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Abstract

When an agent learns of an expert’s credence in a proposition about which they
are an expert, the agent should defer to the expert and adopt that credence as their
own. This is a popular thought about how agents ought to respond to (ideal) ex-
perts. In a Bayesian framework, it is often modelled by endowing the agent with a
set of priors that achieves this result. But this model faces a number of challenges,
especially when applied to non-ideal agents (who nevertheless interact with ideal
experts). I outline these problems, and use them as desiderata for the develop-
ment of a new model. Taking inspiration from Richard Jeffrey’s development of
Jeffrey conditioning, I develop a model in which expert reports are taken as exoge-
nous constraints on the agent’s posterior probabilities. I show how this model can
handle a much wider class of expert reports (for example reports of conditional
probabilities), and can be naturally extended to cover propositions for which the
agent has no prior.

1 Introduction

Consider this example of an agent receiving testimony from an expert.

Hurricane. You open your weather app and see, to your complete surprise,
that there is a 30% chance that London will be struck by a hurricane on
Thursday.

In this essay, I explore a very common idea that philosophers have had about cases
like this: the fact that this information comes from an expert means that the content of
their report, that there is a 30% probability of a hurricane in London on Thursday, ought
to directly influence your credence in that proposition. Philosophers have typically
expressed this thought in the context of ideal agents responding to the testimony of
ideal experts (examples of which include chance, or one’s future credences), but I am
interested in somewhat more realistic cases like Hurricane.



I will develop a model of expert deference that works for more realistic agents, who
nevertheless find it useful to make the idealisation that the expert is worthy of defer-
ence. This partial de-idealisation is of interest when thinking of cases of policymaking
in which non-experts take input from various scientists when formulating policies and
making decisions. To non-expert policymakers, the testimony of scientists may need to
be taken on trust. While there may be complex procedures in place to secure the best
expert advice, or to aggregate advice from different experts, when the policymaker is
faced with forming their own beliefs or making policy decisions, it seems plausible to
represent what they do as deference.

Why do we need an account of partially de-idealised expert deference? As I will
show, the standard, idealised Bayesian accounts make unreasonable demands of the
deferring agent.

How reasonable the theory is—for real or ideal agents—depends in part on how we
interpret its normative demands. At its core, Bayesianism is committed to two norms:
that one ought to have probabilistic partial beliefs, and that one ought to update those
beliefs by conditioning on one’s evidence. Often, they are assumed to be evaluative
norms: they are features of a good believer. Evaluative norms needn’t entail anything
about action: a good spring day is cloudless and fresh; these are evaluative standards
for assessing days qgua spring days, but do not directly bear on the actions of any agents.
But the Bayesian norms are also sometimes taken to be action-guiding. This is espe-
cially so in the Bayesian statistics literature where investigations of, for example, expert
testimony, include discussions of how real agents might carry out Bayesian processes.'

I am interested in policymakers facing actual cases of expert disagreements, and
my aim is to contribute to advancing their practice. Therefore, I am interested in guid-
ance for action. There is, of course, a link between evaluative and prescriptive norms.
Evaluative norms can give rise to prescriptive ones: rules for baking bread are created
with good bread as their target. In the other direction, facts about what one can do may
constrain standards for evaluating one’s goodness. If the prescriptions associated with
an evaluative standard are impossible, this may require a revision of that standard.

I begin my discussion not with deference, but with the orthodox Bayesian approach
often called “supra-Bayesianism”. I argue in section 2 that it is not, in fact, a credible
solution by outlining four problems it faces. Two concern the limitations of real agents,
and two concern ways in which it fails to make use of the idealness of the experts.
(There is a long history of discussions of supra-Bayesianism, so these problems are not
new.?) In section 3 I turn to expert deference, which is a supplementary principle added

1For an explicit discussion of these two kinds of norms in epistemology see (Simion et al., 2016, $4.1),
and for a similar discussion in decision theory see (Buchak, 2013, Ch 1) and (Thoma, 2019). The Bayesian
statistics papers referenced in this section almost all have a prescriptive element, but for a particularly clear
example see (French, 1980).

2This section, and indeed this paper, is not intended as a complete survey of the literature on Bayesian
approaches to expert disagreement and, where I do survey the literature, my review is partial to philosophy.
There is a Bayesian statistics literature on the topic of expert testimony covering both supra-Bayesianism
and deference, and I engage with it here only partially. Part of the difficulty in using that literature arises
from the difference in focus. Statistics papers often assume that orthodox Bayesianism is the right norm,
while T wish to evaluate that claim. They work through how a real agent might reason in the kinds of
cases under consideration, and regularly assume a particular form for the agents’ priors and likelihoods (i.e.,
assuming particular distributions) in order to make progress. While valuable for building understanding of



to Bayesianism to make it appropriately sensitive to expert testimony. I start with the
traditional way that deference has been formulated by Bayesians: as a constraint on the
priors of an ideal Bayesian agent. I argue that this formulation falls prey to some of
the problems I introduced for supra-Bayesianism, and that has two additional problems
of its own. First, it arbitrarily distinguishes one kind of expert report as worthy of
deference: reports on the unconditional probability of a proposition. Second, it cannot
deal with expert disagreement (i.e., multiple, contrary testimonies).

In section 4 I present a new development of the expert deference idea, in a manner
that is (a) better suited to my non-ideal theory approach, and (b) can resolve most of the
problems I introduce for existing accounts. I call the new approach “expert deference
as a belief revision schema,” and draw on the theory of probabilistic belief revision in
order to develop it. Notably, the new approach can handle a much wider class of expert
reports than the orthodox model of deference. I show that this new approach does not
fall prey to most of the problems that bedevil supra-Bayesianism and expert deference
as a constraint on priors. The two most difficult problems are expert disagreement
and deferring to propositions for which the agent has no priors. I show in section
5 how my model works naturally with one approach to rational awareness growth,
thereby allowing for deference to unfamiliar propositions. In section 6 I reflect on
disagreement, and why it cannot be successfully resolved in a deference-type model.

