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Abstract

Phrase structure trees have a hierarchical structure. In many subjects,
most notably in taxonomy such tree structures have been studied using
ultrametrics. Here syntactical hierarchical phrase trees are subject to a
similar analysis, which is much simpler as the branching structure is more
readily discernible and switched. The occurrence of hierarchical structure
elsewhere in linguistics is mentioned. The phrase tree can be represented
by a matrix and the elements of the matrix can be represented by trian-
gles. The height at which branching occurs is not prescribed in previous
syntactic models, but it is by using the ultrametric matrix. In other words
the ultrametric approach gives a complete description of phrase trees, un-
like previous approaches. The ambiguity of which branching height to
choose, is resolved by postulating that branching occurs at the lowest
height available. An ultrametric produces a measure of the complexity
of sentences: presumably the complexity of sentences increases as a lan-
guage is acquired so that this can be tested. All ultrametric triangles
are equilateral or isosceles. Here it is shown that X̄ structure implies that
there are no equilateral triangles. Restricting attention to simple syntax a
minimum ultrametric distance between lexical categories is calculated. A
matrix constructed from this ultrametric distance is shown to be different
than the matrix obtained from features. It is shown that the definition
of c-command can be replaced by an equivalent ultrametric definition.
The new definition invokes a minimum distance between nodes and this is
more aesthetically satisfying than previous varieties of definitions. From
the new definition of c-command follows a new definition of of the central
notion in syntax namely government.
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1 Introduction

1.1 Ultrametric Literature

Ultrametrics are used to model any system that can be represented by a bi-
furcating hierarchical tree. To list briefly some areas where ultrametrics have
been applied. Perhaps the most important application is to taxonomy, Jardine
and Sibson (1971) Ch.7 [21], and Sneath and Sokal (1973) [43]. Here the end of
a branch of the tree represents a species and the ultrametric distance between
them show how closely the species are related. Hierarchical cluster methods
classify species and also shows how closely species are related. This technique
has also been used in semantics, Shepard and Arabie (1979) [42]. The tech-
nique can become quite complicated because it involves statistical analysis with
continuous variates. Ultrametrics have been applied frequently in the theory
of spin glass, Weissman [46]. Ultrametrics have been used for description of
slowly driven dissipative systems, which exhibit avalanche-like behaviour, these
include earthquakes, extinction events in biological evolution, and landscape
formation, Boettcher and Paiginski (1997) [5]; also ultrametrics can describe
systems with fast relaxation, Vlad (1994) [45]. Ultrametrics are used in the
theory of neural nets, Parga and Virasoro [33]. The dynamics of random walks
on ultrametric spaces have been studied, Ogielchi and Stein (1985) [32]. Ultra-
metrics have been applied to the thermodynamics of macromolecules such as
RNA, Higgs (1996) [19], the directed polymer problem Perlman and Schwarz
(1992)[34], and sociology Schweinberger and Snijders (2003)[41]. Bounds on the
size of ultrametric structure have been discussed by Baldi and Baun (1986) [1].
From a more theoretical angle, a category theory approach has been elucidated
by Rutten (1996) [40], a model theoretic approach to ultrametrics is given by
Delon (1984) [11], and ultrametric might be related to T-theory, Dress et al
(1996) [13]. The relationship between ultrametric distance and hierarchy is fur-
ther discussed in Guénoche (1997) [15]. Construction of optimal ultrametric
trees is discussed by Young and DeSarbo (1995) [47]. Ultrametrics are related
to p-adelic quantities, Karwowski and Mendes (1994) [24], Murtagh (2004) [31]
and Dragovich (2009) [12]. P-adelic quantities are used in string theory: the
way that ultrametrics enters here is explained in §10&§13.4 of Bekke and Fre-
und (1993) [2]. There does not seem to be any straightforward connection of
any of the above to the optimization techniques of Prince and Smolensky (1997)
[35]. As well as ultrametric trees, there are also decision trees Hammer (1998)
[18], and the connection between them is still not known. Some of the above
ultrametric applications have been reviewed by Rammal et al (1986) [36].

1.2 Ultrametric Inequalities

There is the following relationship between trees and ultrametrics. An N -leaf
edge(node)-weighted tree corresponds to an N × N square matrix M in which
Mij = the sum of the weights of the edges (nodes) in the shortest path between
i and j. When the weights are non-zero and non-negative, M is a distance in
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h=1

h=2

h=3
A                                                                B

h=0  The man   ate a     dog                     The man  ate   a      dog

Figure 1: Different syntactic descriptions of “the man ate a dog”

the usual sense.

