately representing correlation. 

Meanwhile, the estimate of about 10 levels for orientation is compatible with the belief in 

information visualization that orientation is well suited for conveying quantitative information; 

indeed, the results here suggest that for at least some visualization tasks, orientation may be just as 

useful as position.  The number of estimated levels is consistent with work on visual discrimination 

suggesting that orientation detectors have on average a full bandwidth of 18-24° (Gheiratmand & 

Mullen, 2014), corresponding to about 8-10 levels.  It is also compatible with work on visual search 

indicating that items should have a separation of about 20° on average—corresponding to 9 

levels—if they are to be perceived as distinct (Wolfe, Friedman-Hill, Stewart, & O'Connell, 1992). 

Finally, the estimate for size is also consistent with recommendations in information visualization, 

where this property is considered reasonably good for conveying detailed quantitative information 

(Table 6).  It may be worth noting that the estimate here of about 5 levels is similar to the 4-6 size 

channels posited by several models of spatial vision (e.g., Wilson, McFarlane, & Phillips, 1983).   

It would be interesting to see if this number also manifests in other aspects of visual perception, 

such as texture perception or visual search.  
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Other Connections 

Discussion to this point has focused on the issue of whether abstract quantitative information can 

be carried by visual features, and what might be the properties of the carriers involved .  However, 

the results also appear to have implications for several other aspects of perception. 

Perception of Number 

The data from the experiments here show that perceived correlation is described by a logarithmic 

function—essentially Fechner’s Law—at least as well as by any power function (Appendix C); this 

differs from the situation for simple sensory properties, where power functions are typically the 

best descriptors of perceived magnitude (Ross, 1997).  In addition, as mentioned earlier, each JND 

appears to correspond to a constant number of (abstract) bits, with the value of TC being largely 

indifferent to carrier (Table 5).  Both these findings support the proposal that perceived correlation 

is not a simple sensory property, but a more abstract quantity no longer linked to the original 

sensory representation. 

 

The validity of Fechner’s Law for correlation perception may stem from the absence of a sensory 

component in the associated quantity (cf. Billock & Tsou, 2011).  If so, other abstract quantities 

and relationships—which, incidentally, are commonly displayed in visualization—may express 

similar behavior.  It is also worth noting that the Weber fraction for perceived number is 0.2 - 0.25 

(Burr & Ross, 2008; Cheyette & Piantadosi, 2020); this value is considerably higher than those for 

sensory properties (Ross, 1997), but similar to the values found here for k, which is essentially a 

Weber fraction.  This hints that an elevated Weber fraction may be another signature of an 

abstract—although still relatively low-level—perceptual quantity. 
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Other connections are also possible.  For example, it has been proposed that the sense of number 

in high-level reasoning is based on a more basic and automatic sense of continuous magnitude that 

is amodal and able to integrate the outputs of different perceptual streams (Mix, Levine, & 

Newcombe, 2016).  The origins of such a representation may lie in the parameter space proposed 

here.  More generally, the existence of parameter space itself could provide an interesting 

perspective on the relationship between perception and cognition: its representations are abstract 

(i.e., devoid of linkages to physical properties) and thus conceptual, while the processes involved 

have a density typical of low-level operations that are perceptual (cf. Tacca, 2011).  If a sharp 

divide exists between perception and cognition, on which side would parameter space fall? 

Low-level Perception 

The developments here may also connect with several aspects of low-level visual perception. For 

example, most theories of visual search posit a set of basic visual features rapidly picked up at low 

levels using little or no attention, with items containing a unique feature able to “pop out” to an 

observer (see e.g., Wolfe & Utochkin, 2019).  All such features examined here—as well as 

position—appear to be carriers, differing only in their level of residual noise.  The question then is 

the extent to which this holds: are all features carriers?  A related issue is the converse: are all 

carriers features?  An interesting possibility is that the set of basic visual features corresponds 

exactly to the set of carriers; if so, this would provide an independent way of determining whether 

a given visual property is a basic feature.   