2 Supra-Bayesianism

We begin with simple Bayesian orthodoxy: when you hear the expert report, you update
your beliefs by conditioning on what you have learned.

The setup is standard: your probabilities P are defined on an algebra of proposi-
tions Q. P includes a prior for H, the proposition that a hurricane will hit London on
Thursday, and when you look at your app you learn the proposition that the weather app
says “there is a 30% chance of a hurricane”. Such propositions about others’ credences
are denoted with corner quotes, i.e., "W(H) = 0.37. When there is no ambiguity, I
will use "W ™ as shorthand for "W (H) = 0.3™. Upon learning that "W, your posterior
probability for H is:

P(H)

O(H) = P(HIW (H) = 0.3) = PUW IH) e

So, your posterior for H depends on your prior for H, your prior for hearing this report
"W, and your prior likelihood for the hurricane, given the report.

This answer, though perfect Bayesian orthodoxy, faces a number of challenges.’I
begin with two challenges for real agents.

Bayesianism and its implications, they are rarely directly concerned with my topic here.

3The label “supra-Bayesianism” comes from Keeney and Raiffa (1976). It has been much discussed in
the Bayesian statistics literature (see Genest and Zidek, 1986), and I do not claim that these problems are
without possible responses. In particular, much work has been done on how to make it more tractable in
cases where particular symmetries, or known distributions, simplify the updating required. Lindley (1982)
notes cases in which it reduces to the very simple expert deference. Others have studied when it reduces to
averaging. French (1980) is an early analysis of how thinking through the procedure a real agent might use
to enact supra-Bayesianism can generate plausible simplifications.



1. Cognitive Burden: There are a great many experts in the world, a myriad of propo-
sitions they might report on, and a continuum of reports they could make on each.
Experts and their reports may have complex dependencies on one another. £ must
therefore be a very rich algebra indeed, and the range and granularity of the judge-
ments the agent is required to make are breathtaking. Any procedure to enact (even
approximately) the supra-Bayesian answer is therefore extremely cognitively demand-
ing for any real agent (this has been extensively discussed; see e.g., the comments on
supra-Bayesianism in Genest and Zidek (1986)). It is no failing of rationality not to be
able to accomplish this procedure.

This objection concerns what real agents can achieve. It is a problem that targets
the status of supra-Bayesianism as a norm, either for action or evaluation that is reflec-
tive of the agent’s capacities. A Bayesian might quibble: a rational agent simply does
behave in a manner that is (representable as) complying with the diktats of Bayesian-
ism. In this case, that involves supra-Bayesian updating on the reports of any experts
giving testimony. But it is no more assumed that agents actually perform these cal-
culations than it is assumed that one does mental trigonometry when catching a ball.
Catching a ball amounts to calculating a trajectory and performing a sequence of move-
ments such that one’s hands intersect with that trajectory, but that statement can be true
independently of what is going on in the mind of the agent doing the catching.

I acknowledge that in general there is no requirement that agents be consciously
attending to the beliefs we are discussing, or consciously perform any calculations.
The Bayesian can say that a rational agent has cognitive architecture that accomplishes
the belief changes prescribed by Bayesianism somehow. Perhaps if we supplement
this with a “low cost” analysis of belief such as dispositionalism, then the Bayesian
can insist that there are no onerous cognitive demands on agents. As long as they
end up with the right dispositions, they’re rational. The costliness of performing the
calculations to determine the right posterior belief in the representation can completely
decouple from the costliness of accomplishing the actual belief change in the agent’s
cognitive architecture.

This is a reasonable response if one’s aim is to construct a theory of rationality that

interprets the rational behaviour of real agents. Whether the response works for some-
one who views the norms of Bayesianism as evaluative will depend on the plausibility
of the underlying account of partial belief, an issue I will not address. But if one takes
Bayesianism to be action-guiding, then it is a flaw if no real agent could reproduce
the obvious procedure for determining which are the right actions (i.e., permissible
posterior beliefs) and if no alternative procedure for that determination is provided.
As I am interested in generating normative guidance for policymakers facing expert
disagreement, I view it as such a problem.
2. Awareness: In the setup of the example, I stressed your surprise at hearing this
report. London doesn’t get hurricanes, and so it is quite plausible that you’d never con-
sidered H before, much less the proposition that the weather app would report precisely
30% as the probability for it!

It is almost constitutive of the notion of expertise that experts will regularly discuss
things that novices are unfamiliar with. We should therefore expect that many expert
statements will be about propositions that the non-experts were previously unaware of.
In such cases, it is simply implausible that the agent has any views on these matters at



all—yet the supra-Bayesian view insists that they have priors for them.

When I talk of “awareness” I do not mean that agents must actively reflect on
something, or that they pay attention to it. The common English phrase “I’ve never
heard of that before” corresponds well to what I mean by unawareness. An extreme
case would be an agent’s relation to a proposition involving a concept that they do not
have—perhaps, your present relation to some esoteric statement about theoretical par-
ticle physics. Between these two extremes—mere inattention and conceptual lack—Tlie
many cases where the agent does not meet common criteria for belief. They may lack
any relevant disposition to act, or stand in no relation to the relevant mental represen-
tation. If you know nothing about South African politics, then you know nothing about
the Democratic Alliance or their electoral hopes in the city of Johannesburg. When
confronted for the first time with my claim that the Democratic Alliance has no future
in Johannesburg, you are in a state of unawareness.

