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Abstract

Bohmian mechanics is a realistic interpretation of quantum theory. It
shares the same ontology of classical mechanics: particles following con-
tinuous trajectories in space through time. For this ontological continuity,
it seems to be a great candidate for recovering the classical limit of quan-
tum theory. Indeed, in a Bohmian framework, the issue of the classical
limit reduces to show how the classical trajectories can emerge from the
Bohmian ones, under specific classicality assumptions.
In this paper, we shall focus on a technical problem which arises from
the dynamics of a Bohmian system in bounded regions and we suggest
that a possible solution is supplied by the action of environmental deco-
herence. However, we shall show that, in order to implement decoherence
in a Bohmian framework, a stronger condition is required (disjointness of
supports) rather than the usual one (orthogonality of states).

1 Bohmian mechanics and classical limit
Despite the great success of quantum mechanics, a rigorous and general account of the classi-
cal limit has not been reached so far. This means we do not have a clear explanation for the
transition from the quantum regime, which describes the short-scale world, to the classical
regime, which describes our familiar macroscopic world.
We know that quantum mechanics is a fundamental theory: it applies at every scale1.The
goal of the classical limit, therefore, is to derive classical mechanics from quantum mechanics,
under specific classicality conditions2.
The problem here is not only mathematical, but also conceptual: in standard quantum me-
chanics (SQM), the physical state of an N-particle system is described by a state vector, an
element of an abstract Hilbert space 3. Moreover, in SQM the state vector has just a sta-
tistical character: for a 1-particle system, the absolute square of the wave function has the
meaning of a probability density to find the particle in a definite region if we perform a po-
sition measurement on the system. Within this framework, even if we succeeded in deriving
the classical equations of motion for a quantum system, should we regard this result as a true
classical limit? Probably, we should not. Classical mechanics describes the motion of particles
in space, i.e., it describes real paths for the systems (trajectories) and not just ’probability

1Indeed, it is possible to have macroscopic quantum effects, like superconductivity.
2The classicality conditions are the physical conditions that allow for the emergence of a

classical regime. For example, in decoherence theory, the classicality condition is the (ubiqui-
tous) entanglement among quantum systems.

3If the state vector is expressed in the position basis, then we have the wave function of
the system, which is defined over the 3N-dimensional configuration space of the system.

1



amplitude’ paths. How can we derive the former dynamical structure (and ontology) starting
from the latter one?4

One option is to consider Bohmian mechanics (BM) as the correct interpretation of quantum
theory. In BM, a quantum system is described by a wave function together with a configura-
tion of particles, each of them following a continuous trajectory in 3D physical space. Within
this framework, both quantum systems and classical systems are composed by matter particles
that follow real paths in 3D space5. So that the entire issue of the classical limit reduces to
the question: under which conditions do the Bohmian trajectories become Newtonian?
However, one could object that classical mechanics is just a high level effective theory and
that the very concept of ’particle’ does not belong to the ontology of the fundamental physical
world. In quantum field theory (QFT), for example, the concept of particle might play no
role6. If we cannot introduce a particle ontology at the level of QFT, then we might not see
the necessity of introducing it at the non relativistic quantum level either: a characterization
of the theory in terms of the wave function could be enough also for QM. Under this view,
the classical limit is obtained by the description of a narrow wave packet following a classical
trajectory7. This is the standard approach we usually find in SQM textbooks 8, known as
Ehrenfest’s theorem.
However, it is worth noting that some specific QFT models with a particle ontology have been
proposed9, so that the philosophical inquiry about the fundamental ontology of the physical
world is still open.
Nevertheless, Ehrenfest’s theorem alone cannot provide a proper solution for the quantum to
classical transition. First, the wave function of a isolated quantum system generally spreads
out in a very short time. Moreover, Ballantine shows that Ehrenfest’s theorem is neither
necessary nor sufficient to obtain a classical dynamical regime for quantum systems10.
The most convincing approach for the analysis of the quantum to classical transition is actu-
ally decoherence theory. So, in order to find out how Newtonian trajectories can emerge from
the Bohmian ones, it seems reasonable to check whether and how decoherence theory fits into
the Bohmian framework.
The aim of the paper is to focus on a technical problem, which arises in the context of BM in
the attempt to derive classical trajectories for a pure state system in bounded regions. The
problem follows from the fact that two (or more) Bohmian trajectories of a system cannot
cross in the configuration space of the system. So, even if we assume that a macroscopic body,
satisfying some specific-classicality conditions (big mass, short wavelength, etc...), starts fol-
lowing at the initial time a classical trajectory, its motion will become highly non classical if,
at a later time, different branches of the wave function of the body will be about to cross each

4See, for example, Holland (1993, sect. 6.1) about the conceptual difference between a
quantum ’trajectory’ and a classical one.