∀x, y, z Mxy = 0 if x = y (1)
Mxy > 0 for x 6= y (2)
Mxy = Myx (3)
Mxy ≤ Mxz + Mzy. (4)

However if the triangle inequality (4) is replaced by

Mxy ≤ max{Mxz,Mzy}. (5)

then M is an ultrametric, equation 5 implies 4.

1.3 Syntactic Phrase Trees

For the analysis of syntactic phrase trees the necessary technique is quite sim-
ple and is illustrated by the examples in section 2. Psychological analysis of
phrase trees has been carried out by Johnson (1965) [22] and Levelt (1970) [27].
The phrase tree approach has critics Botha (1989) [6]; also Evans and Levinson
(2009) [14] question the existence of language universals. The examples here
mainly follow the examples in Lockward (1972) [28], Kayne (1981) [25], Mc-
Closkey (1988) [29], and especially Haegeman (1994) [17]. There are at least
five reasons for introducing an ultrametric description of syntax.

The first is to completely specify tree (also called dendrogram) structure.
Consider the following example illustrated by Figure 1:
For current syntactic models sometimes nodes are taken to occur at the highest

level, and sometimes the two trees are equivalent see McCloskey (1988) [29]
footnote 6; however consider the ultrametric distance between ‘the’ and ‘man’,

A(the,man) = 1, B(the,man) = 2, (6)
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where the numbers are the height of the lowest common node above the two
lexical items. This ambiguity does not occur in current syntactic models, and
a purpose of an ultrametric model is to disambiguate the difference in height,
because this might have consequence in the complexity of the encoded model,
see the next point.

The second is it gives a measure of the complexity of a sentence: the greater
the ultrametric distance required the more complex a sentence is. The above
can also be viewed in terms of ‘closeness’. The example figure (1) illustrates that
current syntactic models give no notion of how ‘close’ determiners and nouns
are. However ultrametrics do give an indication of closeness and this can be
compared: firstly to the closeness indicated by features, secondly to the idea
that if elements of a sentence are not sufficiently close then there is a barrier
Chomsky (1986b) [8] to movement, roughly speaking barriers impede the move-
ment of phrases to different places in a sentence. Only the closeness as indicates
by features is looked at here. In traditional syntax phrases can be iteratively
embedded to give sentences of unbounded length and complexity. A degree of
sentence complexity perhaps corresponds to the height of the tree representing
the sentence. As people can only process a finite amount of information this
height must be finite. In the traditional theoretical framework there is no fi-
nite bound on sentence length. An upper bound could perhaps be found by
experiment. Inspection of phrase trees suggests a first guess of h = 12.

The third is that it means that syntax is described in the same formalism as
that used in a lot of other sciences, for example those topics described in the
first paragraph §1.1, so that there is the possibility of techniques being used in
one area being deployed in another.

The fourth is that an ultrametric formulation might allow a generalization
so that ideas in syntax can be applied to other cognitive processes.

The fifth, see the next section 1.4, and perhaps the most important, is that it
might be possible to use some sort of minimum distance principle in syntax: it
could be this minimum description which would have application in other cog-
nitive processes. In other words that ultrametric trees should be simple rather
than complicated and that the sort of mechanism use to encode simple tress
might be used elsewhere.

1.4 Ockam’s Razor

Minimum description in science goes back several hundred years to “Ockam’s
razor” or perhaps further, see for example Sorton (1947) [44] page 552. The
principle of least action (see for example Bjorken and Drell (1965) [4] §11.2) in
physics is that minimal variation of a given action gives field equations which
describe the dynamics of a system. For example, Maxwell’s equations can be
derived from a simple action by varying it. In the present context one would
hope that syntax allows for a minimum encoding of semantic information, the
minimum encoding being given by some ultrametric measure. A different ap-
proach along these lines is that of Rissanen (1982) [37] and Zadrozny (2000)
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Figure 2: A reticulate tree

1            2           3      ...............................................N

Figure 3: N-ary branching

[48]. Briefly they assign a length of 1 to each symbol in a sentence, then the
minimum description length states that the best theory to explain a set
of data is the one which minimizes both the sum of: i) the length, in bits, of
the description of the theory, and ii) the length, in bits, of data when encoded
with the help of the theory. Christiansen (2001) [9] discusses how constraint
handling rules (CHR) can be applied to grammars. This can be thought of as
a minimizing procedure.