Nevertheless, supra-Bayesianism requires agents to have attitudes towards all propo-
sitions. To stress the implausibility of this, let me point out that in order to apply supra-
Bayesianism generally we must require that you have credences for any report (i.e.,
any x € [0,1]) on any proposition made by any expert.* If, like me, you think that
there are many combinations of expert, proposition, and report, toward which even the
most rational agents will have no attitudes, then you think Awareness is a problem for
supra-Bayesianism.

Now recall the setup that I am interested in: non-ideal agents interacting with (rel-
atively) ideal experts (I will refine this description in section 3). In this setup, there are
two further concerns with supra-Bayesianism.

3. Relevance of Priors: One might reasonably ask: what do you know about hurricanes,
anyway? The reliance of Q(H) on P(H) strikes many as problematic: surely it is
rational to jettison your ignorant prior in face of reliable expert testimony? Similarly,
why should Q(H) depend on how likely you think this expert is to report precisely
30% as their probability for H? What do you know about hurricane prediction, or the
methods of this or that forecaster?

4. Sensitivity to Testimony: The complementary problem to supra-Bayesianism’s over-
sensitivity to your priors is that it is under-sensitive to the actual content of the expert’s
report. Q(H) isn’t a function of the expert’s reported credence! It is instead a function
of your priors that the expert will report, in this case, 30%. This is because the supra-
Bayesian procedure is just the general Bayesian answer to every learning experience.
But it seems like there’s something different going on in the case of expert testimony:
you’re receiving information that is directly relevant to your credence in H, in a way
that is unmediated by your credences in the learned proposition.

To this, the Bayesian can reply the generality of the approach is a strength and that,
in this case, that strength manifests as a sensitivity to the particularities of the report.
What you condition on is the fact that this particular expert made this precise report in
the manner and context that they did. This complex fact is the right thing for the agent

4One might also worry that this demand, taken literally, means that the simple model above won’t work.
Experts report probability values, and so these reports are themselves continuous random variables. Strictly
speaking your prior for "W (H) = x should thus be zero, for any x. I won’t dwell on this problem, as the
issues it raises aren’t core criticisms of supra-Bayesianism and I believe that a more complex model could
work around it.



to respond to, the Bayesian continues, as it allows their response to depend on what
they think about this expert, what they know about the circumstances of the report, and
so forth. The precise value reported is just one many features of the learning experience
to which the agent should be responsive.

These additional factors are crucial when the agent makes a simultaneous assess-
ment of the reported proposition and the expert, in response to hearing the expert’s
report. But in many cases, when experts report information within their domain, and
when those reports raise no suspicions about their expertise, the impact of the evalua-
tion of the expert is negligible. It is these cases that my real agent/ideal expert model
targets. And it is in these cases that Relevance of Priors and Sensitivity to Testimony
are pressing concerns. To double down on the flexibility of supra-Bayesianism in such
cases is to deny that there is anything special about expert testimony, as opposed to
general learning experiences. But there does seem to be something particular about
a case of expert testimony, especially when we consider ideal experts: this learning
experience contains as one feature of it a number that our credence ought to be close
to. Without supplementation, supra-Bayesian can’t guarantee this sensitivity.

Taken together I regard these problems as damning enough that I want an alterna-
tive. As outlined above, I am concerned about real agents; in particular their ability to
extract action guidance or a comprehensible normative standard in a variety of cases. |
will therefore consider alternatives that are more limited than supra-Bayesianism, but
easier to enact.

3 Expert deference as a constraint on priors

One intuitive thought about expert testimony is that, under the right conditions, laypeo-
ple should defer to it. Deference means adopting the expert’s testimony into your be-
liefs. For example if you are interested in whether it will rain, you should ask the
(ideal) weather forecaster and believe what they tell you: if they say the chance of rain
is 40%, you should believe that and thus set your own credence in rain to 40%.

As I am interested in probabilistic opinions, I will think of deference in this way,
as taking an expert’s probabilities on as your own. Deference is so common as a
thought about expert testimony that some have taken it to be the definition of an expert:
Gaifman (1988, 193) defines an expert as someone for whom ‘“the mere knowledge
of... [their] assignment will make the agent adopt it as his subjective probability.” This
definition is common in Bayesian statistics (for a contemporaneous usage see DeGroot,
1988), and has been adopted in philosophy by, e.g., Joyce (2007) and Elga (2007).>
This definition is somewhat unhelpful if one is interested in identifying which people
are experts, but it does highlight the centrality of the deference idea.

Deference may strike the reader as a rather extreme idealisation. Should a real per-
son defer to a real expert? To start with the descriptive: arguably, we do so all the time.
The presumption that people speak truly in ordinary conversational contexts results in

SThere are alternate definitions of expert out there. For example, Easwaran et al. (2016) define experts
as reliable witnesses. For them, P! is an expert for P, in some domain D, when the following holds: for any
X € D, when P'(X) > P(X), P takes P'’s credence in X as evidence for X and raises their credence. The
same applies to lower credences as evidence against.



something like deference: taking propositions to be true because someone reports them
to be true. When students learn a science they accept the material in textbooks in a way
that is close to deference. Professional scientists do this too: experimenters working
with radioactive materials do not assess molecular half-lives for themselves, they look
them up. More prosaically, I often look at the weather forecast and act accordingly.
Later, if someone asks me whether it will rain, I often quote the reported chance of
rain.