 

The proposal of a tight binding of information from different dimensions (via colocation) differs 

from the views of early theories of search (and related work), which asserted that features are 

separated at low levels of visual perception (see Treisman, 1996).  However, later findings did 
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point to such binding—e.g., search based on features stemming from components that must be 

bound together correctly (e.g., Duncan, 1984; Enns & Rensink, 1991; Rensink & Enns, 1995).  An 

interesting possibility in this regard is that such bindings exist at low levels and are used for 

constructive purposes (e.g., to form structures such as parameter space), but are lost in the 

representations used in the higher-level, conscious control of low-level processing (Rensink, 2015).   

 

Another potential connection is with the space in which visual features are located.  Most theories 

of search posit a geometric space (map) at early levels that collates the featural information at each 

location (Treisman & Gelade, 1980; Wolfe, Cave, & Franzel, 1989).  The elements of parameter 

space are also located in a such a manifold.  And given that average display times in the experiments 

here are on the order of a second, parameter-space descriptions may well be formed rapidly at early 

levels, with little or no attention.  However, although (normalized) geometric dimensions are part 

of parameter space, the other dimensions only involve abstract values.  Interestingly, the lack of 

direct linkage with sensory properties may explain a phenomenon that cannot be accounted for by 

current theories of search: why attention cannot select subsets of different colors when perceiving 

correlation in scatterplots (Elliott & Rensink, 2019, 2020).  In the view of parameter space theory, 

the information that attention could use to select items in this situation—viz., a representation of 

the sensory color itself—is simply not there.   

 

A related connection may also be to ensemble perception, where various statistical properties of 

sets of items can be rapidly determined with relatively little attention (Alvarez, 2011; Ariely, 2001; 

Whitney & Leib, 2018; Utochkin, 2015).  In particular, the density functions posited for correlation 

perception may be related to the distributions thought to underlie ensemble coding: both kinds of 

representation are probabilistic, involve features, and can be carried out relatively rapidly (Rensink, 
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2014, 2017).  But note that entropy theory involves the widths of density functions rather than their 

first or second moments.  In addition, parameter-space theory asserts that these functions describe 

a multi-dimensional space anchored in the image, whereas ensembles generally have no such 

anchoring, effectively having no direct referent in space.   

 

However, parameter space could serve as a basis for the representations thought to underlie both 

ensemble perception and visual search (and perhaps texture perception).  In the case of search, the 

underlying representations could be viewed as density functions that have been summed over the 

abstract dimensions, allowing direct reference by position although not by value (Figure 18a).  

Conversely, ensembles could be viewed as marginal probability densities that have been summed 

over a given geometric space, able to be referenced by value but not position (Figure 18b).  As 

such, parameter space could be viewed as a space that can—at least conceptually—link the 

representations underlying visual search and ensemble perception. 

 
Figure 18.  Possible relation of parameter space to low-level perception.  Shown here is a parameter space 

containing two dimensions that are anchored to space and one dimension that is not.  For illustrative purposes, density 

functions are shown only for a set of locations; in general, such functions would exist at points in space.  (a) Geometric 

map typical of those posited as underlying visual search.  Summing the information in density functions at each spatial 

location over the nonspatial carrier dimension yields spatial maps that reference the result for each function (e.g., its 

average value) by position.  (b) Distribution of values underlying ensemble perception.  Summing density functions 

over all positions of a given region of space results in a distribution of values over the nonspatial properties, with no 

direct reference to position. 

(a) Geometric map (b) Distribution of values

Parameter space
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Open Issues 

Although investigation here has touched upon several aspects of visual perception, its results are 

more a beginning than an end.  Various issues remain in regards to better understanding the nature 

of the phenomena encountered, as well as how they relate to perception in general.  These include: 

1. Timecourse.  How quickly are correlation estimates formed?  Although the results here suggest 

that low levels of processing are involved, it is not clear that the relevant processes are also 

early—i.e., low-level and rapid, occurring within a few hundred milliseconds of viewing.  If 

such is the case, it would strengthen the connection of carriers to visual features, which are 

believed to be determined within a similar amount of time.  Studying the effect of exposure 

time on performance would be useful here.  A “basic” stage of correlation perception in 

scatterplots appears to be complete within c. 400 ms (Rensink, 2014); it would be interesting 

to see if this limit can be tightened, and whether the same limit applies to other carriers. 