1.5 Reticulate & N-ary Trees

A reticulate tree is a tree in which there are one or more sets of reconvergent
branches, illustrated by Figure 2, a non-reticulate tree is a tree in which
the branches do not reconverge. N-ary branching is illustrated by Figure 3.
Binary branching is N-ary branching with N = 2. N-ary branching can
be replaced by binary branching if additional layers are used. A switched
tree is a tree in which all the branches are binary. Syntactic phrase trees
are non-reticulate and switched. In most linguistic theories all syntac-
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tic phrase trees have X̄ structure, Jackendoff (1977) [20]. X̄ structure implies
binary branching, see subsection 2.3 and figure 8 Here attention is restricted to
theory which has X̄ structure.

1.6 Sectional Contents

In section 2 it is shown how to represent trees by matrices and triangles. All
X̄ triangles are isosceles but not equilateral. In section 3 the matrix U for
the minimum ultrametric distance for lexical categories is given. For simplic-
ity discussion is limited to active voice sentences with only determiners, nouns,
transitive verbs, adjectives, and prepositions. Inclusion of case theory, COMP,
INFL,.. might be of interest but would complicate matters. In section 4 the
singular matrix F for features is given. F is not an ultrametric matrix and
there appears to be no relation to U. In section 5 it is shown that the no-
tion of c-command is equivalent to an ultrametric minimum distance. This
allows a new definition of government to be given. In appendix 7 other lin-
guistic hierarchies are discussed; in particular there appears to be at least two
separate occurrences of culturally determined partial ordered hierarchies - the
accessibility hierarchy for relative clauses and the universal colour ordering. For
completion in appendix 7 there is a very brief account of what these hierarchies
are, a comparison and contrasting of them, and the speculation that they are
specific examples of a grand cultural hierarchy. The question arises of why such
hierarchies should exist, and it might be because they reduce the amount of
memory needed to process information by clumping information together in the
style of Miller (1956) [30]; for a more recent reference see Cowan (2001) [10]. A
hierarchy is an example of a representation as discussed by Roberts (2005) [39].

2 X̄ Structure Implies No Equilateral Triangles

2.1 Binary and N-ary Branching for simple sentences

X̄ structure implies binary branching Haegeman (1994) p.139 [17], and the
figure 8. To see what this implies for ultrametric distances consider all five
species of binary branched tree. The fixed word order in ’Alf must jump
high’ reduces the total number of possible matrices form 15 to 8. The first
has diagram Figure 4 (compare Haegeman (1994) p.141 [17] diagram 84a) and
corresponding matrix:

First =

• A M J H
A 0 1 2 2
M . 0 2 2
J . . 0 1
H . . . 0

(7)

respectively, where A, M, . . . are short for ’Alf’, ’must’. The matrices corre-
sponding to the other four binary branched trees are (compare Haegeman

7



h=2

h=1 

h=0            Alf               must                           jump                    high.

Figure 4: The simplest binary tree for “Alf must jump high”

(1994) p.141&142 [17] diagrams 84b,c,d,e):

Second =

• A M J H
A 0 3 3 3
M . 0 2 2
J . . 0 1
H . . . 0

(8)

Third =

• A M J H
A 0 3 3 3
M . 0 1 2
J . . 0 1
H . . . 0

(9)

Fourth =

• A M J H
A 0 2 2 3
M . 0 1 3
J . . 0 3
H . . . 0

(10)

Fifth =

• A M J H
A 0 1 2 3
M . 0 2 3
J . . 0 3
H . . . 0

(11)
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Alf                    must                        jump              high.

Figure 5: The 4-ary tree for “Alf must jump high”

There are two 3-ary trees with matrices (compare Haegeman (1994) p.142 [17]
diagrams 84g and 84h):

Sixth =

• A M J H
A 0 1 1 2
M . 0 1 2
J . . 0 2
H . . . 0

(12)

Seventh =

• A M J H
A 0 2 2 2
M . 0 1 1
J . . 0 1
H . . . 0

(13)

and finally there is one 4-ary tree (compare Haegeman (1994) p.142 [17] dia-
gram 84f) with diagram Figure 5 and matrix:

Eighth =

• A M J H
A 0 1 1 1
M . 0 1 1
J . . 0 1
H . . . 0

(14)

2.2 Triangle representation of the proceeding matrices

All ultrametric triangles are isosceles with small base, but only some are equi-
lateral. The previous subsection 2.1 suggests that binary branching implies that
there are no equilateral triangles in ultrametric models of syntax. For example
from matrix (13), d(A,M) = 1, d(A, J) = 2, d(M,J) = 2 has the triangle repre-
sentation Figure 6, and from matrix 14, d(A,M) = 1, d(A, J) = 1, d(M,J) = 1
giving in the triangle representation Figure 7. In the next section it is proved
that X̄ structure implies that there are no equilateral triangles.
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J

2                                                   2

M                                         1                                       A

Figure 6: The isosceles triangle representation.

