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Abstract

This paper aims to show that Frege’s and Hilbert’s mutual disagreement results from
different notions of Anschauung and their relation to axioms. In the first section of
the paper, evidence is provided to support that Frege and Hilbert were influenced by
the same developments of 19th-century geometry, in particular the work of Gauss,
Pliicker, and von Staudt. The second section of the paper shows that Frege and Hilbert
take different approaches to deal with the problems that the developments in 19th-
century geometry posed for the traditional Kantian philosophy of mathematics. Frege
maintains that Anschauung is a source of knowledge by which we acknowledge geo-
metrical axioms as true. For Hilbert, in contrast, axioms provide one of several correct
“pictures” of reality. Hilbert’s position is thereby deeply influenced by epistemological
ideas from Hertz and Helmholtz, and, in turn, influenced the neo-Kantian Cassirer.
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1 Introduction

In a couple of letters around 1900, Frege and Hilbert discuss the status of geometry
and geometrical objects. After Hilbert terminated the correspondence, Frege published
two series of papers, both titled “Uber die Grundlagen der Geometrie”, to make his
concerns about Hilbert’s attempt public. !

1 Originally, Frege wanted to publish the correspondence between him and Hilbert instead. (He suggested
this to Hilbert in a letter from January 6th, 1900.) However, Hilbert refused, so Frege decided to publish
his concerns in a different way (Frege, 1903, p. 319).
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The controversy is widely conceived as one between a conservative 19th-century
mathematician—Frege—and a young man who represents a new age of mathematics—
Hilbert.” Indeed, there is evidence that supports this picture. In his Grundlagen der
Geometrie, Hilbert invented a completely new understanding of axiomatization in
mathematics. He seemingly detaches geometrical axioms completely from intuition.
As soon as 1899, he writes in a letter to Frege, “If in speaking of my points I think
of some system of things, e.g., the system: love, law, chimney-sweep ... and then
assume all my axioms as relations between these things, then my propositions, e.g.,
Pythagoras’ theorem, are also valid for these things.”

Frege, on the other hand, had trouble with this new picture. In an unpublished note
taken after the conversation with Hilbert, Frege writes that only one set of axioms
could be true: either that of Euclidean or that of non-Euclidean geometry. If Euclidean
geometry is true, then non-Euclidean geometry is not scientific but has the same status
as alchemy or astrology (Frege, 1979a, p. 169).

However, this paper, sheds new light on the relationship between Hilbert and Frege.
In the first section of the paper, we show that both share the same heritage. Not only
are they both deeply rooted in the geometry of the 19th century, but they both even
react to the same authors, such as Gauss, von Staudt, and Pliicker. We especially build
on the pioneering work by Tappenden (1995a, 1995b, 2006) and Wilson (1992, 2005,
2010) on the geometrical background of Frege’s philosophy.* It will become apparent
that Frege’s position on non-Euclidean geometry has been widely misconceived.’
Further, we will see that Frege, in his mathematical writings, uses methods of his time
from projective geometry to deal with extension elements (i.e., points in infinity and
imaginary points)® as well as higher dimensions, even though that “contradicts our
intuition.”’

Hilbert, on the other hand, did not break as radically the connection between geom-
etry and Anschauung (in his Festschrift) as some interpretations (among others, that

2 For example, Blanchette writes, “Hilbert is clearly the winner in this debate, in the sense that roughly his
conception of consistency is what one means today by ‘consistency’ in the context of formal theories, and
a near relative of his methodology for consistency-proofs is now standard” Blanchette (2018).

3 Letter to Frege from December 29th, 1899 (Frege, 1980, p. 40).

4 More recent contributions have been made by Eder (2021), Schirn (2019), and Shipley (2015), to mention
just a few.

5 Freudental claims, “Frege, rebuking Hilbert like a schoolboy, also joins the Beeotians. (I have never under-
stood why he is so highly esteemed today)” (Freudenthal, 1962, p. 618). As indicated earlier in Freudenthal’s
paper, “Beeotians” was used by Gauss to refer to the people who dismiss non-Euclidian geometry (Freuden-
thal, 1962, p. 613). Cofta writes, “Frege, for example, the most enlightened and penetrating among them
[the philosophers, TR], argued that all non-Euclidean geometries were false and that they should therefore
be placed together with astrology and alchemy in the category of pseudosciences. The geometers returned
such advice with thanks and turned to the task of solving their own philosophical problems without outside
help” (Cofta, 1986, p. 8). We show, however, that Frege does not dismiss non-Euclidean geometry from a
mathematical point of view.

6 We borrow the term “extension element” as a general term for both points in infinity and imaginary points
from Wilson (2005, 2010).

7 Frege uses this formulation in the opening passage of his thesis On a Geometrical Representation of
Imaginary Forms in the Plane (Frege, 1984a, p. 1).
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of Frege)® suggest.” He was deeply influenced by the discussions of late 19th-century
geometry about the status of non-Euclidean geometry and projective geometry. In
his lectures, he puts his own axiomatic approach in relation to the analytic and the
synthetic—projective approach to geometry and calls his own approach an “analysis of
Anschauung.”'°

Nonetheless, Frege and Hilbert undoubtedly have completely different philosophi-
cal convictions regarding geometry. In the second section of this paper, we show that,
despite the fact that both Frege and Hilbert were influenced by Kant, these differences
emerge from fundamental disagreements regarding the concept of axioms and the role
of Anschauung.

Hilbert’s perspective on axioms and Anschauung was heavily influenced by Hertz’s
picture theory of science, according to which scientific theories are not true statements
about the world, but rather one among several possible “pictures” of the world. Hertz’s
picture theory later inspired the philosophy of symbolic forms of the neo-Kantian
Cassirer, and it enabled Hilbert to take a very liberal approach toward the plurality
of geometries, whereas Frege maintained the traditional Kantian position that only
Euclidean geometry is “true” and Anschauung is the source of knowledge to recognize
this truth.

2 The mathematical background of the Frege-Hilbert controversy

2.1 Non-Euclidean geometry and the relationship between geometry and
arithmetic

Before Frege started to work on the Begriffsschrift, he studied mathematics in Jena and
then in Gottingen, where he received his Ph.D. (and shortly afterwards, he finished
his Habilitation back in Jena). His Ph.D. thesis from 1873 is titled On a Geometrical
Representation of Imaginary Forms in the Plane.!! Considering Frege’s later project
to show that logic is the foundation of arithmetic, it might be surprising that Frege’s
Ph.D. thesis was on a topic from geometry.

However, itis less surprising when one takes the academic environment in Gottingen
at this time into account. In the early 1870s, the influence of Gauss and Riemann was
still strong, and it was Gauss’s authority that led to a wide acceptance of non-Euclidean
geometry within the mathematical community (Klein, 1928, pp. 275-277). Riemann,
in his famous Habilitationsvortrag from 1856, “Uber die Hypothesen, welche der

8 In a letter to Hilbert on J anuary 6th, 1990, Frege writes, “It seems to me that you want to detach geometry
entirely from spatial intuition and to turn it into a purely logical science like arithmetic” (Frege, 1980, p.
43).

9 Freudenthal claims that Hilbert developed “a logically closed system of Euclidean geometry that avoids
any illegal appeal to intuition” (Freudenthal, 1962, 616f., emphasis added).

10" We discuss the meaning of this notion below.

11 The original German title is Uber eine geometrische Darstellung der imagindiren Gebilde in der Ebene.
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Geometrie zu Grunde liegen,” laid out a totally new concept of geometry and of geo-
metrical space. In this talk, Riemann introduced the notion of the curvature of space,
which enabled him to systematically distinguish different kinds of non-Euclidean
geometries.'? Furthermore, he introduced a new notion of dimension that is com-
pletely disconnected from intuition. According to this notion, a dimension is just an
independent parameter that need not be either spatial or dense.'*

Thus, Frege received his mathematical training in an environment where non-
Euclidean geometry and geometries of higher dimensions were objects of serious
mathematical investigation. This is, of course, no proof of Frege’s positive attitude
toward non-Euclidean geometry. In Gottingen, there was also a prominent opponent
of non-Euclidean geometry—Lotze. Lotze was not a mathematician but a philoso-
pher; however, in 19th-century Géttingen (and in many other German universities),
mathematics belonged to the philosophical faculty, so Lotze interacted with the math-
ematicians. For instance, he was part of the panel for Riemann’s Habilitationsvortrag
(Gray, 2010, p. 198). Felix Klein mentions that Lotze’s influence made it hard for him
to discuss non-Euclidean geometry in 1870s Gottingen (Klein, 1926, p. 152). In his
philosophical writings, Lotze even discusses the notion of a curved space, introduced
by Riemann, arguing that only things in space, not space itself, can be curved.!> In
his Metaphysics, Lotze calls non-Euclidean geometry “one huge coherent error” (“ein
einziger grofler und zusammenhingender Irrthum”) (Lotze, 1884, p. 209, § 122). So,
does the passage from Frege’s unpublished note, where he compares non-Euclidean
geometry to alchemy, actually show that Frege took Lotze’s side in the discussion
about non-Euclidean geometry? A passage from Grundlagen der Arithmetik indicates
something different. In § 14, Frege writes:

Conceptual thought alone can after a fashion shake off this yoke, when it assumes,
say, a space of four dimensions or positive curvature. To study such conceptions
is not useless by any means; but it is to leave the ground of intuition entirely
behind.

By mentioning the space of positive curvature, Frege, just like Lotze, refers to Riemann.
However, unlike Lotze, he endorses the possibility of grasping such space conceptually.

12 This idea is built on Gauss’s theorema egregium (GauB}, 1828, p. 24). Roughly, this theorem says that
the curvature of a surface is a property of its inner geometry. In other words, it is independent of the space
it is embedded into.

13 In particular, the distinction between elliptic geometries (with positive curvature) and hyperbolic
geometries (with negative curvature) is made possible.