2. Spatial interference.  The stripplot elements used here are relatively close to each other—

typically a fraction of a degree of viewing angle.  This makes them susceptible to low-level 

phenomena such as crowding, which pools information from nearby locations (see Keshvari & 

Rosenholtz, 2016).  There may also be effects—at least for orientation and circles—due to the 

overlap of adjacent elements (cf. the relatively high JNDs for orientation).  Such effects could 

be explored by varying the number of items and their spacing.  For scatterplots, JNDs are higher 

when 24 or fewer dots are present (Rensink, 2014), while performance is largely unaffected for 

48-200 dots.  It would be interesting to know if this pattern also holds for stripplots. 

3. Attentional selection.  When perceiving correlation in a designated set of dots among a second 

(distractor) set, interference always exists, even when the distractor dots differ in color (Elliott 

& Rensink, 2019, 2020).  This indicates a failure to attentionally select items on the basis of 
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color, Curiously, selection on the basis of color can be easily done when estimating mean 

values or the numerosity of similar stimuli (Chong & Treisman, 2005), suggesting that the 

failure may be specific to the perception of correlation.  This phenomenon needs further 

exploration;  Does attentional selection also fail for other visual features and other substrates—

e.g., when perceiving correlation in a position-orientation stripplot, could a subset of lines fail 

to be selected on the basis of color?  And what do such failures say about the attentional 

mechanisms involved? 

4. Nature of carriers.  The results here point to the existence of complex carriers containing two 

perceptual dimensions.  But could carriers contain three dimensions, or even more?  Could 

some involve scene-based properties, such as the three-dimensional orientation encountered in 

visual search (Enns & Rensink, 1991)11, or the physical (rather than retinal) size found in 

ensemble perception (Haberman & Suresh, 2020)?  Could some kinds of textures be carriers?  

More generally, could any perceptual continuum be a carrier?  And could the amount of residual 

noise—related to bias b (eqs. (8) and (9))—of a carrier be related to the visual strength of the 

features involved (Huang, 2015)? 

5. Other quantitative functions.  The carriers examined here can enable a reasonably accurate 

perception of correlation.  But what other quantitative functions might they enable?  Could a 

scatterplot, say, allow accurate detection of nonlinear trends?  If so, how well for what kinds 

of nonlinearities?  Would other carriers yield similar performance?  Such behavior may provide 

an additional source of insight into the processes involved. 

6. Other aspects of visual perception.  Given that the features capable of guiding visual attention 

may be not the same as the properties that affect grouping, texture perception, or visual 

 
11 Work in information visualization suggests that quantitative information can be conveyed by three-dimensional 

volume (Mackinlay, 1986). 
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distinctiveness, or the properties used in visual memory (Cheal & Lyon, 1994; Huang, 2015; 

Wolfe & Utochkin, 2019), an interesting issue is to determine which—if any—set is identical 

to the set of carriers.  Given that carriers are those channels capable of conveying quantitative 

information in the manner described here, what other subsets might be identified, and on what 

functional grounds?  How many different aspects might there be, and how might they be related 

to each other?  As well as casting additional light on the nature of low-level visual perception, 

investigation into this issue would also help clarify why different visual properties appear to be 

best for different tasks in information visualization (Garlandini & Fabrikant, 2009; Mackinlay, 

1986; McColeman, Yang, Brady, & Franconeri, 2021)?   

7. Role of abstraction.  Another issue to consider is why abstract quantities are represented in the 

first place: why not simply use sensory properties for grouping and attentional selection, say, 

and leave it at that?  It is suggested here that abstraction enables information from different 

carriers to be combined.  But is this the only reason?  A related issue: where does the decoding 

into purely abstract quantity occur?  Is this during the formation of parameter-space 

representations?  Or might it perhaps occur earlier?  An important challenge is to determine the 

extent to which abstract (vs. sensory-linked) quantities are involved in various kinds of 

perceptual processing, and why this might be.   

