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ABSTRACT: Is evidential support transitive? The answer is negative when 
evidential support is understood as confirmation so that X evidentially supports Y if 
and only if p(Y | X) > p(Y). I call evidential support so understood “support” (for 
short) and set out three alternative ways of understanding evidential support: 
support-t (support plus a sufficiently high probability), support-t* (support plus a 
substantial degree of support), and support-tt* (support plus both a sufficiently 
high probability and a substantial degree of support). I also set out two screening-
off conditions (under which support is transitive): SOC1 and SOC2. It has already 
been shown that support-t is non-transitive in the general case (where it is not 
required that SOC1 holds and it is not required that SOC2 holds), in the special 
case where SOC1 holds, and in the special case where SOC2 holds. I introduce two 
rather weak adequacy conditions on support measures and argue that on any 
support measure meeting those conditions it follows that neither support-t* nor 
support-tt* is transitive in the general case, in the special case where SOC1 holds, 
or in the special case where SOC2 holds. I then relate some of the results to 
Douven’s evidential support theory of conditionals along with a few rival theories. 
 
 
1 Introduction 
 
Is evidential support transitive? The answer is negative when evidential support is 
understood as confirmation so that X evidentially supports Y if and only if p(Y | X) 
> p(Y).1 Suppose, to illustrate, a card is randomly drawn from a standard (and well-
shuffled) deck of cards. Let X be the proposition that the card drawn is a Heart, Y 
be the proposition that the card drawn is a Red, and Z be the proposition that the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 This is “incremental” confirmation as opposed to “absolute” confirmation. See 
Carnap (1962, Preface to 2nd ed.) on “concepts of increase in firmness” and 
“concepts of firmness”. 
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card drawn is a Diamond. Then p(Y | X) = 1 > 1/2 = p(Y), p(Z | Y) = 1/2 > 1/4 = 
p(Z), and yet p(Z | X) = 0 < 1/4 = p(Z). There are at least three alternative ways of 
understanding evidential support however.2 First, evidential support can be 
understood as confirmation together with a sufficiently high probability so that X 
evidentially supports Y if and only if p(Y | X) > p(Y) and p(Y | X) is sufficiently high 
(close to 1). Second, evidential support can be understood as confirmation together 
with a substantial degree of confirmation so that X evidentially supports Y if and 
only if p(Y | X) > p(Y) and the degree of confirmation c(Y, X) is substantial. Third, 
evidential support can be understood as confirmation together with both a 
sufficiently high probability and a substantial degree of confirmation so that X 
evidentially supports Y if and only if p(Y | X) > p(Y), p(Y | X) is sufficiently high, 
and the degree of confirmation c(Y, X) is substantial. Perhaps, though evidential 
support understood as confirmation is non-transitive, things are different when 
evidential support is understood as confirmation together with a sufficiently high 
probability, or when evidential support is understood as confirmation together with 
a substantial degree of confirmation, or when evidential support is understood as 
confirmation together with both a sufficiently high probability and a substantial 
degree of confirmation. 

It will help to introduce some terminology. By “X supports Y” I mean “p(Y | X) 
> p(Y)”. By “X supports-t Y” I mean “p(Y | X) > p(Y) and p(Y | X) > t” where t is the 
threshhold for sufficiently high probability. I assume that 0.5 ≤ t < 1 but do not 
assume any particular value for t. By “X supports-t* Y” I mean “p(Y | X) > p(Y) and 
c(Y, X) > t*” where t* is the threshhold for substantial support. I assume that t* is 
greater than the neutral value for c(Y, X)—the value for c(Y, X) in cases where X 
neither increases nor decreases the probability of Y—and less than the maximum 
value for c(Y, X) (which may be ∞). By “X supports-tt* Y” I mean “p(Y | X) > p(Y), 
p(Y | X) > t, and c(Y, X) > t*”. The main points from the previous paragraph can 
then be put as follows: support is non-transitive but perhaps things are different 
with support-t, or with support-t*, or with support-tt*. 

It turns out that support is transitive under each of the following screening-off 
conditions:3 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 See Douven (2011). See also Roche and Shogenji (2014a) on “confirmation-TSF” 
for yet another alternative way of understanding evidential support. 
3 That support is transitive under SOC1 is shown in Shogenji (2003). See Sober 
(2009, p. 76) for an equivalent result. That support is transitive under SOC2 is 
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Screening-Off Condition 1 (SOC1): p(Z | Y ∧ X) = p(Z | Y) and p(Z | ¬Y ∧ X) = 
p(Z | ¬Y) 
Screening-Off Condition 2 (SOC2): p(Z | Y ∧ X) > p(Z | Y) and p(Z | ¬Y ∧ X) > 
p(Z | ¬Y) 

 
These conditions hold in many cases and so are helpful in establishing relations of 
support.4,5 

That support is transitive under SOC1 and SOC2 raises the possibility that even 
if each of support-t, support-t*, and support-tt* is non-transitive, things are 
different under SOC1 and SOC2. Perhaps, that is, even if each of support-t, 
support-t*, and support-tt* is non-transitive in the general case (where it is not 
required that SOC1 holds and it is not required that SOC2 holds), each of support-t, 
support-t*, and support-tt* is nonetheless transitive both in the special case where 
SOC1 holds and in the special case where SOC2 holds. 

So there are two questions to consider regarding support-t, two questions to 
consider regarding support-t*, and two questions to consider regarding support-tt*. 
Is support-t transitive in the general case? Is support-t transitive in the special case 
where SOC1 holds or in the special case where SOC2 holds? Is support-t* 
transitive in the general case? Is support-t* transitive in the special case where 
SOC1 holds or in the special case where SOC2 holds? Is support-tt* transitive in 
the general case? Is support-tt* transitive in the special case where SOC1 holds or 
in the special case where SOC2 holds? 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
shown in effect in Roche (2012a). There it is shown that support is transitive under 
the condition: 
 

Screening-Off Condition 3 (SOC3): p(Z | Y ∧ X) ≥ p(Z | Y) and p(Z | ¬Y ∧ X) ≥ 
p(Z | ¬Y). 

 
It follows that support is transitive under SOC2. 
4 See Roche (2012a, 2014a, 2014b), Roche and Shogenji (2014a), and Shogenji 
(2003) for relevant discussion. 
5 It is worth noting that “anti-support” in the sense of disconfirmation is intransitive 
under each of SOC1 and SOC2 in that if X anti-supports Y, Y anti-supports Z, and 
SOC1 or SOC2 holds, then X supports Z. See Atkinson and Peijnenburg (2013) for 
relevant discussion.	  
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Some progress in answering these questions has already been made. First, it has 
been shown that support-t is non-transitive in the general case, in the special case 
where SOC1 holds, and in the special case where SOC2 holds.6 Second, it has been 
shown that support-t* and support-tt* are non-transitive both in the general case 
and in the special case where SOC1 holds if any of the following support measures 
is assumed:7 
 

cd (Y ,X) = p(Y | X)− p(Y )  

cll (Y ,X) = log
p(X |Y )
p(X |¬Y )

⎡
⎣⎢

⎤
⎦⎥  

cKO (Y ,X) =
p(X |Y )− p(X |¬Y )
p(X |Y )+ p(X |¬Y )  

 
The first of these measures, cd, is the “difference” measure. The second, cll, is the 
“log likelihood” measure. The third, cKO, is the Kemeny-Oppenheim measure. Each 
measure is among the most popular measures in the literature. 