14 A detailed study of the Riemannian influence on Frege can be found in Tappenden (2006).

15 “Among the properties which our common apprehension believes most indispensable to space is the
absolute homogeneousness of its infinite extension. The real elements which occupy it or move in it may,
we think, have different densities of their aggregation and different rules for their relative positions at
different points; space itself, on the other hand, as the impartial theater of all these events, cannot possess
local differences of its own nature which might interfere with the liberty of everything that is or happens at
one of its points to repeat itself without alteration at any other” (Lotze, 1884, p. 232, § 136). “It is clear to
us what we are to think of as a spherical or pseudo-spherical surface, but not clear what can be meant by a
spherical or pseudo-spherical space; designations which we meet with in the discussion of these subjects
without any help being given to us in comprehending their meaning” (Lotze, 1884, p. 233, § 136).
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Nevertheless, intuition can have a role in understanding alternative geometries, as
Frege explains in the following sentence from § 14:

If we do make use of intuition even here, as an aid, it is still the same old intuition
of Euclidean space, the only one whose structures we can intuit. Only then the
intuition is not taken at its face value, but as symbolic for something else; for
example, we call straight or plane what we actually intuit as curved.

The aforementioned example refers to Euclidean models of non-Euclidean geometries,
such as those by Beltrami and Poncelet.

As we will see in the next section, Frege does the very same thing with projective
geometry in his Ph.D. thesis, where he uses real lines, in Grundlagen-terminology, as
“symbols” for imaginary points.

In the next paragraph, Frege even argues that this possibility reveals the epistemic
nature of geometry:

For purposes of conceptual thought we can always assume the contrary of some
one or other of the geometrical axioms, without involving ourselves in any self-
contradictions when we proceed to our deductions, despite the conflict between
our assumptions and our intuition. The fact that this is possible shows that the
axioms of geometry are independent of one another and of the primitive laws of
logic, and consequently are synthetic.

Thus, Frege claims that geometry is synthetic because it is logically possible to negate
an axiom of Euclidean geometry.

A similar argument can be found in the work of Gauss and Riemann. According
to Gauss, numbers are a “product of our mind” (“unseres Geistes Produkt”), whereas
space has “a reality outside of our mind, whose laws we cannot prescribe completely a
priori,””’ because we are convinced of the necessity of the Grofienlehre (arithmetic) but
not of that of the Raumlehre (geometry).'” Thus, for Gauss, geometry is an empirical
science, just like physics, which can only be known a posteriori. Similarly, Riemann
argues, “the propositions of geometry cannot be deduced from the general notion
of number, but that the properties, by which space can be distinguished from other
thinkable threefold extended magnitudes, can only be gained from experience.”!8

These philosophical positions were clearly influenced by the mathematical devel-
opments just outlined. From the fact that Euclidean geometry is non-contradictory,
it follows that geometry cannot rest on logic alone. However, at that time, there was
no real equivalent to non-Euclidean geometry in arithmetic—there was no alternative
to the standard arithmetic. Hence, it should be no surprise that Frege was not the

16 «auBer unserem Geiste eine Realitiit hat, der wir ihre Gesetze a priori nicht vollstidndig vorschreiben

konnen.”
17 Letter to Bessel. April 9th, 1830 GauB (1880).
18 «dass die Sitze der Geometrie sich nicht aus allgemeinen GroBenbegriffen ableiten lassen, sondern

dass diejenigen Eigenschaften, durch welche sich der Raum von anderen denkbaren dreifach ausgedehnten
GroBen unterscheidet, nur aus der Erfahrung entnommen werden konnen” (Riemann, 1868, p. 134).
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only mathematician who claimed different sources of knowledge for geometry and
arithmetic.'”

The same argument for different sources of knowledge of geometry and arith-
metic can be found in Hilbert’s early work on geometry. In his “Lecture on Projective
Geometry” from 1891, Hilbert writes:

I need nothing beyond purely logical thinking when I occupy myself with num-
ber theory or algebra. With geometry it is totally different. I can just as little
comprehend the properties of space through mere thinking as I can recognize
the basic laws of mechanics, the law of gravity, or any other physical law. Space
is not the product of my thinking, but is given to me by my senses.?’

Here, Hilbert highlights the dissimilarities between geometry and arithmetic to
argue that geometry has a different epistemic status. Just like Frege, he advocates
the logical nature of arithmetic. However, he does not attempt to prove this himself;
instead, he relies on Dedekind’s work.?! Hilbert maintained the conviction that arith-
metic is a part of logic at the time he wrote his Festschrift. In a lecture he held in the
year he wrote his Festschrift, he explicitly refers to Dedekind’s work in Was sind und
was sollen die Zahlen? as evidence (Hilbert, 2004b, p. 303).

2.2 Projective geometry

Projective-synthetic geometry developed from the end of the 18th century onward.
Monge was the first who attempted to introduce a synthetic geometry that could catch
up with the analytic geometry of that time.?? “Analytic geometry” is the kind of geom-
etry that originated with Descartes (in La Géométrie), in which one uses methods
from arithmetic and algebra to express and prove geometrical statements. In syn-
thetic geometry, these methods are banned. Poncelet, a student of Monge at the Ecole
Polytechnique, put this project forward and is often referred to as the founder of syn-
thetic projective geometry (Klein, 1926, p. 80). Projective geometry differs from the
usual affine geometry insofar as it considers only projective properties. A property is
projective if it is preserved under projective transformation (i.e., central projection)

19 There is less agreement regarding the question of whether geometry does or does not have the same
source of knowledge as physics, or, to put it in a more Kantian framework (as Frege does), whether geometry
is synthetic a posteriori or synthetic a priori. As we have seen above, Gauss argues that geometry is an
empirical science, just like physics, and is, thus, synthetic a posteriori. Frege, on the other hand, maintains
in Grundlagen that geometry is synthetic a priori, and he argues for a particular geometrical source of
knowledge in “Erkenntnisquellen der Mathematik und Naturwissenschaften” Frege (1979b), which was
written in the year before his death.

20 “Ich brauche weiter nichts als rein logisches Denken, wenn ich mit Zahlentheorie oder Algebra mich
beschiftige. Ganz anders verhélt es sich mit der Geometrie. Ich kann die Eigenschaften des Raumes nimmer
durch bloes Nachdenken ergriinden, so wenig, wie ich die Grundgesetze der Mechanik, das Gravitations-
gesetz oder irgend ein anderes physikalisches Gesetz so erkennen kann. Es ist ja der Raum nicht ein Produkt
meines Nachdenkens, sondern er ist mir durch meine Sinne gegeben” (Hilbert, 2004d, p. 22).

21 In his lecture, Hilbert does not mention Dedekind explicitly, but he writes that one can gain numbers by
“pure thought,” e.g by “counting thoughts themselves.” This idea was expressed by Dedekind in § 66 of his
Was sind und was sollen die Zahlen?

22 In Géométrie descriptive (Monge, 1799).
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(Poncelet, 1822, p. 3). A non-projective property is called metric (Poncelet, 1822,
p. 5). An important metric property is the distance ratio, on which coordinization in
analytic geometry relies.

There is, however, a property that is not invariant under projection but that synthetic
geometers want to consider nonetheless: the number of points of intersection. In order
to classify the number of points of intersection as projective properties, Poncelet
introduces new points to affine space: points at infinity and imaginary points. Their
existence is demanded by Poncelet’s “principle of continuity,” according to which
the number of points should be invariant under continuous movements of parts of a
figure.2* Another fruitful device for inferring geometrical sentences within synthetic
projective geometry is the principle of reciprocity, which later became known by the
name “principle of duality.”>* According to this principle, one can interchange the
words “point” and “line” in the projective geometry of the plane while preserving
truth and likewise the words “point” and “plane” in the geometry of space.?

Poncelet’s principle of continuity is crucial for the strength of synthetic geometry,
as it allows sentences of great generality to be deduced without employing analytic
methods. However, these extension elements (i.e., points in infinity and imaginary
points) are not based on intuition, unlike the usual points. Other mathematicians tried
to equate extension elements with objects based on intuition. For example, von Staudt
equates the expression “meeting at a point in infinity” with “being parallel” (von Staudt,
1847, §5). According to him, a direction can be represented (vertreten) by a line out
of the collection of parallel lines (which are usually said to “have this direction”) (von
Staudt, 1847, §3). An imaginary point is an involution to which a certain “sense” is
attached (von Staudt, 1856, §7).%°

It is noteworthy that the role of intuition is highly ambiguous when it comes to
the principle of continuity. On the one hand, the introduction of extension elements
is not motivated by intuition. In fact, they lead to results that seem to contradict our
intuition at first glance. For example, it holds that every pair of circles has two points
of intersection. However, one can easily imagine a pair of circles that do not intersect

23 poncelet first mentions “the principle or law of continuity” (“le principe ou la loi de continuité”) in his
Traité des propriétés projectives des figures (Poncelet, 1822, p. xxiij).
24 The term “principle of duality” originated with Gergonne’s “Philosophie mathématique. Considérations

philosophiques sur les éléments de la science de I’étendue”, where the term “duality” (“dualité”) is used
for the first time in this context (Gergonne, 1826, p. 210).

3 A very detailed study of the influence of the debate about the verification of duality in the early 19th cen-
tury and its influence on Hilbert can be found in Eder and Schiemer (2018). They argue that metatheoretical
reasoning emerged from this debate and that here we can find two different approaches: a “syntactic” (or
“proof-theoretic”) approache and a “semantic” (or “model-theoretic”) approach, the former being attributed
to Poncelet and the latter to Pasch (who relies on Pliicker’s work). They argue that Hilbert’s writing reveals
some ambiguity regarding whether Hilbert’s metatheoretic investigations (i.e., his consistency and inde-
pendence proofs) have to be understood in the syntactic or the semantic way (Eder & Schiemer, 2018, pp.
82-83).

26 Von Staudt already came up with the idea to identify imaginary points with involutions in von Staudt
(1847); however, he struggled to find a way to bijectively map only one imaginary point to one involution.
He finally solved this problem with the introduction of sense in von Staudt (1856). The most comprehensive
article on this issue is by Nabonnand (2008).
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in the intuitive understanding of “intersection.””’ On the other hand, the principle
of continuity is central to the fruitfulness of synthetic projective geometry. For the
pioneers of synthetic projective geometry, this geometry is an attempt to reinforce
the connection of geometry to actual figures. Extension elements are introduced by
synthetic geometers by finding substitutes that are based on intuition, i.e., parallel lines
for points in infinity and involutions for imaginary points.