 

Conclusions 

This study has shown that the features of luminance, color, orientation, and size all support the 

perception of correlation between values represented by their sensory magnitude and values 

represented by their spatial position.  This suggests that the information in these features can exist 

in an abstract form—one with no linkage to the original sensory properties (other than the level of 
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inherent noise)—which enables information from different perceptual dimensions to be combined.  

And given that correlation can be perceived when viewing stripplots containing a large number of 

elements, the information from these dimensions is likely bound in a dense fashion, at relatively 

low levels of vision. 

 

Another finding is that perception is much the same for various kinds of stripplot, as well as for 

scatterplots, suggesting that the features tested are all carriers—properties capable of conveying 

quantitative information in the same way as spatial position.  This can be accounted for via 

parameter space theory, which posits a common abstract manifold in which the information about 

individual elements can be represented via their location in this space.  The specific form of these 

laws can be accounted for by extending the entropy theory developed for scatterplots to this space, 

via the proposal of a probability density function describing the joint distribution of the values 

involved.  Performance is consistent with perception being that of the entropy (disorder) of this 

function; the particular behavior for each carrier appears largely due to the amount of residual noise 

it contains.  The estimates of these noise levels are broadly compatible with those found in classic 

work on absolute perceptual judgment (Miller, 1956).   

 

These results provide a new perspective on the nature of visual perception, particularly in regards 

to the low-level processing believed to underlie tasks such as ensemble perception and visual 

search, as well as the representation of abstract quantities.  It remains to be seen how far this 

perspective can take us.  Meanwhile, the results here make a case for the productive interaction of 

the areas of vision science and information visualization, using phenomena encountered in 

visualization as inspiration for research in vision science.  Not only can this kind of research enable 

important aspects of information visualization be put on firmer foundations, but the results can also 
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give us interesting new insights into the nature of the visual intelligence that helps us makes sense 

of our world (Rensink, 2017, 2021b).   
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Context of the Research 

The ideas here originated as part of a research program investigating why effective visualization 

systems are effective—what aspects of our visual intelligence do they draw upon?  The general 

approach of this program is to consider the graphical representations in visualization systems as 

stimuli in their own right, and investigate accordingly.  Such work can potentially uncover new 

aspects of perception (such as the entropy theory mentioned here), as well as provide a theoretical 

grounding for several aspects of information visualization itself (see Rensink, 2021b). 

 

Their initial focus of this program has been on the perception of correlation, a quantity used in 

real-world analysis that is relatively easy to isolate.  Initial work examined the perception of 

correlation in scatterplots, a real-world design that can be manipulated in many ways.  This study 

continues that approach, extending it to properties beyond position.  The results here would seem 

to justify investigations of this kind.  Several possible avenues to explore in the near future are 

discussed in the Open Issues section; these include investigations of the nature of carriers, as well 

as the effects of timing and the number of elements.  Further in the future, investigation might 

focus on other issues related to visualization, such as the perception of outliers and the perception 

of clusters, two other tasks for which scatterplots are commonly used.  More generally yet, it may 

also be worth considering yet other kinds of visualization designs, which could enable us to 

uncover even more aspects of our visual intelligence.  
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Appendix A – A Sketch of Entropy Theory 

 

This appendix briefly outlines the main aspects of entropy theory as it applies to the perception of 

correlation in scatterplots.  For details, see Rensink (2017). 

The probability density function f (x,y)DxDy of a scatterplot dot cloud specifies the probability of 

encountering a dot in the area DxDy (Figure 3); for a scatterplot with n dots, the number of dots in 

DxDy would be n f (x,y)DxDy.  The scatterplots in Rensink (2017) mostly had bivariate gaussian 

distributions.  Such distributions, centered at the origin with standard deviation s and correlation 

r, have a probability density function  

                   𝑓(𝑥, 𝑦) = 
!!"($,&)

	#$	%(('()())/(
                     (A1) 

where 

                𝑞(𝑥, 𝑦) = 
+((#)+,-	,(

#%(('()()
 .   (A2)  

The set of points at a constant fraction of the height of f (x,y) can be expressed as 𝑒#,#, where K is 

a positive constant.  The locations of these points form an isofraction ellipse q(x,y) = 𝐾! (Figure 