There is a clear sense in which each of the results just mentioned is robust. No 
particular values are specified for t or t*. But, at the same time, there is also a clear 
sense in which some of the results are not robust (or at least not as robust as is 
desirable). The class of extant and merely possible support measures is vast (in fact, 
infinite) in size. Perhaps some fourth measure is preferable to cd, cll, and cKO. And 
perhaps support-t* and support-tt* are transitive (in the general case and thus also 
in the special case where SOC1 holds and the special case where SOC2 holds) if 
that fourth measure is assumed. It would be welcome, then, if it could be 
determined whether the results mentioned above regarding support-t* and support-
tt* can be generalized so that they hold for any adequate support measure. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 That support-t is non-transitive in the general case is shown in Douven (2011). 
That support-t is non-transitive in the special case where SOC1 holds is shown in 
Douven (2011). That support-t is non-transitive in the special case where SOC2 
holds is shown in Roche (2012b). 
7 See Douven (2011). Douven (2011) notes (but leaves it to readers to verify) that 
these results regarding support-t* and support-tt* in the general case carry over to 
several alternative support measures in the literature. 
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I aim to show that in fact the results in question can be so generalized. So there 
is no “problem of measure sensitivity” here.8 

The remainder of the paper is organized as follows. In Section 2, I set out two 
rather weak adequacy conditions on support measures. I call them (the conditions) 
“AC1” and “AC2”. In Section 3, I argue that on any support measure meeting AC1 
and AC2 it follows that (i) neither support-t* nor support-tt* is transitive in the 
general case, (ii) neither support-t* nor support-tt* is transitive in the special case 
where SOC1 holds, and (iii) neither support-t* nor support-tt* is transitive in the 
special case where SOC2 holds. In Section 4, I relate some of the results from 
Section 3 to the idea that the assertability/acceptability of a conditional is a matter 
of whether the antecedent evidentially supports the consequent. Here I discuss 
Douven’s evidential support theory of conditionals (2008, forthcoming) along with 
a few rival theories. In Section 5, I conclude. 
 
 
2 Two adequacy conditions on support measures 
 
I want to remain relatively neutral on the thorny issue of how exactly support is to 
be measured. I assume, as is standard, that any adequate support measure c should 
meet the condition: 
 

Adequacy Condition 1 (AC1): There is a value n such that c(Y, X) > / = / < n if 
and only if p(Y | X) > / = / < p(Y). 

 
Beyond AC1 I assume just that any adequate support measure c should meet the 
condition: 
 

Adequacy Condition 2 (AC2): (c1) c(Y, X) is fully determined by p(Y | X) and 
p(Y), is an increasing function of the former, and is a decreasing function of the 
latter, or (c2) c(Y, X) is fully determined by p(Y | X) and p(Y | ¬X), is an 
increasing function of the former, and is a decreasing function of the latter, or 
(c3) c(Y, X) is fully determined by p(X | Y) and p(X), is an increasing function of 
the former, and is a decreasing function of the latter, or (c4) c(Y, X) is fully 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 See Brossel (2013) and Fitelson (1999, 2001) for helpful discussion of measure 
sensitivity. 
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determined by p(X | Y) and p(X | ¬Y), is an increasing function of the former, 
and is a decreasing function of the latter. 

 
This condition is meant to be restricted to cases where the various probabilities are 
non-extreme so that 0 < p(Y | X) < 1, 0 < p(Y) < 1, 0 < p(X | Y) < 1, and so on. This 
means that a support measure c can meet AC2 even if, say, c(Y, X) is constant at 1 
when p(Y | X) = 1 regardless of p(Y). 

There is no questioning AC1 as an adequacy condition on support measures. 
But why accept AC2? 

AC2 is suggested in part by the fact that it is met by each of the following 
support measures (three of which are repeated from above though with different 
subscripts): 
 

c1.0 (Y ,X) = p(Y | X)− p(Y )  

c1.1(Y ,X) =
p(Y | X)
p(Y )  

c1.2 (Y ,X) = log
p(Y | X)
p(Y )

⎡
⎣⎢

⎤
⎦⎥  

c1.3(Y ,X) =
p(Y | X)− p(Y )
p(Y | X)+ p(Y )  

c1.4 (Y ,X) =
p(¬Y )

p(¬Y | X)
= 1− p(Y )
1− p(Y | X)  

c1.5 (Y ,X) =
log p(Y | X)[ ]− log p(Y )[ ]

− log p(Y )[ ]  

c1.6 (Y ,X) =
p(X |Y )− p(X)

p(X |Y )+ p(X)− p(Y ∧ X)

= p(Y | X)− p(Y )
p(Y | X)+ p(Y )− p(Y | X)p(Y )

 

c1.7 (Y ,X) =

p(Y | X)− p(Y )
1− p(Y )

 if p(Y | X) ≥ p(Y )

p(Y | X)− p(Y )
p(Y )

 if p(Y | X) < p(Y )

⎧

⎨
⎪⎪

⎩
⎪
⎪  

c1.8 (Y ,X) =
p(Y | X)− p(Y )

p(Y | X)+ p(Y )+ p(Y | X)p(Y )  
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c1.9 (Y ,X) = p(Y | X)− p(Y )
p(Y | X)+ p(Y )+π p(Y | X)p(Y )

 where π > 0
 

c1.10 (Y ,X) =
p(Y | X)− p(Y )
p(Y | X)p(Y )

= 1
p(Y )

− 1
p(Y | X)

 

c1.11(Y ,X) = p(Y | X)+α p(Y )p(Y | X)
p(Y )+α p(Y )p(Y | X)

 where α > 0  

c2.0 (Y ,X) = p(Y | X)− p(Y |¬X)  

c2.1(Y ,X) =
p(Y | X)
p(Y |¬X)  

c2.2 (Y ,X) = log
p(Y | X)
p(Y |¬X)

⎡
⎣⎢

⎤
⎦⎥  

c2.3(Y ,X) =
p(Y | X)− p(Y |¬X)
p(Y | X)+ p(Y |¬X)  

c3.0 (Y ,X) = p(X |Y )− p(X)  

c3.1(Y ,X) =
p(X |Y )
p(X)  

c3.2 (Y ,X) = log
p(X |Y )
p(X)

⎡
⎣⎢

⎤
⎦⎥  

c4.0 (Y ,X) = p(X |Y )− p(X |¬Y )  

c4.1(Y ,X) =
p(X |Y )
p(X |¬Y )  

c4.2 (Y ,X) = log
p(X |Y )
p(X |¬Y )

⎡
⎣⎢

⎤
⎦⎥  

c4.3(Y ,X) =
p(X |Y )− p(X |¬Y )
p(X |Y )+ p(X |¬Y )  

