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1 Introduction

We tend to think of computers as in the business of generating answers to questions. If
a device is engineered to perform addition, it has been well-designed just in case it gen-
erates the appropriate sum given the input values. Just as addition is defined abstractly,
the correctness of the sequence of steps the device carries out can also be characterized ab-
stractly, in a manner independent of the particular medium in which they are implemented.
This medium-independence of computational descriptions has shaped common conceptions
of computational explanation. So long as our goal is to explain how a system successfully
carries out its computations, then we only need to describe the abstract series of operations
that achieve the desired input-output mapping, however they may be implemented. Put
simply, since the explanandum is medium-independent so too is the explanans.1

One might wonder whether all computational explanation works like this. We argue that
it does not. At least, not when the explananda essentially involve the time at which cer-
tain events must take place. We begin with an example, spell out its consequences for
how we think about computational explanation, consider some objections, and then sketch
some further implications for how we think about computational implementation as well as
explanation in cognitive science.

1The proponents of this view are legion. Classic defenses include Fodor (1975); Cummins (1989); Newell
(1990); Pylyshyn (1984); Simon (1992). More recent defenses include (among others): Chalmers (2011);
Chirimuuta (2014, 2020); Coelho Mollo (2018); Gallistel and King (2011); Weiskopf (2011).
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2 Pac-Man

The Atari 2600 port of Pac-Man was a commercial success, but it was critically panned due
to visual and gameplay differences from the original arcade version. These differences can
be explained by the vastly constrained computing resources available to Atari programmers,
and the interaction between these resources and the chips that drove the display.

(A)

(B)

Figure 1: Playfields for two implementations of Pac-Man. (A) The original arcade version.
(B) The Atari 2600 port.

Consider, for example, why the ‘wafers’ munched by Pac-Man were rectangles in the Atari
version rather than round dots as in the original. Unlike the arcade hardware, the 2600
lacked dedicated video RAM. Hence the port had to render wafers as part of the background,
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using the same mechanism that renders the walls and border (Figure 1). But the Television
Adaptor Interface (TIA) chip at the heart of Atari’s graphics system was designed to render
horizontally symmetric playfields. As wafers were removed asymmetrically, the playfield had
to be updated in real time, while being drawn, and while players navigated the maze. To
address this engineering problem, Montfort and Bogost explain that:

. . . the program must first set the playfield register graphics for the left half of
the screen during horizontal blank. Then, as the electron beam passes across the
screen, it must change those registers just before the second half of the screen
starts. This technique requires careful processor timing as well as additional
RAM storage for the state of each pellet. Worse yet, the positions for each
remaining pellet need to be translated from data in RAM into the unique display
requirements of the TIA playfield, which does not simply write its two and a half
bytes in consecutive, high-to-low bit order. To get the dots on the screen, the
program tracks their states separately from their positions on-screen, performing
a series of computationally expensive bitwise operations to install the pellet data
into the maze playfield locations, which in turn use up valuable RAM. Maze
and pellet logic — relatively simple for the arcade cabinet, given its hardware
affordances — were very challenging on the Atari VCS.(Montfort and Bogost,
2009, p.69)

The requirement of a rapid redraw deadline of the background is a result of multiple real-
time constraints. First, the MOS 6502 used as the CPU had a fixed, relatively slow clock
speed. Second the NTSC television standard for cathode-ray televisions specifies a strict
and relentless pace for the beam, rendering one line every 63.6µs. Failure to meet these
constraints would mean errors sufficient to render the game unplayable. So, given the speed of
the CPU, the computational constraints of the TIA, the demands of cathode-ray televisions,
and the primitive operations available from the CPU itself, the wafers could not be rendered
rapidly enough to make them symmetrical: the best programmers could only make elongated
lozenges.