3).  The width w of this ellipse (twice its radius) is 

𝑤(𝑟) = 2 √2𝐾𝜎√1 − 𝑟 .    (A3) 

Information entropy (in the Shannon sense) H is a statistical quantity that reflects the number of 

possible configurations for a given probability density; it is essentially a measure of dispersion or 

disorder of the distribution (see, e.g., Ben-Naim, 2008).  For a scatterplot of n dots with a gaussian 

distribution of correlation r,  

    𝐻(𝑟) =  𝐴𝑛	𝑙𝑛	(2𝜋𝜎!√1 − 𝑟!) + B,      (A4) 
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where A and B are constants.  This can be approximated fairly well by H’(r)=A𝑛	𝑙𝑛	(2𝜋𝜎!√1 − 𝑟) 

+ B’, where A and B’ are constants.  If H’ is proportional to perceived correlation g(r), application 

of eq. (A3) results in 

g(r) = C ln(w(r)) + D   

for constants C and D.  Rreplacing w(r) via eq. (A3) then yields 

g(r) = C ln(1-br) + D’                   (A5) 

for constants b, C, and D’.  The term 0 < b < 1 is introduced to account for the residual noise 𝑤()* 

caused by perceptual noise and blurring.  This prevents divergence of the logarithm as r approaches 

1 and the width of the isofraction ellipse approaches zero (Figure 16); it essentially sets the upper 

limit of entropy for a given carrier.  It can be expressed (Rensink, 2017) as 

                ,     (A6) 

where 

    𝑐 = 𝑤()* 2√2𝐾𝜎.⁄     (A7) 

The other two constraints are those of calibration, viz., setting g(0) = 0 and g(1) = 1.  Applying 

these to eq. (A5) results in the form used in the main body of the text, viz., eq. (2). 

The fractional height 𝑒#,# can be determined by noting that the scatterplots in Rensink (2017) had 

a range of 5s in each dimension, yielding 𝑚 = 5𝜎 𝑤()*⁄ + 1	distinct positions.  Eliminating 

𝜎 𝑤()*⁄  in this formula via eq. (A7) and rearranging terms, it follows that 

𝐾 = 5	/	(2√2	𝑐	(𝑚 − 1)).     (A8) 

For position, m = 9.5 and b = 0.90 (c = 0.33), yielding 𝐾 = 0.63, and the fraction 0.67.   For r = 0, 

f(x,y) is a symmetric gaussian with isofraction circle of radius √2	𝐾𝜎 ≈ 0.9 s; for r > 0, the circle 

becomes an ellipse with half-width √2	𝐾𝜎√1 − 𝑟  (Rensink, 2017, eq. (8)). 

€ 

b =
1

c 2 +1
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The estimate of this radius is close to s, where the density function f is steepest, and so most 

sensitive to changes in width (and thus, r).  This is also true of the ellipse: given that f is a linearly 

compressed version of a circularly symmetric function, the location of the steepest slope in any 

cross-section is not affected.  This suggests a rationale for the location of the isofraction ellipse: 

what might be called a principle of maximal sensitivity.  Such a principle would imply that the 

ellipse is defined by ∇!𝑓 = 0, where ∇! operates over parameter space.  (The same formula may 

also define luminance edges in images — see e.g., Marr, 1982).  If this principle holds, estimates 

of m for all carriers follow without recourse to relative measures; estimates based on this (eq. (A8), 

with √2	𝐾 = 1) are shown in Table A1.  Most results are slightly higher than the measures based 

on eqs. (10) and (11).  But the average difference between the measures is only 15%, suggesting 

that the maximum-sensitivity principle may indeed hold to at least some extent, with isofraction 

ellipses corresponding to much the same fraction for all carriers. 

Carrier Levels (MS) Levels (noise) Levels (S-H) Levels (obs.) 