In his doctoral thesis, Frege draws the same conclusion. In the first paragraph, he
remarks that “we seem well justified in questioning the sense of imaginary forms, since
we attribute to them properties, which not infrequently contradict all our intuitions”
(Frege, 1873, p. 3, 1984a, p. 1). A few sentences later, Frege mentions the possibility of
taking points in infinity as just another expression for having the same direction (Frege,
1873, p.3,1984a, p. 1). In the next paragraph, he also mentions that “[iJmaginary points
can [...] be defined [...] by involution on a straight line” (Frege, 1873, p. 4, 1984a, 1f.).
These solutions were, as we have seen, first suggested by von Staudt.

The aim of Frege’s thesis, as the title already suggests, is to find “geometrical
representations” of imaginary objects. Frege explains the notion of a “geometrical
representation” as follows:

[B]y geometrical representation of imaginary forms in the plane we understand
accordingly a kind of correlation in virtue of which every real or imaginary
element of the plane has a real, intuitive element corresponding to it. (Frege,
1873, 6f., 1984a, p. 7)

In the following paragraphs, Frege presents a new method to represent imaginary
points.?® According to this method, imaginary points in the plane are represented by
lines in (three-dimensional) space. Therefore, Frege, introduces two planes parallel
to each other: the “real plane” and the “imaginary plane.” One finds the real line
representing an imaginary point in the following way: An imaginary number can be
thought of as a binary tuple of real numbers, with one of those numbers representing
the real part and the other representing the imaginary part. A real point in the plane is
analytically denoted by a binary tuple of real numbers—the coordinates. Analogously,
an imaginary point in the plane is analytically denoted by a four-tuple of real numbers,
two of which denote the real parts and two the imaginary parts. In Frege’s represen-
tation, such an imaginary point is represented as a line going through one point of the
real plane and one point of the imaginary plane. The point in the real plane is denoted
by the two real numbers of the four-tuple denoting the real parts and the point in the
imaginary plane is denoted by the two real numbers denoting the imaginary parts (see
Fig. 1). A real point in the plane is represented by a real line in space, which goes
through the origin of the imaginary plane (see line g in Fig. 1).

Thus, Frege indeed discusses the possibility of representing extension elements by
different “real, intuitive elements.” At first glance, this contrasts oddly with his later
inability to understand Hilbert’s method of reinterpreting geometrical signs differently
for metatheoretical investigations. However, Frege’s representations are not models in

27 According to this common understanding of “intersection,” which is based on the visual representations
of geometrical figures, a pair of geometrical objects intersect if the lines of their representations cross.

28 In the last paragraph of his thesis, Frege compares his representation to that of Gauss.

@ Springer



Synthese (2023) 202:12 Page9of30 12

plane of the imaginary

\ s
(0.0
e \
| plane of the real
‘ \
|}

Fig.1 Frege’s representations of imaginary points

the modern sense of the term. There are no uninterpreted signs that are interpreted in
a particular domain like in modern model theory;2” instead, meaningful arithmetical
expressions are represented by geometrical objects. The geometrical objects serve as
“symbols,” as Frege would later call them in Grundlagen.

At this time, Frege had not yet employed the strategy to let abstract objects such
as sets define other objects, which he suggests in his Grundlagen der Arithmetik,
since he basically did not yet have a notion of set, let alone his abstraction principle.
Nevertheless, there is a continuity between Frege’s way of dealing with extension
elements from his thesis of 1873 until his Grundlagen der Arithmetik, i.e., the influ-
ence of von Staudt’s approach. As already mentioned, Frege refers positively to von
Staudt’s equation of extension elements with more intuitive objects in his thesis. In his
Grundlagen der Arithmetik, Frege states his conviction that one should define direc-
tions by presupposing the notion of parallel lines and not the other way round. This
is a conviction he shares with von Staudt, who is always cautious about presupposing
more intuitive concepts and defining less intuitive ones. In his Geometrie der Lage,
von Staudt defines parallels as lines that have no point of intersection (von Staudt,
1847, §3 (31)). Line segments are parallels if they are part of parallel lines. They are
unanimously (einstimmig) parallel if they are on the same side of a line connecting
their starting points.

29 Eder (2019) comes to a similar conclusion: “Frege thus seems to identify the real projective plane with
a particular model of the real projective plane. We can visualize or ‘represent’ this particular structure by
means of other structures (say, by a sphere) or describe it by means of coordinates. But there is only one
real projective plane, and so the question of associating different interpretations with words like ‘point’ or
‘line’ does not arise” (Eder, 2019, p. 5562).
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Von Staudt does not define a direction as a set of parallel lines (or line segments),3"
but directions of rays can be “determined” (“bestimmt”) by any line segment unani-
mously parallel to it, and this line segment can be “represented” (“vertreten”) by any
other line segment unanimously parallel to it in this context (von Staudt, 1847, §3
(35)). We have to keep in mind that von Staudt lacked the concept of a set at this
time. However, it is quite obvious that von Staudt inspired Frege.>! This becomes
even more apparent when considering that Frege, in the same paragraphs, mentions
the notion of Stellung for what planes in space share if they are parallel.>> This notion
also originates with von Staudt (1847, § 3 (40)).

There is, however, a problem with the approach Frege presents in §§ 1-10 of his
Ph.D. thesis. Since lines can be generally identified by two points, and points of the
projective plane are presented by lines in the real space, imaginary lines are respectively
represented by pairs of real lines, with each representing an imaginary point that lies
on the imaginary line. However, as Frege mentions in § 11, this representation violates
the principle of duality. Therefore, Frege presents an alternative identification, that
preserves duality: imaginary lines, as well as imaginary points, are represented by two
real lines. Frege does not use drawings to lay down his approach but continues purely
analytically, using homogeneous tetradic Pliicker coordinates.

These coordinates were introduced by Julius Pliicker, who tried to capture the
results of synthetic geometry within analytic geometry.>® Therefore, his task is not to
avoid metric notions for his coordinization, but to find a coordinization that allows the
result of synthetic projective geometry to be deduced elegantly and efficiently. Thus,
he developed an analytic foundation for the principle of reciprocity by introducing a
coordinate system that is homogeneous,>* i.e., a coordinate system in which coordinate
tuples, those coordinates that have the same ratio, are equal. In such a coordinate
system, a point in the plane is denoted by three coordinates and a point in three-
dimensional space by four coordinates. In the projective plane, every line can be
expressed by an equation of the form ax + by + cz = 0. In this equation, (x, y, z)
and (a, b, c¢) are interchangeable. Thus, one could either, as usual, take a, b, and ¢ as

30 we thereby contradict Wilson, who indicates that von Staudt already used the definition of parallelism
as a set (Wilson, 2005, p. 173). However, von Staut does not use the notion of a set In his paper from 2010,
Wilson is much more cautious in his claims about von Staudt and no longer indicates that von Staudt defines
directions as sets (Wilson, 2010, 397f.).

31 Several authors have already remarked this similarity. We already mentioned (Wilson, 2005, p. 173).
More recently, Eder (2021, p. 6531) has suggested that Frege had von Staudt in mind when writing the
introduction of his thesis.

32 This was already pointed out in Mancosu (2016, p. 62).

33 As Jemma Lorenat points out, Pliicker was, for that reason, sometimes even classified as a synthetic
geometer. Pliicker avoids all calculations that do not concern the final result. Cournot suggests that Pliicker’s
analysis strongly resembles “la synththese.” He employs the term “synthesis” to emphasize how Pliicker’s
presentation works toward a known result, thus functioning well to prove known theorems (Lorenat, 2016,
p- 432). Lorenat herself classifies Pliicker as belonging to the “middle ground between the pure and analytic
methods” (Lorenat, 2015a, p. 175). However, one must take into account that Pliicker himself frequently
distinguishes “analytic geometry” and the geometry that Poncelet introduced. Pliicker thereby classifies
himself as a member of the former approach. (See, e.g., Pliicker, 1830)

34 There are also other homogeneous coordinate systems, that were introduced at the beginning of the 19th
century, e.g., that of Mobius. However, it was Pliicker who had the idea to use his coordinate system to
contribute to the discussion on the justification of the principle of duality. See also Boyer (2004, p. 294).
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constants and ax + by + cz = 0 as a line equation with (x, y, z) as point variables, or
one could take x, y, and z as constants and ax + by 4 cz = 0 as a point equation with
(a, b, ) as point variables.>> Thus, the projective plane’s duality between points and
lines becomes trivial (Pluecker, 1831, p. 2). In § 11 of his thesis, Frege uses Pliicker
coordinates for space, where a point is represented by four variables.>

Frege also builds on the ideas of Pliicker later in his mathematical writings. For
example, he uses Pliicker coordinates extensively in his lecture “Analytische Geome-
trie nach neueren Methoden,” which can be seen from the notes taken from Frege’s
first lecture in the winter semester of 1874/1875, alecture he gave seven times between
1874 and 1895.37 In this lecture, Frege provides an overview of three different coor-
dinate systems: the “distance coordinate system” (“‘Abstandskoordinatensystem”),
“distance ratio coordinate system” (“Abstandsverhiltniscoordinatensystem”), and
“general homogeneous coordinate system” (“Allgemeines homogenes Coordinaten-
system”). He points out that these systems are based on three different properties:
distance between two points, distance ratio, and cross-ratio. Moreover, he calls our
usual coordinates a particular case of the “more general coordinate system”—the
homogeneous coordinate system (Frege, 1874/1875, p. 363). Similarly, in his talk
“Uber Invarianten” from 1877, Frege identifies the properties that are preserved under
the transformation of coordinate systems (for example, the transformation of classi-
cal coordinates preserves congruence) and explains how different coordinate systems
differ in this respect (Frege, 1877, p. 378).

