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Chapter 1
Conditionals, Support and Connexivity

Hans Rott

Abstract
In natural language, conditionals are frequently used for giving explanations.

Thus the antecedent of a conditional is typically understood as being connected to,
being relevant for, or providing evidential support for the conditional’s consequent.
This aspect has not been adequately mirrored by the logics that are usually offered
for the reasoning with conditionals: neither in the logic of the material conditional or
the strict conditional, nor in the plethora of logics for suppositional conditionals that
have been produced over the past 50 years. In this paper I survey some recent attempts
to come to terms with the problem of encoding evidential support or relevance in the
logic of conditionals. I present models in a qualitative-modal and in a quantitative-
probabilistic setting. Focussing on some particular examples, I show that no perfect
match between the two kinds of settings has been achieved yet.

1.1 Introduction

Specialised logics for indicative and subjunctive conditionals have been developed
for more than 50 years. Their analyses all focussed on suppositional conditionals.
Suppose the antecedent and check whether the consequent is true or believed to be
true. If yes, the conditional is true or accepted (from now on, I will use ‘trueA’
as an abbreviation for ‘true or accepted’ or ‘true or believed to be true’). If no, it
isn’t. Suppositional conditionals thus allow for truth or acceptance by “inertia”. If
the consequent of a conditional is trueAand its antecedent does not interfere with the
consequent’s truthA, this is enough for the conditional to be trueA. In recent years,
however, an increasing number of authors have argued that it should not be enough.
They argued that the mere truthA of 𝐴 and 𝐶 does not justify the acceptance of ‘If 𝐴
then 𝐶’. Many conditionals as used in natural language are meant to express the fact
that the antecedent is positively relevant to the truthA of the consequent. In the area
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of conditionals, however, the notion of relevance is claimed by distinct traditions,
and may mean very different things.1

One tradition concerns so-called relevant logics, designed to formulate a more
demanding notion of implication than Lewis’s strict implication (cf. Meyer and
Routley 1973). The idea of relevant implication is based in large part on the idea
that the antecedent and the consequent of an acceptable conditional 𝐴→ 𝐵 must
be connected in terms of contents or topics. For example, a conditional of the form
(𝑝 ∧ ¬𝑝) > 𝑞 need not be valid, despite having an impossible antecedent, since
the consequent shares no content with the antecedent. Various constraints can be
imposed on the idea of content-sharing, leading to various non-classical logics of
relevant implication (see Mares 2020 for an overview, and Weiss 2019 on the use of
analytic entailment to deal with Sextus’ so-called fourth conditional). We will not
follow this interpretation of ‘relevance’ in this paper.2

Another approach to the notion of relevance is in terms of the idea that the
antecedent of a conditional should make a difference to the truth, assertability or
probability of the consequent. Consider a conditional like “if Leicester is in England,
then Russell was an English philosopher”. The conditional sounds odd because the
truth of the antecedent does not matter at all to the truth of the consequent (Leicester
is not mentioned in Russell’s autobiography or in Monk’s biography of Russell).
The idea of difference-making is related to the idea of positive statistical relevance
that was prominent in debates on probabilistic causation and explanation in the 20th
century (Suppes, Salmon), and it can be expressed in various ways:

𝐴



supports
explains

is evidence for
is a reason for

is positively relevant to
speaks in favour of

is connected to
has a link to

makes a difference to


𝐶, or 𝐶 is dependent on 𝐴.

I will use ‘𝐴 supports 𝐶’ or the noun ‘support’ as the generic expressions covering
these readings.

Of course, the idea of support itself can be formulated in several ways. But loosely
speaking, support can only go in one direction, relevance cannot be both positive
and negative. More precisely, we can say:

1 I set aside a discussion of “biscuit conditionals”, so-called after J. L. Austin’s (1956) example
“there are biscuits on the sideboard if you want them”. Following Iatridou (1991), such conditionals
have occasionally been called “relevance conditionals” in the linguistics literature.
2 In Section 1.3.3, though, we will briefly touch upon a related idea.
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1. Nothing can speak in favour of its own negation.
2. If something speaks in favour of something else, it cannot speak in favour of the

latter’s negation.
3. If something speaks in favour of something else, the former’s negation cannot

speak in favour of the same thing.

These statements should resonate in the connexive logician’s ears. If we interpret
them as applying to conditionals, they correspond closely to the celebrated theses
associated with Aristotle, Boethius and Abelard, except that they spoke of some-
thing following from something else. So perhaps we should trace the idea that the
antecedent of a conditional supports, or speaks in favour of, its consequent. This
idea has indeed been recently advocated in a research community that is quite sep-
arate from the community of connexive logicians. This paper reviews some of the
approaches that have been taken and that can be taken, as well as the logics they
deliver. The field surveyed here is just beginning to take shape and is still rather
heterogenous. So not all aspects can be treated uniformly and in the same detail. But
I try to tell my story as coherently as I can.

1.2 Qualitative accounts

1.2.1 The suppositional interpretation of conditionals

In the following I will presuppose that antecedents 𝐴 and consequents𝐶 of condition-
als are factual sentences (no occurrence of any non-Boolean conditional connective).
I do not exclude, and I do not commit myself to, the view that conditionals have truth
values. So I will not say anything about nested or otherwise embedded conditionals.

Covering both indicative and subjunctive conditionals, this is the idea of the
suppositional interpretation:

(SC) A suppositional conditional “If 𝐴, then 𝐶” (𝐴 > 𝐶) is trueA in a state 𝜎

just in case

𝐶 is trueA in 𝜎 revised by the supposition that 𝐴.

This definition is broadly in the tradition of Frank Ramsey, Ernest Adams, Robert
Stalnaker and David Lewis. Strengthening the Antecedent, Contraposition and Tran-
sitivity are all valid for material and strict conditionals, but to the founders of condi-
tional logic—Adams, Stalnaker and Lewis—, they are paradigmatically invalid for
both indicative conditionals and counterfactuals as used in natural language. Still
there are many principles that remain valid and make up attractive logical systems.

In the following, I will formulate logical principles in a way that avoids embed-
dings of conditionals. My presentation is thus closer to the nonmonotonic logics
in the style of Kraus, Lehmann and Magidor (1990) than to the usual presenta-
tions of conditional logics, with the exception that the conditional connectives we’ll
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use (‘>’, ‘→’, ‘≫’, ‘Ï’, ‘▷’ etc.) are elements of the object language, not of the
meta-language. Each of those connectives can lay some claim on being a formal
representation of (some) natural language conditionals ‘If . . . then’.

A principle of the form ‘If Φ, then Ψ’ is to be read as follows: for every state 𝜎, if
the conditionals mentioned in Φ are all trueA in 𝜎, then the conditionals mentioned
in Ψ are trueA in 𝜎. (Sometimes Φ or Ψ refer to some conditionals that are not
trueA.) The variables 𝐴, 𝐵 and 𝐶 range over propositional sentences without any
occurrences of conditional connectives.

System P: the conservative core logic of suppositional conditionals
The following principles have often been considered to form the conservative core

of reasoning with conditionals (Adams 1975, Burgess 1981, Veltman 1985, Pearl
1989, Kraus, Lehmann and Magidor 1990):

(Ref) 𝐴 > 𝐴. (Reflexivity)
(LLE) If 𝐴 ⊣⊢ 𝐵, then 𝐴 > 𝐶 iff 𝐵 > 𝐶. (Left logical equivalence)
(RW) If 𝐴 > 𝐵 and 𝐵 ⊢ 𝐶, then 𝐴 > 𝐶. (Right weakening)
(And) If 𝐴 > 𝐵 and 𝐴 > 𝐶, then 𝐴 > 𝐵 ∧ 𝐶.

(Or) If 𝐴 > 𝐶 and 𝐵 > 𝐶, then 𝐴 ∨ 𝐵 > 𝐶.
(Cut) If 𝐴 > 𝐵 and 𝐴 ∧ 𝐵 > 𝐶, then 𝐴 > 𝐶.

(CMon) If 𝐴 > 𝐵 and 𝐴 > 𝐶, then 𝐴 ∧ 𝐵 > 𝐶. (Cautious monotonicity)
Given a suppositional conditional, one can define a strong, “outer” necessity □𝐴 as
¬𝐴 > ⊥ and a weak, “inner” necessity ·□𝐴 as ⊤ > 𝐴, essentially following Lewis
(1973b, pp. 22, 30). ‘□’ can be read either as a metaphysical or as a doxastic necessity
operator, ‘ ·□’ either as a truth or as a belief operator. Notice that □𝐴 implies ·□𝐴.3

System R: a popular logic of suppositional conditionals
System R adds to system P the principle of Rational Monotony, which entails,

with system P in the background, the weaker Disjunctive Rationality and the still
weaker Negation Rationality.

(NRat) If 𝐴 > 𝐶 and 𝐴 ∧ 𝐵 ̸> 𝐶, then 𝐴 ∧ ¬𝐵 > 𝐶. (Negation rationality)
(DRat) If 𝐴 ∨ 𝐵 > 𝐶 and 𝐴 ̸> 𝐶, then 𝐵 > 𝐶. (Disjunctive rationality)

(RMon) If 𝐴 > 𝐶 and 𝐴 ̸> ¬𝐵, then 𝐴 ∧ 𝐵 > 𝐶. (Rational monotonicity)

System S: the strongest popular logic of suppositional conditionals
System S, named after Stalnaker (1968) who pioneered it, is a further strengthen-

ing of System R. It is usually presented by adding the axiom of Conditional Excluded
Middle (CEM): 𝐴→𝐶 or 𝐴→¬𝐶. We will get back to this principle when we con-
sider the principle of ‘Negation Commutation’ in section 1.3.6. But for reasons that
will become clear later (in section 1.2.3), I want to replace (CEM) by a slightly more

3 Suppose that ¬𝐴 > ⊥. Then by (RW), ¬𝐴 > 𝐴. By (Ref), 𝐴 > 𝐴. So by (Or) and (LLE), ⊤ > 𝐴.
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complex, but more versatile variant which is equivalent to (CEM) in the context of
System P:

(ROr) If 𝐴→𝐵 ∨ 𝐶, then 𝐴→𝐵 or 𝐴→𝐶. (Right Or)
(ROr) was discussed and recommended as an alternative to (CEM) by Hawthorne
and Makinson (2007, pp. 269–271, 280–282). (ROr) implies (RMon) in the context
of System P. Suppose 𝐴 > 𝐶 and 𝐴 ≯ ¬𝐵. By (Ref) and (RW), we have 𝐴 > 𝐵∨¬𝐵.
So by (ROr), 𝐴 > 𝐵. But then, by (CMon), 𝐴 ∧ 𝐵 > 𝐶.

The semantics for suppositional conditionals satisfying the conditions of systems
P, R and S can be given in terms of selection functions 𝜎 selecting the “best”
accessible elements of a set 𝑊 of possible worlds according to a partial order, a
weak order and a linear order, respectively. In the infinite case, the orders have to be
well-orders. I want to allow here for both a doxastic interpretation and a metaphysical
interpretation of 𝜎. In the doxastic interpretation, 𝜎 represents an agent’s doxastic
state. The guiding idea here is to think of 𝜎 as a plausibility function representing our
dispositions to restrict attention to certain possible worlds, given certain suppositions.
Intuitively, for a subset 𝑉 of 𝑊 , 𝜎 selects the set 𝜎(𝑉) of most plausible elements of
𝑉 . For our purposes, it is sufficient that 𝜎 is defined on the algebra of propositions
in 𝑊 that are expressible by factual sentences of our language. Let |𝐴| denote the set
of worlds at which 𝐴 is true. An agent whose dispositions are represented by 𝜎 and
who makes the supposition that 𝐴 restricts attention to the worlds in 𝜎( |𝐴|) for her
further reasoning. 𝜎( |𝐴|) can be understood as the strongest believed proposition
after (hypothetically) revising her beliefs by 𝐴. 𝜎( |⊤|) = 𝜎(𝑊) can be identified
with the strongest proposition currently believed to be true by the agent. In the
metaphysical interpretation, 𝜎 represents the similarities between possible worlds,
and𝜎( |𝐴|) can be understood as the set of 𝐴-worlds that are most similar or “closest”
to the actual world. 𝜎( |⊤|) can be thought to represent the worlds that are closest
to the actual world 𝑤0, and one often wants to assume that 𝜎( |⊤|) = {𝑤0}. If there
are no doxastically or metaphysically accessible worlds in |𝐴|, then no worlds get
selected and 𝜎( |𝐴|) = ∅.4

Non-standard inference schemes
The following inference schemes are typically not included in the most popular

logics of conditionals. We use the generic arrow ‘→’ here, rather than the more
specific corner ‘>’ that is reserved as a symbol for the suppositional conditional.

(Arist1) Not 𝐴→¬𝐴. (Aristotle’s first thesis)
(Arist2) Not both 𝐴→𝐶 and ¬𝐴→𝐶. (Aristotle’s second thesis)
(Ablrd) Not both 𝐴→𝐶 and 𝐴→¬𝐶. (Abelard’s first principle)

(MP) If 𝐴→𝐶 and ·□𝐴, then ·□𝐶. (Modus Ponens)
(MT) If 𝐴→𝐶 and ·□¬𝐶, then ·□¬𝐴. (Modus Tollens)

4 All of this is too brief to be fully accurate. For more extensive background information, see Nute
and Cross (2001).
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(DA) If 𝐴→𝐶 and ·□¬𝐴, then ·□¬𝐶. (Denying the Antecedent)
(AC) If 𝐴→𝐶 and ·□𝐶, then ·□𝐴. (Affirming the Consequent)

(ConjSuf) If ·□𝐴 and ·□𝐶, then 𝐴→𝐶. (Conjunctive Sufficiency)

(LRLE) If 𝐴 ⊣⊢ 𝐵 and 𝐶 ⊣⊢ 𝐷, then 𝐴 > 𝐶 iff 𝐵 > 𝐷. (Left Right Log. Equ.)
(ConjRat) If 𝐴→𝐵 ∧ 𝐶, then 𝐴→𝐵 or 𝐴→𝐶. (Conjunctive Rationality)
(ACRW) If 𝐴→ 𝐴 ∧ 𝐵 ∧ 𝐶, then 𝐴→ 𝐴 ∧ 𝐶. (Anteced. Conj. Right Weakening)

(Ant) If 𝐴→𝐶, then 𝐴→ 𝐴 ∧ 𝐶. (Antecedence)
(Cnsv) If 𝐴→ 𝐴 ∧ 𝐶, then 𝐴→𝐶. (Conservativity)

(AaOE) 𝐴→𝐶 iff (𝐴→ 𝐴 ∧ 𝐶 and 𝐴→ 𝐴 ∨ 𝐶). (And-and-Or Equivalence)
(Cntrpos) If 𝐴→𝐶, then ¬𝐶→¬𝐴. (Contraposition)

(CondPerf) If 𝐴→𝐶, then ¬𝐴→¬𝐶. (Conditional Perfection)
(AOT) 𝐴→ 𝐴 ∧ 𝐶 iff (¬𝐴↛¬𝐴 ∨ 𝐶 and not □𝐴). (And-Or Toggling)

(AOT ′) (𝐴→ 𝐴 ∧ 𝐶 and not □¬𝐴) iff ¬𝐴↛¬𝐴 ∨ 𝐶. (And-Or Toggling′)

The first three principles—(Arist1), (Arist2) and (Ablrd)—are well-known theses
of connexive logic; the terminology used here follows McCall (2012, p. 416).5

The principles of the second group—(MP), (MT), (AC) and (DA)—have been
widely studied in the psychology of reasoning. In the versions presented here, they
make use of the inner modality ·□𝐴. The same holds for Conjunctive Sufficiency
which I have added to this group.

The principles of the last group—(LRLE), (Conjunctive Rationality), (ACRW),
(Ant), (Cnsv), (AaOE), (Cntrpos), (CondPerf), (AOT) and (AOT′)—have turned out
to be relevant in the study of difference-making conditionals, dependence condition-
als and evidential conditionals (see sections 1.2.2–1.2.4 below). (ConjRat), (ACRW)
and (Cnsv) are all weakenings of (RW). The term ‘Antecedence’ as used here goes
back to Bochman (2001, p. 140). In labelling the converse inference by the term
‘Conservativity’, I am using the latter in a more specific sense than other authors.6
Antecedence follows from (AaOE). It will turn out that (Ant) is valid, but (Cnsv) is
invalid for support conditionals. Contraposition is of course valid for material and
strict conditionals, but usually taken to be invalid for suppositional conditionals.
The term ‘Conditional Perfection’ is due to Geis and Zwicky (1971). (CondPerf)
does not imply that conditionals are biconditionals (for which 𝐴→ 𝐶 would have
to be equivalent to 𝐶→ 𝐴), unless in addition Contraposition is available. (AOT)
and (AOT′) are very similar to each other, since both say that the truthA (truth or
acceptance) of 𝐴→ 𝐴∧𝐶 is almost equivalent to the falsityA (falsity or rejection) of

5 These names have become fairly standard by now. Martin (1987, pp. 379–381) originally had the
numbering of the Aristotelian theses the other way round, and he has kept it in later papers.
6 Keenan and Stavi (1986, p. 275) and van Benthem (1986, pp. 8, 77) used ‘Conservativity’ for the
conjunction of (Ant) and (Cnsv). A little earlier, van Benthem (1984, p. 311) had used ‘Antecedence’
for the same conjunction.
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¬𝐴→¬𝐴 ∨ 𝐶—but only almost, since some limiting cases concerning the (partial)
contingency of 𝐴 have to be attended to. In (AOT), 𝐴→ 𝐴∧𝐶 is a little stronger, and
in (AOT′) it is a little weaker than ¬𝐴↛¬𝐴 ∨ 𝐶. This somewhat quirky distinction
will turn out to be significant later (in Sections 1.2.3 and 1.3.5.2).