 Luminance 4.9 [4.4, 5.5] 4.3 [3.8, 4.9] 3.8 [3.2, 4.4] 2.7 – 4.8 

 Color (axis) 4.3 [3.6, 5.0] 3.7 [3.1, 4.3] 3.1 [2.6, 3.8] — 

 Color (rainbow) 6.9 [5.5, 8.7] 6.5 [4.9, 9.5] 6.2 [4.4, 9.5] 3.1 – 9.6 

 Orientation   9.1 [7.9, 10.5] 10.4 [8.0, 16.5] 10.5 [7.8, 17.2] 6.3 – 9.4 

 Size (length) 5.8 [4.8, 7.2] 5.2 [4.1, 6.8] 4.8 [3.6, 6.5] 2.1 – 7.4 

Table A1: Number of distinct levels in individual carriers, based on a possible maximum sensitivity principle.  

Levels (MS): Estimates based on maximum sensitivity principle via eq. (A8).  Levels (noise): number of levels based 

on residual noise (wres).  Levels (S-H): number of levels based on Shannon-Hartley theorem.  Square brackets show 

95% confidence intervals. Levels for noise, Shannon-Hartley, and observed number taken from Table 6.   
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Appendix B – Aggregate Values 
 

This appendix shows aggregate values for all conditions described in the main text.  JNDs for 

discrimination include results for both directions (JND from above, JND from below); k and bdisc 

are calculated via  rA = r + 0.5 JND(r) for JND from above, and rA = r - 0.5 JND(r) for JND from 

below.  Also shown are the aggregate bisection values of r for subjective correlation estimates g = 

1/8, 1/4, 3/8, 1/2, 5/8, 3/4, and 7/8, as outlined in the main text. 

 
1. Experiment 1: Luminance 
 

Condition 1A (g = 1): 
 

base 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
above 0.30 0.29 0.27 0.26 0.23 0.22 0.22 0.17 0.12 0.07 

below — — — — 0.29 0.31 0.30 0.24 0.24 0.17 

 
g (subj) 1/8 1/4 3/8 1/2 5/8 3/4 7/8 
r (obj) 0.24 0.41 0.54 0.68 0.78 0.85 0.92 

 

Condition 1B (g = 2): 
 

base 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
above 0.29 0.25 0.25 0.21 0.21 0.20 0.19 0.14 0.11 0.07 

below — — — — 0.23 0.24 0.23 0.21 0.19 0.15 

 
g (subj) 1/8 1/4 3/8 1/2 5/8 3/4 7/8 
r (obj) 0.23 0.39 0.53 0.68 0.76 0.83 0.91 

 

Condition 1C (g = 3): 
 

base 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
above 0.26 0.28 0.22 0.21 0.24 0.16 0.17 0.13 0.11 0.06 

below — — — — 0.22 0.22 0.20 0.18 0.16 0.11 

 
g (subj) 1/8 1/4 3/8 1/2 5/8 3/4 7/8 
r (obj) 0.19 0.38 0.49 0.65 0.73 0.84 0.90 
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Condition 1D (g = 4): 
 

base 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
above 0.35 0.27 0.26 0.25 0.24 0.19 0.18 0.15 0.10 0.06 

below — — — — 0.27 0.29 0.23 0.24 0.20 0.13 

 
g (subj) 1/8 1/4 3/8 1/2 5/8 3/4 7/8 
r (obj) 0.24 0.42 0.57 0.70 0.78 0.85 0.91 

 
 

2. Experiment 2: Color 
 

Condition 2A (isoluminant red-green): 
 

base 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
above 0.24 0.21 0.20 0.18  0.20 0.15 0.14 0.12 0.10 0.06 

below — — — 0.18  0.20 0.20 0.17 0.14 0.15 0.12 

 
g (subj) 1/8 1/4 3/8 1/2 5/8 3/4 7/8 
r (obj) 0.19 0.37 0.50 0.62 0.67 0.77 0.84 

 
Condition 2B (isoluminant blue-yellow): 

 
base 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
above 0.19 0.21 0.18 0.19 0.16 0.16 0.15 0.11 0.10 0.06 

below — — — 0.20 0.19 0.14 0.16 0.16 0.13 0.09 

 
g (subj) 1/8 1/4 3/8 1/2 5/8 3/4 7/8 
r (obj) 0.20 0.36 0.51 0.64 0.71 0.78 0.87 

 
Condition 2C (rainbow): 

 
base 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
above 0.29 0.29 0.25 0.24 0.22 0.18 0.14 0.13 0.09 0.05 

below — — — 0.24 0.27 0.23 0.20 0.17 0.16 0.12 

 
g (subj) 1/8 1/4 3/8 1/2 5/8 3/4 7/8 
r (obj) 0.19 0.37 0.51 0.65 0.73 0.83 0.90 
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3. Experiment 3: Orientation 
 