5Of course, in BM there is something more: the wave function. Whether the wave function
in BM is a real physical entity (i.e., a new physical field) or a nomological entity that only
describes how the particles move (the analogy is with the Hamiltonian in classical mechanics)
is currently at philosophical debate. Supporters of the first view are, e.g., Holland (1993) and
Valentini (1992); supporters of the second view are, e.g., Dürr, Goldstein & Zangh̀ı (2013),
Goldstein & Zangh̀ı (2012) and Esfeld et alii (2014).

6See, e.g., Malament (1996)
7We note that, within the SQM framework, this approach seems to miss the conceptual

point of the classical limit problem. In SQM, the wave function is not a real entity, but mainly a
mathematical tool to extract probabilities of the measurement outcomes. Therefore, a narrow
wave packet that follows a classical trajectory simply means that whenever we perform a
position measurement on the system, we will obtain a result which is compatible with a
classical trajectory. Nonetheless, we cannot extract the picture of a real entity following a
classical trajectory from that. In other words, what is problematic is not considering a narrow
wave function as a particle, but the statistical interpretation of the wave function as opposed
to a real ontological entity (particle) following a trajectory in space.

8See, e.g., Merzebacher (1970, ch 4), Shankar (1994, ch. 6), Sakurai (1994, ch. 2). In
particular, Shankar sheds also some light on specific limitations of the theorem.

9See Dürr et alii(2004)
10See Ballantine (1994), (1996), (1998, sect. 14.1).
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other in configuration space.
We argue that a possible solution is offered by the action of environmental decoherence on the
system11. A relevant point will be clear from the analysis: in order to implement decoherence
in the framework of BM, a stronger condition is required (disjointness of supports) than the
usual one(orthogonality of states) for the systems describing the environmental particles that
scatter off the (macroscopic) Bohmian system.
In section 2, we will describe the measurement process in BM, focusing on the emergence of
the effective wave function. In section 3, we will present the problem mentioned above which
arises (mainly) in bounded regions. In section 4.1, we will introduce decoherence theory as the
crucial ingredient for the quantum to classical transition in every physically realistic situation.
In section 4.2, we will show how a simple model of environmental decoherence can solve the
problem, thus leading to the emergence of classical trajectories in bounded regions.

2 Bohmian mechanics
2.1 A short introduction to Bohmian mechanics
Bohmian mechanics is a quantum theory in which the complete physical state of an N-particle
system is described by the pair (Q,Ψ), where Q = (q1, q2, . . . , qN ) is the configuration of N
particles, each particle qk(k = 1, 2, . . . , N) living in 3D physical space12, and Ψ = Ψ(Q, t)
is the wave function of the system, which is defined over the 3N-D configuration space of
the system. For a non-relativistic spinless N-particle system, the dynamical evolution of the
Bohmian system is given by the Schrödinger equation:

i~
∂Ψ(Q, t)

∂t
= −

N∑
k=1

~2

2mk
∇2
kΨ(Q, t) + VΨ(Q, t)

which describes the time evolution of the wave function, and the guiding equation:

dqk

dt
=

~
mk

Im
∇kΨ(Q, t)

Ψ(Q, t)
; with k = 1, 2, . . . , N

which describes the time evolution of each particle position of the total configuration. From
the guiding equation, we note the non-local dynamics of the Bohmian particles: the velocity
of a single particle (qk) will depend on the position of all the other particles of the total
configuration (Q = (q1, q2, . . . , qN )). For obtaining a successful scheme of the quantum to
classical transition, we need to explain not only the emergence of classical trajectories but
also the passage from a quantum (holistic) non-local dynamics to a classical (separable) non-
local dynamics13.
Bohmian mechanics introduces quantum probabilities as a measure of subjective ignorance on
the initial conditions of a system (epistemic probabilities): given a system with wave function
ψ, our maximum knowledge about the actual initial positions of the particles is represented
by a statistical distribution of possible configurations, i.e., a classical ensemble, according to
the absolute square of the wave function:

ρ(Q) = |ψ(Q)|2

11This solution has been originally proposed by Allori et alii (2002).
12Thus, the configuration Q is defined over the 3N-D configuration space of the system.
13In classical mechanics, the potentials which affect the particle motion decay quadratically

with the distance, so that we can effectively describe the motion of one particle as autonomous
and independent from the motion of a very distant particle (under specific conditions, of
course). In BM, instead, the influence of the “quantum potential” on the particle motion
does not decay with the distance, so that all the particles belonging to the configuration of a
system are holistically related, even if they are located very far each other. See, e.g., Bohm
(1987, sect. 3) for a clear explanation about the difference between quantum (Bohmian) and
classical non-locality.
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This is a postulate in BM and it is known as quantum equilibrium hypothesis14. Moreover,
from the Schrödinger equation, it follows that ρ has the property of equivariance:

if ρ(Q, 0) = |ψ(Q, 0)|2, then ρ(Q, t) = |ψ(Q, t)|2 ; ∀t > 0

Quantum equilibrium and equivariance imply that BM provides the same empirical predictions
of SQM, once assumed that the result of a measurement is always encoded in a definite
position of a pointer15 and that different positions of a pointer are always represented by
(approximately) non-overlapping supports in configurations space16.

2.2 Measurement process in Bohmian mechanics
In this section we analyze a typical measurement process in BM, showing, in particular, how
an effective wave function of a Bohmian system does emerge. Then, we will show that the
condition of disjoint supports for different positions of a pointer is essential for obtaining a
clear and definite measurement result.
Let’s consider a system Ψ(x), with actual configuration X, interacting with an apparatus
Φ(y), with actual configuration Y 17. We suppose that the degrees of freedom of the system
and the apparatus are respectively m and n, then the support of Ψ(x) is defined over the m-
dimensional configuration space of the system and the support of Φ(y) over the n-dimensional
one of the apparatus18. We suppose that the initial state of the system is a superposition of
two wave functions:

Ψ(x) = αψ1(x) + βψ2(x)
with normalization |α|2 + |β|2 = 1.
At the initial time t = 0, the system and the apparatus have not interacted yet, so the wave
function of the total system (system + apparatus) is factorized:

Ψ(x, 0)Φ(y, 0) = (αψ1(x, 0) + βψ2(x, 0))Φ(y, 0)

During the time interval ∆t = (0, T ), the system and the apparatus will evolve according
to the Schrödinger equation: in a typical measurement interaction, thanks to some coupling
term between the two, they will become entangled:

Ψ(x, 0)Φ(y, 0) −→ αΨ1(x, T )Φ1(y, T ) + βΨ2(x, T )Φ2(y, T )

This is the usual formulation of the measurement problem: the physical state of the total
system, after the measurement, represents a coherent superposition of two macroscopically
distinct pointer states. In BM, there is a further ingredient that permits to (dis)solve the
problem: besides the wave function, every Bohmian system is composed by an actual config-
uration of particles. So, after the measurement interaction, the macroscopic pointer will show
a unique and definite result, the one embodied by the configuration of particles that compose
the pointer. In other words, it is the evolution of the particles that finally determines which
one of the possible pointer states (described by the evolution of the wave function) has been
realized during the measurement process.
We suppose, for example, that φ1 is the wave function corresponding to the physical state of
the pointer “pointing to the left” and φ2 that of the pointer “pointing to the right”: at the time
t = T , if Y ∈ supp(φ1), then the pointer points to the left, if Y ∈ supp(φ2), then it points to

14The justification of the quantum equilibrium hypothesis is a subtle issue. Two main
approaches have been proposed: the typicality approach by Dürr, Goldstein & Zangh̀ı (1992)
and the dynamical relaxation approach by Valentini (1991).

15We call pointer every measurement apparatus that shows a definite outcome after the
physical interaction with a quantum system.

16We will analyze this condition in more detail in the next section.
17The Bohmian systems are always composed by a wave function and real particles, each

of them having a definite position in space. We call actual configuration the configuration
of particles described by their definite positions in space, and mathematically expressed by
Q = (q1, q2, ..., qN ).

18A support of a function is the region of its domain in which it is not zero valued.
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the right. Since the two supports are (macroscopically) disjoint19, i.e., supp(φ1)∩supp(φ2) ∼= ∅
, then the final result is unique and the superposition disappears20.
Suppose, for example, that, after the interaction between the system and the apparatus,
Y ∈ supp(φ1): in this case, the actual configuration of the particles that compose the appa-
ratus will be so arranged in space to form a physical pointer pointing to the left. Moreover,
because of the entanglement21 between the system and the apparatus during the interaction,
the actual configuration of the particles that compose the system will be in the support of
ψ1, that is, X ∈ supp(ψ1). In this case, we will say that ψ1 is the effective wave function
(EWF) of the system, i.e., the branch of the total superposition which contains and guides the
particles of the system after the interaction, whereas ψ2 is the empty wave function, which
can be FAPP22 ignored after the interaction.
Assuming the quantum equilibrium hypothesis and the condition of disjoint supports for any
two different pointer states, it is easy to show that the probability distribution of the mea-
surement outcomes is given according to the Born’s rule. For example, in the case discussed
above, we see that the probability to get the eigenvalue associated to the eigenfunction φ1 in
a measurement is23:

P (Y (t = T ) ∈ supp(φ1)) =

=
∫
Rm

dmx

∫
supp(φ1)

dny|αψ1(x, T )φ1(y, T ) + βΨ2(x, T )φ2(y, T )|2 =

=
∫
Rm

dmx

∫
supp(φ1)

dny|αψ1(x, T )φ1(y, T )|2+

+
∫
Rm

dmx

∫
supp(φ1)

dny|βψ2(x, T )φ2(y, T )|2+

+2<
∫
Rm

dmx

∫
supp(φ1)

dny αβ∗ψ1(x, T )ψ∗2(x, T )φ1(y, T )φ∗2(y, T ) ∼=

∼= |α|2

which is in agreement with the Born’s rule24.
In the derivation we have used the quantum equilibrium hypothesis for the first equation and∫

supp(φ1)
dny|φ2(y, T )|2 ∼= 0∫

supp(φ1)
dny φ1(y, T )φ2(y, T ) ∼= 0

because supp(φ1)
⋂
supp(φ2) ∼= ∅.

19It is worth noting that the concept of a perfect disjointness of supports is an idealization:
the support of a wave function is typically unbounded in configuration space. As a first
approximation, we can say that two different supports are disjoint if they have negligible
overlap in configuration space. More precisely, we will say that the supports of two different
wave functions are (macroscopically) disjoint when their overlap is extremely small in the
square norm over any (macroscopic) region.

20The idea is that, since different macroscopic states of the pointer occupy different regions
in 3D physical space, the wave functions describing these states will have disjoint supports in
the 3N-D configuration space of the pointer.

21During the interaction, the dynamics of the particles of the system is strongly related
with that of the particles of the apparatus, so that if Y ∈ supp(φ1(2)), then X ∈ supp(ψ1(2)).

22For All Practical Purposes (acronym introduced by John Bell)
23We follow here the derivation presented in Dürr & Teufel (2009, sect. 9.1).
24A specular derivation can be done for the other possible outcome of the measurement: in

this case we need to integrate in the support of φ2 and the final probability will be |β|2.
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The emergence of the effective wave function of the system ψ1(x, T ) represents a first step
in the transition from a holistic regime to a local one25: after the measurement, the initial
superposition of the total system effectively collapses26 in just one of the possible branches,
which is described by a factorized state between an eigenfunction of the system and one of the
apparatus, e.g., ψ1(x, T )φ1(y, T ). Hence, the dynamics of the system is now decoupled from
that of the apparatus: the further evolution of the particles of the system will be autonomous
and independent from that of the particles of the apparatus (because now they belong to
distinct and factorized wave functions). Moreover, interference with the empty wave function
will result practically impossible, given the condition of disjoint supports for the wave functions
of different pointer states.
We might say that the EWF describes a local dynamics for the system, since the particle
evolution of the sub-system described by ψ1 does not depend on the position of the particles
of any external system. Whenever an EWF emerges, the holistic Bohmian non-locality seems,
at least temporarily, turned off.
A simple example can help to visualize the situation. Let’s consider a typical EPR set up:
generally, changing some potentials on one wing of the system, say in the point A, will influence
the trajectory of the particle on the other wing, say in the point B27. Nevertheless, if, as a
consequence of a measurement, an effective wave function emerges (e.g., in the point B), then
the trajectory of the particle on the B-side can be influenced only by potentials on its side
(i.e., potentials which are connected with B by time-like intervals).
Of course, this is only a first step towards the classical world. The other important step is to
show how classical trajectories can emerge starting from the Bohmian ones28. In section 3,
we will discuss a technical problem arising for the Bohmian classical limit in bounded regions
and we will see how decoherence can solve the problem. In section 4, we will briefly introduce
decoherence and, finally, we will clarify the mathematical conditions for implementing it in
the framework of BM.

3 Bohmian classical limit in bounded regions
In this section, we focus on a problem that arises from the dynamics of a Bohmian system
in bounded regions29. The problem has been originally discussed in Allori et alii (2002, sect.
8). However, for the sake of completeness, we will briefly restate it here.
We consider an infinite potential well of size L in one dimension and a 1-particle Bohmian
system in the center of the well. We suppose that the wave function of the system is a linear
superposition of two wave packets with opposite momenta. In the classical limit model, the
position x of the system will be the center of mass of a macroscopic body whose classical
motion we are searching for.
At the initial time t = 0, we suppose that the two packets begin to move classically in opposite

25With holistic I mean the quantum (Bohmian) non-locality, with local the classical non-
locality. This terminology has been introduced by Esfeld et alii(2014)(forthcoming).