Why are the non-standard schemes not part of the standard systems for supposi-
tional conditionals? There are two very different reasons for this. There is a group of
schemes that are derivable in the standard systems: (MP), (MT), (ConjSuf), (LRLE),
(ConjRat), (ACRW), (Ant), (Cnsv) and (AaOE) are all derivable in P.7 The com-
plementary group is simply invalid with respect to the semantics of P (and of R
and S for that matter): these are (Arist1), (Arist2), (Ablrd), (DA), (AC), (Cntrpos),
(CondPerf), (AOT) and (AOT′).8 While suppositional conditionals characteristically
validate (RW), (ConjSuf) and (Cnsv) (which is a weakening of (RW)), we will see
that support conditionals characteristically violate these principles.

1.2.2 The difference-making interpretation of conditionals

Rott (1986) proposed another definition of relevance in a belief revision framework, a
criterion picked up by Spohn (2013), and proposed independently in various accounts
of causality. Arguing in particular against Conjunctive Sufficiency (see Rott 1986,
pp. 350–352), Rott suggests that a support conditional 𝐴 > 𝐶 is accepted if and only
if 𝐶 ∈ Bel ∗ 𝐴 and 𝐶 ∉ Bel ∗ ¬𝐴 (where ‘∗’ denotes a belief revision operator). This
is a relevantised variant of the Ramsey Test, ruling that the conditional is accepted
provided the revision by 𝐴 results in the belief that𝐶, but the revision by¬𝐴 does not
result in the belief that 𝐶. Using the terminology of difference-making conditionals,
Rott (2022b) calls the violation of RW the hallmark of conditionals that encode the
idea that the antecedent is positively relevant to the consequent.

As already mentioned, the most widely known conditional logics are all concerned
with suppositional conditionals. Support conditionals are different. One characteris-
tic is that they don’t—and shouldn’t—validate Conjunctive Sufficiency. The violation
of Strengthening the Antecedent can be taken to be the hallmark of such conditionals.
From ‘If you bring your letter to the post office, it will be delivered’ one must not
conclude ‘If you bring your letter to the post office and burn it there, it will be deliv-
ered.’ As a kind of dual thesis, Rott (2022b) holds that the violation of Weakening
the Consequent is the hallmark of difference-making conditionals, and the same
holds for dependence conditionals. From ‘If you pay an extra fee, the letter will be
delivered by express’ it would be odd to conclude ‘If you pay an extra fee, the letter
will be delivered.’

7 Here is a proof for (MP) and (MT). From 𝐴 > 𝐶, we get 𝐴 > (𝐴 ⊃ 𝐶 ) . From this and
¬𝐴 > (𝐴 ⊃ 𝐶 ) , we get ⊤ > (𝐴 ⊃ 𝐶 ) . From the latter and ⊤ > 𝐴 [or ⊤ > ¬𝐶], we get ⊤ > 𝐶

[or ⊤ > ¬𝐴], as desired.
8 (Arist1) and (Ablrd) (but not (Arist2)) are derivable in P if they are restricted to possible
antecedents, or more exactly, to antecedents 𝐴 such that ¬□¬𝐴 (outer modality).
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(DMC) A difference-making conditional “If 𝐴, then 𝐶” (𝐴 ≫ 𝐶) is trueA in a
state 𝜎 just in case

𝐶 is trueA in 𝜎 revised by the supposition that 𝐴, and

𝐶 is not trueA in 𝜎 revised by the supposition that ¬𝐴.

This is essentially the Relevant Ramsey Test (Rott 1986; 2022b). Semantically,
in terms of orders, it means that for every 𝐴 ∧ ¬𝐶-world, there is a ‘better’ 𝐴 ∧ 𝐶-
world, but not for every ¬𝐴 ∧ ¬𝐶-world, there is a ‘better’ ¬𝐴 ∧ 𝐶-world. It has
the following important property: A state that happens to have 𝐴 and 𝐶 trueA does
not automatically have 𝐴 ≫ 𝐶 trueA—no Conjunctive Sufficiency! More generally,
the truthA of 𝐴 ≫ 𝐶 is completely independent of the truthA of 𝐴 and of 𝐶 taken
individually. In this sense, difference-making conditionals are “purely relational”.
Even when 𝐴 entails 𝐶, there is no guarantee that 𝐴 ≫ 𝐶 is trueA (no supra-
classicality). For it may be that𝐶 is trueA “anyway”, i.e., on the supposition that ¬𝐴,
too. This is the case when 𝐶 is a tautology, but there are many other such cases.

A difference-making conditional respects, in a qualitative way, both of the two
notions of confirmation of Carnap (1962, p. xvi), firmness and increase in firmness:
𝐶 is not only trueA given 𝐴, but the supposition of 𝐴 also increases the truthA value
of 𝐶 vis-à-vis the supposition of ¬𝐴.

The strong, outer necessity ‘□’ and the weak, inner necessity ‘ ·□’ (again in the
sense of Lewis 1973b) can be expressed in the pure language of difference-making
conditionals: □𝐴 is expressible by ¬𝐴 ≫ ⊥, ·□𝐴 by ‘not ⊥ ≫ 𝐴’. The suppositional
conditional 𝐴 > 𝐶 can be expressed by ‘𝐴 ≫ 𝐴 ∧ 𝐶 or (□𝐴 and ·□𝐶)’.9

The Relevant Ramsey Test yields a logic of difference-making conditionals that
invalidates all of the principles of system P, except for (LLE) and (And). This is not
a bad thing at all, but just reflects the different meaning of the support conditional. If
we are losing so much, however, is there anything left? It turns out that the answer is
‘yes’. We start with the basic part of the logic of difference-making conditionals.10

Theorem 1 Difference-making conditionals satisfy the following basic conditions:
(LRLE), (ConjRat), (AaOE), (AOT), and in addition:

(Cnst) not ·□⊥; (Consistency)
(IN) ·□ (𝐴 ∨ 𝐶) iff ( ·□𝐴 or not 𝐴 ≫ 𝐴 ∨ 𝐶); (Inner Necessity)

(OND) □(𝐴 ∧ 𝐵) iff (□𝐴 and □𝐵). (Outer Necessity Distribution)

The (And) principle follows from this set of axioms. Except for (LLE), it is the
only condition that carries over from suppositional conditionals to difference-making
conditionals. However, it is not needed if we endorse the above collection of axioms.

The conditions mentioned in Theorem 1 can be taken to be the axiomatisation of
difference-making conditionals. Difference-making conditionals also satisfy (MP),
(MT), (AC) as well as a weaker form of (DA) (Rott 2022b, p. 145):

9 Compare Rott (2022b, pp. 149–150).
10 For proofs of results similar to Theorems 1–4, the reader is invited to compare Raidl (2021a;
2021b) and Rott (2022b).
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(≫DA𝑤) If 𝐴 ≫ 𝐶 and ·□¬𝐴, then not ·□𝐶.

One can also prove the converse of Theorem 1.

Theorem 2 (Representation theorem for difference-making conditionals)
Let ≫ be a conditional that satisfies the conditions mentioned in Theorem 1. Then

there is a selection function 𝜎 that generates ≫ by means of (DMC).

For the representation theorem, one can define𝜎 by𝜎( |𝐴|) = ⋂{ |𝐶 | : 𝐴 ≫ 𝐴∧𝐶
is trueA, or □𝐴 and ·□𝐶 are trueA}.

The supplementary part of the logic of difference-making conditionals concerns
conditionals with compound antecedents. Many of the principles of systems P and
R are valid for difference-making conditionals if they are restricted to non-beliefs
(restricted validities):

(≫Or𝑟 ) If 𝐴 ≫ 𝐶 and 𝐵 ≫ 𝐶 and not ·□ (𝐴∨𝐵), then 𝐴 ∨ 𝐵 ≫ 𝐶.

(≫Cut𝑟 ) If 𝐴 ∧ 𝐵 ≫ 𝐶 and 𝐴 ≫ 𝐵 and not ·□𝐴, then 𝐴 ≫ 𝐶.

(≫CMon𝑟 ) If 𝐴 ≫ 𝐶 and 𝐴 ≫ 𝐵 and not ·□𝐴, then 𝐴 ∧ 𝐵 ≫ 𝐶.

(≫RMon𝑟 ) If 𝐴 ≫ 𝐶 and not 𝐴 ≫ ¬𝐵 and not ·□𝐴, then 𝐴 ∧ 𝐵 ≫ 𝐶.

Moreover, many of the principles of systems P and R are valid if they are modified
by repeating the antecedent as a conjunct of the consequent (modified validities).
This in effect amounts to a de-relevantisation of difference-making conditionals:

(≫Or∗) If 𝐴 ≫ 𝐴 ∧ 𝐶 and 𝐵 ≫ 𝐵 ∧ 𝐶 and not □(𝐴 ∨ 𝐵), then 𝐴 ∨ 𝐵 ≫
(𝐴 ∨ 𝐵) ∧ 𝐶.

(≫Cut∗) If 𝐴 ≫ 𝐴 ∧ 𝐵 and 𝐴 ∧ 𝐵 ≫ 𝐴 ∧ 𝐵 ∧ 𝐶 , then 𝐴 ≫ 𝐴 ∧ 𝐶.

(≫CMon∗) If 𝐴 ≫ 𝐴 ∧ 𝐵 and 𝐴 ≫ 𝐴 ∧ 𝐶 , then 𝐴 ∧ 𝐵 ≫ 𝐴 ∧ 𝐵 ∧ 𝐶.

(≫RMon∗) If not 𝐴 ≫ 𝐴 ∧ ¬𝐵 and 𝐴 ≫ 𝐴 ∧ 𝐶 , then 𝐴 ∧ 𝐵 ≫ 𝐴 ∧ 𝐵 ∧ 𝐶.

Connexivity. The difference-making conditional ≫ satisfies Aristotle’s theses
(Arist1) and (Arist2), as well as a restricted form of Abelard’s thesis:

(≫Ablrd𝑟 ) Not both 𝐴 ≫ 𝐶 and 𝐴 ≫ ¬𝐶, unless □¬𝐴 and neither ·□𝐶 nor ·□¬𝐶.

‘Full connexivity’ with unrestricted (≫Ablrd) is obtained for difference-making
conditionals in Rott (2022a) where a slightly different background theory for be-
lief revision is used (“conceivability-limited belief revision”). In this paper it is
argued that the three connexive principles should not be restricted in any way if the
interpretation of conditionals as support conditionals is to be taken seriously.
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1.2.3 The dependence interpretation of conditionals

Here is a closely related, yet different idea of capturing the support relation between
antecedent and consequent.

(DpC) A dependence conditional “If 𝐴, then 𝐶” (𝐴 Ï 𝐶) is trueA in a state 𝜎

just in case

𝐶 is trueA in 𝜎 revised by the supposition that 𝐴, and

¬𝐶 is trueA in 𝜎 revised by the supposition that ¬𝐴.

The second clause for the dependence conditional is stronger than that for the
difference-making conditional unless 𝜎(¬𝐴) is empty (i.e., unless 𝐴 is a necessity).
Semantically, in terms of orders, it means that for every 𝐴 ∧ ¬𝐶-world, there is a
‘better’ 𝐴 ∧ 𝐶-world, and for every ¬𝐴 ∧ 𝐶-world, there is a ‘better’ ¬𝐴 ∧ ¬𝐶-
world. Notice that 𝐴 Ï 𝐶 is equivalent to ¬𝐴 Ï ¬𝐶 (CondPerf). The idea of
dependence conditionals is similar to David Lewis’s (1973a, pp. 562–563) famous
reduction of causal dependence to counterfactual dependence: If 𝐴 and 𝐶 describe
the occurrences of two events 𝑎 and 𝑐, then 𝑐 causally depends on 𝑎 if and only if
the counterfactuals 𝐴□→𝐶 and ¬𝐴□→¬𝐶 are both true. Lewis’s counterfactuals
are non-epistemic suppositional conditionals in our sense.

We can express strong, outer necessity ‘□’ and weak, inner necessity ‘ ·□’ in the
pure language of dependence conditionals: □𝐴 can again be expressed by ¬𝐴 Ï ⊥,
but now ·□𝐴 is expressed by ⊤ Ï 𝐴. The suppositional conditional 𝐴 > 𝐶 can be
expressed by 𝐴 Ï 𝐴 ∧ 𝐶.11

This is the basic part of the logic of dependence conditionals:

Theorem 3 Dependence conditionals satisfy the following basic conditions: (LRLE),
(Ref), (And), (ACRW), (AaOE), (CondPerf), and in addition:

(Cnst′) not ·□⊥;
(IN′) ·□ (𝐴 ∨ 𝐶) iff ( ·□𝐴 or 𝐴 Ï 𝐴 ∨ ¬𝐶);

(OND′) □(𝐴 ∧ 𝐵) iff (□𝐴 and □𝐵).

The conditions mentioned in Theorem 3 can be taken to be the axiomatisation
of dependence conditionals. The most conspicuous property of the dependence
conditional Ï is (CondPerf) which follows immediately from definition (DpC).
But it does not imply that Ï is a biconditional. The meaning of 𝐴 Ï 𝐶 is still
very different from that of 𝐶 Ï 𝐴. Except for (Ref) and (LLE), (And) is the only
condition that carries over from systems P and R to dependence conditionals. It is
not redundant in the above collection of basic axioms.

11 Compare Rott (2022b, p. 151).
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Dependence conditionals satisfy (MP), (MT), (DA) and (AC). The condition
(ACRW) is also valid for difference-making conditionals. (ConjRat) and (AOT) do
not generally hold for dependence conditionals.12

The supplementary part of the logic of dependence conditionals which concerns
conditionals with compound antecedents is similar to, and slightly more straightfor-
ward than, that of difference-making conditionals.

Connexivity. Dependence conditionals Ï satisfy the fully unrestricted versions
of Aristotle’s theses (Arist1) and (Arist2) and Abelard’s thesis (Ablrd) (for all this,
see Rott 2022b, p. 151).

One can also prove the converse of Theorem 3.

Theorem 4 (Representation theorem for dependence conditionals)
Let Ï be a conditional that satisfies the conditions mentioned in Theorem 3. Then

there is a selection function 𝜎 that generates Ï by means of (DpC).

For the representation theorem, one can define𝜎 by𝜎( |𝐴|) = ⋂{ |𝐶 | : 𝐴 Ï 𝐴∧𝐶
is trueA}.

Now that we know that difference-making conditionals and dependence condi-
tionals are different in that they satisfy different sets of axioms, we can ask whether
there are conditionals that satisfy both sets of axioms. The first answer to this ques-
tion is ‘no’. On the one hand, the difference-making conditional ⊤ ≫ ⊤ can never be
trueA, while the dependence conditional ⊤ Ï ⊤ is valid, i.e., invariably trueA(Rott
2022b, pp. 144, 151).

We can conclude from (CondPerf) and (AOT′) that 𝐴 ̸Ï 𝐴∧¬𝐶 implies 𝐴 Ï 𝐴∧
𝐶. Since 𝐴 Ï 𝐴∧𝐶 is equivalent to the suppositional 𝐴 > 𝐶, this can be interpreted
as a kind of Conditional Excluded Middle for de-relevantised conditionals. World-
selection functions 𝜎 selecting only singleton sets (for any input, also for the input
𝑊) generate conditionals satisfying very nearly both sets of axioms, for the simple
reason that for such functions, the truth or acceptance of ¬𝐶 in 𝜎 revised by a
supposition is normally equivalent to the falsity or non-acceptance of 𝐶 in 𝜎 revised
by the same supposition. This only fails for the limiting case of metaphysically or
doxastically impossible suppositions, on which both 𝐶 and ¬𝐶 are trueA(in which
case 𝜎 delivers the empty set).

If we are ready to replace (AOT) by (AOT′), then we can define a special non-
trivial conditional that satisfies both sets of axioms. Call a (suppositional, difference-
making or dependence) conditional Stalnakerian if it is based on a singleton-valued
selection 𝜎 that is determined by a total well-ordering of the accessible worlds in 𝑊

(cf. section 1.2.1).

Theorem 5 (i) A Stalnakerian dependency conditional satisfies all the axioms for
dependence conditionals plus (Right Or).
(ii) A Stalnakerian dependency conditional also satisfies all the axioms for difference-
making conditionals, with the exception that (AOT′) has to be substituted for (AOT).

12 Concerning (ConjRat): From ¬𝐴 > ¬(𝐵 ∧ 𝐶 ) , it does not follow that either ¬𝐴 > ¬𝐵 or
¬𝐴 > ¬𝐶. Concerning (AOT), the left-to-right direction: 𝐴 > 𝐶 does not preclude 𝐴 > ¬𝐶.
Concerning its right-to-left direction: 𝐴 ≯ ¬𝐶 does not preclude 𝐴 ≯ 𝐶.
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Proof. (i) Given Theorem 3, we only have to deal with (ROr). Suppose that
𝐴 Ï 𝐵 ∨ 𝐶. From 𝐴 > 𝐵 ∨ 𝐶, we can infer, by (ROr) for >, that 𝐴 > 𝐵 or 𝐴 > 𝐶.
From ¬𝐴 > ¬(𝐵 ∨ 𝐶), we can infer, by (RW) for >, that both ¬𝐴 > ¬𝐵 and
¬𝐴 > ¬𝐶. So 𝐴 Ï 𝐵 or 𝐴 Ï 𝐶.

(ii) We prove that the axioms for difference-making conditionals with (AOT)
replaced by (AOT′) are all derivable from the axioms for Stalnakerian dependence
conditionals.
(LRLE) and (AaOE) are already axioms for dependence conditionals.