Condition 3A (fixed length): 
 

base 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
above 0.38 0.32 0.32 0.30 0.28 0.23 0.20 0.14 0.09 0.04 

below — — — — — 0.29 0.27 0.28 0.24 0.14 

 
g (subj) 1/8 1/4 3/8 1/2 5/8 3/4 7/8 
r (obj) 0.32 0.57 0.69 0.79 0.84 0.90 0.93 

 

Condition 3B (random length): 
 

base 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
above 0.36 0.31 0.35 0.28 0.27 0.21 0.19 0.14 0.10 0.05 

below — — — — — 0.31 0.28 0.23 0.19 0.11 

 
g (subj) 1/8 1/4 3/8 1/2 5/8 3/4 7/8 
r (obj) 0.34 0.51 0.67 0.80 0.86 0.91 0.95 

 

Condition 3C (fixed height): 
 

base 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
above 0.33 0.29 0.24 0.28 0.24 0.21 0.18 0.14 0.09 0.05 

below — — — — — 0.27 0.24 0.24 0.17 0.14 

 
g (subj) 1/8 1/4 3/8 1/2 5/8 3/4 7/8 
r (obj) 0.32 0.54 0.69 0.79 0.87 0.94 0.97 

 
 
4. Experiment 4: Size 
 

Condition 4A (line length): 
 

base 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
above 0.25 0.28 0.25 0.25 0.19 0.16 0.17 0.12 0.08 0.05 

below — — — — 0.26 0.20 0.21 0.17 0.12 0.10 

 
g (subj) 1/8 1/4 3/8 1/2 5/8 3/4 7/8 
r (obj) 0.22 0.38 0.54 0.65 0.76 0.85 0.92 
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Condition 4B (circle diameter/area): 
 

base 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
above 0.27 0.23 0.22 0.22 0.20 0.16 0.14 0.12 0.09 0.06 

below — — — — 0.25 0.24 0.23 0.17 0.16 0.10 

 
g (subj) 1/8 1/4 3/8 1/2 5/8 3/4 7/8 
r (obj) 0.36 0.56 0.67 0.79 0.85 0.90 0.94 
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Appendix C – Fit of Fechner’s Law 
 
This appendix examines the best fit of aggregate correlation estimates to eight possible models; 

one is logarithmic (Fechner’s Law), while the others are variants of the power law: 

0. 𝑔(𝑟) = log 	(1 − 𝑏𝑟) /	log	(1 − 𝑏) 
1. 𝑔(𝑟) = 	 𝑟- 

2. 𝑔(𝑟) = 1 − √1 − 𝑟- 
3. 𝑔(𝑟) = 1 − (1 − 𝑟)- 
4. 𝑔(𝑟) = 𝑏𝑟- 
5. 𝑔(𝑟) = 1 − 𝑏(1 − 𝑟-) 
6. 𝑔(𝑟) = 1 − 𝑏(1 − 𝑟)- 
7. 𝑔(𝑟) = 1 − (1 − 𝑏𝑟)- 

RMSE values for best fits are shown in Table B1.  As is evident, the logarithmic model (Fechner’s 

Law) provides a better fit to the data than any other law with one parameter, including the power 

law of the form typical of sensory magnitude perception (eq. 1; Ross, 1997).  If two parameters are 

allowed, fits for the more complex models 5 and 7 are about 25% better. 