Regardless of whether we do defer, one might reasonably worry whether we ought
to. One way to see the idealisation involved in deference is to note its link to calibration.
Consider a case where the relevant reports concern something that occurs multiple
times.® A probabilistic report is called calibrated when propositions X assessed to have
probability x turn out to be true x% of the time. Put another way, if we collect all of
the predictions that something is x% probable then, if those predictions are calibrated,
the proportion of events that turn out to be true will be x. Calibration is a statement
linking the report "W (X) = x™ with the actual frequency of occurrence. If we know a
predictor is calibrated, then we can project these frequencies into the future—calibrated
predictions are chance signals. If our agent obeys a principle that known chances
should guide her credences, then she ought to set her posterior degrees of belief to
match the calibrated prediction.”

When we defer to uncalibrated experts, the idealisation we’re making is to treat
them as if they were calibrated. But again, this can be reasonable: experts are often the
best stand-in that we have for chance signals, and we should still expect to do better
by deferring than we would by holding to our prior credences. While we know that
they aren’t perfectly calibrated, we don’t know the way in which they fail to match the
frequencies. Deference is a simple, easy to implement, procedure to improve our own
predictive performance. Now, I am interested in idealised experts, so why bother with
the foregoing defence of deference? I intend it as a defence of making the idealisation
that experts are worthy of deference in real cases.

Let us turn to how expert deference is modelled. The classic approach is to model
deference as a set of priors that the agent has. Recall Hurricane, where your weather
app tells you that there is a 30% chance that a hurricane will strike London on Thursday.
We can model you as deferring to this expert by equipping you with what I will call
a “deference prior”, a set of prior credences defined by P(H|"W(H) = x) = x. This
covers all experts W, all propositions they may report on (in their domain) H, and all
reported values for their credence x € [0, 1]. So when you hear the report in Hurricane,
and learn the proposition "W, you update by conditioning and get:

O(H) = P(H|"W(H) =0.37) = 0.3

We can immediately note some pros to this approach. The idealisation that you

6We may of course wish to defer to experts on matters which occur only once, in which case this notion
of calibration to frequencies isn’t useful.

"Lindley (1982, 118) notes the connection between calibration and deference in an early discussion of
supra-Bayesianism and deference. When the result of supra-Bayesian updating matches the expert’s report,
Lindley calls the expert “probability calibrated” for that novice. Due to the differences in how we approach
the problem, I won’t use Lindley’s terminology. As DeGroot (1988, 299) says: “it would be unnecessary to
use the term ‘well calibrated’ in this paper because that property is now simply the defining characteristic of
an expert.”



simply adopt the expert’s reported credence has the benefit that the model is much
simpler than supra-Bayesianism. It is Sensitive to Testimony by construction, as the
answer depends directly on the content of the report. The problem of the Relevance of
Priors is alleviated: it doesn’t use your prior for H or "W ™ to arrive at your posterior
for H, but instead fixes your prior for H conditional on "W (thereby constraining your
priors for H and "W, but these don’t play a direct role).

The problem of Cognitive Burden is reduced, if we think an equation fixing a whole
set of priors is less demanding than having free priors for each W, H and x. This doesn’t
resolve the part of the Cognitive Burden problem that is directed at the granularity and
sensitivity of your prior attitudes, however. At least not if these priors are all interpreted
as fully-fledged partial beliefs. A defender might respond that priors aren’t truly be-
liefs, they are a representation of the agent’s evidential standards (see, e.g., Titelbaum,
forthcoming, Ch. 4). (Presumably, this view is primarily about prior conditional proba-
bilities.) They tell us how the agent is disposed to respond to various pieces of evidence
they may learn. So when we include in our model a constraint like P(X|"W™) = x, we
aren’t imputing any attitude to the agent at the time when P is their credence function.
Rather we’re saying something about how they will respond when they learn that the
proposition "W 7 is true. A very general principle (“defer to experts”) can cover a great
many propositions without requiring that the agent take any attitudes before receiv-
ing that evidence. There is something to this response, and my own proposal has a
similar flavour. But it introduces a somewhat arbitrary distinction between which bits
of the prior function count as attitudes (unconditional probabilities) and which do not
(conditional probabilities). Moreover, the law of total probabilities allows us to de-
compose unconditional probabilities into sums of conditional probabilities. What does
such a sum mean, if one side of the equation involves attitudes and the other involves
“standards”?

More difficult to resolve is the the problem of Awareness. The fact that the agent
has attitudes to these propositions is implausible and has no part in the requirements
of rationality. In light of the previous paragraph, we might grant that the agent has an
evidential standard such that they defer to expert reports even on propositions for which
they have no prior. So when they learn "W (H) = x™' they adopt x as their credence for
H. But this only helps for the reported proposition (i.e., that there will be a hurricane
on Thursday). Upon becoming aware of proposition H—and assigning it a worryingly
high probability—the agent ought to update their other beliefs, e.g., that their car is at
risk if parked outside. In order to arrive at a coherent posterior, the agent must have
already had conditional probabilities connecting proposition H to all others. These
conditional probabilities can’t be brushed aside as evidential standards, as the agent
didn’t learn the propositions that they’re meant to encode responses to (i.e., H), they
learned "W'. So no matter what your stance is on priors, this model of expert deference
makes unreasonable Awareness demands.

Expert deference as presented also faces two unique problems.

5. Arbitrariness: This model isolates one kind of expert report as worthy of defer-
ence above others. Experts reliably report all kinds of things, and yet expert deference
is a principle about deferring to reports of unconditional probability. Yet experts can



(and do) report all manner of probabilistic information® including conditional probabil-
ities, Bayes factors, comparisons between the probabilities of various events and vari-
ables, expected values for variables, functional forms for distributions over variables,
and so on. It is unclear how a simple deference principle, which insists on operating
through the Bayesian belief revision process, can capture all of these. But what reason
could we have for distinguishing only reports of unconditional probability as worthy
of deference?