Frege also follows an approach invented by Pliicker when it comes to understanding
a fourth dimension. Pliicker uses four line coordinates to describe a point in space
(Pliicker, 1868). Thus, we have a visual representation of an analytic expression that
uses four dimensions. In his “Lecture on Geometry of Pairs of Points in the Plane,”
Frege develops a similar idea. He takes pairs of points as the basic elements of the plane,
which means that four coordinates denote a pair of points in the plane. Frege appreciates
that “[i]n this way we arrive at geometries of more than three dimensions without
leaving the firm ground of intuition.” Therefore, for Frege, these four coordinates do
not refer to a point in four-dimensional space. Frege does not want to acknowledge
such objects. Instead, the four coordinates refer to a pair of points in the plane, which
is an unproblematic geometrical object for Frege.>® This strategy is the same as the
one used by Frege in his Ph.D. thesis, where he “represents” points in the imaginary
plane by lines in three-dimensional real Euclidean space.

Therefore, we must conclude that Frege, in his mathematical writings, was heavily
influenced by the projective geometry of his time, especially by the work of von Staudt

35 Tappenden (1995a, p. 445) presents a convincing argument that Frege’s idea that a sentence might be
decomposed into function and argument(s) in multiple ways is influenced by Pliicker’s proof of duality.

36 Frege got exposed to Pliicker’s work in a geometry lecture from Alfred Clebsch, which Frege attended
in 1871 (Kreiser, 2001, p. 87). The lecture Frege attended appeared in print (Clebsch, 1876). Clebsch
introduces Pliicker’s line coordinates very early in his lecture (section 1.3 in the book).

37 In 1895, Frege wrote his first letter to Hilbert, just after they met at a conference in Liibeck (Frege, 1980,
pp. 32-33).

38 As Tappenden (1995b, 327f.) shows, Frege and Pliicker differ sharply in this respect from Riemann, for
whom four-dimensional spaces are actually structures of four independent parameters.
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Fig. 2 Fourth harmonic point

and Pliicker. Precisely these two authors were also essential to Hilbert’s work in the
1890s.

According to Hilbert, the “Idol” (“Vorbild”) for his “Lectures on Projective Geom-
etry” from 1891 is von Staudt, who, according to Hilbert, solved the question of
“whether it is possible to free projective geometry entirely from measuring and cal-
culating.”3° In his “Lectures on the Foundations of Geometry” from 1894, Hilbert
presents von Staudt’s way of introducing coordinates without relying on metric
notions. This method relies on the projective theorem of the fourth harmonic point,
which von Staudt expresses in Geometrie der Lage as follows:

If three points A, B, C are given on a straight line, and a quadrangle is constructed
so that one diagonal passes through the second of the given points and at each
of the two remaining points two opposite sides [of the quadrangle, TR] cut each
other, then the other diagonal cuts the line at another point D, which is determined
by the three given points. This point D is called the fourth harmonic point.*? (See
Fig.2))

One can now use this theorem to set up a metric-free coordinate system in the
following way:*! Let 0, & and oo be three colinear points and « a positive real number.
We can assign the value 2« to the fourth harmonic point if we take O to be the point
on the diagonal. Now we can proceed to assign the value 3¢ to the fourth harmonic
point of &, 2« and oo, where « is on the diagonal.

Similarly, we can assign the value 5 to the fourth harmonic point of 0, & and oo,
where oo is on the diagonal.

39 “obes moglich sei, die projektive Geometrie ganz vom Messen und Rechnen frei zu machen” (Hilbert,
2004d, p. 24).

40 “Wenn in einer Geraden drei Punkte A, B, C gegeben sind, und alsdann ein Viereck so construiert wird,
dass eine Diagonale durch den zweiten Punkt der gegebenen Punkte geht, in jedem der beiden iibrigen aber
zwei einander gegeniiberliegende Seiten sich schneiden, so schneidet die andere Diagonale des Vierecks
jene Gerade in einem weiteren Punkte D, welche durch die drei gegebenen Punkte bestimmt ist und zu
denselben der vierte harmonische Punkt heif3t” (von Staudt, 1847, §8 (93)).

41 Hilbert presents this method of coordinization in a lecture “Die Grundlagen der Geometrie” (Hilbert,
20044, pp. 85-93). The first presentation of the metric-free coordinization can be found in von Staudt
(1856).
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Finally, we can assign the value 2n+1 to the fourth harmonic point of 0, 1 and }l,

where % is between 0 and 1 while 1 lies on the diagonal.

Similarly, one can assign negative values to the line Ooco (Hilbert, 2004a, p. 90). In
this way, a number can be assigned to any point on the line.*?

Giovannini (2016) showes that the discussion of von Staudt’s coordinization among
mathematicians of his time heavily influenced Hilbert’s investigation of continuity
axioms in his Festschrift (Giovannini, 2016, pp. 41-49).

Like Frege, Hilbert does not fully subscribe to synthetic geometry but sees analytic
and synthetic methods as two interesting geometrical toolboxes that address different
needs. In the closing passage of his lecture from 1891, he lists the advantages of both
disciplines. According to him, in analytic geometry, “one arrives faster at propositions
with highest generality,”*? “while projective geometry [...] has the advantage of purity,
closure and conceptual necessity of its methods.”**

The distinction between “projective geometry” on the one hand and “analytic geom-
etry” on the other is a bit odd, because projective geometry can also be done with
analytic methods. A prominent example is the work of the previously mentioned
German geometer Pliicker.¥

In fact, Hilbert was aware of Pliicker’s work. In his 1894 lecture, he introduces
homogeneous Pliicker coordinates as an alternative to von Staudt’s metric-free coor-
dinization (Hilbert, 2004a, 95ff.) and proves duality in Pliicker’s way (Hilbert, 2004a,
p. 103), although he does not explicitly mention Pliicker’s name. Considering these
two approaches to coordinization, Hilbert draws the following conclusion:

At the same time one recognizes that projective and analytic geometry do not
significantly differ at all, but rather only the starting points of the two branches
of geometry are different, while their methods surely come to the same thing.*®

This resembles Pliicker’s own evaluation of his results. In “Uber ein neues
Coordinatensystem,” he writes:

The general analytic method and the method which Mr. Poncelet developed in
his “Traité des propriétés projectives” are based on the one hand on essentially
different ideas; but on the other hand they coincide so completely in their results
that the first method sometimes appears, admittedly astonishingly enough, to
have been considered as a paraphrase, a plagiarism of the second. The question

42 Hilbert’s proofs can be found in Hilbert (2004a, pp. 88-90).

43 “gelingt es rascher zu groter Allgemeinheit der Sitze zu gelangen” (Hilbert, 2004d, p. 55).

44 “Dagegen hat die projektive Geometrie [...] den Vorzug der Reinheit, Abgeschlossenheit und Den-
knotwendigkeit der Methoden” (Hilbert, 2004d, p. 55).

45 In France, Gergonne had a similar approach. Gergonne was the editor of the French journal Annales des
mathématiques pures et appliquées and published early work of Pliicker. An in-depth study of the different
styles of Pliicker and Gergonne (and Poncelet) can be found in Lorenat (2015a, 2015b).

46 “Zugleich erkennt man, dass projektive und analytische Geometrie sich garnicht wesentlich unter-
scheiden, vielmehr nur die Ausgangspunkte in beiden Zweigen der Geometrie verschieden sind, wihrend
sicherlich die Methoden auf das namliche hinauslaufen” (Hilbert, 2004a, p. 103).
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should instead have been answered of whether there is a necessary cause for this
coincidence and where it is to be sought.*’

Hilbert also builds on Pliicker’s work in his Festschrift. In § 9, he presents a con-
sistency proof for his axiom system and provides an analytic interpretation of the
geometrical notions that occur in his axioms, according to which points are identified
with pairs of numbers (X, y) and lines with triples of numbers (u, v, w).48 Hence,
Hilbert here takes over Pliicker’s idea of line coordinates.*’

We have thus seen that Frege and Hilbert share the same mathematical heritage.
However, the question remains of where their profound misunderstanding comes from.
In what follows, we will argue that both have different conceptions about the relation-
ship between axioms and Anschauung, which make them evaluate the results of late
19th-century geometry, that they both acknowledge, differently.

3 Frege and Hilbert on axioms and intuition

The plurality of different geometries poses a problem for Kant’s philosophy of math-
ematics. For Kant, sentences of Euclidean geometry are a priori truths, because
Euclidean space is the Anschauungsform of outer things. The possibility of alternative
geometries is discussed neither in Kant’s philosophy nor in the mathematical writings
of his contemporaries. However, with the rise of non-Euclidean geometry, the epis-
temic nature of Euclidean geometry came into question. As mentioned in Sect. 2, for
Gauss, geometry is an empirical science. It is empirical insofar as one can ask which
geometry describes our universe’s form. According to Gauss, this can be investigated
through physical experiments. Gauss builds his argument on a mathematical state of
affairs. In non-Euclidean geometries, the inner angle sum is different from 180°. The
bigger the triangles are, the greater the difference from 180°. Thus, Gauss concludes
that measuring the angles of big triangles in physical space might eventually uncover
the universe’s geometry. The “big triangles” that he has in mind are triangles formed
by light rays.

Frege and Hilbert (at the time he wrote his Festschrift).>" both have a more Kantian
position insofar as they both, in a way, hold that geometrical axioms are not empirical
truths. According to Frege, we recognize the truth of geometrical axioms through a

47 “Die allgemeine analytische Methode, und die Methode, die Herr Poncelet in seinem ‘Traité des pro-
priétés projectives’ entwickelt hat, beruhen auf der einen Seite auf ganz wesentlich verschiedenen Ideen,
und stimmen doch auf der anderen Seite so sehr in den Resultaten iiberein, dass man, freilich sonderbar
genug, die erste Methode als eine Periphrase, als ein Plagiat der zweiten hier und da betrachtet zu haben
scheint, statt dass man sich ruhig die Frage beantworten sollte, ob nicht ein notwendiger Grund dieser
Ubereinstimmung vorhanden und wo derselbe zu suchen sei” (Pliicker, 1830, p. 2).

48 The numbers are algebraic numbers, which can be obtained starting from 1 by a finite application of the
following operations: addition, subtraction, multiplication, and the operation J1+ .