 
Measures c1.0-c1.11 meet AC2 by meeting (c1).9 Measures c2.0-c2.3 meet AC2 by 
meeting (c2). Measures c3.0-c3.2 meet AC2 by meeting (c3).10 Measures c4.0-c4.3 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 Measures c1.9 and c1.11 meet (c1) in AC2 assuming, as we may, that (c1) is 
understood as: c(Y, X) is fully determined by p(Y | X) and p(Y) (and perhaps a 
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meet AC2 by meeting (c4). Each of the measures in the list is taken from the 
literature. And each of the most popular measures in the literature is included in the 
list.11 

Some of the measures in the list are ordinally equivalent to each other (i.e., they 
impose the same ordering on any two ordered pairs of propositions): c1.1, c1.2, c1.3, 
c3.1, and c3.2 and are pairwise ordinally equivalent to each other; c2.1, c2.2, and c2.3 
are pairwise ordinally equivalent to each other; c4.1, c4.2, and c4.3 are pairwise 
ordinally equivalent to each other.12 But taken as a group the measures are motley: 
no two of c1.0, c1.1, c1.4, c1.5, c1.6, c1.7, c1.8, c1.9, c1.10, c1.11, c2.0, c2.1, c3.0, c4.0, and c4.1 
are ordinally equivalent to each other. This, together with the fact that each such 
measure meets AC2, speaks to the fact that AC2 is a rather weak adequacy 
condition on support measures. 

A further consideration in support of AC2 (as an adequacy condition on support 
measures)—a consideration not unrelated to the fact that each of c1.0-c4.3 meets 
AC2—is that each of (c1)-(c4) has some intuitive plausibility as an adequacy 
condition on support measures. Consider the proposals: 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
constant), is an increasing function of the former, and is a decreasing function of 
the latter. 
10 Given that c1.1(Y ,X) =

p(Y | X)
p(Y )

= p(X |Y )
p(X)

= c3.1(Y ,X) , assuming all the relevant 

probabilities are defined, and given that c3.1 meets (c3), it follows that c1.1 meets not 
just (c1) but also (c3). This shows that a given support measure can meet AC2 
without meeting just one of AC2’s disjuncts. 
11 For discussion of, and references regarding, the various measures in the list 
(and/or measures ordinally equivalent to those measures), see Atkinson, 
Peijnenburg, and Kuipers (2009), Brossel (2013), Crupi, Chater, and Tentori 
(2013), Crupi, Tentori, and Gonzalez (2007), Eells and Fitelson (2002), Festa 
(2012), Fitelson (1999, 2001), Hawthorne and Fitelson (2004), Joyce (2008), and 
Roche and Shogenji (2014b). 
12 Let c and c* be support measures. Then c and c* are ordinally equivalent to each 
other just in case, for any two ordered pairs of propositions <Y1, X1> and <Y2, 
X2>, the following holds: c(Y1, X1) > / = / < c(Y2, X2) iff c*(Y1, X1) > / = / < 
c*(Y2, X2). 
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Degree of Increase in Probability (DIP): c(Y, X) gives the degree to which the 
evidence X increases the probability of the hypothesis Y. 

 
Degree of Predictive Success (DPS): c(Y, X) gives the degree to which the 
hypothesis Y is predictively successful with respect to the evidence X, where 
this is a matter of the degree to which the hypothesis Y increases the probability 
of the evidence X. 

 
Each of these proposals has some intuitive plausibility. And each can be understood 
in two main ways. DIP can be understood either (i) in terms of the degree to which 
p(Y | X) is greater than p(Y) or (ii) in terms of the degree to which p(Y | X) is greater 
than p(Y | ¬X). (c1) in AC2 follows from (i) whereas (c2) follows from (ii).13 DPS, 
in turn, can be understood either (iii) in terms of the degree to which p(X | Y) is 
greater than p(X) or (iv) in terms of the degree to which p(X | Y) is greater than p(X | 
¬Y). (c3) in AC2 follows from (iii) whereas (c4) follows from (iv).14 

Each of (c1)-(c4) has some intuitive plausibility as an adequacy condition on 
support measures. But then, as AC2 is weaker than each of (c1)-(c4), it follows that 
AC2 is at least as plausible as an adequacy condition on support measures as are 
(c1)-(c4) taken individually. 

It should be noted that not all extant measures meet AC2. Consider, for 
example, the following: 
 

cC (Y ,X) = p(Y ∧ X)− p(Y )p(X)   
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13 See Christensen (1999), Climenhaga (2013), Eells and Fitelson (2000), Hajek 
and Joyce (2008), and Joyce (1999, Ch. 6) for discussion of (in effect) DIP 
understood in terms of the degree to which p(Y | X) is greater than p(Y) versus DIP 
understood in terms of the degree to which p(Y | X) is greater than p(Y | ¬X). 
14 See Crupi, Chater, and Tentori (2013), Huber (2008), Joyce (2008), Kuipers 
(2000), Mackie (1969), Mortimer (1988), Nozick (1981), Roche (forthcoming b), 
Roush (2005), and Zalabardo (2009) for relevant discussion. 
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This measure, which is due to Carnap (1962), meets none of (c1)-(c4) and thus 
does not meet AC2.15 It follows, by the assumption that any adequate support 
measure should meet AC2, that cC is inadequate. 

This result strikes me as quite acceptable. cC is put forward as a “relevance” 
measure (or function), where a relevance measure is a measure of the degree to 
which the evidence increases the probability of the hypothesis.16 No measure 
meeting neither (c1) nor (c2) is adequate as a measure of the degree to which the 
evidence increases the probability of the hypothesis. 
 
 
3 Main results 
 
3.1 The general case 
 
Consider the following schema where  β ∈!+  and 

τ = 1 + 1 / 10( )β + 9 / 100( )β + 9 / 10( )β + 9 / 10( )β + 9 / 100( )β + 1 / 5( )β + 2( )β : 
 
 
 
 
 
 
 
 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15 This can be verified by appeal to Schema A below. Any measure c meeting AC2 
is such that c(Z, X) is greater when β = 5 than when β = 1. But cC(Z, X) is roughly 
equal to 0.042 when β = 1 and is roughly equal to 0.027 when β = 5. 
16 Carnap writes: 
 

It is the purpose of relevance functions in general to represent the change in the 
confirmation of h on e by the addition of a new evidence i. (1962, p. 361) 

 
Here “h” is the hypothesis, “e” is the background evidence, “i” is the evidence, and 
“confirmation” is to be understood as “absolute confirmation” which is simply the 
probability of h. 
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Schema A 
 

X Y Z p  X Y Z p 
T T T 1 / τ   F T T 9/10( )β / τ  
T T F 1/10( )β / τ   F T F 9/100( )β / τ  

T F T 9/100( )β / τ   F F T 1 / 5( )β / τ  

T F F 9/10( )β / τ   F F F 2( )β / τ  
 
Each of (a)-(e) holds on all instances of Schema A (see Appendix A.1 for details): 
 

(a) p(Y | X) > p(Y) 
p(Z | Y) > p(Z) 
p(Z | X) > p(Z) 

 
(b) p(Y | X) > p(Z | X) and p(Y) < p(Z) 

p(Z | Y) > p(Z | X) and p(Z) = p(Z) 
 

(c) p(Y | X) > p(Z | X) and p(Y | ¬X) < p(Z | ¬X) 
p(Z | Y) > p(Z | X) and p(Z | ¬Y) < p(Z | ¬X) 

 
(d) p(X | Y) > p(X | Z) and p(X) = p(X) 

p(Y | Z) > p(X | Z) and p(Y) = p(X) 
 

(e) p(X | Y) > p(X | Z) and p(X | ¬Y) < p(X | ¬Z) 
p(Y | Z) > p(X | Z) and p(Y | ¬Z) < p(X | ¬Z) 

 
Let c be a support measure meeting AC1 and AC2. Given (a), it follows that X 
supports Y, Y supports Z, and X supports Z. Given (b)-(e), and given that c meets 
AC2, it follows that c(Y, X) > c(Z, X) and c(Z, Y) > c(Z, X). If, say, c meets AC2 by 
meeting (c1), then by (b) it follows that c(Y, X) > c(Z, X) and c(Z, Y) > c(Z, X). 