26In BM, there is never a real collapse of the wave function.
27We suppose that the points A and B are space-like separated.
28In the following, we will not face the problem of the emergence of classical trajectories in

BM. For the interested reader: see, e.g., Rosaler (2014), for a decoherent histories approach
to the Bohmian classical limit; Appleby (1999) and Sanz, Borondo (2004), for the analysis of
specific models where the Bohmian trajectories, implemented in a regime of full decoherence,
become classical.

29For the sake of clarity, the problem can also arise in unbounded regions: indeed, it is a
consequence of a simple mathematical fact, so it is fundamentally independent from the nature
(bounded or unbounded) of the space where the system moves in. Nevertheless, since it is
more likely to happen in bounded regions than unbounded ones, then it seems more natural
to set the problem in a bounded region.
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directions30. At the time tR, they (approximately)31 reach the walls and, for t > tR, they
start to converge towards the center. At the time tc = 2tR (first caustic time), the two wave
packets will cross each other in the middle of the well, but, since the Bohmian trajectories
of a system cannot cross32 in the configuration space of the system33, the two converging
trajectories will not cross each other: the trajectory coming from the right-hand side will
start to come back to that side after the time tc. In a perfectly symmetric way, the same will
happen for the trajectory coming from the left-hand side of the well. So, for example, if the
particle is contained, at the beginning, into the wave packet that goes to the right, then it
will move in the future only within the right-half part of the well. And this is clearly not a
classical behavior34.
Nevertheless, Allori et alii (2002) claim that, in a realistic model, we also need to take into
account the interaction with the environment and the problem should vanish. Indeed, an ex-
ternal particle (a neutrino, a photon, an air molecule,. . . ), interacting with the (macroscopic)
system before the caustic time tc, will “measure” the actual position of the center of mass
of the system, thus eliminating the superposition between the two wave packets of the sys-
tem. In other words, the interaction between the external particle and the system acts like
a position measurement on the system performed by the “environment”. Consequently, the
environmental interaction will select only one of the two wave packets of the system, which
becomes the effective wave function of the system.
Here the original passage:

These interactions –even for very small interaction energy– should produce en-
tanglement between the center of mass x of the system and the other degrees
of freedom y, so that their effective role is that of “measuring” the position X
and suppressing superpositions of spatially separated wave functions. (Taking
these interactions into account is what people nowadays call decoherence [...]).
Referring to the above example, the effect of the environment should be to select
[...] one of the two packets on a time scale much shorter than the first caustic
time tc. (Allori et alii, 2002, sect. 8, p. 12)

The solution proposed by Allori et alii (2002) raises a subtle conceptual issue. As we saw
in section 2.2, an EWF emerges in a Bohmian measurement only if the supports of different
pointer states are disjoint in configuration space. When the pointer state is a macroscopic
state of a classical apparatus, this condition is generally fulfilled. Nevertheless, in the case
of the interaction with the environment, the pointer states of the “apparatus” are the envi-
ronmental states of the external particle. Therefore, this solution seems to work only if the
supports of different environmental states of the external particle, after the interaction with
the macroscopic system, are disjoint in configuration space. So, the question becomes: is

30We suppose to start with classical trajectories for each branch of the wave function, which
is equivalent to assume a classical limit in unbounded regions. On this regard, some partial
successful result has been achieved so far (I briefly indicate the main approach adopted by the
authors for each reference): Allori et alii (2002): quantum potential plus Ehrenfest’s theorem;
Holland (1993, ch. 6): quantum potential; Bowman (2005): mixed states plus narrow wave
packets plus decoherence; Sanz & Borondo (2004) and Appleby (1999): decoherence; Rosaler
(2014): decoherent histories.

31The velocity field in BM is never bi-valued, so the particle arrives very close to the well,
but without touching it

32Bohmian trajectories cannot cross in configuration space because the guiding equation is
a first-order equation, so to each position x corresponds a unique velocity vector v.

33For a 1-particle system, the configuration space of the system corresponds to the 3D
physical space.