6. Expert Disagreement: It is unclear how to extend this expert deference prin-
ciple to the case of more than one expert, when they disagree. Supra-Bayesianism’s
answer to this is the same as ever: conditionalise! One merely updates on the evidence
received, making use of the relevant likelihoods and priors for each expert’s report.
This has all the problems discussed above for the one-expert case, but it is an answer.
Expert deference doesn’t seem to provide much of an answer at all. One cannot si-
multaneously defer to two experts (as I have set things up, that operation simply isn’t
defined), and if one defers in sequence then the last report will dominate.

Deference treats all experts equally; as though they were the same expert. And
if one received two reports from the same expert on the same topic, and deferred to
them each time (assuming perhaps that they’d learned relevant new information), then
of course the latter report would dominate. (This is desirable in the one-expert case.
Suppose I start off thinking the chance of rain is 20%. An expert says it is 40% and
so I defer accordingly. The same expert later says it is 30%. Assuming that [ maintain
my view of them as an expert, I ought to end up with a credence on 0.3 in rain. The
current setup gets us this.) But it also reveals that our model has oversimplified by
not distinguishing between the following: (a) a report from one expert, and unanimous
reports from many, and (b) a sequence of different reports from one expert, and a profile
of disagreeing reports from many.

4 Expert deference as a belief revision schema

My own proposal is a development of the expert deference idea, but one which hopes
to avoid the issues discussed above. In order to motivate for it, let us examine the
source of our continuing problems with expert testimony. At the heart of the matter is
the proposition "W (H) = x, “that the expert W reported x as their probability for H,”
which is what these Bayesian models take the agent to learn when they hear the report.
The problems discussed above arise from:

1. having a proposition in the algebra to represent "W and (all of the) H’s—in
the discussion above, this was linked to the problems of Awareness, Cognitive
Burden, and Relevance of Priors.

2. having priors for (and related to) each value of x for each W and H—Awareness,
Cognitive Burden, Relevance of Priors.

8Experts report non-probabilistic information too, but here I'll neglect such reports. We can perhaps
assume, as many probabilists do, that categorical statements (e.g., “it will rain tomorrow”) are expressions
of high credence (P(rain tomorrow) ~ 1).



3. updating by conditioning on the fact of the report (rather than using its content
directly to change your credence)—Arbitrariness, Sensitivity to Testimony.

4. failing to provide a mechanism for delineating and dealing with multiple expert
reports—Expert Disagreement.

In developing a better model, I propose to address each in turn. First, I will remove
"W from the model entirely. Second, I will allow for the fact that agents aren’t aware
of propositions like H, and so don’t have priors for them or reports about them. Third,
I will use a different belief revision strategy that is sensitive to the content of the report.

In brief, I propose to regard expert deference as a belief revision schema. By this,
I mean that I will take expert reports as prompts to revise one’s credences in a manner
that “fits” the content of the report. To make a start, I will set aside the problem of
Awareness and develop the model for familiar propositions. In the following section, I
will expand the model to cover novel propositions.

Using a belief revision rule other than Bayesian conditioning is a significant depar-
ture from orthodoxy, so let me review the motivation that I have thus far presented. We
are modelling a realistic agent’s response to testimony from a (relatively) ideal expert.
Simple orthodoxy, in the form of supra-Bayesianism, faces two problems of particu-
lar concern to real agents: Cognitive Burden and Awareness. The assumption that the
expert is ideal yields two further problems, or missed opportunities: (In)Sensitivity to
Testimony and (Ir)Relevance of Priors. Expert deference allows us to mitigate against
some of the cognitive burden on real agents, by making use of the idealisation that
the expert is reliable. But modelling deference as a constraint on priors arbitrarily re-
stricts itself to one report-type. This problem, and the remaining Cognitive Burden
concerns, are directly linked to the use of Bayesian conditioning as the belief revision
rule. Therefore, I propose to examine an alternative; not in order to displace Bayesian
conditioning as a norm for ideally rational agents, but as a model for real agents in this
particular scenario.

In developing this model, I take inspiration from the literature on Jeffrey condi-
tioning. This is the name given to a rule developed by Richard Jeffrey to deal with
circumstances like this one.

The agent inspects a piece of cloth by candlelight, and gets the impression
that it is green, although he concedes that it might be blue or even (but
very improbably) violet. (Jeffrey, 1983, 165)

Let G, B and V stand for the propositions that the cloth is green, blue or violet.
Suppose that these form a partition for the agent, and that after the inspection the agent
comes to have posterior degrees of belief 0.7, 0.25, and 0.05 in them respectively.

What has the agent learned here and how does it affect their beliefs? Jeffrey says:
if there were a proposition E in the domain of the agent’s credences describing the
precise quality of this experience, then we would simply say “the agent learned E.” The
rational response to this learning experience would then be to update their degrees of
belief by conditioning on E—this ought to be how they arrived at the posteriors for G,
B and V, and how they update all their other beliefs. But, says Jeffrey, there needn’t be
any such a proposition in their algebra, nor expressible in English. Anything we could

10



specify would be too vague to convey the precise quality of this uncertain experience,
and too vague to support any meaningful ascription of precise conditional probabilities
as the Bayesian procedure requires. It is better to admit that there is nothing the agent
learns for certain.’

Instead Jeffrey proposes that we describe the effects of the experience on the agent,
by stipulating their credences after the experience. We can omit the proposition E
altogether, and merely say that they come to have degrees of belief for the partition
A ={G,B,V} equal to (0.7,0.25,0.05) = (m4). Jeffrey then provides us with a rule
for generating a fully-specified, unique, and coherent posterior credence, now called
Jeffrey conditioning.