49 Here, Hilbert uses non-homogenous line coordinates.

50 Hilbert’s views changed over time. In the early 1890s, he seemed to agree with Gauss. As we will see
in what follows, in 1894, Hilbert argued explicitly against Gauss’s idea of an ultimate experimental proof
for geometrical axioms. He still seemed to hold this view at the time he wrote his Grundlagen However,
after learning about Einstein’s theory of relativity, he again seemed to be more sympathetic to Gauss’s view.
These more empirical tendencies in this later period were already observed by Corry (2006, p. 168).
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particular source of knowledge, which he sometimes calls Anschauung. According
to Hilbert, on the other hand, geometrical axioms are not truths at all. However, we
can ask which set of axioms is more suitable for describing the physical world. The
answer to this question is not merely an empirical one. We will see that Hilbert is
heavily influenced by Hertz and that his position resembles neo-Kantians such as
Cassirer.

3.1 Frege’s traditional notions of axioms and Anschauung

Two crucial convictions about axioms shape Frege’s philosophical discussion of
non-Euclidean geometry. Firstly, Frege thinks that the mathematical sciences have
a hierarchical order, where the axioms of sciences that are lower in this hierarchy have
to be consistent with axioms of sciences higher in the hierarchy but cannot be proven
by them. Secondly, axioms express truths that rest on a specific source of knowledge,
which is related to the axiom’s position in the hierarchy.

Frege’s hierarchical structure from top to bottom is as follows: (1) logic, which
includes arithmetic; (2) geometry, the axioms of which have to be consistent with the
axioms of logic but cannot be deduced from them (and that is the reason why alternative
geometries can be grasped by conceptual thought); and (3) physics, the axioms of
which must be consistent with the axioms of geometry but cannot be deduced from
them (and that is why fictional situations, which do not obey the laws of physics, can
nonetheless be imagined as long as they are intuitable).>!

This hierarchy can be illustrated as follows:

logic (of which arithmetic is a part)

geometry conceptualizeable, alternative geometry

physics intuitable, alternative physics

Frege describes this hierarchical ordering in § 14 of his Grundlagen. We have
already discussed the relationship between logic and geometry, which Frege explains
in the passage from § 14 quoted on page 6. We have seen that according to Frege,
Euclidean geometry is true, but non-Euclidean geometries are nonetheless perceiv-
able by conceptual thought and, thus, by logical means because they obey the logical
laws. One may recall Frege’s conclusion that “the axioms of geometry are indepen-
dent [...] of the primitive laws of logic, and consequently are synthetic.” Thus, we
need Anschauung in order to recognize the true geometry among logical possible
geometries. Logic is not sufficient for that.

51 Shipley (2015, p. 18) already mentioned that Frege “establishes a hierarchical structure of the mathe-
matical discipline,” by insisting that arithmetic is more general than geometry. However, Shipley does not
discuss the position of physics in this hierarchy (which is not a “mathematical discipline” in the narrow
sense).
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Similarly, in the same paragraph Frege argues that alternatives to the true physical
laws are intuitable:

Empirical propositions hold good of what is physically or psychologically actual,
the truths of geometry govern all that is spatially intuitable, whether actual or
product of fantasy. The wildest vision of delirium, the boldest inventions of
legend and poetry, where animals speak and stars stand still where men are
turned to stone and trees turn into man, where the drowning haul themselves up
out of swamps by their own topknots—all these remain, so long as they remain
intuitable, still subject to the axioms of geometry.

In other words, the axioms of physics have to be consistent with the axioms of
geometry but cannot be deduced from them; otherwise, it would be impossible to
imagine a world where alternative physical axioms hold. Therefore, to determine the
true axioms of physics among all the alternative axioms of physics that are intuitable,
we need another source of knowledge, namely, sense experience.

According to this hierarchy of sources of knowledge, sense experience is not
involved in the recognition of geometrical truths. Thus, a geometrical sentence can-
not be refuted by a physical experiment. In particular, the Gaussean idea that physical
experiments could challenge geometrical axioms makes no sense in Frege’s conception
of the sciences.

Thereby, Frege follows Kant, for whom the idea that experiments could challenge
the geometrical axioms is similarly alien. However, unlike Kant, Frege does not have
a profound philosophical explanation to justify this hierarchical order. Kant distin-
guishes between Ding an sich and Ding der Erfahrung. A Ding an sich cannot be
cognized. Space is the form of our outer experience (Erfahrung). Thus, things are
only spatial insofar as they are Dinge der Erfahrung. Geometry expresses truths about
the property of space. From a modern perspective, one can still criticize Kant for not
presenting an argument for the Euclidean nature of space (which is anachronistic,
since non-Euclidean geometry was discovered after Kant’s death). However, Kant’s
conception allows him to argue why experiments cannot refute geometrical sentences.
Physics deals with Dingen der Erfahrung, space is the outer form of these Dinge der
Erfahrung, and geometry is a science that determines the properties of space (Kant,
1929, A25/B40). Thus, the laws of physics have to obey the laws of geometry.

Frege never mentions this crucial Kantian conception.’> He simply claims that
there is a geometrical source of knowledge, which he sometimes calls Anschauung.>3
According to Frege, a source of knowledge is “what justifies the recognition of the
truth, the judgment” (Frege, 1979b, p. 267). In the case of logic, Frege makes how this
works quite explicit: the basic laws of logic must be acknowledged as true because we
cannot think their negation (Grundlagen, § 14). Other logical truths (that, for Frege,
include all sentences of arithmetic) can be acknowledged as true because they fol-
low from the basic laws by simple rules, which are truth-preserving. However, with

52 Dummett already pointed this out, concluding that “this leaves it obscure why we should treat our
intuition as a ground of knowledge of geometry” (Dummett, 1982, p. 251).

53 Frege later abandons the Kantian vocabulary he extensively uses in the Grundlagen In his unpublished
essay “Erkenntnisquellen der Mathematik und Naturwissenschaft” (Frege, 1979b), for example, he just
speaks about “the geometrical source of knowledge.”
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the discovery of the paradox, this procedure turns out to be fallacious.”* The source
of knowledge for geometrical sentences is Anschauung. Analogously, a geometrical
axiom is true if it is not intuitable that its negation holds, i.e., if we cannot imag-
ine a world, where they do not hold, not even in “the wildest vision of delirium” or
“the boldest inventions of legend and poetry” (Grundlagen § 14). However, how is
the truth of geometrical axioms justified by testing if its negation is not intuitable?
This decision procedure only makes sense if geometry only governs our Dinge der
Erfahrung;> otherwise, it could be possible that alternative geometrical axioms are
true, even though we lack the capacity to imagine a world in which they do not hold.
In § 26 of the Grundlagen, Frege himself indicates that there might be beings with a
different spatial intuition (Raumanschauung),’® Unfortunatly, Frege never discusses
the distincion between Ding an sich and Ding der Erfahrung

Nonetheless, Frege does not doubt at all that the Euclidean axioms, and not the
non-Euclidean ones, are intuitable and, thus, true. Even in his unpublished paper
titled “Erkenntnisquellen der Mathematik und Naturwissenschaften” from 1924/1925,
shortly before his death, Frege stresses that if we understand axioms “in the old
Euclidean sense,” i.e., as true statements, “we need not fear that this source of knowl-
edge will be contaminated” (Frege, 1979b, p. 273). Therefore, the geometrical source
of knowledge is the most reliable source for Frege at this time (after the discovery of
the Russell paradox).

When arguing for the truth of Euclidean geometry instead of non-Euclidean in
his unpublished note “Uber Euklidische Geometrie”, Frege gives a merely historical
argument by mentioning that Euclid’s elements “have exercised unquestioned sway
for 2000 years” (Frege, 1979a, p. 169). The infamous comparison of non-Euclidean
geometry to astrology, which occurs in this note, serves as an expression of the convic-
tion that non-Euclidean geometry is false (like astrology) since Euclidean geometry
is true (like astronomy).

However, this does not demonstrate that Frege dismisses non-Euclidean geometry
completely. We have already seen in Sect. 2 that Frege, unlike Lotze, acknowledges
the possibility of conceptually grasping non-Euclidean geometry. Moreover, we have
already established that this is crucial for Frege’s hierarchical understanding of the
sciences.

For example, we have seen that Frege presented a way to visually represent the
results of analytic projective geometry in his thesis. We can use arithmetic to express
alternative geometries that are not in accordance with our Anschauung. This is possible
because Frege has a much broader notion of the analytical than Kant. Unlike Kant,

o Frege addresses this issue explicitly in his unpublished paper “Erkenntnisquellen der Mathematik und
Naturwissenschaft” from 1924/1925 (Frege, 1979b, pp. 269-273).

55 Eder (2021, p. 6554) argues that “Frege does seem to understand the notion of intuition in the psycho-
logical sense,” and that intuition was “purely subjective.” However, if this is right, it is hard to understand
how a geometrical proposition can be classified as objectively “true.” Something subjective can hardly be
a foundation for objective truths.

56 Schirn (2019, p. 957) tries to solve this puzzle by claiming that for Fege, geometrical axioms are objective,
while spatial intuition is subjective. However, he admits that “I fail to see how the claimed dependence of
the validity of the (objective) geometrical axioms on the nature of our faculty of intuition [...] could be
reconciled with the subjectivity of our spatial intuitions, stressed as it is in The Foundations §26” (Schirn,
2019, p. 959).
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Frege identifies being analytic with being deducible from logic. This resembles Kant’s
notion of analyticity insofar as Kant identifies analytic judgments with those that can
be recognized by the principle of non-contradiction. Even so, Frege’s notion of logic
and analyticity goes well beyond Kant’s. Most importantly, Frege can distinguish with
his logic between concepts of different order and arity because he has quantifiers and
relations.”’ These tools allow him to build very complex notions from logic alone,
such as having a successor and being a property inherited in a series. These notions
stand in much more complex inferential relations than those expressed by syllogistic
logic.

Syllogistic propositions have the form “S is P”. The predicates “S” and “P” are
composed of simpler notions by mere conjunction. We may now ask if “P” is among
the simpler notions of which “S” is composed by conjunction. If it is, S is P does not
extend our knowledge because we only explicate what is already there (Kant, 1929,
A7/B10f). Kant’s famous example is the sentence “All bachelors are unmarried”,
where “unmarried” is already contained in the definition of “bachelor”. Only this
kind of sentences can be proven by the principle of non-contradiction. Frege argues in
§ 88 of Grundlagen that he can build complex notions, that are not just conjunctions of
simpler notions and that, as aresult, being logically deducible (thus, in his terminology,
“analytic”) and just explicating the subject term (thus, not extending our knowledge
in Kant’s terminology), do not coincide.