	 0 1 2 3 4 5 6 7 

1A 0.0158 0.0228 0.0522 0.0345 0.0191 0.0143 0.0183 0.0154 

1B 0.0188 0.0229 0.0593 0.0361 0.0218 0.0161 0.0237 0.0148 

1C 0.0171 0.0246 0.0608 0.0295 0.0228 0.0156 0.0230 0.0147 

1D 0.0164 0.0261 0.0506 0.0376 0.0233 0.0120 0.0240 0.0120 

2A 0.0413 0.0328 0.0953 0.0543 0.0218 0.0328 0.0382 0.0138 

2B 0.0318 0.0240 0.0827 0.0468 0.0200 0.0233 0.0318 0.0138 

2C 0.0160 0.0212 0.0637 0.0314 0.0205 0.0118 0.0234 0.0107 

3A 0.0287 0.0416 0.0379 0.0535 0.0385 0.0115 0.0377 0.0171 

3B 0.0189 0.0425 0.0254 0.0399 0.0320 0.0255 0.0213 0.0211 

3C 0.0123 0.0458 0.0161 0.0368 0.0281 0.0177 0.0177 0.0236 

4A 0.0105 0.0229 0.0532 0.0283 0.0179 0.0115 0.0172 0.0128 

4B 0.0310 0.0300 0.0362 0.0560 0.0264 0.0127 0.0274 0.0261 

Avg. 0.0215 0.0298 0.0528 0.0404 0.0244 0.0171 0.0253 0.0163 
	
Table B1: RMSE values for the best fits for each model to the data.  RSS (Residual sum of squares) values are 
the square of these times 7. 
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To account for the number of degrees of freedom, the Akaike Information Criterion (AIC) is used 

(Burnham & Anderson, 2002); AIC = 2𝐾 + 𝑛	ln	((2𝜋𝑅𝑆𝑆/𝑛) 	+ 1), where K is the number of 

parameters, and n the number of data points fit in the model.  The lower the value of AIC, the better 

the fit.  Results are shown in Table B2.  As is evident, the logarithmic model still has an AIC value 

greater than those for power functions 5 and 7, but the difference is relatively small.12 

 0 1 2 3 4 5 6 7 

1A -36.19 -31.07 -19.47 -25.26 -31.54 -35.56 -32.12 -34.55 

1B -33.76 -30.98 -17.68 -24.63 -29.72 -33.98 -28.52 -35.08 

1C -35.09 -29.99 -17.35 -27.47 -29.06 -34.39 -28.93 -35.17 

1D -35.71 -29.20 -19.91 -24.07 -28.74 -38.02 -28.36 -38.10 

2A -22.75 -25.96 -11.05 -18.92 -29.71 -23.97 -21.85 -36.11 

2B -26.39 -30.36 -13.03 -20.99 -30.88 -28.76 -24.40 -36.06 

2C -35.99 -32.06 -16.70 -26.59 -30.52 -38.33 -28.69 -39.64 

3A -27.86 -22.66 -23.94 -19.13 -21.75 -38.61 -22.03 -33.08 

3B -33.72 -22.35 -29.54 -23.23 -24.34 -27.51 -30.01 -30.17 

3C -39.70 -21.32 -35.97 -24.37 -26.13 -32.65 -32.60 -28.60 

4A -41.98 -30.99 -19.22 -28.05 -32.43 -38.64 -33.03 -37.14 

4B -26.78 -27.21 -24.61 -18.50 -27.00 -37.30 -26.51 -27.16 

Avg. -32.99 -27.85 -20.71 -23.43 -28.48 -33.98 -28.09 -34.24 
	
Table B2: AIC values for the best fits of each model to the data. 
	

For a univariate function fit by a small number of points (as is the case here), a more accurate form 

is AICc = AIC + penalty(K), where penalty(K) is a positive term that discourages overfitting.  

Although penalty(K) differs for different models, it increases with the number of degrees of 

freedom K.  As such, estimates for two-parameter models (such as models 5 and 7) would be raised 

more than for one-parameter models.  This would reduce the difference even further, if not reverse 

it outright.  As such, the fit of Fechner’s Law to the data here would seem at least comparable to 

that for any reasonable variant of a power law. 

 
12 Assuming that the conditions tested here are representative, the AIC values for the three functions have confidence 

intervals which overlap substantially: [-29.57, -36.41], [-31.10, -36.86], and [-31.99, -36.49], respectively. 