J

1                                                      1

M                                                                                     A
1

Figure 7: The equilateral triangle representation.
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h=i+2                                            XP

h=i                 Spec                      X                          YP

h=i+1                                            X 

Figure 8: The X̄ Template

2.3 The X̄ Template

The X̄ template Figure 8 is the form that nodes take in syntax. The matrix
representation of this is:

X̄ =

• Spec X Y P
Spec 0 i + 2 i + 2
X . 0 i + 1

Y P . . 0

(15)

From this the triangle representation is Figure 9. This is isosceles but not
equilateral.

3 The minimum ultrametric distance between
lexical categories

3.1 The minimum distance principle

We assume that it is the minimum distance between lexical categories that is
important, and refer to this as the minimum distance principle. In part
this is motivated by the discussion in subsection 1.4. A current psycholinguistic
model of sentence production is the garden path model, see for example Frazier
(1987) [16] .Part of this model requires the minimal attachment principle, which
is “do not postulate unnecessary nodes.”: this can be thought of as a minimum
principle. The minimum distance principle implies that the correct tree for
equation (6) illustrated by figure 1 is Figure 10, so that all entries occur at the
lowest possible height. Thus in particular tree A is preferred to tree B. This
assumption does not effect the matrix U (16) given and described below, but will
have an effect when the analysis is extended to θ-theory, see Haegeman (1995)
§3.2.3 [17]. From the above d(N,D) = 1, d(N,V ) = d(D,V ) = 2. Similarly from
Figure 11, d(V,A) = 4. Constructing other examples gives the ultrametric
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X                                                        YP

i+2                                    i+2

Spec

  i+1

Figure 9: The triangle representation of X̄ structure

distance matrix

U =

• D N V A P
D 0 1 2 2 2
N . 0 2 2 2
V . . 0 4 3
A . . . 0 3
P . . . . 0

(16)

Ignoring the determiner D (‘a’ or ‘the’) and ordering the matrix NPVA (noun,
pronoun, verb, adjective) suggests the pattern

I =

0 i i i . . .
. 0 i + 1 i + 1 . . .
. . 0 i + 2 . . .
. . . 0 . . .

(17)

which is compatible with the X̄ matrix of the last section; however it does not
follow by necessity as the X̄ case holds for a single sentence and U is constructed
from the syntactical representations of several sentences.
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D            N                                      V          D           N

The        man                                 ate         a           dog.

h=0

h=1          NP                                                         NP

h=2                                                            VP

h=3                                            S

Figure 10: The Correct Tree for the Example in the Introduction.

 D      N                               V           A          P           D            N

The  man                           is      envious      of         an           elephant.

h=1     NP                                                                           NP

h=3                                                            AP

h=5                               S

 h=4                                              VP

 h=2                                                                         PP

h=0

Figure 11: The Distance Between Verbs and Adjectives.
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4 Features

4.1 No square matrix representation of features

This section investigates whether there is a general framework which can de-
scribe both the preceding and also “features”. Roughly speaking the idea behind
features is that adjectives and prepositions have qualities in them that are asso-
ciated with verbs and nouns, as can be seen from 18 adjectives have +N & +V
and prepositions have -N & -V. Haegeman (1994) [17] p.146 gives the following
18 diagram for features:

Features diagram =

Noun +N −V
V erb −N +V
Adj. +N +V
Pre. −N −V

(18)

in words nouns have features of +noun and -verb, adjectives have features of
+noun and +verb, and so on. This can be represented by the matrix

Features matrix =

· Noun V erb
Noun +1 −1
V erb −1 +1
Adj. −1 +1
Pre. −1 −1

(19)

A square matrix can be constructed by assuming that the matrix is symmetric.
This leaves only one unknown F (A,P ). Taking F (A,P ) = −1 gives equal
number of positive and negative entries in the matrix