Step back from the details and notice the explanatory strategy at work. It seamlessly mixes
the sequencing of operations (such as the primitive bitwise operations available on the 6502)
with real-time considerations. The timing of the arcade and Atari implementations of the
game Pac-Man is more or less equivalent in terms of the game and how it is played, even if
the playfield in the latter case leaves much to be desire aesthetically. Yet there is no way
to explain how this timing is achieved without attention to the hardware of the platforms.
Conversely, attention to timing in turn explains why various other computational decisions
were made—why the system was programmed in the way that it was, why it has (or lacks)
certain capacities, and so on. These are all familiar sorts of computational explanations:
they say why one sequence is the case rather than another. Yet they all incorporate timing
as well as sequencing.
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3 Explaining in real-time

The CPU of the Atari is an example of an “embedded” or “cyber-physical” system: it is
a device that performs computations in order to interface with other things that may or
may not compute, such as mechanical or electronic devices that interact with the world
(Lee, 2008). Embedded systems are paradigmatic examples of real-time computing, which
is sensitive to the absolute time at which operations take place, not just the sequencing of
those operations, (Lee, 2018; Shin and Ramanathan, 1994; Stankovic, 1988). In other words,
when it comes to real-time computing, correct timing is constitutive of the computing task
being performed. This point is usually expressed in terms of the presence of deadlines, which
are classified into three types. A “hard” deadline is one where a failure to meet it is a total
system failure; a “firm” deadline is one where sometimes missing it is acceptable, but results
past a deadline have no use; and a “soft” deadline is one where the usefulness of a result
degrades after the deadline. The Atari 2600 is an excellent example of a real-time computing
system with hard deadlines: regular failure to meet them means game-play is ruined. What
then explains its success?

This question has a complex answer.2 But as we touched on above, broadly speaking it
includes details about many timing requirements, which account for the clever hardware and
software engineering of developers. Abstract characterizations of the rules of Pac-Man, or the
program used for running the game, are part of the explanation, to be sure. The explanation
remains computational : it has an ineliminable core that details the relevant computational
operations and their results. But such abstract characterizations are not enough. Other
programs, which could also be implemented on the MOS 6502 CPU might generate the
correct outputs given the game state inputs, but not quickly enough to coincide with the
redrawing of the playfield. Nor can focusing solely on the abstract computations being
performed account for many features of the port that are a byproduct of the hard deadlines
posed by the Atari’s hardware and cathode-ray televisions. Limiting our explanation to such
a characterization leaves opaque all the differences between the original arcade version of
the game and the Atari port. For example, we explain why Pac-Man wafers have the shape
they do by appeal to the computational aspects of drawing wafers and the how the timing
of these operations interacted with the TIA.

To summarize, ignoring timing results in explanations of how the Atari 2600 meets its dead-
lines that are at best partial and superficial, and at worst no explanation at all. Mere
similarity of input-output is not enough to distinguish sequences which compute what we
care about from those that do not.

We belabor these points because the scope of computational explanation is beholden to how
we characterize the successful performance of computing tasks. Many accounts implicitly
or explicitly assume the following: computing successfully is solely a matter of generating

2Indeed it is for this reason that Montfort and Bogost (2009) wrote a whole book on the topic.
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the appropriate outputs, given the inputs.3 This input-output mapping, and any formal
procedure that achieves this mapping, are wholly abstract; they are defined without any
particular hardware details in mind. Yet, describing the procedure still affords an explanation
of how the task is achieved. So the abstract characterization of computing tasks motivates the
characterization of a computational explanation as the description of the abstract procedure
for accomplishing the task. The explanans is abstract because it is assumed the explanandum
is as well.

What exactly counts as the “abstract” computational description is of course up for debate.
However, the same point applies whether abstract computation is characterized in terms
descriptions of symbols and the rules defined over them (Fodor, 1975; Pylyshyn, 1984); orga-
nizationally invariant properties of a system (Chalmers, 2011); or the relationship between
variables in mathematical models that map onto a physical system at some level of abstrac-
tion (Chirimuuta, 2014, 2020). In each case, equating computational explanation with the
description of the relevant abstraction presupposes that the computing task of interest is
similarly abstract.

However, a focus on abstract computation is ill-suited for describing the computing success
of embedded, real-time computing systems. The correct of the output for such systems is
partially determined by their deadlines, which are defined based on the other components a
system interfaces with and its own hardware limitations. Since meeting these deadlines are
not independent of how computations are implemented, one cannot explain how they are
met without taking account of the nature of the interface and the hardware of the system.
Hence, because the computing task cannot be described in solely formal terms, neither can
an explanation of how the task is performed. What, then, does an account of computational
explanation look like, if real-time computing is used as a starting point? We believe that
existing approaches are suggestive. Here we will briefly consider one of them.