If, then, regardless of the value specified for t*, there is an instance of Schema 
A on which c(Z, X) = t*, it follows immediately that, regardless of the value 
specified for t*, there is an instance of Schema A on which c(Y, X) > c(Z, X) = t* 



	   12 

and c(Z, Y) > c(Z, X) = t*. The task now is to show that, in fact, regardless of the 
value specified for t*, there is an instance of Schema A on which c(Z, X) = t*. 

Take some value for β and some value for t*. There are three possibilities: (i) 
c(Z, X) = t*, (ii) c(Z, X) < t*, and (iii) c(Z, X) > t*. If (i) holds, then let β remain at 
its current value. If (ii) holds, then let β get closer and closer to ∞ until c(Z, X) = t*. 
That there is such a value for β is guaranteed by the fact that each of p(Z | X) and 
p(X | Z) is an increasing function of β, each of p(Z), p(Z | ¬X), p(X), and p(X | ¬Z) 
is a decreasing function of β, and the following (see Appendix A.2 for details): 
 

(f) lim
β→∞

p(Z | X) = 1 and lim
β→∞

p(Z ) = 0

  

lim
β→∞

p(Z | X) = 1 and lim
β→∞

p(Z |¬X) = 0

 

lim
β→∞

p(X | Z ) = 1 and lim
β→∞

p(X) = 0

  

lim
β→∞

p(X | Z ) = 1 and lim
β→∞

p(X |¬Z ) = 0  

 
Note that, since c meets AC2, c(Z, X) approaches the maximum value for c as p(Z | 
X) and p(X | Z) approach 1 while p(Z), p(Z | ¬X), p(X), and p(X | ¬Z) approach 0. If, 
instead, (iii) holds, then let β get closer and closer to 0 until c(Z, X) = t*. That there 
is such a value for β is guaranteed by the fact that each of p(Z | X) and p(X | Z) is an 
increasing function of β, each of p(Z), p(Z | ¬X), p(X), and p(X | ¬Z) is a decreasing 
function of β, and the following (see Appendix A.3 for details): 
 

(g) lim
β→0

p(Z | X) = 1/ 2 and lim
β→0

p(Z ) = 1/ 2

  

lim
β→0

p(Z | X) = 1/ 2 and lim
β→0

p(Z |¬X) = 1/ 2

 

lim
β→0

p(X | Z ) = 1/ 2 and lim
β→0

p(X) = 1/ 2

  

lim
β→0

p(X | Z ) = 1/ 2 and lim
β→0

p(X |¬Z ) = 1/ 2  

 
Note that, since c meets AC2, c(Z, X) approaches the neutral point for c as p(Z | X) 
and p(X | Z) approach 1/2 while p(Z), p(Z | ¬X), p(X), and p(X | ¬Z) approach 1/2. 
So, regardless of the value specified for t*, there is an instance of Schema A on 
which c(Z, X) = t*. 

Thus: 
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Theorem 1 (T1): Suppose c meets AC1 and AC2. Then, regardless of the value 
specified for t*, there are probability distributions on which (a) p(Y | X) > p(Y) 
and c(Y, X) > t*, (b) p(Z | Y) > p(Z) and c(Z, Y) > t*, and (c) p(Z | X) > p(Z) but 
c(Z, X) = t*. 

 
So support-t* is non-transitive in the general case. 

It is now straightforward to show that: 
 

Theorem 2 (T2): Suppose c meets AC1 and AC2. Then, regardless of the values 
specified for t and t*, there are probability distributions on which (a) p(Y | X) > 
p(Y), p(Y | X) > t, and c(Y, X) > t*, (b) p(Z | Y) > p(Z), p(Z | Y) > t, and c(Z, Y) > 
t*, and (c) p(Z | X) > p(Z) but p(Z | X) = t or c(Z, X) = t*. 

 
The key (at this point) is that, given that each of p(Z | X) and p(X | Z) is an 
increasing function of β, given that each of p(Z), p(Z | ¬X), p(X), and p(X | ¬Z) is a 
decreasing function of β, and given (f) and (g) from above, regardless of the values 
specified for t and t*, there is an instance of Schema A on which (a) p(Z | X) = t 
and c(Z, X) ≥ t* or (b) p(Z | X) ≥ t and c(Z, X) = t*. Any such probability 
distribution is such that p(Y | X) > p(Y), p(Z | Y) > p(Z), p(Z | X) > p(Z), p(Y | X) > 
p(Z | X), p(Z | Y) > p(Z | X), c(Y, X) > c(Z, X), and c(Z, Y) > c(Z, X). So T2. So 
support-tt*, as with support-t*, is non-transitive in the general case. 
 
3.2 The special case where SOC1 holds 
 
It turns out that (h), below, holds on all instances of Schema A (see Appendix B for 
details): 
 

(h) p(Z | Y ∧ X) = p(Z | Y) 
p(Z | ¬Y ∧ X) = p(Z | ¬Y) 

 
It follows immediately from T1 and T2 that: 
 

Theorem 3 (T3): Suppose c meets AC1 and AC2. Then, regardless of the value 
specified for t*, there are probability distributions on which (a) p(Y | X) > p(Y) 
and c(Y, X) > t*, (b) p(Z | Y) > p(Z) and c(Z, Y) > t*, (c) SOC1 holds, and (d) 
p(Z | X) > p(Z) but c(Z, X) = t*. 
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Theorem 4 (T4): Suppose c meets AC1 and AC2. Then, regardless of the values 
specified for t and t*, there are probability distributions on which (a) p(Y | X) > 
p(Y), p(Y | X) > t, and c(Y, X) > t*, (b) p(Z | Y) > p(Z), p(Z | Y) > t, and c(Z, Y) > 
t*, (c) SOC1 holds, and (d) p(Z | X) > p(Z) but p(Z | X) = t or c(Z, X) = t*. 

 
So support-t* and support-tt* are non-transitive in the special case where SOC1 
holds. 

T3 is similar in certain respects to the theorem of “dwindling confirmation” 
(Roche and Shogenji 2014b). This theorem (when restricted to a three-member 
series X, Y, Z) can be put as follows: 
 

Dwindling Confirmation (DC): Suppose X supports Y which in turn supports Z. 
Suppose c meets the Weak Law of Likelihood (WLL) and so c(Y, X) > c(Z, X) 
if p(X | Y) > p(X | Z) while p(X | ¬Y) < p(X | ¬Z). Suppose SOC1 holds. Then 
c(Z, X) < c(Y, X). 