(ConjRat) follows from (CondPerf) and (ROr): If 𝐴 Ï 𝐵∧𝐶, then¬𝐴 Ï ¬(𝐵∧𝐶)
by (CondPerf), so ¬𝐴 Ï ¬𝐵 ∨ ¬𝐶, so, by (ROr), ¬𝐴 Ï ¬𝐵 or ¬𝐴 Ï ¬𝐶. Thus, by
(CondPerf) again, 𝐴 Ï 𝐵 or 𝐴 Ï 𝐶.

(AOT′), from left to right: Suppose that 𝐴 Ï 𝐴 ∧ 𝐶 and 𝐴 ̸Ï ⊥. Using (And)
and (LRLE), we can conclude that 𝐴 ̸Ï 𝐴 ∧ ¬𝐶. By (CondPerf and (LRLE), this
gives us ¬𝐴 ̸Ï ¬𝐴 ∨ 𝐶, as desired.

(AOT′), from right to left: Suppose that ¬𝐴 ̸Ï ¬𝐴 ∨ 𝐶. Then, by (CondPerf),
𝐴 ̸Ï 𝐴∧¬𝐶. Since 𝐴 Ï 𝐴, by (Ref), we also have 𝐴 Ï (𝐴∧𝐶) ∨ (𝐴∧¬𝐶). Thus,
by (ROr), 𝐴 Ï 𝐴 ∧ 𝐶. For the second part of this direction, note that 𝐴 ̸Ï 𝐴 ∧ ¬𝐶
implies 𝐴 ̸Ï 𝐴 ∧ 𝐶 ∧ ¬𝐶 by (ACRW), or equivalently, 𝐴 ̸Ï ⊥, by (LRLE).

(Cnst), which in the language of difference-making conditionals means ⊥ Ï ⊥,
follows from (Ref).

(IN), which in the language of difference-making conditionals is equivalent to
⊥ Ï 𝐴 ∨ 𝐶 iff ⊥ Ï 𝐴 and 𝐴 Ï 𝐴 ∨ 𝐶.
From left to right. Suppose that ⊥ Ï 𝐴 ∨ 𝐶. Then, by (CondPerf), ⊤ Ï ¬𝐴 ∧ ¬𝐶.
First we can use (LRLE) and (ACRW) to get ⊤ Ï ¬𝐴. Second, suppose for reductio
that 𝐴 ̸Ï 𝐴∨𝐶. Then we can use (AOT′) and get ¬𝐴 Ï ¬𝐴∧𝐶. So, by (CondPerf),
𝐴 Ï 𝐴∨¬𝐶. By (IN′), we get⊤ Ï 𝐴∨𝐶. On the other hand, we have⊤ Ï ¬𝐴∧¬𝐶.
So by (And) and (LRLE), we have ⊤ Ï ⊥, contradicting (Cnst′).
From right to left. Suppose that ⊥ Ï 𝐴 and 𝐴 ≫ 𝐴∨𝐶. From the former we get, by
(CondPerf), ⊤ Ï ¬𝐴, and from the latter we get, by (IN′), ⊤ Ï 𝐴 ∨ ¬𝐶. Thus by
(And) and (LRLE) ⊤ Ï ¬𝐴 ∧ ¬𝐶. So, by (CondPerf), ⊥ Ï 𝐴 ∨ 𝐶.

(OND) is identical to (OND′), since the meaning of ‘□’ is the same. □

Concerning part (i) of Theorem 5, we note that the condition (ROr) is valid for
all suppositional, difference-making and dependence conditionals that are Stalnake-
rian.13 And based on part (ii) of this theorem, we can say, loosely speaking, that the
union of the axioms for difference-making conditionals and those for dependence
conditionals are ‘almost consistent’. Our second answer to the question raised above
thus is ‘almost yes’.

Theorem 6 (Representation theorem for Stalnakerian dependence conditionals)
Let Ï be a conditional that satisfies the conditions mentioned in Theorem 3,

(ROr) and
(ÏOr∗) If 𝐴 Ï 𝐴 ∧ 𝐶 and 𝐵 Ï 𝐵 ∧ 𝐶, then 𝐴 ∨ 𝐵 Ï (𝐴 ∨ 𝐵) ∧ 𝐶.

13 By contrast, (CEM) is invalid for Stalnakerian difference-making and Stalnakerian dependence
conditionals, as is witnessed by any state in which both 𝐴 > 𝐶 and ¬𝐴 > 𝐶 are true/accepted.
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(ÏCMon∗) If 𝐴 Ï 𝐴 ∧ 𝐵 and 𝐴 Ï 𝐴 ∧ 𝐶 , then 𝐴 ∧ 𝐵 Ï 𝐴 ∧ 𝐵 ∧ 𝐶.
Then there is a Stalnakerian selection function 𝜎 that generates Ï by means of
(DpC).

Sketch of proof: We build on Theorem 7.2 and its proof in Rott (2022b), from
which we know that the conditional > defined by 𝐴 > 𝐶 iff 𝐴 Ï 𝐴 ∧ 𝐶 is a
suppositional conditional satisfying System P. The selection function 𝜎 is defined
by putting𝜎( |𝐴|) = ⋂{ |𝐶 | : 𝐴 Ï 𝐴∧𝐶 is trueA} = ⋂{ |𝐶 | : 𝐴 > 𝐶 is trueA}. What
remains to show here is that > satisfies (ROr). Let 𝐴 > 𝐵∨𝐶, i.e., 𝐴 Ï 𝐴∧ (𝐵∨𝐶).
By (LRLE), this means that 𝐴 Ï (𝐴∧𝐵)∨(𝐴∧𝐶). Thus, by (ROr) for Ï, 𝐴 Ï 𝐴∧𝐵

or 𝐴 Ï 𝐴∧𝐶. Using the definition of >, again, this is equivalent to 𝐴 > 𝐵 or 𝐴 > 𝐶.
Now we have shown that > thus defined is a Stalnakerian suppositional conditional,
and it is known that such conditionals can be generated by the Stalnakerian selection
function 𝜎.

1.2.4 The contraposition interpretation of conditionals

Vincenzo Crupi and Andrea Iacona (2022a) have worked out another idea of cap-
turing the notion of epistemic support. They start out their explication of ‘evidential
conditionals’ referring to an incompatibility between the antecedent and the negated
consequent of such conditionals. They take the term ‘incompatibility’ from Chrysip-
pus, but offer their own interpretation:

The core idea of the evidential account is that a conditional 𝐴▷𝐶 is true if and only if 𝐴
and ¬𝐶 are incompatible in the following sense: if 𝐴 is true, then 𝐶 cannot easily be false,
and if 𝐶 is false, then 𝐴 cannot easily be true.14

Crupi and Iacona then go on and analyse the first part of the quoted passage by the
Ramsey Test for the suppositional conditional 𝐴 > 𝐶, and the second part by what
they call the Reverse Ramsey Test for this conditional, which is identical with the
ordinary Ramsey test for ¬𝐶 > ¬𝐴. This conjunction they call the Chrysippus Test
(Crupi and Iacona 2022a, p. 2901). The following representation of the evidential
conditional is a good rendering of the essence of Crupi and Iacona’s idea. Even
though I have serious doubts whether their approach captures the notion of evidential
support (cf. Rott 2022c), I will stick to their term ‘evidential conditional’, hoping to
be excused if I apply quotation marks from time to time.

(CpC) An evidential conditional “If 𝐴, then 𝐶” (𝐴 ▷ 𝐶) is trueA in a state 𝜎

just in case

𝐶 is trueA in 𝜎 revised by the supposition that 𝐴, and

¬𝐴 is trueA in 𝜎 revised by the supposition that ¬𝐶.

14 Crupi and Iacona (2022a, p. 2900), notation adapted.
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Semantically, in terms of orders, (CpC) means that for every 𝐴∧¬𝐶-world, there
is a ‘better’ 𝐴 ∧ 𝐶-world and a ‘better’ ¬𝐴 ∧ ¬𝐶-world. The second clause used in
(CpC) is logically independent of the second clauses used in (DMC) and in (DpC).

The strong, ‘outer’ necessity ‘□𝐴’ can be expressed again by ¬𝐴 ▷ ⊥, or equiv-
alently, by ⊤ ▷ 𝐴. However, the weak, ‘inner’ necessity ‘ ·□𝐴’ cannot be expressed
in the pure language of evidential conditionals.15

When introducing their modal account, Crupi and Iacona considered only few of
the principles of Systems P and R, namely the valid (LLE) and the invalid (RW).
They also mentioned (MP) as valid. Characteristically, Crupi and Iacona’s account
also validates Contraposition. The validity of the principles (And), (Or) and (CMon)
was verified by Raidl (2019), the validity of (NRat) and (DRat) and the invalidity
of (Cut), and (RMon) by Rott (2020). This holds against the background of a very
well-behaved selection function that validates the principles of System R for the
suppositional conditional >.

Crupi and Iacona (2022a, pp. 2913–2914) also show that their conditional sat-
isfies restricted variants of Aristotle’s theses and Abelard’s thesis. The restricting
conditions are that ¬□¬𝐴 for (Arist1) and (Ablrd) and that ¬□𝐶 for (Arist2). Crupi
and Iacona emphasise that the restricted principles, ‘unlike their unrestricted coun-
terparts, imply no revision of classical logic.’ It is easy to check the validity of (MT)
and the invalidity of (AC) and (DA). Let us collect what we know in another theorem:

Theorem 7 Evidential conditionals satisfy the following conditions: (LRLE), (Ref),
(And), (Or), (CMon), (NRat), (DRat), (Cntrpos), (Ant) and moreover (MP), (MT)
and restricted versions of (Arist1), (Arist2) and (Ablrd). On the other hand, they do
not satisfy (RW), (Cut), (RMon), (AC), (DA), (ConjSuf) and (Cnsv).

We can conclude that Crupi and Iacona’s ‘evidential conditionals’ obey a very
well-behaved logic. A completeness theorem for truth-valued, fully embeddable and
iterable evidential conditionals is proved by Raidl, Iacona and Crupi (2022).

1.2.5 Definable conditionals

Eric Raidl (2021a; 2021b) has developed a sophisticated general technique of trans-
ferring completeness results for the well-known and “well-behaved” suppositional
conditionals > to relevance-expressing conditionals that are definable in terms of >.
He is thus able to cover the proposal of Crupi and Iacona as well as those of Rott

15 This can be seen as follows. Consider the propositional language with two atoms 𝑝 and 𝑞, suppose
that there are only three accessible worlds 𝑤1, 𝑤2 and 𝑤3 satisfying 𝑝 ∧ 𝑞, 𝑝 ∧ ¬𝑞 and ¬𝑝 ∧ ¬𝑞,
respectively. Consider two different states characterised by the total orders 𝑤1 ≺1 𝑤3 ≺1 𝑤2 and
𝑤3 ≺2 𝑤1 ≺2 𝑤2. The semantics for ▷ makes it clear that the two orders satisfy exactly the
same evidential conditionals (essentially 𝑝 ▷ 𝑞 and its consequences according to Theorem 9).
However, we have ·□1 (𝑝 ∧ 𝑞) and not ·□1 (¬𝑝 ∧ ¬𝑞) , but the reverse is true for ·□2. Given what
we said above, it follows that suppositional conditionals are not definable from evidential ones, nor
are difference-making conditionals or dependence conditionals. The converse definitions are all
possible.
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in a unified manner and presents logics of definable conditionals (or strengthened
conditionals) as modal logics with full embeddings and iterations of conditionals.

Difference-making conditionals:
𝐴 ≫ 𝐶 iffdef 𝐴 > 𝐶 and ¬𝐴 ≯ 𝐶 .
Dependence conditionals:
𝐴 Ï 𝐶 iffdef 𝐴 > 𝐶 and ¬𝐴 > ¬𝐶 .
Crupi and Iacona’s ‘evidential conditionals’:
𝐴 ▷ 𝐶 iffdef 𝐴 > 𝐶 and ¬𝐶 > ¬𝐴 .

Raidl’s completeness theorems concern conditionals with a truth-value semantics.

1.2.6 Iterated change interpretations of conditionals

A different way of modifying the truth or acceptance conditions of conditionals in
such a way as to guarantee the relevance of the antecedent to the consequent and
to avoid Conjunctive Sufficiency consists in first retracting belief (or disbelief) in
the antecedent or the consequent, and only then making the suppositional test as
formulated in (SC). This idea in particular avoids (ConjSuf). It can be found with
some variations in Rott (1986), Vidal (2016; 2018) and Andreas and Günther (2019).

Rott (1986, pp. 352–355) suggests “contracting” the agent’s belief set by the
consequent of a “universal conditional” before the conditional gets evaluated by a
suppositional test with respect to its antecedent. Vidal (2016, pp. 293–299; 2018,
pp. 131–133) requires that the antecedent be ‘inhibited’ or ‘neutralized’ in a first
step for the conditional ‘If 𝐴, 𝐶’ (without ‘then’ preceding the consequent), and that
both the antecedent and the consequent be inhibited in a first step for the conditional
‘If 𝐴, then 𝐶’. We take a closer look at Andreas and Günther who also propose to
retract both the antecedent and the consequent before the antecedent is supposed to
be true again:

First, suspend judgement about the antecedent and the consequent. Second, add the an-
tecedent (hypothetically) to your stock of explicit beliefs. Finally, consider whether or not
the consequent is entailed by your explicit beliefs. (Andreas and Günther 2019, p. 1248)

The positive relevance of 𝐴 for 𝐶 is intended to be guaranteed by an ‘agnostic
move’ with respect to both 𝐴 and 𝐶 and finding that subsequently 𝐴 is sufficient
to reinstate 𝐶. This interesting idea is similar to one of Vidal’s proposals. Two
problems make it difficult to work out a logic for such conditionals: the simultaneous
retraction of two sentences (the antecedent and the consequent), and the iteration of
belief revision operators (a hypothetical addition after the retraction). Both problems
have been dealt with in the belief revision literature (‘multiple contraction’, ‘iterated
revision’), but there are no generally agreed solutions to either of them. Andreas and
Günther identify the simultaneous retraction of two sentences with a retraction of
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their disjunction16 and so get around the first problem. The problem of iterated belief
change operations is not pressing from them, since the antecedent of the conditional
can be added in the second step without any inconsistencies. Like Rott and Vidal,
Andreas and Günther don’t investigate systematically the logical principles validated
by their conditionals.

1.3 Quantitative-probabilistic accounts

1.3.1 Concepts of validity in quantitative-probabilistic accounts

Values and unvalues, support values and unsupport values. The quantitative accounts
we will consider are not interested in the truth or falsity of conditionals, and they don’t
treat them as (un-)acceptable or (un-)assertable simpliciter. Sentences are assigned
degrees of acceptability or assertability. For this, we employ valuation functions 𝑉
over the set of sentences of the language. For a factual sentence, such an acceptability
or assertability value is simply its probability (the idea of support isn’t applicable
here).17 For a suppositional conditional, it has traditionally been identified with the
conditional probability of the consequent given the antecedent, and we’ll stick to the
tradition. For a support conditional, we will use measures of evidential support as
the values of its acceptability or assertability.

We adopt the convention that conditionals don’t get negative support values.18
When the antecedent is negatively relevant to the consequent and a measure is used
that then takes a negative value, we set the support value𝑉 (𝐴→𝐶) of the conditional
to 0. Support values will always be between or equal to 0 and 1. We assume with the
literature (Adams, Berto and Özgün, Crupi and Iacona) that the unvalue (a cover term
for the uncertainty value, the unacceptability value, the unassertability value, . . . )
of a conditional is equal to 1 minus its support value: 𝑈 (𝐴→𝐶) = 1 −𝑉 (𝐴→𝐶).

The support value of a negated conditional 𝐴↛𝐶 is defined to be 1 minus the
support value of the unnegated conditional 𝐴→𝐶, that is, 𝑉 (𝐴↛𝐶) = 𝑈 (𝐴→𝐶).

We will look at four particular suggestions for measures of evidential support.
But before we do that, we need to be clear how we can possibly make use of
values representing degrees of evidential support in the definition of the validity of
inferences. Once we have the numbers, what are we going to do with them?

Validity. The key idea is simple. Validity in deductive logic is preservation of
truth. As we won’t commit us the the view that conditionals have truth values, we
will take preservation of acceptability or assertability for the definition of validity.

16 In general, this does not seem to give the same results. For example, if one is convinced that a
crime was committed by a single perpetrator, suspending judgment on the innocence of each of two
suspects individually does not entail suspending judgment on the claim that at least one of them is
innocent.
17 This is also what Crupi and Iacona (2022c, p. 49) do.
18 This choice is made mainly for reasons of simplicity.
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We discuss two basic implementations of this idea. Both implementations make use
of thresholds. In the first one, the threshold for acceptability is the same for the
premises and the conclusion, the second one allows varying thresholds (typically
higher thresholds for the premises than for the conclusion).19

Validity 1. An inference is valid1 iff the value of the conclusion is not lower
than the value of every single premise (the unvalue of the conclusion is not higher
than the unvalue of every single premise). Equivalently, iff the following condition
holds: the value of the conclusion is at least the minimal value of the premises (the
unvalue of the conclusion is at most the maximal unvalue of the premises). And
again equivalently, iff the following condition holds: for every threshold value 𝑡,
whenever the premises are all acceptable in the sense that their values are above 𝑡,
then the conclusion is acceptable in the same sense, too (whenever the unvalues of
all premises are below 𝑡, then the unvalue of the conclusion is below 𝑡, too). So this
concept of validity is clearly an acceptance-preservation concept.