34Note that this situation is completely different from the case of the “surrealistic trajec-
tories” in BM. In the latter, it is after all not so problematic having odd trajectories, if they
finally match with the empirical predictions of QM. In this case, instead, we want to recover
the classical dynamics of a macroscopic body, so the empirical predictions to match with
are the trajectories of classical mechanics. Thus, every non-classical trajectory of the system
cannot match with the empirical result we expect from a classical limit model.
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this condition generally satisfied or not35? Indeed, in order to have effective decoherence36

in BM, the condition of disjoint supports for different environmental pointer states has to be
satisfied.
It is important to note that this is a stronger condition than the usual one required by deco-
herence in the standard framework, that is, orthogonality of states.
In the next section, we will analyze a simple but realistic model of decoherence, namely envi-
ronmental decoherence induced by scattering. The analysis will clarify the difference between
the standard condition and the Bohmian one required to have decoherence.

4 Decoherence approach to the Bohmian classi-
cal limit

4.1 A short introduction to decoherence
Decoherence is the local suppression of the phase relations between different states of a quan-
tum system, produced by the entanglement between the system and its environment37, the
latter also described as a quantum system.
We consider a pure state system |ψ〉 = α |ψ1〉+ β |ψ2〉 and a pure state environmental system
|ξ〉: as long as they do not interact, they remain physically independent and the total wave
function is factorized:

|Ψ0〉 = |ψ〉 |ξ〉 = (α |ψ1〉+ β |ψ2〉) |ξ〉
The density operator of the total system can be also factorized into the density operator of
the system and that one of the environment:

ρ̂Ψ0 = |Ψ0〉 〈Ψ0| = |ψ〉 |ξ〉 〈ξ| 〈ψ| = ρ̂ψ ⊗ ρ̂ξ

When the system interacts with the environment, the two systems become entangled and they
form a new pure state system:

|Ψ〉 = α |ψ1〉 |ξ1〉+ β |ψ2〉 |ξ2〉
In a realistic physical model, the system will interact (and, then, become entangled) with
many environmental states |ξi〉38 in a very short time. Tracing out the degrees of freedom of
the environment, we obtain the reduced density operator of the system. Under the assumption
of (approximate) orthogonality of the environmental states, which is essentially the standard
condition for decoherence, the reduced density operator formally appears as (approximately)
describing a mixture of states:

ρ̂ψ
red

= Trξi
|Ψ〉 〈Ψ| ∼= |α|2 |ψ1〉 〈ψ1|+ |β|2 |ψ2〉 〈ψ2| if 〈ξi|ξj〉 ∼= δij

Nevertheless, it is worth noting that ρ̂ψ
red

does not represent a proper mixture of states39, but
an improper mixture, for three main reasons:

1. In SQM, the physical state of a system is mathematically represented by the state vector
of the system: in this case, the state vector is assigned only to the global entangled
state between the system and the environment, and we cannot assign an individual
quantum state to a subsystem (ψ) of a larger entangled system (Ψ).

35A related interesting question is: what happens if the relative environmental states do not
have disjoint supports, but they are only (approximately) orthogonal in the Hilbert space of
the environment? At the moment, we have not a rigorous answer to that question.

36With effective decoherence, we mean a decoherence process, within the framework of BM,
which is able to produce an effective wave function for the system.

37In general, the environment can be tought either as external or internal degrees of freedom
of a (macroscopic) system.

38A good approximation for ’many’ is the Avogadro number NA = 6, 022X1023.
39A proper mixture of states is an epistemic mixture: the system is in one of the states of

the superposition, but we do not know which one of them. An improper mixture, instead, is
a mathematical expression that looks like a proper mixture, yet it describes an ontological
superposition of states (See, e.g., Schlosshauer (2007, sect. 2.4)).
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2. In SQM, the reduced density operator just describes the statistical distribution of the
possible outcomes for an observer who locally performs a measurement on the system.
So, it does not carry information about the physical state of the (sub)system per se,
but only related to the measurements we can perform on it.

3. Decoherence does not select one particular branch of the superposition. All the different
branches remain equally real after the action of decoherence: thus, even if the final state
of the system looks like a mixture, this is not a proper mixture that can be interpreted
in terms of ignorance about the actual state of the system. We might call it an improper
mixture (see, e.g., Bacciagaluppi (2011, sect. 2.2)).