 
There are some important differences between T3 and DC however. DC is 
restricted to measures meeting WLL. T3 is not so restricted. Some measures 
meeting AC1 and AC2 fail to meet WLL, for example, c1.8, c1.9, c1.10, and c1.11 (see 
Appendix C for details).17 
 
3.3 The special case where SOC2 holds 
 
The aim now is to show that: 
 

Theorem 5 (T5): Suppose c meets AC1 and AC2. Then, regardless of the value 
specified for t*, there are probability distributions on which (a) p(Y | X) > p(Y) 
and c(Y, X) > t*, (b) p(Z | Y) > p(Z) and c(Z, Y) > t*, (c) SOC2 holds, and (d) 
p(Z | X) > p(Z) but c(Z, X) = t*. 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
17 It might seem that c1.8, c1.9, c1.10, and c1.11 should be rejected for failing to meet 
WLL. Perhaps, though, there is a sense of support on which any adequate support 
measure should fail to meet WLL. See Festa (2012) and Roche (forthcoming a) for 
discussion of support and the “reverse Matthew effect”. 
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Theorem 6 (T6): Suppose c meets AC1 and AC2. Then, regardless of the values 
specified for t and t*, there are probability distributions on which (a) p(Y | X) > 
p(Y), p(Y | X) > t, and c(Y, X) > t*, (b) p(Z | Y) > p(Z), p(Z | Y) > t, and c(Z, Y) > 
t*, (c) SOC2 holds, and (d) p(Z | X) > p(Z) but p(Z | X) = t or c(Z, X) = t*. 

 
Since SOC1 holds on all instances of Schema A, and since SOC1 holds only if 
SOC2 does not, a different schema is needed to establish T5 and T6. 

Consider, then, a slight variant of Schema A where  β ∈!+  and 

τ = 1 + 1 / 10( )β + 9 / 100( )β + 9 / 10( )β + 89 / 100( )β + 9 / 100( )β + 19 / 100( )β + 2( )β : 
 

Schema B 
 

X Y Z p  X Y Z p 
T T T 1 / τ   F T T 89/100( )β / τ  
T T F 1/10( )β / τ   F T F 9/100( )β / τ  

T F T 9/100( )β / τ   F F T 19 / 100( )β / τ  

T F F 9/10( )β / τ   F F F 2( )β / τ  
 
Each of (i)-(m) holds on all instances of Schema B (see Appendix D.1 for details): 
 

(i) p(Y | X) > p(Y) 
p(Z | Y) > p(Z) 
p(Z | Y ∧ X) > p(Z | Y) 
p(Z | ¬Y ∧ X) > p(Z | ¬Y) 

 
(j) p(Y | X) > p(Z | X) and p(Y) < p(Z) 

p(Z | Y) > p(Z | X) and p(Z) = p(Z) 
 

(k) p(Y | X) > p(Z | X) and p(Y | ¬X) < p(Z | ¬X) 
p(Z | Y) > p(Z | X) and p(Z | ¬Y) < p(Z | ¬X) 

 
(l) p(X | Y) > p(X | Z) and p(X) = p(X) 

p(Y | Z) > p(X | Z) and p(Y) < p(X) 
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(m) p(X | Y) > p(X | Z) and p(X | ¬Y) < p(X | ¬Z) 
p(Y | Z) > p(X | Z) and p(Y | ¬Z) < p(X | ¬Z) 

 
Let c be a support measure meeting AC1 and AC2. Given (i), it follows that X 
supports Y, Y supports Z, and SOC2 holds. Given this, and given that support is 
transitive under SOC2, it follows that X supports Z. Given (j)-(m), and given that c 
meets AC2, it follows that p(Y | X) > p(Z | X), p(Z | Y) > p(Z | X), c(Y, X) > c(Z, X), 
and c(Z, Y) > c(Z, X). 

The argument then continues in parallel to the arguments above for T1 and T2. 
The crucial point vis-à-vis T5 is that, regardless of the value specified for t*, there 
is an instance of Schema B on which c(Z, X) = t*. The crucial point vis-à-vis T6 is 
that, regardless of the values specified for t and t*, there is an instance of Schema 
B on which (a) p(Z | X) = t and c(Z, X) ≥ t* or (b) p(Z | X) ≥ t and c(Z, X) = t*. 
These points follow from the fact that each of p(Z | X) and p(X | Z) is an increasing 
function of β, each of p(Z), p(Z | ¬X), p(X), and p(X | ¬Z) is a decreasing function 
of β, and the following (see Appendix D.2 and Appendix D.3 for details): 
 

(n) lim
β→∞

p(Z | X) = 1 and lim
β→∞

p(Z ) = 0

  

lim
β→∞

p(Z | X) = 1 and lim
β→∞

p(Z |¬X) = 0

 

lim
β→∞

p(X | Z ) = 1 and lim
β→∞

p(X) = 0

  

lim
β→∞

p(X | Z ) = 1 and lim
β→∞

p(X |¬Z ) = 0  

 
(o) lim

β→0
p(Z | X) = 1/ 2 and lim

β→0
p(Z ) = 1/ 2

  

lim
β→0

p(Z | X) = 1/ 2 and lim
β→0

p(Z |¬X) = 1/ 2

 

lim
β→0

p(X | Z ) = 1/ 2 and lim
β→0

p(X) = 1/ 2

  

lim
β→0

p(X | Z ) = 1/ 2 and lim
β→0

p(X |¬Z ) = 1/ 2  

 
So, first, regardless of the value specified for t*, there is an instance of Schema B 
on which X supports Y, Y supports Z, X supports Z, c(Y, X) > t*, c(Z, Y) > t*, SOC2 
holds, and c(Z, X) = t*, and, second, regardless of the values specified for t and t*, 
there is an instance of Schema B on which X supports Y, Y supports Z, X supports 
Z, p(Y | X) > t, p(Z | Y) > t, c(Y, X) > t*, c(Z, Y) > t*, and p(Z | X) = t or c(Z, X) = t*. 
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This establishes T5 and T6. Therefore support-t* and support-tt* are non-
transitive in the special case where SOC2 holds. 
 
 
4 Discussion 
 
Douven’s evidential support theory of conditionals (2008, forthcoming) can be put 
as follows:18,19 
 

Evidential Support Theory of Conditionals 1 (ESTC1): “If X, Y” is 
assertable/acceptable if and only if X supports-t Y. 

 
X supports-t Y if and only if X supports Y and p(Y | X) > t. So, by ESTC1, “If X, Y” 
is assertable/acceptable if and only if X supports Y and p(Y | X) > t. 

ESTC1 has some intuitive plausibility. This can be seen by considering two 
rival theories:20 
 

Evidential Support Theory of Conditionals 2 (ESTC2): “If X, Y” is 
assertable/acceptable if and only if X supports Y. 

 
Evidential Support Theory of Conditionals 3 (ESTC3): “If X, Y” is 
assertable/acceptable if and only if p(Y | X) > t. 