Therefore, for Frege, there are sentences that are analytic but nonetheless extend
our knowledge.”® This contrasts sharply with Kant’s original conception of logic and
analyticity,59 which, according to Frege, is too narrow (Frege, 1999, § 88). It is only
in the context of this broader notion of logic that it makes sense to call logic a source
of knowledge. It is also essential for Frege’s foundational project to deduce arithmetic
from logic.

However, in order to acknowledge the truth of geometry, we still need Anschauung,
according to Frege. Frege never makes his notion of Anschauung explicit, even though
it is the source of knowledge of geometry. However, in the preceding paragraph of his
Grundlagen, i.e., § 13, Frege provides a short explanation of what is particular about
geometrical reasoning, which illuminates Frege’s notion of Anschauung:

One geometrical point, considered by itself, cannot be distinguished in any way
from any other; the same applies to lines and planes. Only when several points,
or lines or planes, are included together in a single intuition [Anschauung], do
we distinguish them. In geometry, therefore, it is quite intelligible that general

57 Michael Friedman points out that Kant does not have our means of polyadic logic to ensure that an axiom
system has an infinite model (Friedman, 1990, 62f.) to express infinite indivisibility. As a result, conceptual
knowledge is inadequate for geometry and intuition must play a role (Friedman, 1990, 70f.). Michael
Wolff, on the other hand, claims that Frege’s modern logic, would be classified by Kant as a particular logic
(Fachlogik) of mathematics (Wolff, 1995, p. 220), because mathematical induction is a particular form of
inference for ordered entities, which inherit a certain property—something that is particular for the natural
numbers (Wolff, 1995, pp. 218-219).

58 See Tappenden (1995a) and Rohr (2020) for a more detailed explanation of Frege’s argument.

59 However, the idea that logic is a science is not in accordance with Kant. In his Critique of Pure Reason
Kant explicitly states that general, formal logic is “a conditio sine qua non, and is therefore the negative
condition of all truth. But further than this logic cannot go. It has no touchstone for the discovery of such
error as concerns not the form but the content” (Kant, 1929, p. 98, A59{/B84).
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propositions should be derived from intuition; the points or lines or planes which
we intuit are not really particular at all, which is what enables them to stand as
representatives of their kind.

This argument can be paraphrased as follows: what makes geometrical reasoning
possible is that particular geometrical objects do not have specific properties besides
their spatial relation; consequently, general sentences can be derived from single
geometrical constructions. This idea resembles Kant’s conception of mathematical
reasoning.

According to this, it is crucial for mathematical proofs that they use constructions. In
the chapter “Transcendentale Methodenlehre” of his Kritik der reinen Vernunft, Kant
acknowledges that a figure as an empirical object is something particular. He argues
that we can prove general statements through construction because we are simply con-
sidering the act of construction (Handlung der Konstruktion), thereby abstracting from
all particularities, such as the absolute size of the figure. He thus sums up the differ-
ence between mathematical (on behalf of constructions) and philosophical (on behalf
of logical deductions) reasoning in the following way: “Philosophical knowledge con-
siders the particular only in the universal, mathematical knowledge the universal in
the particular” (Kant, 1929, p. 577 (A714/B742)). This is exactly what Frege claims
here regarding geometrical knowledge.

However, unlike Kant, Frege makes a sharp distinction between geometrical and
arithmetical knowledge. He starts § 13 with the remark that “[w]e shall do well in
general not to overestimate the extent to which arithmetic is akin to geometry.” Then,
he refers back to a remark from Leibniz on arithmetical objects, which Frege quotes
and endorses in § 10 of Grundlagen:

An even number can be divided into two equal parts, an odd number cannot;
three and six are triangular numbers, four and nine are squares, eight is a cube,
and so on.

In this respect, arithmetical objects such as numbers differ significantly from
geometrical objects, which can only be distinguished “in a single intuition.” Frege
concludes that the deduction of a general proposition from a single intuition (i.e.,
construction) is not possible in arithmetic:

To what extent a given particular number can represent all the others, and at what
point its own special character comes into play, cannot be laid down generally
in advance.

Hence, arithmetical knowledge allows no inference from the particular to the
general—it is purely logical. Thus, for Frege, arithmetical reasoning is not like
“mathematical reasoning” in the Kantian sense but rather like Kant’s “philosophical
knowledge,” i.e., it is independent from Anschauung.

This coherent Fregean conception of Anschauung aims to clarify why geometry
and arithmetic rest on different sources of knowledge. It fails, however, to provide
evidence for the truth of Euclidean geometry in contrast to non-Euclidean geometry.

To summarize, Frege is aware that non-Euclidean geometries are without con-
tradiction. Thus, his dismissive utterance about non-Euclidean geometry in “Uber
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Euklidische Geometrie” does not rest on mathematical ignorance. Philosophically,
however, Frege does not present a good argument for the truth of Euclidean axioms
and Anschauung as a source of knowledge for them. His notion of Anschauung clar-
ifies why geometry and arithmetic rest on different sources of knowledge. However,
it does not clarify why the axioms of Euclidean geometry are true and not those of
non-Euclidean geometry. Hence, Frege’s conviction that the Euclidean axioms are true
and that Anschauung provides a source of knowledge of these truths is philosophically
dogmatic.

3.2 Heinrich Hertz’s picture theory and Hilbert’s late 1890s notion of an axiom

Like Frege, Hilbert was convinced at the time of their correspondence that arithmetic
is part of logic and that geometry is not. However, the agreement between the two
authors basically ends there.

Hilbert opposes both of Frege’s convictions about axioms when he wrote his
Festschrift. Firstly, he holds that there is no hierarchical order of sciences (beyond
the level of logic). In particular, physical experiments influence our choice of axioms
for geometry. Secondly, for Hilbert at this time, axioms do not express truths but are
merely a “picture” of reality. This is highly significant since different axiom systems
(contradicting each other) can be pictures of reality.

Finally, in the mid-1890s, Hilbert moves away from the idea that Anschauung is a
source of knowledge that can be presupposed as given and on which our axioms rest.
Instead, axiomatization serves as a way to “analyze” Anschauung.

In what follows, we will examine these three theses and show how all three are
closely related to each other.

The goal of his Festschrift is, according to its introduction, the “logical analysis
of our spatial intuition” (“logische Analyse unserer rdumlichen Anschauung”) The
word “Anschaunng” is of Kantian origin. The expression “logische Analyse unserer
rdaumlichen Anschauung,” however, is not. Nonetheless, this term is not explained in his
Festschrift. However, we find an explanation of the similar expression “logical analysis
of our intuitive faculty” (“logische Analyse unseres Anschauungsvermogens™).®? in
the notes on Hilbert’s “Lectures on Euclidean Geometry”, from the same year®'!

Utilizing an expression taken from Hertz (in the introduction to the Principles of
Mechanics) we could formulate our main question as follows: to which necessary
and sufficient and mutually independent conditions must a system of things be
subordinated, so that to every property of these things corresponds a geometrical
fact and vice versa, that is, so that these things are a complete and simple “picture”
of geometrical reality?

60 Frege also uses the Kantian term “Anschauungsvermdgen” in his thesis in a context where one would
rather expect Anschauung. In the opening passage, he writes, “[W]e consider that the whole of geometry
rests ultimately on axioms which derive their validity from the nature of our intuitive faculty” (Frege, 1984a,
p- D).

61 An almost identical passage can also be found in a lecture from 1902. Here, Hilbert again uses the term
“intuitive faculty” (“Anschauungsvermogen”) (Hilbert, 2004c, p. 541). It seems that he uses both expressions
synonymously, unaware or ignorant of the different meanings they have in the context of Kant’s philosophy,
which they are borrowed from.
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We can, finally, call our task a logical analysis of our intuitive faculty.%>

First, we need to clarify some of Hilbert’s other expressions here. As becomes clear
from the context, the (“necessary” and “sufficient”) “conditions” are the axioms.%3

The word “system” (“System”) can be found in Dedekind’s work and roughly means
set.* In his Grundlagen, Hilbert talks about “three systems of things,” which he calls
“points,” “lines,” and “planes.” Thus, these mathematical objects are not part of what
Hilbert calls “geometrical reality” but are a mere “picture” of it. Hence, there is no
direct relationship between axioms and reality, but the “systems of things” serve as
mediators.

As Hilbert indicates at the beginning of this passage, he took the picture notion from
Hertz’s introduction of the Prinzipien der Mechanik, a book published in 1894. Thus,
to understand Hilbert’s explanation, we must look closely at Hertz’s picture theory.

Hertz sets up his picture theory in his Prinzipien der Mechanik to explain why there
can be different physical theories explaining reality. In the introduction, Hertz writes,
“We form for ourselves [picture]s or symbols of external objects, and the form which
we give them is such that the necessary consequent of the [picture]s in thought are
always the [picture]s of the necessary consequences in nature of the things pictured”
(Hertz, 1899, p. 1).9 In other words, pictures are what we would nowadays call
scientific models; they allow us to predict future events.

It is crucial for Hertz’s conception that our picture has no ontological commitment.
He writes in the same passage, “The [picture]s which we here speak of are our con-
ceptions of things. With the things themselves they are in conformity in one important
respect, namely, in satisfying the above-mentioned requirement. For our purpose it is
not necessary that they should be in conformity with the things in any other respect
whatever” (Hertz, 1899, pp. 1-2). Hertz’s own theory of mechanics, for example,
contains so-called “hidden masses” (Hertz, 1899, pp. 25-26). For Hertz, this does
not mean that there is necessarily such an entity in the outer world, but only that the
hidden masses fulfill a task within the theory, namely, making good predictions about
real-world events possible.

There is not only one picture of the world, but in order to be classified as a picture,
a theory has to meet three criteria. First, it has to be logically permissible (zuldssig),

62 “Mit Benutzung eines Ausdrucks von Hertz (In der Einleitung zu den Prinzipien der Mechanik) konnten
wir unsere Hauptfrage so formulieren: Welches sind die notwendigen und hinreichenden und unter sich
unabhingigen Bedingungen, denen man ein System von Dingen unterwerfen muss, damit jeder Eigenschaft
dieser Dinge eine geometrische Tatsache entspreche und umgekehrt, damit also diese Dinge eine vollstindi-
ges und einfaches “Bild” der geometrischen Wirklichkeit seien?