Validity 2. An inference is valid2 iff the the following holds: for every target
threshold 𝑡 = 1 − 𝜀 for the conclusion there is threshold 𝑡′ = 1 − 𝛿 for the premises
such that whenever all premises have a value of at least 𝑡′, the conclusion has a
value of at least 𝑡 (or equivalently: for every target threshold 𝑡 = 𝜀 for the conclusion
there is threshold 𝑡′ = 𝛿 for the premises such that whenever all premises have an
unvalue of at most 𝑡′, the conclusion has an unvalue of at most 𝑡). This notion of
validity may also be regarded as a kind of acceptance-preservation concept, one
which resorts to acceptance thresholds 𝑡′ for the premises that are in general higher
than the acceptance threshold 𝑡 for the conclusion. The idea is due to Ernest Adams
(1965; 1966). For him, the values of factual sentences 𝐴 and conditionals 𝐴 > 𝐶

are plain and conditional probabilities (Pr(𝐴) and Pr(𝐶 | 𝐴)), and their unvalues are
“uncertainties” (i.e., improbabilities 1 − Pr(𝐴) and 1 − Pr(𝐶 | 𝐴), respectively). He
takes the probability of a conditional to be a measure of its acceptability20 and the
‘whenever’ in the definition above is actually a quantification over all probability
functions. He calls the resulting logic a logic of high probability: “as the premisses
approach certainty the conclusion’s probability must approach certainty too” (Adams

19 Threshold ideas transferring ideas of Section 1.2 directly to the probabilistic setting might look
like this. Given a contextually fixed threshold 𝑡 ∈ (0, 1) , a conditional 𝐴→𝐶 is acceptable (w.r.t.
𝑡) iff

(i) Pr(𝐶 | 𝐴) ≥ 𝑡 , but Pr(𝐶 ) < 𝑡 .
(ii) Pr(𝐶 | 𝐴) ≥ 𝑡 , but Pr(𝐶 | ¬𝐴) < 𝑡 .
(iii) Pr(𝐶 | 𝐴) ≥ 𝑡 and Pr(¬𝐶 | ¬𝐴) ≥ 𝑡 .
(iv) Pr(𝐶 | 𝐴) ≥ 𝑡 and Pr(¬𝐴 | ¬𝐶 ) ≥ 𝑡 .

The ideas of (ii)–(iv) are similar to difference-making, dependence and evidential conditionals,
respectively. As far as I know, none of these rules was suggested in the literature, so I will not
further discuss them in the following.
20 In empirical tests, Skovgaard-Olsen, Singmann and Klauer (2016) found that depending on
whether the antecedent is positively relevant, negatively relevant or irrelevant to the consequent,
the probability of a conditional may or may not be considered equal the conditional probability by
the subjects. In other words, relevance considerations interact with assignments of probabilities to
conditionals. Their main finding was that Adams’ Thesis appears to hold good only when there is
a relation of positive relevance.
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1996, p. 9). Adams had an excellent justification for this definition. For purely factual,
i.e., non-conditional sentences, this second concept of validity coincides with the
usual concept of logical entailment in classical logic.

Adams also made a surprising discovery. Given his interpretations of values and
unvalues, validity in this second sense can equivalently be defined as follows: An
inference is valid2 iff the unvalue of the conclusion is not higher than the sum of the
unvalues of the premises.21 Given the above relation between values and unvalues,
this is equivalent to saying: the value of the conclusion is not lower than the sum of
the values of the premises minus 𝑘−1, where 𝑘 is the number of premises. Adams
used the 𝜖-𝛿-definition in his early work and later switched to the uncertainty-sum
condition as his official definition of validity.

Let us thus call validity in the second sense the unvalue-sum concept or simply
the sum concept of validity and contrast it with validity in the first sense by calling
the latter the unvalue-max concept or simply the max concept of validity. These
names refer to unvalues rather than values. Adams’s project, which results in system
P, is a classic by now. Hawthorne (1996) and Hawthorne and Makinson (2007) have
have pursued a similar project using the max concept rather than the sum concept
and studied the weaker system O. Being more permissive than the max concept, the
sum concept in general generates stronger and more ‘well-behaved’ logics than the
former.

Validity for Horn schemes. We consider only inference schemes with one or two
premises (see Section 1.2.1). For one-premise Horn schemes the two validity con-
cepts coincide.22 For two-premise Horn schemes of the form

(H) If 𝐴1→𝐶1 and 𝐴2→𝐶2, then 𝐴3→𝐶3,
however, they come apart.

Validity 1: 𝑈 (𝐴3→𝐶3) ≤ max{𝑈 (𝐴1→𝐶1), 𝑈 (𝐴2→𝐶2)}.
𝑉 (𝐴3→𝐶3) ≥ min{𝑉 (𝐴1→𝐶1), 𝑉 (𝐴2→𝐶2)}.

Validity 2: 𝑈 (𝐴3→𝐶3) ≤ 𝑈 (𝐴1→𝐶1) +𝑈 (𝐴2→𝐶2).
𝑉 (𝐴3→𝐶3) ≥ 𝑉 (𝐴1→𝐶1) +𝑉 (𝐴2→𝐶2) − 1.

Validity for non-Horn schemes. Non-Horn inference schemes can be presented in
different ways.23 The versions of the simple case that is relevant to us are

21 I have been unable to find a crisp and direct proof of this equivalence in the work of Adams.
Adams’s proof takes a detour via so-called 𝑝-orderings which he invented in 1966. In Adams (1996,
pp. 14–15), he refers back to Adams (1986, pp. 273–275), which in turn refers to Adams (1981, pp.
171–175), which in turn appeals to a non-trivial result of Adams (1966, probably Theorem 7). In his
textbook, Adams (1998, pp. 137, 152) just states the equivalence and gives no proof. In his earlier
book, Adams (1975, p. 57) had said that the fact that the 𝜀-𝛿 rule implies the uncertainty-sum
criterion is an “easy consequence of basic definitions plus previous theorems”. In retrospect, this
appears to be overly optimistic.—For the rich variety of equivalents to Adams’s rule, see Leitgeb
(2016).
22 Horn schemes are closure conditions. See Hawthorne and Makinson (2007, p. 250).
23 The non-Horn schemes we have listed in Section 1.2.1 are (NRat), (DRat), (RMon), (ROr),
(ConjRat), and the right-to-left directions of (AOT) and (AOT′).
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(NH1) If 𝐴1→𝐶1 and 𝐴2↛𝐶2, then 𝐴3→𝐶3.
on the one hand and
(NH2) If 𝐴1→𝐶1, then 𝐴2→𝐶2 or 𝐴3→𝐶3.

on the other. These forms are usually considered to be equivalent. However, it
turns out the definition of validity of a non-Horn scheme is sensitive to the form of
presentation. Let us try out both of the validity concepts above.

Validity 1 for (NH1): 𝑈 (𝐴3→𝐶3) ≤ max{𝑈 (𝐴1→𝐶1), 1 −𝑈 (𝐴2→𝐶2)}.
𝑉 (𝐴3→𝐶3) ≥ min{𝑉 (𝐴1→𝐶1), 1 −𝑉 (𝐴2→𝐶2)}.

Validity 2 for (NH1): 𝑈 (𝐴3→𝐶3) ≤ 𝑈 (𝐴1→𝐶1) + 1 −𝑈 (𝐴2→𝐶2).
𝑉 (𝐴1→𝐶1) ≤ 𝑉 (𝐴2→𝐶2) +𝑉 (𝐴3→𝐶3).

Validity 1 for (NH2): 𝑈 (𝐴1→𝐶1) ≥ min{𝑈 (𝐴2→𝐶2),𝑈 (𝐴3→𝐶3)}.
𝑉 (𝐴1→𝐶1) ≤ max{𝑉 (𝐴2→𝐶2), 𝑉 (𝐴3→𝐶3)}.

Validity 2 for (NH2): Not applicable.

Validity 1 for (NH1) is not symmetric in 𝐴2→𝐶2 and 𝐴3→𝐶3, and it does not
seem to make much sense. But validity 1 for (NH2) is kind of dual to validity 1
for Horn schemes and gives a neat and reasonable condition. Validity 2 for (NH1)
is symmetric in 𝐴2 →𝐶2 and 𝐴3 →𝐶3 and is in a way dual to validity 2 for Horn
schemes. But validity 2 is not even applicable to (NH2), since there no relevant sum
that could be taken. So we conclude that the choice of the validity concept and the
choice of the way of presenting non-Horn inference schemes are dependent on each
other. It is recommended to take the formulations using 𝑉 rather than 𝑈 and apply
Validity 1 to the form (NH2) and Validity 2 to the form (NH1).24 In later sections,
we will opt for the sum concept of validity and thus apply it to scheme (NH1).

Adams as well as Hawthorne and Makinson had suppositional conditionals in
mind. In the remainder of this paper, we want to have a look at similar ideas for
support conditionals. I do not know of any attempt to work out the max concept
of validity for support conditionals and set that concept aside for later research.
However, the unvalue-sum concept of validity has been employed recently, namely
in Crupi and Iacona’s (2022c) probabilistic investigation into evidential conditionals.
They applied it to a measure that is different from the conditional probability measure.
Although Adams’s justification is not available for their measure,25 we will follow
Crupi and Iacona and see what results the unvalue-sum rule yields when applied to
other measures of evidential support.

There is yet another interesting probabilistic property of inference schemes,
viz., probabilistic informativeness (Pfeifer and Kleiter 2006; 2009). For Pfeifer and
Kleiter, the probability of a conditional 𝐴→𝐶 is the conditional probability Pr(𝐶 | 𝐴),

24 Notice that for the validities of Non-Horn rules determined in this way, the sum concept makes
more inferences valid than the max concept. This is just as it is for Horn rules.
25 And their name ‘uncertainty’ for their unvalue measure 𝑈 = 1 − 𝑉 may be a misnomer. Cf.
Section 1.3.5.3 below.
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and an inference scheme is probabilistically informative if and only if definite prob-
ability values of the premises constrain the coherent assignment of a probability
value to the conclusion (the conclusion cannot take any probability value). Pfeifer
and Kleiter compare probabilistic informativeness to classical deductive validity as
well as to Adams’s P-validity. All principles of system P are informative, while
the paradigmatic non-validities of suppositional conditionals (Strengthening the An-
tecedent, Transitivity and Contraposition) are not informative. On top of this, the
classically invalid schemes of Denying the Antecedent and Affirming the Consequent
(and Aristotle’s first thesis as well as Boethius’s thesis) are all informative.26 This
seems to place the idea of Pfeifer and Kleiter into the vicinity of the conditionals
surveyed in this paper. However, since the relationship between evidential support
and probabilistic informativeness is unclear and since the latter has not been claimed
to be a notion of validity,27 we will not further discuss the conditional logic of this
kind of informativeness.

1.3.2 Suppositional conditionals

Adams (1965; 1966; 1975; 1981; 1986; 1996; 1998) produced a large and trailblazing
oeuvre spanning over more than three decades. He pioneered the study of supposi-
tional (indicative) conditionals in a probabilistic framework, but at the same time he
showed us—as early as 1966!—how to cross the quantitative-qualitative watershed.
He considered conditional probabilities as degrees of acceptability or assertability
(and refrained from specifying rules for plain acceptance), and he employed the sum
concept of validity (see Section 1.3.1). The logical system that he obtained is now
known as ‘system P’. It consists of Horn rules only. Horn rules are closure condi-
tions saying which conditionals can and should be accepted if other conditionals are
already accepted.

Hawthorne (1996) and Hawthorne and Makinson (2007) continued the tradition
initiated by Adams, but with important changes. They adopt a simple acceptance
condition for a conditional 𝐴→𝐶, given a probability function Pr and a threshold
value 𝑡 ∈ (0, 1]:28 either Pr(𝐴) = 0 or the conditional probability Pr(𝐶 | 𝐴) must
be equal or greater than 𝑡. Acceptance preservation then in effect means that they
employ the max concept of validity (calling it ‘probabilistic soundness’). Now the
question is whether the set of accepted conditionals given Pr and 𝑡 satisfies certain
closure properties most of which are among the inference principles we have listed.

Hawthorne and Makinson find that (And), (CMon), (Cut) and (Or) are all violated,
but that the logic they obtain includes (Ref), (LLE), (RW), as well as weakened

26 See Pfeifer and Sanfilippo (2021).
27 Informativeness is not preservation of truth or acceptability. It rather preserves information
about the probability of propositions in the sense that if there is perfect such information about the
premises, then there is at least some such information about the conclusion.
28 Here I gloss over the fact that they actually talk about nonmonotonic consequence relations rather
than about conditionals.
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versions of (And), (OR) and (CMon),29 as well as (NRat). They study the two sound,
but incomplete systems called O and Q, with Q being O extended by (NRat).30 The
most striking feature of the systems is perhaps that they do not include (And). But
this is not surprising, once one realises that the (conditional) probabilities of both 𝐵

and 𝐶 may well lie above a threshold 𝑡 that the (conditional) probability of 𝐵 ∧ 𝐶

falls short of. Like Adams’s account, Hawthorne and Makinson’s is not intended to
encode the idea of support or relevance in conditionals.

1.3.3 Topical conditionals

Berto and Özgün (2021) require topical or thematic relevance of the antecedent for
the consequent. Their valuations of conditionals are supposed to represent degrees
of acceptability and unacceptability (Berto and Özgün 2021, p. 3711):

𝑉 (𝐴→𝐶) =


Pr(𝐶 | 𝐴) if Pr(𝐴) > 0 and the topic of 𝐶 is included in the topic
determined by 𝐴,

0 otherwise.

𝑈 (𝐴→𝐶) = 1 −𝑉 (𝐴→𝐶).
Then Berto and Özgün use the sum-concept of validity (p. 3712), which is here

identical with Adams’s uncertainty-sum rule: an inference from 𝐴1, . . . , 𝐴𝑘 to 𝐴𝑘+1
is valid iff 𝑈 (𝐴𝑘+1) ≤ 𝑈 (𝐴1) + . . . + 𝑈 (𝐴𝑘). They show that their account makes
Strengthening the Antecedent, Transitivity and Contraposition are all invalid.

Theorem 8 (Berto and Özgün)
This account validates (Ref), (RW-And),31 (And), (Or), (Cut) and (CMon). But its

topic-relativity makes it hyperintensional, and so it does not satisfy (LLE) or (RLE),
and thus not (RW).

Berto and Özgün do not require positive evidential relevance (evidential support)
of the antecedent for the consequent. Their idea may be taken as a generalisation of
the variable-sharing idea of relevance logic. Here the connection is provided by the
semantic contents of 𝐴 and𝐶 themselves.32 In contrast, the connection required by the
approaches we focus on in this paper is assumed to be provided by the (metaphysical
or epistemic) context—the state that gets revised by the supposition that 𝐴 and also
other suppositions. We will not further elaborate on topical conditionals here.

29 The weakened versions are (WAnd) If 𝐴→𝐶 and (𝐴∧ ¬𝐵)→𝐵, then 𝐴→(𝐵 ∧𝐶 ); (XOr) If
𝐴→𝐶 and 𝐵→𝐶 and ⊢ ¬(𝐴∧𝐵) , then (𝐴∨𝐵)→𝐶; (VCM) If 𝐴→(𝐵∧𝐶 ) , then (𝐴∧𝐵)→𝐶.
30 Paris and Simmonds (2009) showed that O is incomplete and presented a (very complicated)
complete extension. Hawthorne’s (2014) strengthened system O+ is more elegant, but it is still
unknown whether it is enough.
31 (RW-And) is a particular form of (RW): If 𝐴→(𝐵 ∧𝐶 ) , then 𝐴→𝐵 and 𝐴→𝐶.
32 This is simplifying matters. In addition to their central topic function, Berto and Özgün make
use of a function that takes into account the context as well and determines, together with the
antecedent, a set of background assumptions.
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1.3.4 Evidential support conditionals based on high probability
combined with positive relevance

As far as I know, the first author to work out a logic of support conditionals was Igor
Douven (2008, 2016). His Evidential Support Thesis is a quantitative combination
of the two notions of confirmation of Carnap (1962, p. xvi), firmness and increase
in firmness. This is how it reads:

A conditional 𝐴→𝐶 is acceptable iff Pr(𝐶 | 𝐴) > 𝑡 for some threshold 𝑡 and
Pr(𝐶 | 𝐴) > Pr(𝐶). (Douven 2008, p. 28; 2016, p. 108)

This combines two criteria, high conditional probability and positive relevance.33
Douven’s main argument in support of the positive relevance condition is that high
probability is not enough for assertion. He gives the following example: “If Chelsea
wins the Champion’s league, then there is at least 1 head in the first 100,000 tosses.”
Though the probability of the consequent given the antecedent is high, the antecedent
does not increase the probability of the consequent. It is utterly irrelevant, and the
conditional may be called a “non-interference conditional”. Notice, by the way, that
a difference-making conditionals in the sense of Section 1.2.2 encodes the same
twofold idea as Douven’s conditional in a qualitative setting: 𝐶 is trueA after a
revision by 𝐴, and 𝐴 is indeed positively relevant to the truthA status of 𝐶.

Douven defines validity in terms of acceptability-preservation according to his
epistemic support criterion for all thresholds 𝑡 ∈ [0.5, 1). He establishes the validity
and invalidity of many principles (see Douven 2016, Theorem 5.2.1). We focus on
the main principles of our lists above.34 The resulting logic is rather weak.

Theorem 9 (Douven)
Paired with validity as acceptability preservation, this account validates (Ref),

(LRLE), (Ant) and a restricted form of (Ablrd). It invalidates (RW), (And), (Or),
(Cut), (CMon) and (Cntrpos).

The most surprising fact is perhaps the violation of (And) which is essentially
due to having a high-threshold criterion in the valuation of conditionals and not
employing the uncertainty-sum rule. Finding a sound and complete axiomatisation
for Douven’s logic is still an open problem.