 
ESTC2 is problematic because of cases where X supports Y but p(Y | X) is 
negligible. Douven writes: 
 

My colleague Henry’s quitting his job is evidence that [i.e., supports the 
proposition that] I shall teach next year’s introductory course in social 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
18 Douven has in mind simple (indicative) conditionals, i.e., conditionals such that 
neither the antecedent nor the consequent contains a conditional. 
19 The version of ESTC1 proposed in Douven (2008) involves a defeater condition. 
But that condition can be ignored for my purposes. See Douven (forthcoming, Ch. 
4, sec. 4.7) for relevant discussion. 
20 ESTC3 is in effect the theory called “Qualitative Adams’ Thesis” in Douven 
(forthcoming, p. 87) and Douven and Verbrugge (2012, p. 483). 
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philosophy, because conditional on the former the latter is a bit more probable 
than it is unconditionally. But even the conditional probability is still 
exceedingly low, given that I simply lack the requisite background for teaching 
such a course. … Thus, “If Henry quits his job, I shall teach next year’s 
introductory course in social philosophy” is not assertable for me/acceptable to 
me, notwithstanding that its antecedent is evidence for [i.e., supports] its 
consequent. (2008, pp. 27-28) 

 
ESTC3 is problematic for a different reason. Suppose (adapting a case from 
Douven 2008) a fair coin is tossed 1,000,000 times. Let X be the proposition that 
the coin comes up heads on the first toss, Y be the proposition that Chelsea wins the 
Champions League, and Z be the proposition that the coin comes up heads on at 
least 1 of the 1,000,000 tosses. Then, at least on certain ways of filling in the 
details, 1 = p(Z | X) > p(Z | Y) = p(Z) > t. By ESTC3 it follows that each of “If X, Z” 
and “If Y, Z” is assertable/acceptable. But, intuitively, just the first of the two 
conditionals is assertable/acceptable. The lesson, it seems, is that—just as ESTC1 
implies—a conditional is assertable/acceptable only if the antecedent supports the 
consequent and the probability of the consequent given the antecedent is 
sufficiently high.21 

Now consider the following theses: 
 

Trans 1: Whenever “If X, Y” is assertable/acceptable and “If Y, Z” is 
assertable/acceptable, then “If X, Z” is assertable/acceptable. 

 
Trans 2: Whenever “If X, Y” is assertable/acceptable, “If Y, Z” is 
assertable/acceptable, and SOC1 holds, then “If X, Z” is assertable/acceptable. 

 
Trans 3: Whenever “If X, Y” is assertable/acceptable, “If Y, Z” is 
assertable/acceptable, and SOC2 holds, then “If X, Z” is assertable/acceptable. 

 
Each of these theses is false on ESTC1. This follows from the fact that support-t is 
non-transitive in the general case, in the special case where SOC1 holds, and in the 
special case where SOC2 holds. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
21 See Douven and Verbrugge (2012) for an empirical argument in favor of ESTC1 
and against ESTC3. 
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It is helpful to know that Trans 1, Trans 2, and Trans 3 are false on ESTC1. 
This is a step in the direction of having an adequate understanding of ESTC1 and 
its implications (for the purpose of assessing its overall plausibility).22 

ESTC1 is superior to ESTC2 and ESTC3. But there are at least two alternative 
evidential support theories worth considering:23 
 

Evidential Support Theory of Conditionals 4 (ESTC4): “If X, Y” is 
assertable/acceptable if and only if X supports-t* Y. 

 
Evidential Support Theory of Conditionals 5 (ESTC5): “If X, Y” is 
assertable/acceptable if and only if X supports-tt* Y. 

 
It might seem that ESTC5 is clearly preferable to ESTC4. The former but not the 
latter explicitly requires that p(Y | X) be sufficiently high. Suppose, though, 
support-t is understood so that t = 0.9, support is measured by c1.0 (the difference 
measure), and support-t* is understood so that t* = 0.9. Then, given that p(Y | X) – 
p(Y) > 0.9 = t* only if p(Y | X) > 0.9, it follows that X supports-t* Y only if p(Y | X) 
> 0.9 = t. This means that there are ways of understanding ESTC4 and ESTC5 on 
which they are logically equivalent to each other and thus on which ESTC4 
implicitly requires that p(Y | X) be sufficiently high. 

There is a potential problem, though, with ESTC4 and ESTC5 understood in 
terms of c1.0. Recall the coin case from above. The intuition is supposed to be that 
“If X, Z” is assertable/acceptable. But since p(Z) is very high, c1.0(Z, X) is very low. 
If t* is set at 0.9 (or at any other non-negligible value), then X does not support-t* 
Z and thus by ESTC4 and ESTC5 it follows that “If X, Z” is not 
assertable/acceptable. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
22 See Douven (forthcoming, Ch. 5) for discussion of more such implications. It 
might seem that ESTC1 should be rejected for the reason that Trans 1, Trans 2, and 
Trans 3 are false on ESTC1. But see Douven (2008, sec. 4). 
23 Douven (2008, p. 32, n. 35) notes the possibility of measuring the degree to 
which “If X, Y” is assertable/acceptable in terms of both p(Y | X) and the degree to 
which X supports Y. This idea is similar in some respects to ESTC5. But bear in 
mind that ESTC5 is a qualitative theory as opposed to a quantitative theory. If, say, 
X supports-tt* Y, then it follows by ESTC5 that “If X, Y” is assertable/acceptable 
but does not follow that it is assertable/acceptable to this or that particular degree. 
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I want to set aside ESTC4 and focus on ESTC5. Is there a way of understanding 
ESTC5 such that in the coin case “If X, Z” is assertable/acceptable? 

The answer is affirmative. The key point is that on many support measures it 
follows that any case where the evidence entails the hypothesis is a case where the 
degree of support is maximal. One such measure is c1.7 (the Z measure). If the 
evidence entails the hypothesis, then the degree of support is maximal at 1. If, then, 
ESTC5 is understood in terms of a support measure such as c1.7 on which any case 
where the evidence entails the hypothesis is a case where the degree of support is 
maximal, it follows that ESTC5 implies that in the coin case “If X, Z” is 
assertable/acceptable. 

A careful investigation of ESTC5 and its implications is beyond the scope of 
this paper. But one thing is clear at this point: each of Trans 1, Trans 2, and Trans 3 
is false on ESTC5. This follows from T2, T4, and T6.24 If there is adequate reason 
to prefer ESTC1 over ESTC5, then this is not because of any differences in what 
ESTC1 and ESTC5 imply with respect to Trans 1, Trans 2, and Trans 3. 
 