F =

• N V A P
N +1 −1 +1 −1
V −1 +1 +1 −1
A +1 +1 +1 −1
P −1 −1 −1 +1

(20)

which is singular as its determinant vanishes. There appears to be no relation
between matrix F 20 and matrix U 16. Using the Pauli matrices (see for example
Bjorken and Drell (1965) [4] p.378)

I =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (21)

F can be expressed as

F =
(

I − σ1 −iσ2 + σ3

+iσ2 + σ3 I − σ1

)
. (22)

However this does not correspond in any straightforward way to any of the Dirac
matrices (see for example Bjorken and Drell (1965) [4] page 378) in standard
representations.
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Smith                     will            eat            the            elephant.

   Det            N

     N                                V                  NP

  NP           AUX       VP

  S

Figure 12: Illustration of dominates

5 Ultrametric Approach to Government

Recall the following definitions in Haegeman [17]:

5.1 Definition of dominates.

Definition [17] p.85
Node A dominates node B iff:
i) h(A) is higher up or at the same height on the tree as h(B) i.e.h(A) ≥ h(B)
ii) it is possible to trace a path from A to B going only downward,

or at most going to one higher node.
Remarks
The first requirement is that A is at a greater height than B. The second re-
quirement restricts the possible downward route from A to B so that it contains
at most one upward segment.
Example (compare [17] p.83)The phrase tree Figure 12 gives the ‘dominates’
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matrix:

D =

• S NP (S) N(S) AUX V P V NP (E) Det N(e)
S 1 1 1 1 1 1 1 1 1

NP (S) 0 1 1 0 0 0 0 0 0
N(S) 0 0 1 0 0 0 0 0 0
AUX 0 0 0 1 0 0 0 0 0
V P 0 0 0 0 1 1 1 1 1
V 0 0 0 0 0 1 1 1 1

NP (E) 0 0 0 0 0 0 1 1 1
Det 0 0 0 0 0 0 0 1 0

N(E) 0 0 0 0 0 0 0 0 1

(23)

where 1 indicates “A dominates B” and 0 indicates that it does not.

5.2 Definition of C-command

Definition [17] p.134
Node A c-commands (constituent-commands) node B iff:
i) A does not dominate B and B does not dominate A,
ii) The first branching node dominating A also dominates B.
Remarks
The first requirement is that there is no direct route up or down from A to B
passing more than one higher node. The second requirement restricts A and
B to be ’close’. Haegeman’s first criterion for dominance needs to be adjusted:
if it is correct then h(A) > h(B) and h(B) > h(A) so that the set of all c-
commands is empty, therefore greater than or equal ≥ is used here instead of
greater than >. Haegeman’s second criterion for dominance also needs to be
adjusted: if no higher node is allowed the set of c-commands is again empty.
Chomsky (1986a) [7] p.161 approaches the subject in a different manner using
maximal projections.
Example:Figure 13 in the figure 0 < j < k < l. The corresponding ultra-

metric matrix is

U =

• A B C D
A 0 k k l
B . 0 j l
C . . 0 l
D . . . 0

(24)

The c-command matrix CM is

CM =

• A B C D
A 1 1 1 0
B 0 1 1 0
C 0 1 1 0
D 1 1 1 1

(25)
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h=i                A                         B           C

h=i+j                            E

h=i+k         F

 h=i+l            H

Figure 13: Example of c-commands.

where 1 indicates A c-commands A, and 0 indicates that it does not, similarly
for B, C, D.

5.3 Definitions of C-Domain & Governs

Definition [17] p.134
The total of all the nodes c-commanded by an element is the c-domain of
that element.
Definition [17] p.135
A governs B iff:
i) A is a governor,
ii)A c-commands B and B c-commands A.
Remarks:
The first requirement is a restriction on the set A (in linguistic terminology the
category A). A governor is a part of speech which generalizes the notion of
a verb governing an object; unfortunately there does not seem to be a formal
definition of it. The second requirement is that A and B should be sufficiently
‘close’.

5.4 Definitions of CU-Domain & CU-Command

Now let D(A) be the set of all the ultrametric distances to other nodes at the
same height and let M(A) be the set of these which have the smallest value.
Call M(A) the cu-domain of A and say A cu-commands all BεM(A) (in
words B is a member of M(A). This is illustrated by Figure 14.
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h=i+k    F

h=i+l    H

h=i      A           B            C           D

h=i+j                  S

Figure 14: Illustration of the Theorem.