Jeffrey conditioning. Suppose an agent with initial probability function
P comes to have new probabilities for a partition X, denoted 7wy for each X
in X. The agent’s new probability function Q is obtained from P by Jeffrey
conditioning if and only if, for all ¥ € Q

o)=Y PY|X)m. (1

XeXx

A point we will come back to: Jeffrey argues that this is the right rule for revising
belief whenever the agent’s conditional beliefs given X remain unchanged; that is, for
all X € X, Q(:|X) = P(-|X). This is called the Rigidity condition. Indeed, Eq. 1 is just
the law of total probability for O when Rigidity holds.

Here is the point I want to take away from this. An orthodox Bayesian can model
this situation. They simply insist that there is such a proposition E, capturing the pre-
cise quality of this experience. (Perhaps it is a “sense data” proposition, inexpressible
in any natural language but corresponding to the precise nature of the agent’s expe-
rience.) They continue to insist that the proposition is a part of the agent’s algebra,
they have priors for it, and when they learn it they update by Bayesian conditioning.
Jeffrey’s approach represents a different modelling strategy for the same problem. He
removes the unrealistic data proposition E from the model, and instead takes the ex-
perience to provide an exogenous constraint on the agent’s posterior credences. He
then proves that, for this kind of constraint (unconditional probabilities over a parti-
tion) there is a unique “kinematic” update rule that fixes a posterior credence function
0 (Jeffrey, 1983, 164-68).

I propose to do the same: take expert testimony to provide exogenous constraints
on credences, rather than modelling it endogenously.

4.1 First pass

I’ll start by sketching how this would work for an easy case, where the agent is aware
of the proposition the expert reports on. Consider the more prosaic Weather.

Weather. You open your (super duper) weather app and see that there is a
60% chance of rain in London this evening.

9This is linked to Jeffrey’s rejection of what he calls “dogmatic empiricism”, the view under which there
is some basic, sense-data proposition capturing exactly what the agent learns.
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Here we can assume that you are aware of the possibility of rain (you live in Lon-
don, after all) and so we assume there is a proposition R € Q representing it. We needn’t
assume that you have a precise prior for it: we can say your comparative beliefs were
incomplete with respect to R, or that you had completely imprecise credences for it, so
P(R) = [0,1]. As we will see, the details won’t matter for this first pass.

I propose that we model the expert report as providing the constraint that Q(R) =
0.6. There is no proposition in the model representing the expert’s report, and we
don’t model the agent (you) as coming to learn any proposition for sure. Instead, your
posterior is bound to obey this constraint.

Now typically our beliefs are multiply connected and other beliefs will depend upon
this one. If I change my credence in rain, I will also change my credence in having an
enjoyable cycle in to work, and my credence in arriving late, and so on. If I fail to
do so here, my credences will be incoherent. So some revision is required for the rest
of my degrees of belief. Put in terms of our model, the probabilities of various other
propositions (Y, Z,...) that are probabilistically dependent on R ought to change when
the probability of R changes.

My proposal is to generate the remainder of the posterior credence by Jeffrey con-
ditioning on the partition {R, ﬁR}.lo So, concerning being late, for example:

O(late) = P(late|R)Q(R) + P(late] -R)Q(—R)

The language I just used is procedural, reflecting my interest in what real agents
might do when confronted with expert testimony. First, one fixes the credence R. Then,
one generates the relevant posterior credences by Jeffrey conditioning. This is explic-
itly envisaged as a process an agent might follow.!! This assumes, of course, that they
are in possession of numerical probabilities for the relevant propositions. That won’t
normally be the case for prosaic matters like being late to work. But in policy situ-
ations these probabilities are often estimated. A policymaker’s ability to follow the
procedures discussed in this chapter will therefore depend on which probabilities are
available to them.

This is our first look at what I call expert deference as belief revision.

4.2 Belief revision theory

I will now introduce some ideas from the theory of belief revision to make this more
general. Following the formalism of Dietrich et al. (2016), I will think of a belief
revision rule as a function, mapping an initial belief state and an experience to a final
belief state. Let &2 be a set of possible belief states and .# be a set of possible inputs
or experiences, so that a belief revision rule maps & x .4 — 2. Belief states will
be probability functions, or sets of probability functions, as before. “Inputs” are taken
to be very general, including straightforward observations, noisy signals, and expert
reports of various kinds. We therefore specify them extensionally, as the set of belief
states that are consistent with the experience. A simple example: if I look out the

10This suggestion is due to Steele (2012).
n this I follow Jeffrey himself (e.g., Jeffrey and Hendrickson, 1989) and much of the Bayesian statistics
literature.
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window and see that it is cloudy, this input constrains my belief state to include only
those in which it is cloudy outside my window. We have just seen this idea at work in
Jeffrey updating.

Belief revision rules can be characterised by two conditions: Responsiveness and
Conservatism. Loosely, Responsiveness ensures that the final belief state “respects” the
input, and Conservatism ensures that the belief revision changes only what is “required”
by the input. This is captured by a Conservation condition, that specifies which parts
of the prior belief state must be conserved by the revision.

Rules which follow these two conditions are called perturbation-propagation rules. '
First, as the rule is Responsive to the experience, the input will directly bring about a
change in belief state: the perturbation. Second, the remainder of the belief state is
adjusted to reflect the impact of the input; this makes use of the perturbation and the
parts of the initial state that are preserved by the Conservatism of the revision. Table 1
shows two common examples: Bayesian updating and Jeffrey updating. Note that the
propagation step covers what is typically thought of as a “belief revision rule,” such as
updating by Bayesian conditioning.

Table 1: Two belief revision rules

Rule Perturbation Propagation

Bayes Q(E) =1 0(x) = P(X|E)
Jeffrey  Q(A) =T, VA€ A Q(X) = Lacs P(XIA)Q(A)

Our first pass followed this pattern. Perturbation: the report sets a constraint,
O(R) = 0.6. Propagation: Jeffrey condition on the partition {R,—R} to restore co-
herence. But, clearly, expert deference isn’t a kind of belief revision, as Bayes and
Jeffrey updating are, for in Weather it worked as an instance of Jeffrey updating. This
is why I call my proposal expert deference as a belief revision schema.