33 In the terminology introduced in the next section, the second part of this definition is expressible by
the difference measure: 𝑑 (𝐴, 𝐶 ) > 0. But the requirement of positive relevance could equivalently
be expressed using the Delta measure: Δ(𝐴, 𝐶 ) > 0. Douven’s earlier evidential support theory of
conditionals is actually more complicated (Douven 2008, p. 30), but he appears to withdraw this
complication later (Douven 2016, pp. 120–122).
34 But we should add that Douven’s account validates the principles (WAnd) and (XOr) mentioned
in footnote 29. (VCM) is invalid.
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1.3.5 Measures of evidential support as evaluations of conditionals

We will follow a generic approach in the remainder of this paper. First, we take
a probability measure Pr as given and define a measure of evidential support ES
based on Pr. Intuitively, ES(𝐴,𝐶) is the degree to which 𝐴 supports 𝐶. The support
value ES(𝐴,𝐶) will be less or equal to 1, and it will be positive if and only if
𝐴 is positively relevant to 𝐶. Here 𝐴 is called positively relevant (or negatively
relevant or irrelevant) to 𝐶 if and only if Pr(𝐶 | 𝐴) > Pr(𝐶) (or Pr(𝐶 | 𝐴) < Pr(𝐶)
or Pr(𝐶 | 𝐴) = Pr(𝐶), respectively). We will look at four different, simple and
intuitive measures of evidential support that have been proposed in the literature.
My presentation, however, will be biased. I will put a special focus on at the second
of these measures, because it allows an instructive comparison with the difference-
making and dependence conditionals of the qualitative setting.

In the second step, we use the measure of epistemic support to define a valuation
of conditionals that lies between 0 and 1.35

𝑉 (𝐴→𝐶) =
{

ES(𝐴,𝐶) if 𝐴 is Pr-contingent and not negatively relevant to 𝐶,
0 otherwise.

Here a sentence 𝐴 is called contingent with respect to a probability function Pr, or
more briefly Pr-contingent, if 0 < Pr(𝐴) < 1. The lower line is in part motivated by
the strong intuition that non-contingent sentences cannot offer support to anything.
If an agent is certain that 𝐴 is true or false, then the supposition that 𝐴 cannot raise
or lower the credence of 𝐶.36

1.3.5.1 The difference measure

For every sentence 𝐴 with 0 < Pr(𝐴), the difference measure is defined by

𝑑 (𝐴,𝐶) = Pr(𝐶 | 𝐴) − Pr(𝐶).

MacColl (1906, p. 129, variables exchanged) seems to be the first author advocating
𝑑 (𝐴,𝐶). He called it a measure of ‘the dependence of the statement 𝐶 upon the
statement 𝐴’. Other proponents include Carnap (1962), Eells (1982), Jeffrey (1992)
and Earman (1992). Fig. 1.10 gives a graphical indication of what 𝑑 (𝐴,𝐶) means.
The difference measure has been discussed many times, and we need not say more
about it here.

35 One might also consider the use of negative valuations of conditionals, but I will not follow such
a path here.
36 Crupi and Iacona (2022c, p. 50) have another rule. For them an 𝐴 with zero probability is
maximally supportive to everything, and a 𝐶 with unit probability receives maximal support by
everything.
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The valuation of conditionals should conform to the scheme above: 𝑉 (𝐴→𝐶) =
𝑑 (𝐴,𝐶) if 𝐴 is Pr-contingent and positively relevant to 𝐶, and 𝑉 (𝐴 → 𝐶) = 0
otherwise.

𝐶 ¬𝐶

1

0 𝑉𝑑 (𝐴 ≫ 𝐶 )

𝐶 ¬𝐶

𝐶 ¬𝐶

1

𝐴

¬𝐴

0 1

Fig. 1.1: 𝑉𝑑 (𝐴 ≫ 𝐶) = 𝑑 (𝐴,𝐶).

1.3.5.2 The 𝚫𝑷 measure

The Δ𝑃 measure can be defined, for every Pr-contingent sentence 𝐴 and every
sentence 𝐶, as follows:

Δ(𝐴,𝐶) = Pr(𝐶 | 𝐴) − Pr(𝐶 | ¬𝐴).

The notation used here drops the letter ‘𝑃 ’. Notice that this measure is ‘purely
relational’ in that it is completely independent of the probability of 𝐴 (except that
𝐴 has to be contingent). This contrasting of the suppositions of 𝐴 and ¬𝐴 is close
to the contrasting of the same suppositions in—qualitative—difference-making and
dependence conditionals.

TheΔ𝑃 measure has been popular in the psychology of causality or ‘contingency’
(Jenkins and Ward 1965, p. 2; Rescorla 1968, p. 1). It was called the measure for a
one-way dependency (Shanks 1995b, p. 22), the cue-outcome contingency (Shanks
1995a, p. 259) or the contingency (or contrast) between candidate cause 𝐴 and
effect 𝐶 (Cheng 1997, p. 367). Within philosophy of science, the same measure
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𝐶 ¬𝐶

𝐶 ¬𝐶

1

𝐴

¬𝐴

0 1
𝑉Δ (𝐴→𝐶 )

Fig. 1.2: 𝑉Δ (𝐴→𝐶) = Δ(𝐴,𝐶).

was suggested by Christensen (1999) and Joyce (1999, pp. 203–213; 2003) under
the names of potential further support and effective (increment of) evidence, re-
spectively. Skovgaard-Olsen, Singmann and Klauer (2017, p. 1211) found empirical
“evidence for high agreement between Δ𝑃 and ratings of perceived relevance and
reason relations and suggest [. . . ] that Δ𝑃 is a better predictor than the difference
measure.”37

Application as a valuation for the acceptability or assertability of conditionals:

𝑉Δ (𝐴→𝐶) =
{
Δ(𝐴,𝐶) if Δ(𝐴,𝐶) ≥ 0 and 𝐴 is Pr-contingent,
0 otherwise.

This will be my favoured measure for the acceptability or assertability of support
conditionals because it embodies the same contrast idea that we found, among the
qualitative approaches, in difference-making conditionals and dependence condi-
tionals.

Here is a list of useful facts about the 𝑉Δ values of some special conditionals.

Lemma 1 (i) 𝐵 ⊢ 𝐶 does not imply 𝑉Δ (𝐴→𝐵) ≤ 𝑉Δ (𝐴→𝐶).

(ii) 𝑉Δ (𝐴→ 𝐴) = 1 if 𝐴 is Pr-contingent, and 𝑉Δ (𝐴→ 𝐴) = 0 otherwise.

(iii) 𝑉Δ (𝐴→𝐶) = 1 iff (Pr(𝐶 | 𝐴) = 1 and Pr(𝐶 | ¬𝐴) = 0).

(iv) 𝑉Δ (𝐴→⊤) = 0.

(v) 𝑉Δ (𝐴→⊥) = 0.

(vi) 𝑉Δ (⊤→𝐶) = 0.

37 Notice that Δ(𝐴, 𝐶 ) is positive (negative, equal to zero) iff 𝑑 (𝐴, 𝐶 ) is.—Skovgaard-Olsen et
al. (2017, p. 1203) maintain that Spohn (2012) predicted ‘a high correlation between Δ𝑃 [. . . ] and
perceived relevance and between Δ𝑃 and ratings of reason relations’. Van Rooĳ and Schulz (2019,
p. 58) claim that Spohn (2013) proposed that ‘the acceptability of the conditional correlates with
Δ𝑃’ (notation adapted). I could not verify either of these claims. But cf. the discussion in Spohn
(2012, pp. 106–107).
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𝐶 ¬𝐶

𝐶 ¬𝐶

1

𝐴

¬𝐴

0 1
𝑉Δ (𝐴→𝐶 )

𝐷 ¬𝐷

𝐷 ¬𝐷

1

𝐴

¬𝐴

0 1
𝑉Δ (𝐴→𝐷)

Fig. 1.3: Example of how Right Weakening may get violated: Supposing 𝐶 ⊢ 𝐷, it is
still easily possible that𝑉Δ (𝐴→𝐶) > 𝑉Δ (𝐴→𝐷) and hence𝑈Δ (𝐴→𝐶) < 𝑈Δ (𝐴→
𝐷). The figures indicate that the proposition [𝐶] is contained in the proposition [𝐷];
the sizes of the areas correspond to the respective probabilities.

(vii) 𝑉Δ (⊥→𝐶) = 0.

(viii) 𝑉Δ (𝐴→ 𝐴 ∧ 𝐶) = Pr(𝐶 | 𝐴) if 𝐴 is Pr-contingent, and
𝑉Δ (𝐴→ 𝐴 ∧ 𝐶) = 0 otherwise.

(ix) 𝑉Δ (𝐴 ∧ 𝐶→𝐶) = Pr(¬𝐶 | ¬𝐴 ∨ ¬𝐶) if 𝐴 ∧ 𝐶 is Pr-contingent, and
𝑉Δ (𝐴 ∧ 𝐶→𝐶) = 0 otherwise.

(x) 𝑉Δ (𝐴→ 𝐴 ∨ 𝐶) = Pr(¬𝐶 | ¬𝐴) if 𝐴 is Pr-contingent, and
𝑉Δ (𝐴→ 𝐴 ∨ 𝐶) = 0 otherwise.

(xi) 𝑉Δ (𝐴 ∨ 𝐶→𝐶) = Pr(𝐶 | 𝐴 ∨ 𝐶) if 𝐴 ∨ 𝐶 is Pr-contingent, and
𝑉Δ (𝐴 ∨ 𝐶→𝐶) = 0 otherwise.

(xii) 𝑉Δ (¬𝐴→¬𝐶) = 𝑉Δ (𝐴→𝐶).

(xiii) 𝑉Δ (𝐴→ 𝐴 ∧ 𝐶) ≥ 𝑉Δ (𝐴→ 𝐴 ∧ 𝐵 ∧ 𝐶).

(xiv) 𝑉Δ (𝐴→ 𝐴 ∧ 𝐶) + 𝑉Δ (𝐴→ 𝐴 ∨ 𝐶) = 𝑉Δ (𝐴→𝐶) + 1 if 𝐴 is Pr-contingent,
and 𝑉Δ (𝐴→ 𝐴 ∧ 𝐶) +𝑉Δ (𝐴→ 𝐴 ∨ 𝐶) = 𝑉Δ (𝐴→𝐶) otherwise.

(xv) 𝑉Δ (𝐴→𝐵) +𝑉Δ (𝐴→𝐶) ≤ 𝑉Δ (𝐴→𝐵 ∧ 𝐶) + 1.

(xvi) Not always 𝑉Δ (𝐴→𝐵 ∧ 𝐶) ≤ 𝑉Δ (𝐴→𝐵) +𝑉Δ (𝐴→𝐶).

(xvii) 𝑉Δ (¬𝐴↛¬𝐴 ∨ 𝐶) = 𝑉Δ (𝐴→ 𝐴 ∧ 𝐶) if 𝐴 is Pr-contingent.

(xviii) 𝑉Δ (𝐴→¬𝐶) ≤ 𝑉Δ (𝐴↛𝐶). And
𝑉Δ (𝐴→¬𝐶) ≥ 𝑉Δ (𝐴↛𝐶) if and only if 𝐴 is Pr-contingent and | Pr(𝐶 | 𝐴)−
Pr(𝐶 | ¬𝐴) | = 1.

Proof. (i) For a counterexample, see Fig. 1.3.
(ii) If 0 < Pr(𝐴) < 1, we have Pr(𝐴 | 𝐴) = 1 ≥ 0 = Pr(𝐴 | ¬𝐴). So 𝑉Δ (𝐴→

𝐴) = Pr(𝐴 | 𝐴) − Pr(𝐴 | ¬𝐴) = 1 − 0 = 1. However, if Pr(𝐴) = 0 or Pr(𝐴) = 1, then
𝑉Δ (𝐴→ 𝐴) = 0 by definition.
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(iii) From left to right: Let 𝑉Δ (𝐴→ 𝐶) = 1. Then Pr(𝐶 | 𝐴) − Pr(𝐶 | ¬𝐴) ≥ 0
and indeed Pr(𝐶 | 𝐴) − Pr(𝐶 | ¬𝐴) = 1. The last equation gives us Pr(𝐶 | 𝐴) = 1 and
Pr(𝐶 | ¬𝐴) = 0.

From right to left: Let Pr(𝐶 | 𝐴) = 1 and Pr(𝐶 | ¬𝐴) = 0. So Pr(𝐶 | 𝐴) −
Pr(𝐶 | ¬𝐴) ≥ 0. Thus 𝑉Δ (𝐴→𝐶) = Pr(𝐶 | 𝐴) − Pr(𝐶 | ¬𝐴) = 1 − 0 = 1.

(iv) First suppose that 0 < Pr(𝐴) < 1. Since Pr(⊤ | 𝐴) = 1 ≥ Pr(⊤ | ¬𝐴), we
have 𝑉Δ (𝐴→⊤) = Pr(⊤ | 𝐴) − Pr(⊤ | ¬𝐴) = 1 − 1 = 0. We get the same result for
Pr(𝐴) = 0 or Pr(𝐴) = 1.

(v) First suppose that 0 < Pr(𝐴) < 1. Since Pr(⊥ | 𝐴) ≥ 0 = Pr(⊥ | ¬𝐴), we
have 𝑉Δ (𝐴→⊥) = Pr(⊥ | 𝐴) − Pr(⊥ | ¬𝐴) = 0 − 0 = 0. We get the same result for
Pr(𝐴) = 0 or Pr(𝐴) = 1.

(vi) Since Pr(⊤) = 1, we have 𝑉Δ (⊤→𝐶) = 0 by definition.
(vii) Since Pr(⊥) = 0, we have 𝑉Δ (⊥→𝐶) = 0 by definition.
(viii) First suppose that 0 < Pr(𝐴) < 1. Since Pr(𝐴∧𝐶 | 𝐴) ≥ 0 = Pr(𝐴∧𝐶 | ¬𝐴),

we have 𝑉Δ (𝐴→ 𝐴 ∧ 𝐶) = Pr(𝐴 ∧ 𝐶 | 𝐴) − Pr(𝐴 ∧ 𝐶 | ¬𝐴) = Pr(𝐶 | 𝐴). Second,
suppose that Pr(𝐴) = 0 or Pr(𝐴) = 1. Then 𝑉Δ (𝐴→ 𝐴 ∧ 𝐶) = 0.

(ix) First suppose that 0 < Pr(𝐴∧𝐶) < 1. Since Pr(𝐶 | 𝐴∧𝐶) = 1 ≥ Pr(𝐶 | ¬(𝐴∧
𝐶)), we have𝑉Δ (𝐴∧𝐶→𝐶) = Pr(𝐶 | 𝐴∧𝐶)−Pr(𝐶 | ¬(𝐴∧𝐶)) = Pr(¬𝐶 | ¬𝐴∨¬𝐶).
Second, suppose that Pr(𝐴 ∧ 𝐶) = 0 or Pr(𝐴 ∧ 𝐶) = 1. Then 𝑉Δ (𝐴 ∧ 𝐶→𝐶) = 0.

(x) First suppose that 0 < Pr(𝐴) < 1. Since Pr(𝐴 ∨𝐶 | 𝐴) = 1 ≥ Pr(𝐴 ∨𝐶 | ¬𝐴),
we have 𝑉Δ (𝐴→ 𝐴 ∨ 𝐶) = Pr(𝐴 ∨ 𝐶 | 𝐴) − Pr(𝐴 ∨ 𝐶 | ¬𝐴) = Pr(¬𝐶 | ¬𝐴). Second,
suppose that Pr(𝐴) = 0 or Pr(𝐴) = 1. Then 𝑉Δ (𝐴→ 𝐴 ∨ 𝐶) = 0.

(xi) First suppose that 0 < Pr(𝐴∨𝐶) < 1. Since Pr(𝐶 | 𝐴∨𝐶) ≥ 0 = Pr(𝐶 | ¬(𝐴∨
𝐶)), we have 𝑉Δ (𝐴 ∨ 𝐶→𝐶) = Pr(𝐶 | 𝐴 ∨ 𝐶) − Pr(𝐶 | ¬(𝐴 ∨ 𝐶)) = Pr(𝐶 | 𝐴 ∨ 𝐶).
Second, suppose that Pr(𝐴 ∨ 𝐶) = 0 or Pr(𝐴 ∨ 𝐶) = 1. Then 𝑉Δ (𝐴 ∨ 𝐶→𝐶) = 0.

(xii) First, suppose that 0 < Pr(𝐴) < 1 and Pr(𝐶 | 𝐴) ≥ Pr(𝐶 | ¬𝐴). Notice
that the latter is equivalent to Pr(¬𝐶 | ¬𝐴) ≥ Pr(¬𝐶 | 𝐴). Thus 𝑉Δ (¬𝐴→ ¬𝐶) =

Pr(¬𝐶 | ¬𝐴) − Pr(¬𝐶 | 𝐴) = 1 − Pr(𝐶 | ¬𝐴) − (1 − Pr(𝐶 | 𝐴)) = 𝑉Δ (𝐴→𝐶).
Second, suppose that Pr(𝐴) = 0 or Pr(𝐴) = 1 or Pr(𝐶 | 𝐴) < Pr(𝐶 | ¬𝐴). Notice

that the latter is equivalent to Pr(¬𝐶 | ¬𝐴) < Pr(¬𝐶 | 𝐴). Thus 𝑉Δ (¬𝐴→¬𝐶) = 0 =

𝑉Δ (𝐴→𝐶).
(xiii) If 0 < Pr(𝐴) < 1, we get, using (viii), that 𝑉Δ (𝐴→ 𝐴 ∧ 𝐶) = Pr(𝐶 | 𝐴) ≥

Pr(𝐵 ∧ 𝐶 | 𝐴) = 𝑉Δ (𝐴→ 𝐴 ∧ 𝐵 ∧ 𝐶). Otherwise all probabilities are 0.
(xiv) First suppose that 0 < Pr(𝐴) < 1. Then we get, using (viii) and (x), that

𝑉Δ (𝐴→ 𝐴 ∧ 𝐶) + 𝑉Δ (𝐴→ 𝐴 ∨ 𝐶) = Pr(𝐶 | 𝐴) + Pr(¬𝐶 | ¬𝐴) = Pr(𝐶 | 𝐴) + (1 −
Pr(𝐶 | ¬𝐴)) = 𝑉Δ (𝐴→𝐶) + 1. Second, suppose that Pr(𝐴) = 0 or Pr(𝐴) = 1. Then
all probabilities are 0.