5.5 Theorem showing the identity between C-Domain &
CU-Domain

Theorem:
The sets A c-commands B and A cu-commands B are identical, likewise the
c-domain and the cu-domain.
Proof:
From the i) part of the definition of c-command h(A) = h(B), so that we are
only concerned with nodes at the same height h(A) = i. Let the first branching
node above A be F, with h(F ) = i+ k. Let H be any node dominating F, with
h(H) = i+ l. Let E be the subsidiary node dominating B and C and dominated
by F, with h(E) = i + j. The closest nodes to A are B and C both with an
ultrametric distance k. The sets D(A) and M(A) are D(A)={A,B,C,D},
M(A)={A,B,C}. A both c-commands and cu-commands itself and B and
C. The actual integer values i, j, k, . . . are arbitrary and thus the result holds in
general.

5.6 A New Definition of Government

This allows a new definition of government. A governs B iff:
i) A is a governor.
ii) both AεM(B) and BεM(A) (in words A is a member of M(B) and vice
versa). This definition of government is the same as the previous definition
of government, but with the c-command requirement replaced by an ultra-

18



SU    >    DO    >    IO    >    OBL   >   GEN   >    OCOMP    

Figure 15: The accessibility hierarchy

metric requirement that distances be minimal.

6 Conclusion

The definition of government in §5.6 might at sometime in the future allow the
five points in §1.3 to be addressed.

7 Other Linguistic Hierarchies

7.1 The Accessibility Hierarchy

A relative clause (RC) is a clause that modifies a noun or pronoun that
occurs elsewhere in a sentence. The accessibility hierarchy (AH) for relative
clauses is given by Keenan and Comrie (1977) [26] Noun phrases (NP) occurring
to the left of “>” are more accessible than those on the right. SU is short for
subject, DO for direct object, IO for indirect object, OBL for major oblique case
NP, GEN for genitive NP, OCOMP for object of comparison. The properties of
the accessible hierarchy are contained in two sets of constraints.
The accessible hierarchy constraints (AHCs) are:
AHC1) A language must be able to relativize subjects.
ACH2) Any RC forming strategy must apply to a continuous segment of the
AH.
ACH3) Strategies that apply at one point of the AH may in principle cease to
apply at any lower point.
The primary relativization constraints (PRCs) are
PRC1) A language must have a primary RC-forming strategy.
PRC2) If a primary strategy in a given language can apply to a low position
on the AH, then it can apply to all higher positions.
PRC3) A primary strategy may cut off at any point on the AH.
For a given language a deployment that can be used to relativize a clause at
a specified place on the AH can also be used to relativize all more accessible
clauses. The type of relativization varies from language to language. There
appears to be nothing known on how the skill to deploy a relativization develops
in an individual. One would expect that when a given method is applied the less
accessible would take longer to process. There seems to be no psycholinguistic
tests done to see if this is indeed the case.
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red

green
brownblue
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orange

grey

purple

Figure 16: The Berlin-Kay Universal Colour Partial Ordering

7.2 The Berlin-Kay Universal Colour Partial Ordering

The perception of colour often involves the deployment of a colour name strat-
egy. The effect of this is to alter the way the colour is perceived. The five
principles of colour perception are:
CP1)The communicability of a referent in an array and for a particular com-
munity is very closely related to the memorability of that referent in the same
array and for members of the same community.
CP2) In the total domain of colour there are eleven small focal areas in which
are found the best instances of the colour categories named in any particular
language. The focal areas are human universals, but languages differ in the
number of basic colour terms they have: they vary from two to eleven.
CP3) Colour terms appear to evolve in a language according to the Berlin-Kay
(1969) [3] universal partial ordering illustrated by Figure 16,
CP4) Focal colours are more memorable and easier to recognize than any other
colours, whether or not the subject speaks a language having a name for the
colour.
CP5) The structure of the colour space determined by multi-dimensional scal-
ing of perceptual data is probably the same for all human communities and it
is unrelated to the space yielded by naming data.
Again there is a culturally determined linguistic partial ordering (or hierarchy).
On this occasion it determines the semantic content of individual words rather
than syntax rules. Again there appears to be nothing known on how the skill
develops in an individual, or any timing tests on the possession of a colour name
strategy. The existence of two separate hierarchical partial orderings suggests
that there is a general mechanism for there construction. Most members of a
community seem to develop these culturally determined skills suggesting that
the capacity to develop them is usually innate but their manifestation depends
on environment.
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