Endlich konnen wir die Aufgabe als eine logische Analyse unseres Anschauungsvermdégens bezeichnen”
(Hilbert, 2004b, p. 303).

63 Hilbert introduces his lecture with the remark that it is necessary to uncover the “mutual relations” of
the axioms and to “reduce their number” (Hilbert, 2004b, p. 302). Moreover, before the quoted passage, he
asks which sentences must be added to the laws of logic to obtain Euclidean geometry (Hilbert, 2004b, p.
303). The quoted passage is meant to lead to an answer to this question, and, obviously, they are the axioms
of geometry, which must be added.

64 Unlike a set, however, a system, which contains only one object, is identical to the object it contains
(Dedekind, 1888, § 1).

65 The word “image” in the translation here and in what follows has been replaced by “picture,” which is
now generally accepted to be the better translation of “Bild” in this context.
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i.e., consistent. Unlike Hilbert, Hertz did not have any formal tools to prove a theory’s
consistency.

Of course, being consistent is not sufficient for a theory to be a picture of reality.
Therefore, the theory also has to be correct (richtig), i.e., in accordance with empirical
observations. This is the most important criterion. It is also expressed in the afore-
mentioned definition of a picture “that the necessary consequent of the [picture]s in
thought are always the [picture]s of the necessary consequences in nature of the things
pictured” (Hertz, 1899, p. 1).

Different, mutually inconsistent theories can meet this criterion. In fact, at the time,
there were several theories of mechanics that all met this criterion. In his book, Hertz
compares the classical Newtonian mechanics, the mechanics of Helmholtz, and his
own with each other.

Consequently, there can be several theories that are all correct. To pick one of
several equally correct theories, one must have a different criterion. This third cri-
terion is called “appropriateness” (“ZweckmiBigkeit”) (Hertz, 1899, p. 2). A theory
is appropriate if it is more “distinct” (i.e., if it “pictures more of the essential rela-
tions of the object”). Of two equally distinct pictures, the simpler picture (i.e., the one
which has “the smaller number of superfluous or empty relations’) is more appropriate
(Hertz, 1899, p. 2). Whether a particular picture is appropriate or not is, however, dis-
putable. Unsurprisingly, Hertz argues in Prinzipien der Mechanik that his own theory
for mechanics is the most appropriate one.

Utilizing Hertz’s expression of “picture” in the context of geometry, Hilbert extends
Hertz’s picture theory beyond its original scope—physics—to geometry. Hilbert dis-
cusses all three criteria for being a picture when evaluating his axiom systems for
geometry. Both Frege and Hilbert would agree on the first criterion: a geometrical
axiom system must be consistent in order to be considered to be scientific at all.

The criterion of correctness, however, marks an important difference to Frege’s
convictions about sciences. For Frege, it is crucial that we want to express true thoughts
with scientific sentences.%® For Frege, there are also sentences which express thoughts
that are neither true nor false, like “Odysseus was ashore at Ithaca sound asleep,”(’7
but these sentences belong to poetry, not science, because “Odysseus” does not refer
to a real human. The logical laws tell us that if a sentence is true, its negation has to be
false. Therefore, if the axiom of parallels is true, its negation has to be false. However,
if the axiom of parallels had no truth value at all, it would not be a scientific sentence
but belong instead to poetry.

As Ulrich Majer points out, “Hertz was the first to notice that not all scientific
sentences are either true or false, but some of them have a rather different and very
peculiar relation to reality” (Majer, 1998, p. 235). These are the theoretical sentences
of our theory. They are correct, not true, in the Fregean sense. The theoretical terms

66 Blanchette investigates the consequences of Frege’s understanding of thoughts for his reception of
Hilbert’s consistency and independence proofs. She points out that, for Frege, consistency holds between
thoughts, not merely sentences (Blanchette, 1996, p. 322). Thoughts can be expressed by different sentences.
Thus, consistency and independence proofs, which Hilbert presents, are no proof for the consistency and
independence of thoughts (Blanchette, 1996, p. 325).

67 Frege presents this example in “Uber Sinn und Bedeutung” (Frege 1892, p. 30, 1984b, p. 163). Frege
also mentions that it is true or false if “Odysseus” refers to a real person.
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like “hidden mass” do not refer to a certain entity. Still, they fulfill the crucial task
of enabling us to set up a theory where “the necessary consequents of the images
in thought are always the images of the necessary consequences in nature of the
things pictured” (Hertz, 1899, 1f.). Consequently, for Hertz and Hilbert, the fact that
a sentence includes words that do not refer is not a sign of it being non-scientific.

In this context, we also have to read Hilbert’s claim that one could substitute the
words “point,” “line,” and “plane” with the words “love,” “law,” and “chimney sweep.”
Hilbert was not interested in the philosophy of language, and neither did he conduct
any own research on logic at this time.%® It is the picture theory of scientific theories that
lies behind this claim.®® For Hilbert, there are no such things as “real” points, planes,
and lines, just as there are no real hidden masses. They are theoretical concepts that
enable us to set up scientific theories that meet the correctness criteria. They have no
existence outside of their role in the theory.

As we have seen above, appropriateness is a criterion that is only applicable if our
theories are correct but not true, since different theories can be correct (while, for
Frege, only one can be true). In his “Lectures on the Foundations of Geometry” from
1894, the year in which Hertz’s Prinzipien der Mechanik was published,70 Hilbert
evaluates the Gaussian experience mentioned above, in which one measures the inner
triangle sum of astronomical triangles in order to determine the geometrical form of
physical space. After criticizing Lotze for neglecting the possibility (i.e., absence of
contradictions) of non-Euclidean geometries, he discusses the Gaussian experiment
in the following way:

Of course, to come back to Lotze’s prejudice, no experiment can force us to
acknowledge hyperbolic geometry. Rather, even if the angle sum [of a triangle,
TR] appears from experiment to be < 7, it is always possible to get by with
the usual Euclidean space. [...] Still, it would be simpler, more transparent, and
would need fewer axioms, if under these circumstances we were to postulate the
hyperbolic nature of our space.”’

From this quote, we can conclude two things. Firstly, Hilbert acknowledges the pos-
sibility of classifying different geometries as correct, although one might be more
appropriate. Thus, they are not “true” in the Fregean sense.

Secondly, Hilbert, at this time, disagrees with the Gaussian idea that one could
determine the geometrical form of our universe by experiment. If we measure triangle
sums smaller than 7, it would be “easier, more transparent, and it would need fewer
axioms” if we were to use hyperbolic, rather than Euclidean, geometry. This is a
Hertzian idea applied to geometry. The hyperbolic geometry, as well as the Euclidean

68 As mentioned before, Hilbert relied on Dedekind’s work at the time he wrote the Festschrift.

69 Of course, this picture theory entails certain claims on the philosophy of language.

70 We know that Hilbert was already familiar with Hertz at this time because he mentioned Hertz’s picture
theory in this lecture (Hilbert, 2004a, p. 79).

71 “Natiirlich, um auf Lotze’s Vorurteil zuriickzukommen, kann uns kein Experiment zwingen, die hyper-
bolische Geometrie anzuerkennen. Vielmehr ist es, falls sich experimentell die Winkelsumme < 7
herausstellen sollte, immer noch moglich, mit dem iiblichen Euklidischen Raum auszukommen. [...] Nun,
einfacher, durchsichtiger wird es und es bedarf weniger Axiome, wenn wir unter solchen Umsténden die
hyperbolische Natur unseres Raumes postulieren wiirden” (Hilbert, 2004a, p. 120).
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geometry, could be part of a correct picture of space. However, claiming that space is
hyperbolic would be the more “appropriate” choice since it is simpler.

Likewise, Hilbert rejects the idea that one could ultimately determine the physical
laws of our universe. He claims that nobody could force us to assume the Copernican
model since one could also choose the Ptolomean model. However, the description
would be more complicated with the Ptolomean model.”>

Thus, Hilbert agrees with Frege in the rejection of Gauss. Empirical data cannot
falsify geometrical axioms. Even if we measure triangle sums smaller than , we are
not forced to accept hyperbolic geometry. However, unlike Frege, Hilbert admits that
empirical data influence our choice of an axiom system for geometry.”> He, therefore,
rejects the Fregean idea of a hierarchical order of geometry and physics.

This shows that Hilbert and Frege have different convictions regarding not just
geometry but axiomatic theories in general. As seen in Sect. 3.2, Frege claims that geo-
metrical axioms cannot be refuted by physical experiments because they express truths
about the knowledge source (Anschauung) on which physics also rests. For Hilbert,
Anschauung is not a knowledge source for the axioms but an object of axiomatic
analysis, which we have to presuppose to gain a “picture” of reality.

This idea can be illustrated with an example. Hilbert (1899) presents six groups of
axioms in his Festschrift. In what follows, we will examine the meaning of “analysis
of Anschauung” for one example—namely, the group of axioms of congruence. The
group of the axioms of congruence consists of five axioms. The first three concern line
segments, while the last two concern angles. These axioms demand that segments and
angles can be moved in space without changing their size or shape. This is important
because these axioms are not fulfilled in a space with non-constant curvature. As we
have seen in the first section, this property was first identified by Riemann in his

72 In fact, the Copernican revolution is a commonly used example to show that physical theories are not
simply abandoned if experiments and mathematics show that another theory is simpler. In The Copernican
Revolution Thomas Kuhn shows that the Copernican revolution was part of a modern shift of “man’s relation
to the universe and to god” (Kuhn, 1985, p. 2).

73 In this respect, Hilbert’s position also differs significantly from Poincaré’s conventionalism. Poincaré
also discusses the mathematical example of measuring a triangle in his article “Les Géométries Non Eucli-
diennes” (1891, p. 774). Just like Hertz and Hilbert, he stresses that geometrical axioms cannot be falsified
by intuition. However, Poincaré attributes no role to empiricism when it comes to choosing the “most appro-
priate” (“plus commode”) geometry. Instead, it is purely an inner mathematical choice, i. e., a “convention.”
Poincaré argues that Euclidean geometry is the simplest one from a mathematical point of view.