In generalised belief revision theory, a kind of experience is matched with a par-
ticular revision rule. Dietrich et al. (2016) characterise the class of Bayesian inputs as
those experiences which constrain the agent’s belief state to include only probability
functions in which the probability of a specific proposition—the one the agent learns
during the experience—is 1. We can similarly define the class of Jeffrey inputs (cor-
responding to Jeffrey updates) or Adams inputs (corresponding to Bradley’s Adams
updates (Bradley, 2017)). In each case, we can model this with a domain Z that is a
subset of the space of possible experiences and initial states: 2 C & x .Z.

Responsiveness consists in ensuring that the final belief state is in the set /, i.e., that
it is compatible with the experience. Conservatism is harder to spell out. Each domain
that Dietrich et al. consider comes with a specification of what those experiences are
“silent” on. This notion of silence is used to fill out the norm of Conservatism: put
roughly, a belief revision rule should leave unchanged whatever the experience is silent
on. Dietrich et al. (2016) then prove characterisation results showing that, for each
of these three domains, there is a unique rule respecting Responsiveness and Conser-
vatism and that in each case it is the rule referred to parenthetically above.

121 take this term from Bradley (2017).
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But recall the problem of Arbitrariness: experts may report many kinds of proba-
bilistic information. They might tell you that one event is more likely than another, or
that two variables are independent, or they might specify the expected value for some
variable. (van Fraassen (1981) says that reporting the expected value for a variable is
the most general kind of constraint on your probability function, and that others can all
be framed as special instances of it.) We want our theory of expert deference to be able
to handle all of these report types.

The problem is that for these more general input domains, no unique belief revision
rule is known. Put extensionally, the problem is that once we identify the set of belief
states that respect the input, we lack general rules for further refining this set. This may
be easier to see by switching to an intensional definition. Let us denote the constraint
imposed by the expert report with a formula, ¢p. Responsiveness tells us that the
posterior credence function must respect this constraint: we want a Q that respects ¢p.
But there are a great many of these! What we want is one which also fits the prior, P,
in the right way. What is that way? Conservatism is meant to provide the answer: in
the way that preserves as much of P as possible while respecting Q.

In practice, specifying the Conservatism norm for a form of experience is a com-
plex matter. The canonical examples mentioned above have a particularly nice form:
each comes with a constraint and a Rigidity condition—a particular realisation of Con-
servatism. These conditions, summarised in Table 2, are necessary and sufficient con-
ditions for updating according to the associated belief revision rule (see Bradley, 2017,
188-200). (A, B are partitions. Adams updating will be introduced below.)

Table 2: Conservatism conditions for Bayes, Jeffrey and Adams updates

Constraint Rigidity condition(s)
Bayes Q(E)=1 O(G1X)=P(|X),vX € Q
Jeffrey Q(A)=m,VA€A Q(|A)=P(-|A),VA€A
Adams Q(A|B) = ni%, O(-|AB) = P(|AB),VA,B € A,B
VA,Bc AB QO(A)=P(A),VA€ A

In the general cases discussed above, we don’t have Conservation conditions that
produce unique “kinematic” update rules of this kind. We either need to do more work
to identify what is conserved by the experience (or what it is “silent” on, in the language
of Dietrich et al. (2016)), in order to formulate a kinematic revision rule, or, lacking
that, we need an alternative way of getting from P to the right kind of Q.

4.3 Deference in action

The model outlined above is simple but surprisingly flexible. The problems for supra-
Bayesianism were associated with the propositions representing the expert reports, and
the content of those reports. I therefore removed the expert reports from the algebra
entirely—instead of representing them as propositions they are now externally given
constraints on the agent’s posterior beliefs. The Bayesian updating procedure has been
replaced with expert deference (now realised as the imposition of this external con-
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straint) and a belief revision schema, in which Bayesian conditioning is one element.
This reduces the Cognitive Burden on agents, as they are not required to have a myr-
iad of prior beliefs. It resolves the Relevance of Priors problem, as the posterior does
not depend on the agent’s uninformed priors for the propositions in the expert domain
(those play no role and aren’t required to exist). In deferring, it is properly Sensitive to
Testimony.

I’1l briefly demonstrate how the model allows agents to defer to a much wider class
of expert testimony, thereby resolving the problem of Arbitrariness. First, consider
reports of the truth of a proposition. For example, a completely reliable person looks
outside and tells you it is raining. You defer to them, and set your credence in this
proposition to 1. This is an instance of expert deference that provides a Bayes-type
constraint on your credences and so the schema tells you to update your beliefs using
the appropriate rule: Bayesian conditioning. You haven’t undergone a Bayesian learn-
ing event and so this isn’t just Bayesian learning—after all, you haven’t observed the
rain, and the proposition you learned is " R rather than R itself.

Second, reports of unconditional probabilities. (This is the first-pass case, included
for completeness.) If an expert reports probabilities 7y for each X in a partition X, the
deferring agent sets their probabilities to Q(X) = my. This constraint is of the Jeffrey
type, and so the appropriate propagation is Jeffrey conditioning on the partition X—
assuming the appropriate Rigidity condition holds. Does it? It will depend on the case,
but it is certainly plausible in many cases. When an expert reports just unconditional
probabilities, the agent is given new probabilities over a partition, just as in a Jeffrey
experience. Further, what the agent learns from the expert is entirely given by the set of
new probabilities {7y }xcx, particularly in our ideal expert case where no information
about their reliability is indirectly received. Our expert was (literally) silent on other
matters, including probabilities conditional on the X’s. So Rigidity holds, and Jeffrey
updating is the correct propagation.