 
5 Conclusion 
 
Each of support-t, support-t*, and support-tt* is non-transitive in the general case, 
in the special case where SOC1 holds, and in the special case where SOC2 holds. 
One question for future investigation is whether there are any non-trivial conditions 
under which support-t, support-t*, and support-tt* are transitive. If the answer is 
affirmative, then, depending on the fates of ESTC1, ESTC4, and ESTC5, it might 
be that those conditions are also conditions under which Trans 1 is true. 
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24 Similarly, given T1, T3, and T5, it follows that Trans 1, Trans 2, and Trans 3 are 
false on ESTC4. 
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Appendix A 
 
A.1 
 
Each of (1)-(13) holds on all instances of Schema A: 
 

(1) p(Y | X ) =
1 + 1

10( )β
1 + 1

10( )β + 9
100( )β + 9

10( )β
>
1 + 1

10( )β + 9
10( )β + 9

100( )β
τ

= p(Y )   

(2) p(Z | Y ) =
1 + 9

10( )β
1 + 1

10( )β + 9
10( )β + 9

100( )β
>
1 + 9

100( )β + 9
10( )β + 1

5( )β
τ

= p(Z )   

(3) p(Z | X ) =
1 + 9

100( )β
1 + 1

10( )β + 9
100( )β + 9

10( )β
>
1 + 9

100( )β + 9
10( )β + 1

5( )β
τ

= p(Z )  

(4) p(Y | X ) =
1 + 1

10( )β
1 + 1

10( )β + 9
100( )β + 9

10( )β
>

1 + 9
100( )β

1 + 1
10( )β + 9

100( )β + 9
10( )β

= p(Z | X )   

(5) p(Z | Y ) =
1 + 9

10( )β
1 + 1

10( )β + 9
10( )β + 9

100( )β
>

1 + 9
100( )β

1 + 1
10( )β + 9

100( )β + 9
10( )β

= p(Z | X )   

(6) p(Y ) =
1 + 1

10( )β + 9
10( )β + 9

100( )β
τ

<
1 + 9

100( )β + 9
10( )β + 1

5( )β
τ

= p(Z )   

(7) p(Y | ¬X ) =

9
10( )β + 9

100( )β
9
10( )β + 9

100( )β + 1
5( )β + 2( )β

<
9
10( )β + 1

5( )β
9
10( )β + 9

100( )β + 1
5( )β + 2( )β

= p(Z | ¬X )  

(8) p(Z | ¬Y ) =

9
100( )β + 1

5( )β
9
100( )β + 9

10( )β + 1
5( )β + 2( )β

<
9
10( )β + 1

5( )β
9
10( )β + 9

100( )β + 1
5( )β + 2( )β

= p(Z | ¬X )  

(9) p(X | Y ) =
1 + 1

10( )β
1 + 1

10( )β + 9
10( )β + 9

100( )β
>

1 + 9
100( )β

1 + 9
100( )β + 9

10( )β + 1
5( )β

= p(X | Z )
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(10) p(Y | Z ) =
1 + 9

10( )β
1 + 9

100( )β + 9
10( )β + 1

5( )β
>

1 + 9
100( )β

1 + 9
100( )β + 9

10( )β + 1
5( )β

= p(X | Z )

 

(11) p(Y ) =
1 + 1

10( )β + 9
10( )β + 9

100( )β
τ

=
1 + 1

10( )β + 9
100( )β + 9

10( )β
τ

= p(X )  

(12) p(X | ¬Y ) =

9
100( )β + 9

10( )β
9
100( )β + 9

10( )β + 1
5( )β + 2( )β

<
1
10( )β + 9

10( )β
1
10( )β + 9

10( )β + 9
100( )β + 2( )β

= p(X | ¬Z )

 

(13) p(Y | ¬Z ) =

1
10( )β + 9

100( )β
1
10( )β + 9

10( )β + 9
100( )β + 2( )β

<
1
10( )β + 9

10( )β
1
10( )β + 9

10( )β + 9
100( )β + 2( )β

= p(X | ¬Z )

 
 
Given that each of (1)-(3) holds on all instances of Schema A, it follows that (a) 
holds on all instances of Schema A. Given that each of (4)-(6) holds on all 
instances of Schema A, it follows that (b) holds on all instances of Schema A. 
Given that each of (4), (5), (7), and (8) holds on all instances of Schema A, it 
follows that (c) holds on all instances of Schema A. Given that each of (9)-(11) 
holds on all instances of Schema A, it follows that (d) holds on all instances of 
Schema A. Given that each of (9), (10), (12), and (13) holds on all instances of 
Schema A, it follows that (e) holds on all instances of Schema A. QED 
 
A.2 
 
Observe that: 
 

(14) lim
β→∞

1 + 9
100( )β

1 + 1
10( )β + 9

100( )β + 9
10( )β

= 1 and lim
β→∞

1 + 9
100( )β + 9

10( )β + 1
5( )β

τ
= 0  

(15) lim
β→∞

1 + 9
100( )β

1 + 1
10( )β + 9

100( )β + 9
10( )β

= 1 and lim
β→∞

9
10( )β + 1

5( )β
9

10( )β + 9
100( )β + 1

5( )β + 2( )β
= 0  

(16) lim
β→∞

1 + 9
100( )β

1 + 9
100( )β + 9

10( )β + 1
5( )β

= 1 and lim
β→∞

1 + 1
10( )β + 9

100( )β + 9
10( )β

τ
= 0  
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(17) lim
β→∞

1 + 9
100( )β

1 + 9
100( )β + 9

10( )β + 1
5( )β

= 1 and lim
β→∞

1
10( )β + 9

10( )β
1

10( )β + 9
10( )β + 9

100( )β + 2( )β
= 0  

 
It follows that (f). QED 
 
A.3 
 
Observe that: 
 

(18) lim
β→0

1 + 9
100( )β

1 + 1
10( )β + 9

100( )β + 9
10( )β

= 1 / 2 and lim
β→0

1 + 9
100( )β + 9

10( )β + 1
5( )β

τ
= 1 / 2  

(19) lim
β→0

1 + 9
100( )β

1 + 1
10( )β + 9

100( )β + 9
10( )β

= 1 / 2 and lim
β→0

9
10( )β + 1

5( )β
9

10( )β + 9
100( )β + 1

5( )β + 2( )β
= 1 / 2  

(20) lim
β→0

1 + 9
100( )β

1 + 9
100( )β + 9

10( )β + 1
5( )β

= 1 / 2 and lim
β→0

1 + 1
10( )β + 9

100( )β + 9
10( )β

τ
= 1 / 2  

(21) lim
β→0

1 + 9
100( )β

1 + 9
100( )β + 9

10( )β + 1
5( )β

= 1 / 2 and lim
β→0

1
10( )β + 9

10( )β
1

10( )β + 9
10( )β + 9

100( )β + 2( )β
= 1 / 2  

 
It follows that (g). QED 
 
 
Appendix B 
 
Each of (22) and (23) holds on all instances of Schema A: 
 

(22) p(Z | Y ∧ X ) =
1

1 + 1
10( )β

=
1 + 9

10( )β
1 + 1

10( )β + 9
10( )β + 9

100( )β
= p(Z | Y )  
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(23) p(Z | ¬Y ∧ X ) =

9
100( )β

9
100( )β + 9

10( )β
=

9
100( )β + 1

5( )β
9
100( )β + 9

10( )β + 1
5( )β + 2( )β

= p(Z | ¬Y )  

 
It follows that (h) holds on all instances of Schema A. QED 
 
 
Appendix C 
 
Consider the following probability distribution: 
 