According to the mechanistic view computational explanation involves positing comput-
ing mechanisms: sets of organized, causally-related components that have the (teleological)
function of processing medium-independent vehicles in accordance with rules defined over
the vehicles (Kaplan, 2011; Milkowski, 2013; Piccinini, 2007, 2015). But whether a physi-
cal system has this function will depends on the larger context in which its embedded, as
some proponents of the view recognize (Piccinini, 2007, 219-220, Piccinini, 2015, 138-139).4

This fits nicely with our picture of real-time computing since the broader context, of how a
device interfaces with its environment, determines the deadlines that are constitutive of the
computing tasks it is carrying out. The mechanistic approach may not be the only one that
has the resources to describe real-time computing. But any such view will have to recognize
the crucial roll of embedding context in determining the scope of computational explanation
(Fresco, 2021; Harbecke and Shagrir, 2019; Lee, 2020).5

3For a list of those committed to this view, see footnote 1.
4Though other proponents disagree, maintaining that what computations a system computes are deter-

mined solely by its intrinsic properties (Dewhurst, 2018; Coelho Mollo, 2018). This version of the mechanistic
view is obviously ill-fit to describing real-time computing (cf. Harbecke and Shagrir, 2019).

5Such a mechanistic view, or other some contextually-sensitive view of computational explanation, would
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The foregoing suggests that there is also no problem of indeterminacy when it comes to
explaining real-time computing. The issue is supposed to arise from the apparent tension
between two claims: on the one hand, that computational explanation requires a privileged
computational description at a time; and on the other, any physical system may implement
many computations at the same time. For example, in isolation, the very same system may
be describable as implementing both an OR and an AND gate (Shagrir, 2001, 2020). Many
solutions have been proposed to this problem, including ones that emphasize the importance
of the context in which computing devices are embedded (for overview of the available
views, see Curtis-Trudel, 2022; Papayannopoulos et al., 2022). From our vantage point,
however, the problem is an artefact of starting-off with a conception of computing tasks that
eschews matters of timing, which is inherently determined by the context in which a device
is embedded. When deadlines are involved, the operations either causally contribute to the
system meeting its deadlines for interfacing with other devices, or they do not. There is no
ambiguity about which operations implemented by the CPU of the Atari 2600 contribute to
the redrawing of the playfield, for example.6

More generally our argument can be restated in accordance with the influential information-
processing framework of Marr (1982). Proponents of more abstract characterizations of
computational explanation are quick to emphasize the importance of what Marr called the
“computational theory”, which specifies what function is computed, along with the algo-
rithms that realize the function, as essential and distinct from the implementation details.
However, for present purposes the most critical aspect of the computational theory for Marr
is a specification of why the function is computed (Ritchie, 2019; Shagrir, 2010). To use
Marr’s example, the requirements of financial transaction accounts for why a cash register
performs addition, as opposed to some other mathematical operation. But the “why”-
component of the computational theory looks very different when sums are being calculated
by the autoland system of a commercial jet rather than a point of service. For real-time
computing, timing is inherent to characterizing why an operation is performed, and so it is
an ineliminable component to any explanation of how the computing task is performed.

4 Objections and replies

For all we have said, the instinct that computational explanation as such only concerns
abstract computations may persist. There are a number of objections that might be used to
codify this conviction. None of them work.

have to be modified, however, if computation is not medium-independent (as discussed below). In the case of
the mechanistic view, this would be simple to accommodate since computing mechanisms are a special case
of functional mechanisms more broadly and instances of real-time computing will straightforwardly already
qualify as mechanistic in this broader sense.

6Strictly speaking there are may be two sense of computational indeterminacy (Papayannopoulos et al.,
2022): (i) how physical states of a device are grouped together relative to abstract states; and (ii) how the
abstract states are interpreted to determine what function the device carries out. We believe neither of them
present special problems in the case of real-time computing.