(xv). Suppose that 0 < Pr(𝐴) < 1. First let Pr(𝐵 | 𝐴) ≥ Pr(𝐵 | ¬𝐴), Pr(𝐶 | 𝐴) ≥
Pr(𝐶 | ¬𝐴) and Pr(𝐵 ∧ 𝐶 | 𝐴) ≥ Pr(𝐵 ∧ 𝐶 | ¬𝐴). Then 𝑉Δ (𝐴→ 𝐵) + 𝑉Δ (𝐴→ 𝐶)
= (Pr(𝐵 | 𝐴) − Pr(𝐵 | ¬𝐴)) + (Pr(𝐶 | 𝐴) − Pr(𝐶 | ¬𝐴)) = (Pr(𝐵 | 𝐴) + Pr(𝐶 | 𝐴)) −
(Pr(𝐵 | ¬𝐴)+Pr(𝐶 | ¬𝐴)) ≤ (Pr(𝐵∧𝐶 | 𝐴)+1)−Pr(𝐵∧𝐶 | ¬𝐴) = 𝑉Δ (𝐴→𝐵∧𝐶)+1.

Second, let Pr(𝐵 | 𝐴) ≥ Pr(𝐵 | ¬𝐴), Pr(𝐶 | 𝐴) ≥ Pr(𝐶 | ¬𝐴) and Pr(𝐵 ∧ 𝐶 | 𝐴) <
Pr(𝐵 ∧ 𝐶 | ¬𝐴). Then 𝑉Δ (𝐴 → 𝐵 ∧ 𝐶) = 0 and 𝑉Δ (𝐴 → 𝐵) + 𝑉Δ (𝐴 → 𝐶) ≤
(as before) (Pr(𝐵 ∧ 𝐶 | 𝐴) + 1) − Pr(𝐵 ∧ 𝐶 | ¬𝐴) < 1 = 𝑉Δ (𝐴→𝐵 ∧ 𝐶) + 1.
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Third, let Pr(𝐵 | 𝐴) < Pr(𝐵 | ¬𝐴) or Pr(𝐶 | 𝐴) < Pr(𝐶 | ¬𝐴). Then𝑉Δ (𝐴→𝐵) = 0
or 𝑉Δ (𝐴→𝐶) = 0, and the claim is trivial.

Now suppose that Pr(𝐴) = 0 or Pr(𝐴) = 1. Then all probabilities are 0, and the
claim is trivial.

(xvi) For a counterexample, see Fig. 1.8 below, where𝑉Δ (¬𝐴→¬𝐵) = 𝑉Δ (¬𝐴→
¬𝐶) = 0.3 and𝑉Δ (¬𝐴→(¬𝐵∧¬𝐶)) = 0.7. Note that for the probability function Pr
specified, ¬𝐴 is positively probabilistically relevant to ¬𝐵, to ¬𝐶 and to ¬𝐵 ∧ ¬𝐶.

(xvii) First suppose that 0 < Pr(𝐴) < 1. Using (viii) and (x), we get 𝑉Δ (¬𝐴↛
¬𝐴 ∨𝐶) = 1 −𝑉Δ (¬𝐴→¬𝐴 ∨𝐶) = 1 − Pr(¬𝐶 | 𝐴) = Pr(𝐶 | 𝐴) = 𝑉Δ (𝐴→ 𝐴 ∧𝐶).

(xviii) We first verify that 𝑉Δ (𝐴 → ¬𝐶) ≤ 𝑉Δ (𝐴 ↛ 𝐶). Suppose that 0 <

Pr(𝐴) < 1. If Pr(¬𝐶 | 𝐴) − Pr(¬𝐶 | ¬𝐴) ≥ 0, then 𝑉Δ (𝐴 → ¬𝐶) ≥ 0. But in
this case 𝑉Δ (𝐴 ↛ 𝐶) = 1 − 𝑉Δ (𝐴 → 𝐶) = 1 − 0 = 1. If, on the other hand,
Pr(¬𝐶 | 𝐴) − Pr(¬𝐶 | ¬𝐴) < 0, then 𝑉Δ (𝐴→¬𝐶) = 0. Suppose, on the other hand,
that Pr(𝐴) = 0 or Pr(𝐴) = 1. Then 𝑉Δ (𝐴→¬𝐶) = 0 < 1 = 𝑉Δ (𝐴↛𝐶).

Now we check the second claim. From left to right. Suppose that 𝑉Δ (𝐴→¬𝐶) ≥
𝑉Δ (𝐴↛𝐶). We have already seen in the first step that this implies that 𝐴 is Pr(𝐴)-
contingent. If, on the one hand, Pr(¬𝐶 | 𝐴) − Pr(¬𝐶 | ¬𝐴) ≥ 0, then 𝑉Δ (𝐴↛𝐶) =
1 −𝑉Δ (𝐴→𝐶) = 1, so we must have 𝑉Δ (𝐴→¬𝐶) = 1, too. By (iii), this means that
Pr(¬𝐶 | 𝐴) = 1 and Pr(¬𝐶 | ¬𝐴) = 0, or equivalently Pr(𝐶 | 𝐴) = 0 and Pr(𝐶 | ¬𝐴) =
1. If, on the other hand, Pr(¬𝐶 | 𝐴) − Pr(¬𝐶 | ¬𝐴) < 0, then 𝑉Δ (𝐴→ ¬𝐶) = 0,
so we must have 𝑉Δ (𝐴↛ 𝐶) = 0, too. The latter is equivalent to 𝑉Δ (𝐴→ 𝐶) =

1, and by (iii), this means that Pr(𝐶 | 𝐴) = 1 and Pr(𝐶 | ¬𝐴) = 0. Either way,
| Pr(𝐶 | 𝐴) − Pr(𝐶 | ¬𝐴) | = 1.

From right to left. Suppose that 0 < Pr(𝐴) < 1 and | Pr(𝐶 | 𝐴) − Pr(𝐶 | ¬𝐴) | = 1.
If, on the one hand, Pr(𝐶 | 𝐴) = 1 and Pr(𝐶 | ¬𝐴) = 0, then 𝑉 (𝐴 → 𝐶) = 1,
𝑉 (𝐴↛ 𝐶) = 0 and 𝑉 (𝐴 → ¬𝐶) = 0. If, on the other hand, Pr(𝐶 | 𝐴) = 0 and
Pr(𝐶 | ¬𝐴) = 1, then 𝑉 (𝐴→𝐶) = 0, 𝑉 (𝐴↛𝐶) = 1 and 𝑉 (𝐴→¬𝐶) = 1. Either
way, 𝑉Δ (𝐴→¬𝐶) ≥ 𝑉Δ (𝐴↛𝐶). □

We again set the unvalue of a conditional to 1 minus its support value. This gives
us:

𝑈Δ (𝐴→𝐶) = 1 −𝑉Δ (𝐴→𝐶) ={
Pr(¬𝐶 | 𝐴) + Pr(𝐶 | ¬𝐴) if Pr(¬𝐶 | 𝐴) + Pr(𝐶 | ¬𝐴) ≤ 1 and 𝐴 is Pr-contingent,
1 otherwise.

Here is a corresponding list of useful facts about the 𝑈Δ unvalues of some special
conditionals.

Lemma 2 (i) 𝐵 ⊢ 𝐶 does not imply 𝑈Δ (𝐴→𝐶) ≤ 𝑈Δ (𝐴→𝐵).

(ii) 𝑈Δ (𝐴→ 𝐴) = 0 if 𝐴 is Pr-contingent, and 𝑈Δ (𝐴→ 𝐴) = 1 otherwise.

(iii) 𝑈Δ (𝐴→𝐶) = 0 iff (Pr(𝐶 | 𝐴) = 1 and Pr(𝐶 | ¬𝐴) = 0).

(iv) 𝑈Δ (𝐴→⊤) = 1.

(v) 𝑈Δ (𝐴→⊥) = 1.
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(vi) 𝑈Δ (⊤→𝐶) = 1.

(vii) 𝑈Δ (⊥→𝐶) = 1.

(viii) 𝑈Δ (𝐴→ 𝐴 ∧ 𝐶) = Pr(¬𝐶 | 𝐴) if 𝐴 is Pr-contingent, and
𝑈Δ (𝐴→ 𝐴 ∧ 𝐶) = 1 otherwise.

(ix) 𝑈Δ (𝐴 ∧ 𝐶→𝐶) = Pr(𝐶 | ¬𝐴 ∨ ¬𝐶) if 𝐴 ∧ 𝐶 is Pr-contingent, and
𝑈Δ (𝐴 ∧ 𝐶→𝐶) = 1 otherwise.

(x) 𝑈Δ (𝐴→ 𝐴 ∨ 𝐶) = Pr(𝐶 | ¬𝐴) if 𝐴 is Pr-contingent, and
𝑈Δ (𝐴→ 𝐴 ∨ 𝐶) = 1 otherwise.

(xi) 𝑈Δ (𝐴 ∨ 𝐶→𝐶) = Pr(¬𝐶 | 𝐴 ∨ 𝐶) if 𝐴 ∨ 𝐶 is Pr-contingent, and
𝑈Δ (𝐴 ∨ 𝐶→𝐶) = 1 otherwise.

(xii) 𝑈Δ (¬𝐴→¬𝐶) = 𝑈Δ (𝐴→𝐶).

(xiii) 𝑈Δ (𝐴→ 𝐴 ∧ 𝐵 ∧ 𝐶) ≥ 𝑈Δ (𝐴→ 𝐴 ∧ 𝐶).

(xiv) 𝑈Δ (𝐴→ 𝐴 ∧ 𝐶) +𝑈Δ (𝐴→ 𝐴 ∨ 𝐶) = 𝑈Δ (𝐴→𝐶) if 𝐴 is Pr-contingent, and
𝑈Δ (𝐴→ 𝐴 ∧ 𝐶) +𝑈Δ (𝐴→ 𝐴 ∨ 𝐶) = 𝑈Δ (𝐴→𝐶) + 1 otherwise.

(xv) 𝑈Δ (𝐴→𝐵) +𝑈Δ (𝐴→𝐶) ≥ 𝑈Δ (𝐴→𝐵 ∧ 𝐶).

(xvi) Not always 𝑈Δ (𝐴→𝐵 ∧ 𝐶) ≤ 𝑈Δ (𝐴→𝐵) +𝑈Δ (𝐴→𝐶) − 1.

(xvii) 𝑈Δ (¬𝐴↛¬𝐴 ∨ 𝐶) = 𝑈Δ (𝐴→ 𝐴 ∧ 𝐶) if 𝐴 is Pr-contingent.

(xviii) 𝑈Δ (𝐴↛𝐶) ≤ 𝑈Δ (𝐴→¬𝐶). And
𝑈Δ (𝐴 ↛ 𝐶) ≥ 𝑈Δ (𝐴 → ¬𝐶) if and only if 𝐴 is Pr-contingent and
| Pr(𝐶 | 𝐴) − Pr(𝐶 | ¬𝐴) | = 1.

Proof. The claims follow immediately from the corresponding claims of Lemma
1 and the definition 𝑈Δ (𝐴→𝐶) = 1 −𝑉Δ (𝐴→𝐶). □

The most striking parts of Lemmas 1 and 2 are perhaps parts (xii), which show
that 𝑈Δ (𝐴 → 𝐶) = 𝑈Δ (¬𝐴 → ¬𝐶). So it is immediately clear that Conditional
Perfection is unrestrictedly valid. This property makes the Δ𝑃 measure particularly
interesting for a comparison with the qualitative dependency conditional which is
notable for its satisfying (CondPerf) (see Section 1.2.3).

But we can say much more than that. Combined with the unvalue-sum concept
of validity, the measure 𝑉Δ validates the basic properties of dependence condition-
als (except for the left-to-right direction of (IN′)) and some, but not all those of
difference-making conditionals. Because we have no definition of an outer modal-
ity in the probabilistic context, we replace conditions of the form ‘□𝐴’ in (AOT),
(AOT′) and (OND) by the maximally uncertain ‘¬𝐴→⊥’. For the inner necessity
operator ·□ in (MP), (MT), (DA), (AC) and (ConjSuf), we use the same value as for
factual sentences: 𝑉 ( ·□𝐴) = 𝑉 (𝐴) = Pr(𝐴).

Theorem 10 If the valuation 𝑉Δ is combined with the unvalue-sum rule for validity,
then the following Principles are all valid: (Ref) restricted to Pr-contingent sentences,
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(And), (ACRW), (CondPerf), (AaOE), (AOT), (AOT ′), (Ant) , (Cnst′), the right-to-left
direction of (IN) and (IN′) and (OND). Moreover, (MP), (MT), (DA) and (AC) are
all valid. On the other hand, (RW), (Or), (Cut), (CMon), (NRat), (DRat), (RMon),
(ROr), (ConjSuf), (ConjRat) and (Cnsv) and the left-to-right direction of (IN) and
(IN′) are invalid.

Proof. (Ref) restricted to Pr-contingent sentences follows from part (ii) of
Lemma 2 (we take 𝑈Δ (𝐴→ 𝐴) = 0 as sufficient for treating 𝐴→ 𝐴 as the con-
clusion of a valid inference from zero premises). (And) follows from (xv), (ACRW)
from (xiii), (CondPerf) from (xii),

The two parts of the left-to-right direction of (AaOE) follow from (viii) and (x) of
Lemma 2, respectively (hint: pay special attention to the case where 𝐴 is negatively
relevant to 𝐶), and the right-to-left direction of (AaOE) follows from (xiv).

(AOT) and (AOT′) follow from (xvii) and (v) of Lemma 2.
(OND) is satisfied trivially since all necessity statements get maximum ‘uncer-

tainty’, by (v).
For the failure of (RW), see Fig. 1.3.
For the failures of (Or), (Cut), (CMon), (NRat), (DRat), (RMon), (ROr) and

(ConjSuf), see Figures 1.4–1.9. By (CondPerf), the counterexample to (ROr) is at
the same time a counterexample to (ConjRat) (with negations flipped, cf. the proof
of Lemma 1 (xvi)).

For (MP), (MT), (DA) and (AC), first note that 𝑈Δ (𝐴→𝐶) ≥ min{Pr(¬𝐶 | 𝐴) +
Pr(𝐶 | ¬𝐴), 1}, and thus (a)𝑈Δ (𝐴→𝐶) ≥ Pr(𝐴∧¬𝐶) and (b)𝑈Δ (𝐴→𝐶) ≥ Pr(¬𝐴∧
𝐶). For (MP), we need to show that Pr(¬𝐴) +𝑈Δ (𝐴→𝐶) ≥ Pr(¬𝐶), and this follows
from (a). For (MT), we need to show that Pr(𝐶)+𝑈Δ (𝐴→𝐶) ≥ Pr(𝐴), which follows
from (a), too. For (DA), we need to show that Pr(𝐴) +𝑈Δ (𝐴→𝐶) ≥ Pr(𝐶), and this
follows from (b). For (AC), we need to show that Pr(¬𝐶) +𝑈Δ (𝐴→𝐶) ≥ Pr(¬𝐴),
which follows from (b), too.

For (Ant) and (Cnsv), it is straightforward to check that 𝑉Δ (𝐴 → 𝐴 ∧ 𝐶) −

𝑉Δ (𝐴→𝐶) =


Pr(𝐶 | ¬𝐴) if Pr(𝐶 | 𝐴) ≥ Pr(𝐶 | ¬𝐴) and 𝐴 is Pr-contingent,
Pr(𝐶 | 𝐴) if Pr(𝐶 | 𝐴) < Pr(𝐶 | ¬𝐴) and 𝐴 is Pr-contingent,
0 otherwise.

So in any case 𝑉Δ (𝐴→ 𝐴 ∧ 𝐶) ≥ 𝑉Δ (𝐴→𝐶), and sometimes 𝑉Δ (𝐴→ 𝐴 ∧ 𝐶) >

𝑉Δ (𝐴→𝐶). The claims regarding (Ant) and (Cnsv) then follow immediately.
For (Cnst′), note that 𝑈 (⊤↛⊥) = 0.
For the right-to-left direction of (IN) and (IN′), note that𝑈 ( ·□ (𝐴∨𝐶)) = Pr(¬𝐴∧

¬𝐶) is not higher than𝑈 ( ·□𝐴) = Pr(¬𝐴) and𝑈 (𝐴→(𝐴∨¬𝐶)) = 𝑈 (𝐴↛ (𝐴∨𝐶)) =
Pr(¬𝐶 | ¬𝐴). A counterexample to all variants of the left-to-right direction of (IN) and
(IN′) (some of them are non-Horn!) is given by the following probability function:
Pr(𝐴 ∧ 𝐶) = 0.5, Pr(𝐴 ∧ ¬𝐶) = 0, Pr(¬𝐴 ∧ 𝐶) = 0.4 and Pr(¬𝐴 ∧ ¬𝐶) = 0.1. □

We note that the non-Horn principles of (NRat), (DRat), (RMon) and (ROr) are
invalid even on the more liberal concept of Validity 2 applied to the schemes of the
form (NH1), as explained in Section 1.3.1.
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𝐶/¬𝐶 𝐵 ¬𝐵

𝐴
0.49 0

0 0.21

¬𝐴 0.02 0.04
0.21 0.03

𝑉Δ 𝑈Δ

𝐴→𝐶 0.5 0.5
𝐵→𝐶 0.57 0.43

𝐴∨ 𝐵→𝐶 0 1

Fig. 1.4: Counterexample to (Or) for conditionals based on 𝑉Δ and the unvalue-sum
rule.