In the passage quoted above, Hilbert, in contrast, argues for the choice of hyperbolic geometry because
this geometry is simpler and more transparent under these circumstances (i.e. from the empirical view-
point). It is simpler because it allows us to set up a simpler physical theory that is in accordance with the
empirical results.

In later writings, Hilbert stresses the role of the empirical in geometry in theoretical physics even more.
For example, in his lecture “Grundsitzliche Fragen der modernen Physik” from 1923, Hilbert harshly crit-
icizes Poincaré’s conventionalism, which attributes no role to empiricism when it comes to deciding which
geometry to take as a mathematical framework for physical theories: “According to Poincaré’s analogy,
it would be as if someone slipped a pancake recipe between the axioms and wanted thereby to establish
the importance of the art of cooking for logic. Conventionalism has led to utter confusion: the ultimate
consequence of Poincaré’s point of view is that there are not any laws of nature at all” (“Nach Analogie
von Poincaré wire es, als wenn jemand ein Eierkuchenrezept zwischen die Axiome schieben und dann
die Bedeutung der Kochkunst fiir die Logik damit begriinden wollte. Der Konventionalismus hat heillose
Konfusion angestiftet: Die letzte Konsequenz der Poincaréschen Ansicht ist, dass sich iliberhaupt keinerlei
Naturgesetze finden lassen”) (Hilbert, 2009, p. 430).
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Habilitationsvortrag. Riemann points out that in a space of constant curvature, “every
line can be measured by every other [line]” (“dass [...] jede Linie durch jede messbar
sei”). This means precisely that one can take a segment and compare it in size to any
other line anywhere in space.

One can further illustrate this property by saying that a segment should not change its
form or size when moved in space. This was illustrated by Helmholtz in his paper “Uber
den Ursprung und die Bedeutung geometrischer Axiome,” which uses the example of
flat beings living on the surface of an egg. An egg has a higher curvature on the top
than in the middle. Thus, a triangle with sides of a certain size would have a lower
angle sum on the top than in the middle. Therefore, one cannot move a triangle on the
surface of an egg without changing its shape (von Helmholtz, 1883, pp. 8-10). Thus,
Hilbert’s axioms do not hold for these fictional beings.

Hembholtz comments on his mathematical investigation in his paper in a way which
is very interesting for our understanding of Hilbert:

I offer these remarks, at first only to show what difficulties attend the complete
analysis of the presuppositions we make, in employing the common intuitive
method [anschauliche Methode]. We evade them when we apply, to the inves-
tigation of principles, the analytical method of modern algebraical geometry
(Helmholtz, 1870, p. 7, emphasis added).”

The formulation “analysis of the presuppositions we make, in employing the
common intuitive method [Analyse der anschaulichen Methode]” has an interest-
ing similarity to Hilbert’s notions of “analysis of Anschauung” and “analysis of our
Anschauungsvermdogen.” Both authors want to further analyze what is traditionally
(e.g., by Frege and Kant) taken to be the ultimate foundation on which our geometri-
cal axioms rest, i.e., “Anschauung.” For both authors, this means that we have to make
explicit what distinguishes Euclidean geometry from other geometries. Therefore, it
seems plausible that Hilbert borrowed this expression from Helmholtz.”>

The thought experiment with the beings living on the surface of an egg shows that
the property of a space that figures can be moved in all directions without changing
their shape is not a logical necessity. Therefore, the property needs to be explicit in
the axiomatization.

The analysis of Anschauung via axiomatizations aims for this kind of understand-
ing of what distinguishes a correct picture of reality from an axiom set that does not
fulfill this property of correctness. Hilbert explicitly puts this axiomatic approach to
geometry in relation to the analytic and synthetic approach by claiming that “[i]n
both disciplines these principle questions are not treated of”” and supports his claim

74 Translation from Atkinson with minor changes (von Helmholtz, 1893, pp. 33—34). “Ich fiihre diese Uber-
legungen hier zunichst nur an, um klar zu machen, auf welche Schwierigkeiten wir bei der vollstindigen
Analyse aller von uns gemachten Voraussetzungen nach der Methode der Anschauung stoflen. Ihnen entge-
hen wir, wenn wir die von der neueren rechnenden Geometrie ausgearbeitete analytische Methode auf die
Untersuchung der Principien anwenden.” (Emphasis added.) Atkinson translates “anschauliche Methode”
as “constructive method.” Thus, the striking similarity to Hilbert’s notion of “Analyse der Anschauung”
vanishes.

75 Nevertheless, one should not overemphasize the parallel between Hilbert and Helmholtz. Hilbert seeks an
axiomatic foundation of Euclidean geometry, and Helmholtz develops an analytic geometry. Furthermore,
Helmholtz seems much more critical about the intuitive methods (anschauliche Methode) than Hilbert.
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by pointing out that “[i]n analytic geometry one starts with the introduction of num-
ber.” As seen in Sect. 2.2, this was criticized by synthetic geometers, who developed
a geometry that does not use metric notions. We have also seen that Hilbert broadly
followed von Staudt in his lectures in the early 1890s. After adopting his own geo-
metrical approach, Hilbert criticizes synthetic geometry thus: “In projective geometry
one appeals to intuition from the start, whereas we want to analyze the intuition, in
order, so to speak, to reconstruct it from its individual components.”’® (Emphasis
added.) “Analysis” (of Anschauung), thus, has to be understood literally as “breaking
up” (which is the meaning of the Greek word “avd)voLS”) into particles, in order to
identify the “necessary and sufficient conditions” to obtain (mediated by the system of
things) a “picture of geometrical reality.” It is crucial for this project that axioms are
not perceived as true sentences; otherwise, they could not be understood as particles,
which are the result of our analysis and which may form entire different geometries
when combined with other particles. Hilbert thereby goes beyond von Staudt, his
former idol, and also Frege, who both simply presuppose Anschauung as given.

Despite Hilbert’s use of Kantian terms like Anschauung and his argument against
Gauss’s anti-Kantian philosophy of geometry, Hilbert is obviously not a full-blooded
Kantian. As we pointed out earlier, for Kant, it would make no sense to challenge
geometrical claims through physical experiments. However, Hilbert—and Hertz—
influenced the neo-Kantianism of Cassirer with the idea of different “pictures” of
the world. As early as 1910 in Substanzbegriff und Funktionsbegriff, but also later in
Einsteins Relativitditstheorie (1921) and in the third volume of Philosophie der sym-
bolischen Form, Phidnomenologie der Erkenntnis (1928), Cassirer praises Hertz and
Hilbert for recognizing the creative character of theoretical concepts in physics and
mathematics. Mathematical concepts are “the intellectual establishment of a construc-
tive connection”; they cannot be gained from “physically present bodies” by “simple
‘abstraction” (Cassirer, 1923, p. 12). This idea “receives its clearest expression” in
Hilbert’s axiomatization (Cassirer, 1923, p. 93). Later in his Philosophy of Symbolic
Forms, he extends this Hertzian—Hilbertian idea to the scope of human culture, includ-
ing art, religion, and myth. They “[a]ll live in particular [picture]-worlds [Bildwelten],
which do not merely reflect the empirically given, but which rather produce it in accor-
dance with an independent principle” (Cassirer, 1980, p. 78).”” Symbols are “created
by the intellect itself;” therefore, they are no “passive images” (“passive Abbilder)’8
(Cassirer, 1980, p. 75) and differ from the Kantian notion of Anschauungsform insofar
as we can create different symbols.

What makes this approach neo-Kantian is that the object of experience depends on
the subject of experience. We find this idea in Hilbert and Hertz, who acknowledge

76 “In beiden Disciplinen werden die prinzipiellen Fragen nicht behandelt; in der analytischen Geometrie

beginnt man mit der Einfithrung der Zahl, [...]; in der projektiven Geometrie appeliert man von vornherein
an die Anschauung, wogegen wir ja die Anschauung analysieren wollen, um sie dann sozusagen aus ihren
einzelnen Bestandteilen wieder aufzubauen” (Hilbert, 2004b, p. 303, p. 3 in the manuscript).

71 Again, “image” is changed to “picture” in the translation.

78 Both German words “Bild” and “Abbild” are translated as “images.” This translation is misleading since
both German words are opposed. We create “Bilder,” while the “Abbilder” are mere copies of what is there.

Therefore, here “picture” would have been once again the more suitable translation for the German word
“Bild.”
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that our theory/axioms/picture frames our knowledge of the outer world, but not in
Frege, who is less Kantian in this respect. What makes this neo-Kantian, i.e., breaking
with Kantian conviction, is that the subject can deliberately change the form of the
experience, something Cassirer takes from Hertz’s picture theory and its reception in
Hilbert. In this respect, Frege is the more conservative Kantian.

4 Conclusion

We have seen in this paper that Frege and Hilbert came from similar mathematical
backgrounds. Their controversy cannot simply be explained by Frege’s ignorance,
because Frege was well aware of the developments in the mathematics of the time and
did not dismiss them. The Frege—Hilbert controversy is rooted in a disagreement that
goes well beyond the subject matter of geometry and logic. It concerns the general
question of how our theoretical terms can relate to the real world and how we can
generate theoretical knowledge.

Similarly, the controversy cannot be explained as a disagreement on issues of
logic or philosophy of language. Instead, Hilbert developed his non-referential under-
standing of axioms motivated by epistemological concerns, which were influenced
by Hertz’s picture theory of physics. Thus, Hilbert’s model-theoretic logic emerged
from this epistemological perspective, not the other way around. Keeping this in mind
might help avoid an anachronistic reading of the Frege—Hilbert controversy.

In this paper, we focused on the Hilbert of the 1890s. As Corry (2006) already
pointed out, Hilbert’s reference to Anschauung shifted after he started working on
the general theory of relativity in a more empiricist direction. The question of why
and how precisely Hilbert’s philosophical convictions changed in that period is an
interesting one. Its answer would help to get a unified picture of Hilbert’s rich and
diverse work. However, it is a research question that goes beyond the scope of this

paper.
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