6



Objection: Real-time computing is an unusual, non-standard case.
Reply: While only a few decades ago real-time computing was characterized as a “new”
discipline in computer science and engineering (Shin and Ramanathan, 1994), the increased
presence of computing devices in our everyday life is largely due to the a proliferation of real-
time computation (Buttazzo, 2011). Furthermore computations that require inter-process
coordination with other computers (such as internet routers) also have real-time aspects:
correct computation depends not just on the ordering of the computational steps themselves
but in their synchronization with other, distinct computational systems (Klein, 2020). Hence,
real-time computing is in fact ubiquitous.

Objection: Timing is already recognized as a “constraint” on engineering computers but is
the sort of constraint that is relevant only to the implementation details rather than com-
putational explanation as such.
Reply: Since deadlines are part of what define the relevant computing tasks for real-time
systems, timing is not merely a constraint on their explanation – nor can it be relegated to
the implementation details. For example, the slow clock speed of the MOS 6502 micropro-
cessor and the fixed timing of the NTSC standard are constraints that help determine the
hard deadlines for the Atari port of Pac-Man. But the resulting deadlines are part of the ex-
plananda. If the timing needed to meet these deadlines is not accounted for, the phenomenon
has not been explained in the first place.

Objection: The important feature of computational explanation is that it describes the rules
that govern the operation of a system, which allows us to generalize across implementations.
For example, the rules of Pac-Man are the same for both the arcade original and Atari port.
Reply: first, this confuses explanandum and explanans. Discovering that the behavior of a
device conforms to the rules of addition is not a computational description of how it maps
inputs to outputs. Second, it risks begging the question, since it leaves implicit that part
of the ‘rules’ that govern Pac-Man are specific to it being a video game, and those have to
do with timing such as the latency between a player initiating movement of the avatar the
accompanying change in the playfield.

Objection: One still needs an abstract description of the operations carried out by the Atari
port of Pac-Man as part of the explanation.
Reply: Agreed. However, crucially in cases of real-time computing such a description is
a necessary, but not sufficient, component of the explanation because of the presence of
computing deadlines. Abstract computation is still core to the explanation when it comes to
real-time systems, but so are the implementation details that account for how the relevant
deadlines are met.

Objection: Timing is a feature of computational complexity, which is characterized in ab-
stract, medium-independent terms.
Reply: The computational complexity of an algorithm is not related to time as such, but
rather how resources scale with some measure n of the problem, and whether or not this
scaling of the number of steps it takes to solve the problem is efficient (Aaronson, 2013).
In contrast, real-time computing is not a matter of how many steps are taken to solve a
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problem but rather about the predictability of the timing of computations carried out by a
device and the relationship of those computations to other relevant external features of the
world (Lee, 2018; Stankovic, 1988).7

Objection: Real-time computing is just computing done quickly.
Reply: It is not (Lee, 2018; Stankovic, 1988). All things being equal, it may be beneficial for
a computing device to generate solutions to problems more quickly.8 Conversely, the Atari
2600 is interesting precisely because it has a fairly slow CPU and because the fixed timing of
the NTSC standard means that it is possible to be too fast as well as too slow. It is accurate
timing, not mere speed, which counts.

Objection: We can always take the computational problem of computing A and turn it into
the problem of computing (A, T ), where T is the time at which A ought to be given. But
this is still an atemporal problem, showing that computation itself remains timeless.
Reply: Real-time computing is more than just operating relative to a bounded execution
time T ; it is about predictability (Lee, 2018). Furthermore, knowing that something ought
to be done at T is not the same as explaining how a system predictably carries out the
operation at T , and it is the latter that is the explanandum when it comes to real-time
computing.

Objection: The argument overgeneralizes. If time is important to computational explanation,
why not cost, or size, or aesthetics, or any of the other engineering constraints that real-world
systems operate under (cf. Pylyshyn, 1979; Weiskopf, 2004)?
Reply: If real-time computing was simply a matter of computing quickly (or slowly), then
our argument would indeed overgeneralize, since virtually any design requirement could
be considered part of the “computational” description of a device. However, as we have
emphasized, timing is considered constitutive of the task being performed because correctness
of an operation is relative to meeting certain deadlines. These deadlines demand accurate,
predictable operation for interfacing with other systems. They are not simply bounds on
operation time.