𝐶/¬𝐶 𝐵 ¬𝐵

𝐴
0.384 0

0.096 0.32

¬𝐴 0.01 0.09
0.01 0.09

𝑉Δ 𝑈Δ

𝐴→𝐵 0.5 0.5
𝐴∧ 𝐵→𝐶 0.61 0.39
𝐴→𝐶 0 1

Fig. 1.5: Counterexample to (Cut)

𝐶/¬𝐶 𝐵 ¬𝐵

𝐴
0.24 0.32

0.24 0

¬𝐴 0.002 0.018
0.018 0.162

𝑉Δ 𝑈Δ

𝐴→𝐵 0.5 0.5
𝐴→𝐶 0.6 0.4

𝐴∧ 𝐵→𝐶 0 1

Fig. 1.6: Counterexample to (CMon)

1.3.5.3 The Rips measure

An alternative approach was recently proposed by Crupi and Iacona (2022c). From
the perspective of the present paper, Crupi and Iacona’s approach is the most am-
bitious and advanced one so far, because they explicitly aim at offering both a
qualitative and a probabilistic approach to support conditionals (their ‘evidential
conditionals’). They use the Rips measure of confirmation. For all sentences 𝐴 and
𝐶 with 0 < Pr(𝐴) and Pr(𝐶) < 1, it defines

ri(𝐴,𝐶) = Pr(𝐶 | 𝐴) − Pr(𝐶)
1 − Pr(𝐶) .

This is a normalisation of 𝑑 (𝐴,𝐶). The measure ri was proposed in the statistics
literature as a “measure of conditional agreement” by Coleman (1966) and Light
(1969; 1971) (see Bishop, Fienberg and Holland 1975). Rips (2001) used it as a
measure of “argument strength”. Crupi, Tentori and Gonzalez (2007) and Crupi and
Tentori (2013) advocated it as a measure of empirical support that they propose
to read as a “measure of partial entailment”. Notice that the Rips measure may be
equivalently written as ri(𝐴,𝐶) = 1− Pr(𝐴∧¬𝐶 )

Pr(𝐴) ·Pr(¬𝐶 ) , which makes it transparent that
ri(𝐴,𝐶) = ri(¬𝐶,¬𝐴).
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𝐶/¬𝐶 𝐵 ¬𝐵

𝐴
0.28 0.35

0.13 0.21

¬𝐴 0 0
0.01 0.02

𝑉Δ 𝑈Δ

𝐴→𝐶 0.65 0.35
𝐴∧ 𝐵↛𝐶 0.91 0.09
𝐴∧ ¬𝐵→𝐶 0 1

𝑉Δ 𝑈Δ

𝐴→𝐶 0.65 0.35
𝐴↛¬𝐵 1 0

𝐴∧ 𝐵→𝐶 0.09 0.91

Fig. 1.7: Counterexample to (NRat) (and thus also (DRat)) as well as to (RMon)

𝐶/¬𝐶 𝐵 ¬𝐵

𝐴
0.05 0.2

0.2 0.05

¬𝐴 0.1 0
0 0.4

𝑉Δ 𝑈Δ

𝐴→𝐵 ∨𝐶 0.7 0.3
𝐴↛𝐵 0.7 0.3
𝐴→𝐶 0.3 0.7

Fig. 1.8: Counterexample to (ROr)

𝐶 ¬𝐶
𝐴 0.81 0.09

¬𝐴 0.08 0.02

𝑉Δ 𝑈Δ

𝐴 0.9 0.1
𝐶 0.89 0.11

𝐴→𝐶 0.1 0.9

Fig. 1.9: Counterexample to (ConjSuf)

Crupi and Iacona (2022c) recommend to apply ri as a valuation for the degree
of assertability of conditionals. They suggest a slight deviation from our generic
method in that they stipulate that 𝑉 (𝐴→𝐶) = 1 if Pr(𝐴) = 0 or Pr(𝐶) = 1, but this
is a minor difference that we are going to neglect.38

𝑉ri (𝐴→𝐶) =
{

ri(𝐴,𝐶) if Pr(𝐶 | 𝐴) ≥ Pr(𝐶) and 𝐴 and 𝐶 are Pr-contingent,
0 otherwise.

This yields an unvalue score for a conditional which Crupi and Iacona call “uncer-
tainty” (even though it is not the same as improbability, as in Adams’s work).

𝑈ri (𝐴→𝐶) = 1 −𝑉ri (𝐴→𝐶) ={ Pr(𝐴∧¬𝐶 )
Pr(𝐴) ·Pr(¬𝐶 ) if Pr(𝐶 | 𝐴) ≥ Pr(𝐶) and 𝐴 and 𝐶 are Pr-contingent,
1 otherwise.

38 As mentioned above, I think that 0 is the more adequate value here, since intuitively 𝐴 can lend
no support to 𝐶 when either Pr(𝐴) = 0 or Pr(𝐶 ) = 1. This also allows us to use the property of
Pr-contingency in the case distinction, without any change involved.
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𝐶 ¬𝐶

1

0 𝑉ri (𝐴→𝐶 )

𝐶 ¬𝐶

𝐶 ¬𝐶

1

𝐴

¬𝐴

0 1

Fig. 1.10: 𝑉ri (𝐴→𝐶) = ri(𝐴,𝐶).

Crupi and Iacona then employ the unvalue-sum concept of validity: an inference
from 𝐴1, . . . , 𝐴𝑘 to 𝐴𝑘+1 is valid iff 𝑈ri (𝐴𝑘+1) ≤ 𝑈ri (𝐴1) + . . . +𝑈ri (𝐴𝑘).

We now turn to the properties yielded by their interpretation of conditionals. Most
of the following theorem is due to Crupi and Iacona (2022c).39

Theorem 11 If the valuation 𝑉ri is combined with the unvalue-sum rule for validity,
then the following principles are all valid: (Ref) restricted to Pr-contingent sentences,
(LLE), (And), (Or), (CMon), (NRat) and (Cntrpos). Restricted variants of Aristotle’s
first and second theses and Abelard’s thesis are valid, with the extra premises being
¬□¬𝐴 for both (Arist1) and (Ablrd) and ¬□𝐵 for (Arist2). Moreover, (MP), (MT)
and (Ant) are valid.

On the other hand, (RW), (Cut), (DRat), (RMon), (ROr), (DA), (AC), (ConjSuf),
(ConjRat) and (Cnsv) are invalid.

Proof. We only look at a selection of parts of the theorem. For (Ref), note that
𝑉ri (𝐴→ 𝐴) = Pr(𝐴 | 𝐴)−Pr(𝐴)

1−Pr(𝐴) = 1 if 𝐴 is Pr-contingent. So in this case,𝑈ri (𝐴→ 𝐴) = 0
which we take as sufficient for treating 𝐴→ 𝐴 as the conclusion of a valid inference
from zero premises. However, if 𝐴 is not Pr-contingent, then 𝑈ri (𝐴→ 𝐴) = 1, and
the conditional 𝐴→ 𝐴 is unacceptable.

For a counterexample to (DRat) and (ConjRat), see Fig. 1.11.

39 Crupi and Iacona (2022c) did not consider (Ref), (DRat), (ROr), (MT), (DA), (AC), (ConjRat),
(Ant) and (Cnsv). For the necessity operator □, they use the values 𝑉 (□𝐴) = 1 if Pr(𝐴) = 1, and
𝑉 (□𝐴) = 0 otherwise.
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𝐶/¬𝐶 𝐵 ¬𝐵

𝐴
0.01 0.24

0.24 0.01

¬𝐴 0.24 0.01
0.01 0.24

𝑉ri 𝑈ri
𝐴∨ 𝐵→𝐶 0.31 0.69
𝐴↛𝐶 1 0
𝐵→𝐶 0 1

𝑉ri 𝑈ri
¬𝐶→¬𝐴∧ ¬𝐵 0.31 0.69

¬𝐶↛¬𝐴 1 0
¬𝐶→¬𝐵 0 1

Fig. 1.11: Counterexample to (DRat) and (ConjRat) for conditionals based on 𝑉ri
and the unvalue-sum rule.

For a counterexample to (ROr), we can use the one given in Fig. 1.9 and calculate
that 𝑉ri (𝐴→𝐵∨𝐶) = 0.9−0.55

1−0.55 = 0.78 > 0.23+ 0.23 = 0.5−0.35
1−0.35 + 0.5−0.35

1−0.35 = 𝑉ri (𝐴→
𝐵) +𝑉ri (𝐴→𝐶) (decimal numbers rounded).

For the restricted versions of (Arist1), (Arist2) and (Ablrd), see Crupi and Iacona
(2022c, pp. 49, 54, 62–63).

For (MP) and (MT), first note that (a) 𝑈ri (𝐴→𝐶) ≥ Pr(𝐴 ∧ ¬𝐶). For (MP), we
need to show that Pr(¬𝐴) + 𝑈Δ (𝐴→𝐶) ≥ Pr(¬𝐶), and this follows from (a). For
(MT), we need to show that Pr(𝐶) +𝑈Δ (𝐴→𝐶) ≥ Pr(𝐴), and this follows from (a),
too.

For a counterexample to (DA) and (AC), consider the case where Pr(𝐴∧𝐶) = 0.09,
Pr(𝐴 ∧ ¬𝐶) = 0.01, Pr(¬𝐴 ∧ 𝐶) = 0.51 and Pr(¬𝐴 ∧ ¬𝐶) = 0.39. First, note that
Pr(𝐴) +𝑈ri (𝐴→𝐶) = 0.1 + 0.01

0.1·0.4 = 0.35 < 0.6 = Pr(𝐶), which shows that (DA)
is invalid. Second, note that Pr(¬𝐶) + 𝑈ri (𝐴→𝐶) = 0.4 + 0.01

0.1·0.4 = 0.65 < 0.9 =

Pr(¬𝐴), which shows that (A) is invalid.
For (Ant) and (Cnsv), note first, 𝑉ri (𝐴 → 𝐴 ∧ 𝐶) =

Pr(𝐴∧𝐶 | 𝐴)−Pr(𝐴∧𝐶 )
1−Pr(𝐴∧𝐶 ) =

Pr(¬𝐴) Pr(𝐴∧𝐶 )
Pr(𝐴) Pr(¬(𝐴∧𝐶 ) ) if Pr(𝐴) > 0 and Pr(𝐴 ∧ 𝐶) < 1. A few elementary transfor-
mations show that 𝑉ri (𝐴→ 𝐴 ∧ 𝐶) −𝑉ri (𝐴→𝐶) =

Pr(𝐴∧¬𝐶 ) ·Pr(¬𝐴∧𝐶 )
Pr(𝐴) ·Pr(¬𝐶 ) ·Pr(¬𝐴∨¬𝐶 ) if Pr(𝐶 | 𝐴) ≥ Pr(𝐶), Pr(𝐴) > 0 and Pr(𝐶) < 1,
Pr(𝐶 | 𝐴) · Pr(¬𝐴 | ¬𝐴 ∨ ¬𝐶) if (Pr(𝐶 | 𝐴) < Pr(𝐶) or Pr(𝐶) = 1)

and Pr(𝐴) > 0 and Pr(𝐴 ∧ 𝐶) < 1,
0 otherwise.

So in any case 𝑉ri (𝐴→ 𝐴 ∧ 𝐶) ≥ 𝑉ri (𝐴→𝐶), and sometimes 𝑉ri (𝐴→ 𝐴 ∧ 𝐶) >

𝑉ri (𝐴→𝐶). The claims regarding (Ant) and (Cnsv) then follow immediately. □

Some comments are in order. The logic of probabilistically interpreted condition-
als identified by Crupi and Iacona is comparatively strong, it satisfies quite a number
of principles of system P and Contraposition on top of that. The failures of Con-
junctive Sufficiency and (RW) are welcome features, and the failures of (Cut) and
(DRat) are not that bad either. Crupi and Iacona (2022a, p. 2914) point out that the
restricted connexive principles mentioned in Theorem 11, “unlike their unrestricted



1 Conditionals, Support and Connexivity 35

counterparts, imply no revision of classical logic.” The invalidities mentioned in
the theorem of course remain invalid if the unvalue-maximum concept of validity is
applied rather than the unvalue-sum concept.

Crupi and Iacona’s surprising finding was that their modal account and their
probabilistic account validate exactly the same subset of the set of principles they
looked at. All together, this amounts to a list of about 15 principles the validity of
which comes out the same in their modal and probabilistic accounts. This observation
is indeed striking, and Crupi and Iacona hence claim that the “probabilistic semantics
[. . . ] converges with the modal semantics [. . . ] in all relevant respects” (2022b, p.
646) and that they imply “exactly the same pattern of results” (2022a, p. 2919).

It must be stressed again that Crupi and Iacona’s accounts are logically very well-
behaved, much more well-behaved than, for instance, the logics of Rott’s difference-
making and dependence conditionals and of Douven’s evidential conditionals. This
makes them worthy objects of logical investigations. However, I do not think that
Crupi and Iacona’s undertaking is completely successful. First, intuitively Contrapo-
sition is neither sufficient nor necessary for evidential support. Second, a closer look
has revealed that the two logics are different after all: the modal account validates
Disjunctive Rationality and Conjunctive Rationality, but the probabilistic account
doesn’t validate them (see again Fig. 1.11). Third, the theoretical role of Contra-
position is different in the modal account (here it is supposed to capture the idea
of evidential support) and in the probabilistic account (here it is employed just to
choose the authors’s favourite measure of evidential support). These criticisms are
discussed in Rott (2022c).

1.3.5.4 The Sheps measure

In the same way in which Crupi and Iacona normalised Douven’s difference mea-
sure, van Rooĳ and Schulz (2019; 2021; 2022) argue that a better predictor of the
acceptability of conditionals is given by a normalised measure of contingency, that
is, by a measure that I will call the Sheps measure. For sentences 𝐴 and 𝐶 with
0 < Pr(𝐴) < 1 and Pr(𝐶 | ¬𝐴) < 1, it defines

sh(𝐴,𝐶) = Pr(𝐶 | 𝐴) − Pr(𝐶 | ¬𝐴)
1 − Pr(𝐶 | ¬𝐴) .

This measure is a normalisation of Δ(𝐴,𝐶). In philosophical discussions, the mea-
sure sh is not usually included among measures of evidential support. It is discussed
and advocated in analyses of causation by Mindel Sheps (1958; 1959, ‘relative differ-
ence’40), I. J. Good (1961, p. 47, ‘quasiprobability’), Patricia Cheng (1997, p. 374,
‘causal power’), Judea Pearl (1999, p. 113; 2000, p. 292, ‘probability of sufficiency’).

40 Neither the formula nor the term ‘relative difference’ has a prominent status in the work of
the Canadian physician, biostatistician and demographer Sheps. Both are highlighted by Fleiss
(1973, pp. 60–61) who decidedly attributes them to Sheps.—Incidentally, Sheps’s name has been
frequently misspelt in the literature as ‘Shep’ since 1999.
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𝐶 ¬𝐶

𝐶 ¬𝐶

1

𝐴

¬𝐴

0 1

𝑉sh (𝐴→𝐶 )

Fig. 1.12: 𝑉sh (𝐴→𝐶) = sh(𝐴,𝐶).

An argument for using it as a measure of confirmation was recently given by Igor
Douven (2021).

Van Rooĳ and Schulz (2019, p. 58; 2021, p. 440; 2022) recommend to apply sh
as a valuation for the degree of acceptability or assertability of conditionals:

𝑉sh (𝐴→𝐶) =
{ sh(𝐴,𝐶) if Pr(𝐶 | 𝐴) ≥ Pr(𝐶 | ¬𝐴) and 𝐴 is Pr-contingent,

0 otherwise.

According to Van Rooĳ and Schulz, a conditional is acceptable or assertable if and
only if this measure is high. They argue that this rule is a matter of conversational
implicature rather than semantic content, and that it can account for various intuitions
about the assertability of conditionals and explain empirically found differences in
the acceptance of causal and diagnostic conditionals. They do not, however, present
a logic for conditionals conforming to this idea.

1.3.5.5 High evidential support entails high conditional probability

Speaking with Carnap again, does sufficient increase in firmness give enough firm-
ness? Won’t the support criterion let room for the possibility that given the antecedent,
the consequent is still not probable enough to be accepted? Fortunately, the answer is
no. We can specify the numerical relations between our four measures of evidential
support.41

Theorem 12 (i) The relationships between the four measures of evidential support
are as indicated in Fig. 1.13. In particular, all support values ES(𝐴,𝐶) are below
the conditional probability Pr(𝐶 | 𝐴).
(ii) The Delta and Rips measures are incomparable, with Δ(𝐴,𝐶) ⪌ ri(𝐴,𝐶) if and
only if Pr(𝐶 )

Pr(¬𝐶 ) ⪌
Pr(𝐶 | ¬𝐴)
Pr(¬𝐶 | 𝐴) .