X Y Z p X Y Z p 

T T T 
1

999
  F T T 

1

600
  

T T F 
5

27
 F T F 

2

17
 

T F T 
1

18
 F F T 

1

22
 

T F F 
11

1332
 F F F 

65663

112200
 

 
On this distribution it follows that:25 
 

0.609 ≈ p(X | Y) > p(X | Z) ≈ 0.546 
0.092 ≈ p(X | ¬Y) < p(X | ¬Z) ≈ 0.216 
0.344 ≈ c1.8(Y, X) < c1.8(Z, X) ≈ 0.347 
0.292 ≈ c1.9(Y, X) < c1.9(Z, X) ≈ 0.325 
1.931 ≈ c1.10(Y, X) < c1.10(Z, X) ≈ 5.225 
1.578 ≈ c1.11(Y, X) < c1.11(Z, X) ≈ 1.814 

 
So each of c1.8, c1.9, c1.10, and c1.11 fails to meet WLL. QED 
 
 
 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
25 It is being assumed that π in c1.9 equals 2 and α in c1.11 equals 2. 
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Appendix D 
 
D.1 
 
Each of (24)-(37) holds on all instances of Schema B: 
 

(24) p(Y | X ) =
1 + 1

10( )β
1 + 1

10( )β + 9
100( )β + 9

10( )β
>
1 + 1

10( )β + 89
100( )β + 9

100( )β
τ

= p(Y )   

(25) p(Z | Y ) =
1 + 89

100( )β
1 + 1

10( )β + 89
100( )β + 9

100( )β
>
1 + 9

100( )β + 89
100( )β + 19

100( )β
τ

= p(Z )   

(26) p(Z | Y ∧ X ) =
1

1 + 1
10( )β

>
1 + 89

100( )β
1 + 1

10( )β + 89
100( )β + 9

100( )β
= p(Z | Y )  

(27) p(Z | ¬Y ∧ X ) =

9
100( )β

9
100( )β + 9

10( )β
>

9
100( )β + 19

100( )β
9
100( )β + 9

10( )β + 19
100( )β + 2( )β

= p(Z | ¬Y )  

(28) p(Y | X ) =
1 + 1

10( )β
1 + 1

10( )β + 9
100( )β + 9

10( )β
>

1 + 9
100( )β

1 + 1
10( )β + 9

100( )β + 9
10( )β

= p(Z | X )   

(29) p(Z | Y ) =
1 + 89

100( )β
1 + 1

10( )β + 89
100( )β + 9

100( )β
>

1 + 9
100( )β

1 + 1
10( )β + 9

100( )β + 9
10( )β

= p(Z | X )   

(30) p(Y ) =
1 + 1

10( )β + 89
100( )β + 9

100( )β
τ

<
1 + 9

100( )β + 89
100( )β + 19

100( )β
τ

= p(Z )   

(31) p(Y | ¬X ) =

89
100( )β + 9

100( )β
89
100( )β + 9

100( )β + 19
100( )β + 2( )β

<
89
100( )β + 19

100( )β
89
100( )β + 9

100( )β + 19
100( )β + 2( )β

= p(Z | ¬X )  

(32) p(Z | ¬Y ) =

9
100( )β + 19

100( )β
9
100( )β + 9

10( )β + 19
100( )β + 2( )β

<
89
100( )β + 19

100( )β
89
100( )β + 9

100( )β + 19
100( )β + 2( )β

= p(Z | ¬X )  
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(33) p(X | Y ) =
1 + 1

10( )β
1 + 1

10( )β + 89
100( )β + 9

100( )β
>

1 + 9
100( )β

1 + 9
100( )β + 89

100( )β + 19
100( )β

= p(X | Z )

 

(34) p(Y | Z ) =
1 + 89

100( )β
1 + 9

100( )β + 89
100( )β + 19

100( )β
>

1 + 9
100( )β

1 + 9
100( )β + 89

100( )β + 19
100( )β

= p(X | Z )

 

(35) p(Y ) =
1 + 1

10( )β + 89
100( )β + 9

100( )β
τ

<
1 + 1

10( )β + 9
100( )β + 9

10( )β
τ

= p(X )  

(36) p(X | ¬Y ) =

9
100( )β + 9

10( )β
9
100( )β + 9

10( )β + 19
100( )β + 2( )β

<
1
10( )β + 9

10( )β
1
10( )β + 9

10( )β + 9
100( )β + 2( )β

= p(X | ¬Z )

 

(37) p(Y | ¬Z ) =

1
10( )β + 9

100( )β
1
10( )β + 9

10( )β + 9
100( )β + 2( )β

<
1
10( )β + 9

10( )β
1
10( )β + 9

10( )β + 9
100( )β + 2( )β

= p(X | ¬Z )

 
 
Given that each of (24)-(27) holds on all instances of Schema B, it follows that (i) 
holds on all instances of Schema B. Given that each of (28)-(30) holds on all 
instances of Schema B, it follows that (j) holds on all instances of Schema B. Given 
that each of (28), (29), (31), and (32) holds on all instances of Schema B, it follows 
that (k) holds on all instances of Schema B. Given that each of (33)-(35) holds on 
all instances of Schema B, it follows that (l) holds on all instances of Schema B. 
Given that each of (33), (34), (36), and (37) holds on all instances of Schema B, it 
follows that (m) holds on all instances of Schema B. QED 
 
D.2 
 
Observe that: 
 

(38) lim
β→∞

1 + 9
100( )β

1 + 1
10( )β + 9

100( )β + 9
10( )β

= 1 and lim
β→∞

1 + 9
100( )β + 89

100( )β + 19
100( )β

τ
= 0  

(39) lim
β→∞

1 + 9
100( )β

1 + 1
10( )β + 9

100( )β + 9
10( )β

= 1 and lim
β→∞

89
100( )β + 19

100( )β
89

100( )β + 9
100( )β + 19

100( )β + 2( )β
= 0  
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(40) lim
β→∞

1 + 9
100( )β

1 + 9
100( )β + 89

100( )β + 19
100( )β

= 1 and lim
β→∞

1 + 1
10( )β + 9

100( )β + 9
10( )β

τ
= 0  

(41) lim
β→∞

1 + 9
100( )β

1 + 9
100( )β + 89

100( )β + 19
100( )β

= 1 and lim
β→∞

1
10( )β + 9

10( )β
1

10( )β + 9
10( )β + 9

100( )β + 2( )β
= 0  

 
It follows that (n). QED 
 
D.3 
 
Observe that: 
 

(42) lim
β→0

1 + 9
100( )β

1 + 1
10( )β + 9

100( )β + 9
10( )β

= 1 / 2 and lim
β→0

1 + 9
100( )β + 89

100( )β + 19
100( )β

τ
= 1 / 2  

(43) lim
β→0

1 + 9
100( )β

1 + 1
10( )β + 9

100( )β + 9
10( )β

= 1 / 2 and lim
β→0

89
100( )β + 19

100( )β
89

100( )β + 9
100( )β + 19

100( )β + 2( )β
= 1 / 2  

(44) lim
β→0

1 + 9
100( )β

1 + 9
100( )β + 89

100( )β + 19
100( )β

= 1 / 2 and lim
β→0

1 + 1
10( )β + 9

100( )β + 9
10( )β

τ
= 1 / 2  

(45) lim
β→0

1 + 9
100( )β

1 + 9
100( )β + 89

100( )β + 19
100( )β

= 1 / 2 and lim
β→0

1
10( )β + 9

10( )β
1

10( )β + 9
10( )β + 9

100( )β + 2( )β
= 1 / 2  

 
It follows that (o). QED 
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