These other features of real-world systems would only relate to the explananda of com-
putational explanation if they can similarly be shown to determine the correctness of the
computing task being performed. However, the case is not easily made. We might require
an adding machine to be built to be beautiful and cheap—but if the result is hideous and
expensive, the device does not obviously cease to function correctly. In contrast, it is easy to
imagine devices that are pleasing to the eye and engineered with cheap parts, which do not
operate to the desired level of precision (as many online reviewers of electronic devices can
attest). However, this further illustrates how these other engineering constraints and real-
time computing demands come apart. Absent compelling cases to the contrary, we conclude

7Thus our claim is not that computational explanations must be tractable. Though plausibly they should
be (Van Rooij, 2008).

8In scientific computing actual speed to publication matters quite a bit for success, creating what Hooker
(2021) calls a “hardware lottery.” But in such cases speed is considered a performance metric, not a feature
of the problem that needs to be solved.
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there is no threat of overgeneralization.9

5 Implications

Examples of real-time computing point to a conception of computational explanation that
inherently involves considerations of real-time duration. This has important implications
for how we think about computational implementation, and also the form of computational
explanations in cognitive science.

5.1 Computational implementation

Many traditional problems for theories of implementation have arisen in the context of
considering timeless, highly mathematized computational explanations. Thinking about
real-time computation can shed light on the special assumptions needed to generate these
problems, and where those assumptions might be reconsidered.

For example, an account of implementation must be extensionally adequate, delivering the
correct verdict on paradigmatic cases of when physical systems carry out computations and
resisting standard problem cases (Piccinini, 2015; Ritchie and Piccinini, 2018). A main
challenge to achieving such adequacy is the threat of pancomputationalism, the view that
all physical systems compute some function.10 Yet we note that pancomputationalism is
a much less pressing challenge for real-time computing. Whether a rock instantiates every
finite state automaton, it cannot take the places of an autoland system on a plane. In the
same vein, an account of computation arguably must also characterize miscomputation; that
is, a malfunction where the operation of the system violates a norm related to the task it
is performing (Piccinini, 2015; Tucker, 2018). Not all accounts do so. Yet, it is difficult to
ignore miscomputation in the case of real-time computing, because the sort of predictability
required to meet deadlines is baked into the definition of the system itself.

Another notable difference between real-time computing and standard discussions of imple-
mentation is that it is not obviously medium-independent (Haugeland, 1989). An influential,
generic characterization of physical computation is that it is medium-independent because
whether a physical system carries out some abstract computation depends solely on whether
its states have appropriate degrees of freedom to map onto the vehicles of the computation

9Size may be such an example, though we are inclined to think that it is parasitic on the requirement
that real-time systems meet their deadlines. If a computing device must meet certain size restrictions to
interface with other systems, then this is a byproduct of the requirement of predictable, accurate operation.

10This claim differs in its severity. At one extreme is unlimited pancomputationalism, according to which
all physical systems (with sufficient complexity) carry out a large number of computational operations
(Putnam, 1988; Searle, 1992). According to limited pancomputationalism every physical system performs at
least one computation (Chalmers, 2011; Scheutz, 2001).
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and the rules that are defined over them (Piccinini and Scarantino, 2011; Piccinini, 2015).
As long as the rules are respected, it does not matter what a physical system is made of.
But note that this assumes a characterization of computing tasks where the correctness is
only a matter of the result that is produced. In real-time computing, deadlines are defined
relative to the other systems with which a computer interfaces. Thus computing tasks are
in part a hardware question, as is abundantly clear in the case of the Atari 2600 port of
Pac-Man. So in short, physical computation, when it comes to real-time computing, cannot
be characterized as medium-independent, even if it is nonetheless multiply realizable.