41 After having completed this section, I discovered that similar results were obtained by Douven
(2021).
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Sheps

Delta Rips

Difference

Conditional probability

: Pr(¬𝐴) : Pr(¬𝐶 )

: Pr(¬𝐶 | ¬𝐴) : Pr(¬𝐴 | ¬𝐶 )

: Pr(¬𝐴∧ ¬𝐶 )

: Pr(𝐶 | 𝐴)−Pr(𝐶 | ¬𝐴)
Pr(𝐶 | 𝐴)−Pr(𝐶 | ¬𝐴) Pr(𝐶 | 𝐴)

Fig. 1.13: Relations between the four measures 𝑑 (𝐴,𝐶), Δ(𝐴,𝐶), ri(𝐴,𝐶) and
sh(𝐴,𝐶) and the conditional probability Pr(𝐶 | 𝐴). Arrows point to measures that
yield higher values.

So if a conditional gets a high support value in one of the four senses, the conditional
probability of the consequent given the antecedent is at least as high.

Proof. The arrows from Difference to Rips and from Delta to Sheps are true by
definition. The arrow from Difference to Delta is easy (!). In the following, I assume
that that 𝐴 is Pr-contingent and positively relevant to 𝐶 and that the denominators
are all non-zero. We give a direct proof of the arrow from Rips to Sheps.

ri(𝐴, 𝐶 )
sh(𝐴, 𝐶 ) =

Pr(𝐶 |𝐴) − Pr(𝐶 )
Pr(¬𝐶 ) · Pr(¬𝐶 |¬𝐴)

Pr(𝐶 |𝐴) − Pr(𝐶 |¬𝐴)

=
(Pr(𝐴∧𝐶 ) − Pr(𝐴) Pr(𝐶 ) ) · Pr(¬𝐶 ) |¬𝐴) Pr(𝐴) Pr(¬𝐴)
Pr(𝐴) Pr(¬𝐶 ) · (Pr(¬𝐴) Pr(𝐶 ∧ 𝐴) − Pr(𝐴) Pr(𝐶 ∧ ¬𝐴) )

=
(Pr(𝐴∧𝐶 ) − Pr(𝐴) Pr(𝐶 ) ) · Pr(¬𝐶 ∧ ¬𝐴)

Pr(¬𝐶 ) · ( (1 − Pr(𝐴) ) Pr(𝐶 ∧ 𝐴) − Pr(𝐴) Pr(𝐶 ∧ ¬𝐴) )

=
(Pr(𝐴∧𝐶 ) − Pr(𝐴) Pr(𝐶 ) ) · Pr(¬𝐶 ∧ ¬𝐴)

Pr(¬𝐶 ) · (Pr(𝐴∧𝐶 ) − Pr(𝐴) Pr(𝐶 ) )

=
Pr(¬𝐶 ∧ ¬𝐴)

Pr(¬𝐶 ) = Pr(¬𝐴|¬𝐶 ) . (1.1)

Second, we verify that the conditional probability is even higher than the Sheps
measure, that is, the support measure with the highest values we have considered.
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sh(𝐴, 𝐶 )
Pr(𝐶 | 𝐴) =

Pr(𝐶 | 𝐴) − Pr(𝐶 | ¬𝐴)
(1 − Pr(𝐶 | ¬𝐴) ) · Pr(𝐶 | 𝐴)

=
Pr(𝐶 | 𝐴) − Pr(𝐶 | ¬𝐴)

Pr(𝐶 | 𝐴) − Pr(𝐶 | ¬𝐴) Pr(𝐶 | 𝐴) ≤ 1. (1.2)

Finally, we compare the Delta and Rips measures and verify that they are incompara-
ble. From their relation to the difference measure, is is clear that Δ(𝐴,𝐶 )

ri(𝐴,𝐶 ) = Pr(¬𝐶 )
Pr(¬𝐴) . So

Δ(𝐴,𝐶) ≥ ri(𝐴,𝐶) iff Pr(𝐴) ≥ Pr(𝐶), or equivalently, iff Pr(𝐴∧¬𝐶) ≥ Pr(¬𝐴∧𝐶).
An essential difference between Δ and ri is this. Suppose we have the contrasting
conditional probabilities Pr(𝐶 | 𝐴) and Pr(𝐶 | ¬𝐴), and we keep them fixed while
varying Pr(𝐴) (have another look at Fig. 1.12 to visualise what we are doing). Then
Δ(𝐴,𝐶) does not change at all, while ri(𝐴,𝐶) decreases if Pr(𝐴) is increased, and
vice versa.42

1.3.6 Connexive principles on the probabilistic account

The main historical sources of connexive logic are Aristotle and Boethius and, to
a somewhat lesser extent, Abelard. Connexive logic is most frequently taken to
be defined by the idea that certain ‘theses’ or ‘principles’ should be theorems of
propositional logic—even though they are non-theorems in the propositional logic
that we today call classical. I repeat my non-committal formulations of the three
central principles of connexivity for the reader’s convenience:
(Arist1) Not 𝐴→¬𝐴. (Aristotle’s first thesis)
(Arist2) Not both 𝐴→𝐶 and ¬𝐴→𝐶. (Aristotle’s second thesis)
(Ablrd) Not both 𝐴→𝐶 and 𝐴→¬𝐶. (Abelard’s first principle)

Aristotle’s second thesis and Abelard’s principle are remarkably similar to each
other and exhibit an appealing symmetry: the former concerns a negated antecedent,
the latter a negated consequent. (Ablrd) is widely regarded as defining the very
concept of connexive logic, while there is only little discussion about (Arist2) in
the connexive logic community. This seems unjustified to me, both from a historical
and from a systematic point of view. The historical origin of connexive logic is
often located in Aristotle’s Analytica Priora 57b3–14 where he argues for (Arist2)
(or something very similar) on the grounds of (Arist1) (or something very similar),
and neither Boethius nor Abelard had any intention of denying what Aristotle had
said. Systematically, the justification of (Ablrd) by means of (a version of) (Arist1)
runs exactly parallel to the justification of (Arist2) by means of (the twin version of)
(Arist1).43 So perhaps the preference that contemporary connexive logicians give to

42 To be precise, if 𝑟 = Pr(𝐶 | 𝐴) and 𝑠 = Pr(𝐶 | ¬𝐴) , then ri(𝐴, 𝐶 ) = 1 − 1−𝑟
1−𝑠−Pr(𝐴) (𝑟−𝑠) which

is a decreasing function of Pr(𝐴) .
43 Compare in particular Abelard (1956, p. 288–292) and the discussions by McCall (1963, p. 21)
and Martin (1986, p. 568; 2004, p. 190).
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(Ablrd) over (Arist2) is only a matter of historical contingency. In any case, (Arist2)
looks as plausible as (Ablrd) if conditionals are interpreted as support conditionals.

As pointed out by Crupi and Iacona (2022c, p. 57), Adams’s suppositional condi-
tional (see Section 1.3.2) already satisfies restricted variants of Aristotle’s first thesis
and Abelard’s thesis, with the restricting conditions being that ¬□¬𝐴 . However, the
restrictions are significant, and Aristotle’s second thesis (Arist2) does not even hold
in a restricted form. The situation changes quite dramatically if we employ measures
of evidential support rather than conditional probabilities.

Theorem 13 All conditionals → based on quantitative measures of evidential sup-
port satisfy the connexive principles (Arist1), (Arist2) and (Ablrd).

Proof. It is very easy to see this, considering the fact that all values and unvalues
lie in the interval [0, 1]. For (Arist1), we note that always𝑈 (𝐴→¬𝐴) = 1, because a
Pr-contingent 𝐴 is always negatively relevant to ¬𝐴. For (Arist2), we need to verify
that 𝑈 (¬𝐴↛𝐶) ≤ 𝑈 (𝐴→𝐶). If 𝐴 is contingent and positively relevant to 𝐶, then
𝑈 (¬𝐴↛𝐶) = 𝑉 (¬𝐴→𝐶) = 0, because ¬𝐴 is negatively relevant to 𝐶. If, on the
other hand, 𝐴 is not contingent or not positively relevant to 𝐶, then 𝑈 (𝐴→𝐶) = 1.
For (Ablrd), we need to verify that 𝑈 (𝐴↛ ¬𝐶) ≤ 𝑈 (𝐴→ 𝐶). If 𝐴 is contingent
and positively relevant to 𝐶, then 𝑈 (𝐴↛ ¬𝐶) = 𝑉 (𝐴→ ¬𝐶) = 0, because 𝐴 is
negatively relevant to ¬𝐶. If, on the other hand, 𝐴 is not contingent or not positively
relevant to 𝐶, then 𝑈 (𝐴→𝐶) = 1. □

The case of theΔ𝑃 measure is special because we have𝑈Δ (𝐴→¬𝐶) = 𝑈Δ (¬𝐴→
𝐶), and so the claims of (Arist2) and (Ablrd) are virtually equivalent.

The thesis of Negation Commutation says that the negation of a conditional is
equivalent to the conditional with a negated consequent. It was attributed, somewhat
controversially, to Boethius by Kneale and Kneale (1962, p. 191). It was called a
“hyper-connexive” thesis by Sylvan (2000, pp. 82, 89) and advocated, for instance,
by Adams (1965), Cooper (1968), Belnap (1973), Wansing (2005) and Cantwell
(2008). It is instructive to break Negation Commutation into two parts:

(NC-Ex) If 𝐴→¬𝐶, then 𝐴↛𝐶.
(NC-In) If 𝐴↛𝐶, then 𝐴→¬𝐶.

We have just shown that (NC-Ex), which is equivalent to (Ablrd), holds for support
conditionals. But this is not the case for its converse (NC-In), which is very close
to Stalnaker’s Conditional Excluded Middle (CEM).44 For example, it is easy to
show that the conditional characterised by the Δ𝑃 measure and the unvalue-sum rule
does not satisfy (NC-In). This follows immediately from the second part of Lemma
2 (xviii). That (NC-In) fails to hold for support conditionals is hardly surprising.

44 Even Lewis, who did not endorse (CEM), wrote: “The law of Conditional Excluded Middle
is plausible because it explains why we do not distinguish, in ordinary language, between the
external negation of a whole conditional ¬(𝐴□→𝐶 ) and the internal negation of the consequent
𝐴□→¬𝐶.” (Lewis 1973b, p. 79, notation adapted)
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From the fact that 𝐴 does not support 𝐶, one cannot conclude that 𝐴 supports ¬𝐶.
𝐴 may well be neutral vis-à-vis 𝐶.45

1.4 Conclusion

Whether in logic or in the psychology of reasoning, the investigation of relevance
measures and of the resulting inferences is currently a very active field in the study
of conditionals. In this paper I have surveyed a variety of conditionals capturing
the idea that the antecedent lends evidential support to the consequent. In terms of
their logical behaviour, they are separated from the commonly studied suppositional
conditionals by a resolute rejection of Conjunctive Sufficiency and a consequential
rejection of Right Weakening (and even of the weaker principle of Conservativity).
An overview of the logical properties of the ‘support conditionals’ that are most
important from our perspective is given in Table 1.1 (on a float page at the end of
the paper).

All support conditionals have strong connexive properties, but some of them are
restricted. In this way, the concept of evidential support offers a new interpretation
of ‘connexivity’, or a new justification for the central connexive principles, namely
Aristotle’s first and second theses and Abelard’s thesis. This interpretation strongly
suggests that the connexive principles should not be restricted and that Aristotle’s
second thesis is on an equal footing with Abelard’s thesis.

It has been my aim to offer a presentation that goes across the ‘qualita-
tive/quantitative watershed’ (Hawthorne and Makinson 2007).46 The first role model
for this project is of course Ernest Adams who, from 1966 on (clearly before Stal-
naker and Lewis, long before Kraus, Lehmann and Magidor), built a beautiful bridge
between his probabilistic and a qualitative (modal) account of suppositional condi-
tionals.47

My second role models for conditionals as representing evidential support are
Vincenzo Crupi and Andrea Iacona. They have challenged the idea that support con-
ditionals behave in rather unusual and unruly ways, and they came forward with the
bold and exciting project of not only attacking systematically the idea of evidential
support in conditionals, but also doing it twice over: in a modal and in a probabilistic
setting. Their logics, in which contraposition plays a central role, are surprisingly
well-behaved. But as explained in Rott (2022c), the modal and probabilistic logics

45 The proof of Lemma 1 (xviii) shows that the effect of (NC-In) would actually force us to conclude
from the fact that 𝐴 is irrelevant (or negatively relevant) to 𝐶 that it is maximally relevant to ¬𝐶.
This is a peculiarity of the present account that limits itself to the interval [0, 1].
46 Hawthorne and Makinson (2007, p. 248) identify (And) as the “watershed condition” separating
qualitative and (some) quantitative approaches to suppositional conditionals. Interestingly, (And)
is valid for all qualitative and probabilistic support conditionals considered in the present paper.
47 As Adams (1981, p. 171; 1986, pp. 271–273; 1998, p. 133, 136) pointed out repeatedly, his
‘𝑃-orderings’ (Adams 1966, pp. 282–315), later also called or ‘order-of-magnitude probability
orderings’, are the converses of Lewis’s ‘(normal) possibility orderings’ of possible worlds. This
seminal part of Adams’s work tends to be forgotten nowadays.
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do not perfectly match, and it is doubtful whether their ‘Chrysippus test’ captures
the intuitive notion of evidential support. In the present paper I have tried to do
something similar to what they did for difference-making and dependence condi-
tionals by invoking, on the quantitative side, the Δ𝑃 measure of evidential support
and the unvalue-sum rule for validity. I think that the notion of evidential support is
more adequately captured by this group of conditionals than by Crupi and Iacona’s
conditionals. However, as we have seen, the logics emerging at the qualitative and
the probabilistic sides do not perfectly match here either.

I have discussed four well-known, simple measures of evidential support. The
two most complex ones of them, the Rips and the Sheps measures, were suggested
to be employed in the recent literature on conditionals. I have advocated the use of a
simpler one, Δ𝑃, which encodes the idea of contrasting the suppositions 𝐴 and ¬𝐴
in a way that is similar to the way difference-making conditionals and dependence
conditionals encode it on the qualitative side. Applied together with the unvalue-sum
rule defining validity, theΔ𝑃 measure results in a logic of conditionals that satisfies at
the same time And-Or-Toggling (AOT), a central condition of the logic of difference-
making conditionals, and Conditional Perfection (CondPerf), which is crucial for
dependence conditionals. The axiom sets of the latter two kinds of conditionals
are strictly speaking incompatible, but we found that they are, in a sense, ‘almost’
compatible. This suggested looking at Stalnakerian dependence conditionals as the
closest approximation to the probabilistic side. The logic of conditionals based on
Δ𝑃, however, is still different, because the principle of Conjunctive Rationality
(ConjRat) is not validated.

Plenty of work is left for the future. There are many more measures of empiri-
cal support in the probabilistic literature that can be investigated concerning their
suitability for the interpretation of support conditionals and the logic they give rise
to (see, e.g., the lists in Crupi, Tentori and Gonzalez 2007, p. 230; Sprenger and
Hartmann 2019, p. 56, Merin 2021, pp. 269–270). At the same time, a lot more work
seems needed in order to justify carefully—or perhaps modify—several elements of
our analysis. Key points are: (i) the meaning of ‘unvalue’, of which ‘uncertainty’ is
only a very special interpretation; others include ‘unacceptability’ and ‘unasserta-
bility’; (ii) the use of the equation 𝑈 (𝐴) = 1 − 𝑉 (𝐴) for the unvalue 𝑈 when 𝑉 is
not a (conditional) probability; (iii) the application of the unvalue-sum rule in the
definition of validity when 𝑉 is not a (conditional) probability; (iv) the restriction of
support values and unvalues to the interval [0,1]; and finally, (v) the identification of
the value of a rejected (not accepted, ‘negated’) conditional with the unvalue of the
accepted conditional.
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> ≫ Ï Ï+ 𝑉Δ ▷ 𝑉ri

(Ref) ✓ − ✓ ✓ r ✓ r
(LLE) ✓ ✓ ✓ ✓ ✓ ✓ ✓

(LRLE) ✓ ✓ ✓ ✓ ✓ ✓ ✓

(RW) ✓ − − − − − −
(And) ✓ ✓ ✓ ✓ ✓ ✓ ✓

(Or) ✓ r / ∗ r / ∗ r / ∗ − ✓ ✓

(Cut) ✓ r / ∗ r / ∗ r / ∗ − − −
(CMon) ✓ r / ∗ r / ∗ r / ∗ − ✓ ✓

(NRat) [✓] − ✓ ✓

(DRat) [✓] − ✓ −
(RMon) [✓] [r / ∗] [∗] [∗] − − −
(CEM) [✓] − − − − − −
(ROr) [✓] − − ✓ − − −

(Arist1) − ✓ ✓ ✓ ✓ r r
(Arist2) − ✓ ✓ ✓ ✓ r r
(Ablrd) − r ✓ ✓ ✓ r r
(MP) ✓ ✓ ✓ ✓ ✓ ✓ ✓

(MT) ✓ ✓ ✓ ✓ ✓ ✓ ✓

(DA) − r ✓ ✓ ✓ − −
(AC) − ✓ ✓ ✓ ✓ − −

(ConjSuf) ✓ − − − − − −
(Cntrpos) − − − − − ✓ ✓

(CondPerf) − − ✓ ✓ ✓ −
(ConjRat) ✓ ✓ − ✓ − ✓ −
(ACRW) ✓ ✓ ✓ ✓ ✓ ✓

(AaOE) ✓ ✓ ✓ ✓ ✓ −
(AOT) − ✓ − − ✓ −
(AOT′) − − ✓ ✓ −

(Supraclass) ✓ − − − − ✓ ✓

(Ant) ✓ ✓ ✓ ✓ ✓ ✓ ✓

(Cnsv) ✓ − − − − − −

Table 1.1: Properties of the conditionals considered in this paper. Ï+: Stalnakerian
dependence conditional. ✓: valid; ✓: valid and used as an axiom; −: not valid; r:
valid in restricted form; ∗: valid in modified form; [✓]: valid under special constraints
on 𝜎.
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