4.2 Environmental decoherence induced by scattering
Taking decoherence as realistic background for the classical limit, we firstly introduce the
model of environmental decoherence by scattering40, and, after, we consider if the Bohmian
condition of disjoint supports could reasonably fit into the model. As for the mathematical
presentation of the model, we will mainly follow Schlosshauer (2007, ch. 3).
We consider a system S that scatters off an external environmental particle, represented by
ξ. At the initial time t = 0, S and ξ are uncorrelated:

ρ̂Sξ(0) = ρ̂S(0)⊗ ρ̂ξ(0)

Representing with |x〉 the initial state of the center of mass of the system, with |χi〉 that of
the incoming environmental particle and with Ŝ the scattering operator, we can represent the
effect of the scattering of a single environmental particle on the system as follows:

|x〉 |χi〉 → Ŝ |x〉 |χi〉 ≡ |x〉 Ŝx |χi〉 ≡ |x〉 |χ(x)〉

where |χ(x)〉 is the final state of the outgoing environmental particle scattered at x on the
system.
From the expression above, we see that if the system is represented by a superposition of
different position eigenstates, for example |x〉 =

∑
i
ai |xi〉, then the environmental state

and the system state will become entangled: the scattering process is a measurement-like
interaction, which establishes correlations between the two systems. The environmental states
that scattered off the system can be considered as pointer states which encode information
about the position x of the system. The scattering process transforms the initial density
operator41 of the composite system:

ρ̂Sξ(0) = ρ̂S(0)⊗ ρ̂ξ(0) =
∫

dx

∫
dx′ρS(x, x′, 0) |x〉 〈x′| ⊗ |χi〉 〈χi|

into the new density operator:

ρ̂Sξ =
∫

dx

∫
dx′ρS(x, x′, 0) |x〉 〈x′| ⊗ |χ(x)〉 〈χ(x′)|

Thus, the reduced density operator of the system after the interaction of a single scattering
of an external particle on the system is:

ρ̂S = Trξ ρ̂Sξ =
∫

dx

∫
dx′ρS(x, x′, 0) |x〉 〈x′| 〈χ(x′)|χ(x)〉

Representing the result in the (position basis) density matrix, the evolution of the reduced
density matrix of the system under the action of the scattering event can be finally summarized
as follows:

ρS(x, x′, 0) scattering−→ ρS(x, x′, 0) 〈χ(x′)|χ(x)〉

40The model was originally developed by Joos & Zeh (1985). Recent accounts of the model
can be found in Giulini, Joos et alii (2003, ch. 3) and Schlosshauer (2007, ch. 3).

41In the following, ρ̂ and ρ represent, respectively, the density operator and the density
matrix of a system. In general, the density matrix is the density operator expressed in a
particular basis, usually in the position basis (like in this case).
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This is an important result: in the SQM model of decoherence induced by scattering, the
condition for the local suppression of the spatial coherence of the system is given by the
orthogonality of the relative environmental states that scattered off the system:

Standard condition for decoherence: 〈χ(x′)|χ(x)〉 ∼= 0

In a Bohmian model, this condition is not sufficient to have effective decoherence. Indeed,
during the scattering process, the environmental state (the external particle) becomes entan-
gled with the system (a macroscopic body, in the classical limit), thus acting like a pointer
that measures the position of the center of mass of the system. Nevertheless, as we saw in
section 2.2, a good measurement interaction42 can be realized in BM only if the wave functions
of different states of the pointer have disjoint supports in configuration space. Therefore, for
obtaining a local suppression of the spatial coherence of the system, BM requires that the sup-
ports of relative environmental states have to be disjoint in configuration space. If |y〉 indicates
a generic position eigenstate of the scattered environmental particle, and Qξ the configuration
space of the environment, then the Bohmian condition to have effective decoherence induced
by scattering is43:

Bohmian condition for (effective) decoherence: 〈χ(x′)|y〉 〈y|χ(x)〉 ∼= 0 ; ∀y ∈ Qξ

or, in terms of the wave function of the scattered environmental particle:

supp(ψχ(x)(y)) ∩ supp(ψχ(x′)(y)) ∼= ∅ ; with supp(ψχ(y)) ∈ Qξ

So, the following question arises: is the condition of disjoint supports verified in a typical
realistic model of environmental decoherence by scattering?
In the case of a “classic” quantum measurement process44, we have at least two main reasons
to believe that the condition of disjoint supports is fulfilled:

1. A classical apparatus is made of an extremely high number of (Bohmian) particles,
thereby the configuration space of the apparatus is very high dimensional (proportional
to 1023D). This makes the probability of a significant overlap between the supports of
two different macroscopic pointer states very small.
(high dimensional configuration space)

2. The wave function of a macroscopic system, like a classical apparatus, is usually very
narrow. Moreover, since different macroscopic pointer states occupy different regions
in 3D physical space, the wave functions representing these states will be reasonably
defined over regions with disjoint supports in configuration space.
(narrow wave function)

Nevertheless, the situation changes dramatically when the apparatus is not a macroscopic
object, but a microscopic environmental particle, the latter being either a photon, an electron,
a neutrino, etc... Indeed, the assumptions mentioned above simply do not apply when the
pointer state is a microscopic system:

1. The wave function of a microscopic system is generally not very narrow, and, moreover,
it usually spreads out in configuration space in a very short time.
(wave function spreads out)

42That is, a measurement providing a definite outcome.
43This result is not new: see, e.g., Rosaler (2014, sect. 5, eq. 20) and references therein.