Here an analogy might be helpful. As others have noticed, while the distinction between
structure and function is intuitive (Fodor, 1968), and functional properties may not be
defined explicitly in terms of a medium, they may still be defined relative to one (Kalke,
1969; Piccinini and Craver, 2011). To use Fodor’s (1968) classic example, “valve lifter”
may be a functional property, but any artefact that can fulfill that function in an internal
combustion engine will share structural properties with camshafts. Similar considerations
apply to computing tasks with deadlines and the embedded systems that carry out the tasks.
A program for Pac-Man can be abstractly defined and so floats free of a particular medium.
But it cannot be used to actually play Pac-Man unless it can be implemented in a way that
ensures the required predictability for updating the playfield graphics inline with the timing
requirements of the hardware.

Note that rejecting the medium-independence of some physical computations is not as strange
as it may at first appear. For example, Maley (2021) argues that analog representation is
inherently tied to a medium and so analog information-processing does not have a medium-
independent representational level, while Curtis-Trudel (2021) proposes a view of implemen-
tation as resemblance that rejects the idea that computation by physical systems is medium-
independent. Thus, if we are right that implementation, in the case of real-time computing,
is not medium-independent, then this is in line with a recent trend towards rethinking the
traditional divide between abstract and concrete computation and the corresponding idea
that implementation is a form of mapping between the two.

5.2 Computational explanation in cognitive science

The final important implication concerns computational approaches to explanation in cogni-
tive science. One objection leveled against such approaches is that they abstract away from
the real-time occurrences of mental processes. Thus, computation is not the appropriate ex-
planatory framework for cognitive science. Instead approaches grounded in dynamic systems
modeling should be favored (Van Gelder, 1998; Van Gelder and Port, 1995). Replies have
taken on different forms (Rescorla, 2020). One response is to maintain that timing is solely
a feature of implementation details, which are separate from the aspects of mental processes
that are the target of computational explanation (Weiskopf, 2004; cf. Pylyshyn, 1979, 1984).
Another is to emphasize that timing matters a great deal to physical computation, but only
insofar as it constrains the mapping between abstract computations and a physical system
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(Clark, 1998; Piccinini, 2010). Still others have tried to add an overt dynamic element to
the formal machinery of to computational explanations of mental processes (Eliasmith, 1996,
2003; Vera and Simon, 1993).

Despite their differences, each of these replies treats timing as either irrelevant, marginal,
or supererogatory when it comes to computational explanation. Our discussion of real-time
computing suggests a simpler response. For we have shown that it is simply mistaken to
hold that computational explanations must inherently abstract away from real-time duration
of events. On the one hand, we have shown—using an example of a paradigmatic digital
computer—that some computational explanations can, do, and must take account of real-
time. So at most the objection is premised on characterizations of computational explanation
that need not be adopted. On the other hand, the premise that the real-time operations
of mental processes are important explananda for cognitive science can be re-described as
the claim that the brain is an embedded computing system with real-time deadlines. So
rather than providing an objection against computational explanation in favor of dynamical
explanation, highlighting the importance of timing to explaining mental processes can be
recast as an argument in favor of real-time computational explanation.

We suspect that some proponents of computational—and even dynamical—explanation in
cognitive science would be happy to accept such a conclusion. Others might balk: there is
a strong tradition which characterizes computational and also dynamical explanation solely
in abstract terms, and it can be hard to shake off those intuitions.11 Yet if the brain is
an embedded computational system, for which timing is crucial to how it represents and
interacts with the world, then a wholly abstract approach will be inadequate. An account
of the mind that leaves such details out will have as much utility as an explanation of the
video game Pac-Man that simply specifies the rules of the game, but is silent about how the
game actually works, or why certain differences obtain.

6 Conclusion

The foregoing discussion does not by any stretch exhaust the philosophical import of real-
time computing. Each of the implications we have suggested can and should be considered
and challenged. But we hope to have shown that, much like complexity theory (Aaronson,
2013), real-time computing is a branch of computer science that philosophers should take
seriously. Expanding computational explanation to encompass real-time computing provides
an account commensurate with the rich variety of embedded computational systems that
surround us.

11For examples of such a view among proponents of dynamical approaches, see: Barack (2019); Meyer
(2020); Ross (2015); Silberstein and Chemero (2013); Walmsley (2008).
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