What we are aiming to clarify here is the strong connection between this result and the
measurement process in BM as well as its conceptual consequences in the context of the
classical limit in BM. Moreover, while Rosaler (2014, sect. 5) assumes that the Bohmian
condition for decoherence is always satisfied (Rosaler’s justification mainly relies on the high-
dimensionality of Qξ), we actually don’t see any compelling reason for assuming the condition
be satisfied for a typical model of environmental decoherence (e.g., in the short-wavelength
limit, even a few external particles suffice to produce decoherence, so the high-dimensionality
argument of Qξ does not hold in this case). We think, instead, that this issue might deserve
a further analysis, even with the help of some quantitative results.

44That is, when the pointer states correspond to physical states of a classical apparatus.
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2. In some limiting cases, we can send just few particles that scatter off the system to
produce decoherence effects (this is generally true, for example, in the short-wavelength
limit45). In this case, the configuration space of the environment Qξ is not very high
dimensional.
(low dimensional configuration space)

Since the traditional arguments46 for the validity of the condition of disjoint supports do not
apply when the measurement apparatus is a microscopic quantum system (like an environ-
mental particle), and prima facie we do not have any strong argument for considering the
condition satisfied, the question remains open and worth for a future work.
Some final (and more speculative) remarks on the conceptual consequences of the analysis of
the conditions for Bohmian decoherence. We note that if the condition of disjoint supports
is generally satisfied in a typical model of environmental decoherence, then decoherence fits
very well in the framework of BM. Yet, BM could account for the selection of just one tra-
jectory within the branching linear structure produced by the Schrödinger evolution of open
quantum systems without the need of a real collapse of the wave function at some stage of
the process (SQM) or the introduction of many simultaneous non-detectable existing worlds
(Everett, MWI).
On the other hand, if the condition of disjoint supports is not generally satisfied in those
models, then maybe it would be possible to find some regime in which BM gives different
empirical predictions from SQM. Let’s consider, for example, a decoherence model in which
the condition of orthogonality of states is satisfied, whereas the condition of disjoint supports
is not. Under this model, SQM and BM will predict different phenomena: according to SQM,
we will obtain decoherence effects; according to BM, we will not. Suppose that we were able
to realize an experimental set up that physically implement this model. Performing the ex-
periment, we will hypothetically be able to distinguish whether SQM or BM is true, since the
two theories provide different empirical predictions under the same model. Of course, things
might be not simple for many reasons. First, we should write a mathematical model in which
the condition of orthogonality of states and that one of disjoint supports come apart. Second,
the model should be practically implementable into a real physical set up. In any case, what
we find interesting is that, if the condition of disjoint supports is really necessary for imple-
menting decoherence in BM, then the possibility is open to find (at least hypothetically) some
physical regimes where the Bohmian empirical predictions are different from the SQM ones.

5 Conclusion
Decoherence theory is the standard framework to show how classical trajectories and classical
states can emerge from the quantum world and it is a crucial ingredient in BM in order to
recover the emergence of classical trajectories in bounded regions.
We showed that, in order to implement an effective decoherence in BM, i.e., a physical mech-
anism which gives rise to an effective wave function for a Bohmian system through the inter-
action with the environment, a condition stronger than the standard orthogonality of states is
required: the supports of relative environmental states have to be disjoint in the configuration
space of the environment.
Thus, a relevant open issue for recovering the classical limit in BM is to verify whether this
condition is satisfied for typical realistic models of environmental decoherence.

45See, e.g., Schlosshauer (2007, sect. 3.3.1) and Joos et alii(2003, sect. 3.2.1.1).
46See, e.g., Dürr & Teufel (2009, sect. 9.1). It is worth noting that in section 9.2 these

authors generalize the quantum measurement process, by including the case in which the
pointer is a microscopic system. They affirm that is precisely thanks to decoherence processes
that an effective wave function is produced «more or less all the time, and more or less
everywhere». We agree with them in considering entanglement and decoherence essential for
the production of effective wave functions and for the emergence of a (classical non-) local
world. Nevertheless, their arguments for the validity of the condition of disjoint supports in
the case when the pointer is a microscopic system are pretty qualitative, so they cannot be
viewed as a definitive answer on this problem.
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