Third, reports of conditional probabilities. Suppose that an expert reports their
conditional probability for X, drawn from a partition X, given some other possibil-
ity Y € \Y: n}(’. Then the deferring agent should set their conditional probability to
Q(X|Y) = mf. This constraint is of the Adams type, a name introduced by Richard
Bradley (2005). Bradley developed an updating rule for such inputs, assuming that the
Rigidity conditions shown in Table 2 hold. Dietrich et al. (2016) prove that this rule,
Adams conditioning, is the unique Responsive and Conservative belief revision rule
for such cases. Here is the rule: in the situation just described, the new probability
function Q is obtained from P by Adams conditioning if and only if, for all Z € Q:

0z)=Y,

k

ZP(Z|Xij)7tf] P(Y}) (2)
J

Adams conditioning is the right way to update when two conditions hold. The first,
Bradley calls Independence: Q(Y;) = P(Y;) for each k. The second is another Rigidity
condition, this time for the probabilities conditional on the cells of the joint partition
XY: Q(-|X;Yx) = P(:|X;Y;). These jointly constitute the Conservation condition for this
belief revision rule. The repetition of the familiar Rigidity condition provides some of
the motivation for this revision procedure: Adams conditioning can be thought of as
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a special case of Jeffrey conditioning. As Bradley puts it, “if Jeffrey conditioning is
the correct revision rule for Jeffrey experiences then Adams conditioning is the correct
rule for Adams experiences” (Bradley, 2017, 199).

In what kinds of expert deference cases does this rule apply? Consider Cancer.

Cancer. Eva has a family history of ovarian cancer. She has been told that,
based on this, she has a 3-5% lifetime chance of developing the cancer her-
self. Recently, she learned that there is a genetic mutation called BRCA2,
present in 1/1000 people, which makes ovarian cancer more likely. She
meets with a genetic counsellor, who tests her for the mutated gene. Be-
fore she receives her results, the doctor tells her: “patients with a mu-
tated BRCA2 gene have a much higher risk of developing ovarian cancer,
around 23%.” If she tests negative, her risk will be in the range she was
previously told, 3-5%.

Let O be the proposition that Eva will develop ovarian cancer at some stage in her
life, and B stand for having a mutation on that gene. Assume that coming in, she has
P(0) =0.04 and P(B) = 0.001. Given the doctor’s testimony, it seems reasonable for
Eva to set Q(O|B) = 0.23 and Q(O|—=B) = 0.04. Her unconditional probability P(O)
should change, though it isn’t immediately clear how. What does seem clear is that she
shouldn’t adjust the probability that she has the mutated gene P(B)—she’s received no
information relevant to this (yet; she will receive her test results in time).

What Eva needs is a way of updating her beliefs that respects these constraints.
This will involve adjusting her joint probabilities across the possibilities: developing
cancer, not developing cancer, having the mutated gene, not having it. Realistically,
Eva didn’t have any views at this fine grain before (it seems implausible that she had a
conditional probability of developing cancer given a positive test result), so it is more
accurate to say that what she needs to do is to distribute her beliefs over the possibilities
of developing ovarian cancer and having the mutated gene in a way that fits the expert
testimony she has received. She should defer to the doctor and then update by Adams
conditioning.

Applying equation 2 to Eva’s case, this means that her probability for a general
proposition Z should now be:

0(2) =[P(Z|OB)Q(0|B) + P(Z|-0B)Q(~0|B)| P(B)
+[P(Z|0-B)Q(0|=B) + P(Z|~0-B)Q(~0|-B)| P(~B)

If we consider Z = O and ask what her probability in developing ovarian cancer should
be, we get:
Q(0) = Q(0|B)P(B) + Q(O|=B)P(—B)

This is just the law of total probability, but with Q(B) = P(B) due to the Independence
condition. This is the natural way to set Q(O) given what Eva has available to her at
this stage in the example. Given the tiny probability of having the mutated gene P(B),
we can see that Eva should have Q(0) = Q(0|—=B) = 0.04.

What of the more general report-types that I mentioned above: learning that an
expert says event A is more probable than B, or that they are independent? The model
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can handle them, in a fashion. Whether there are unique kinematic update rules for
them, and what the associated Conservation conditions are, are open questions. The
resulting procedure is therefore somewhat trivial, and the result very imprecise. The
report generates a constraint, ¢, which says that Q(A) > Q(B), for example. The agent
must adopt a posterior which fits this, but in the absence of a conservation condition
there are a great many of these. The result is therefore an imprecise posterior which
includes all functions that match the prior for any propositions unrelated to A and B,
and match the constraint for A and B.

This ends my brief tour, but I hope the message is clear. In this framework you can
defer to any kind of expert report. Where there is a unique kinematic belief revision
rule associated with the kind of report (as above), the model will recommend its use in
arriving at a unique posterior. Where there is no such kinematic update rule, I leave the
model open. Just as there is an unresolved problem in general belief revision theory
about what to do in such cases, that problem is inherited here.

Those who advocate for updating based on divergence-minimisation can plug those
methods in to this model. This involves finding the coherent function which obeys ¢g
and is closest to P by some measure of “distance”. Such “distance-based” epistemology
is increasingly popular. There is a large literature on using divergences between prob-
abilities for epistemological or decision theoretic purposes: such methods are present
in foundational work by de Finetti and Savage; van Fraassen (1981) and Diaconis and
Zabell (1982) utilise them; and they are present throughout the “accuracy” programme
in epistemology including in work by Joyce (1998) and Pettigrew (2016). Recently,
Eva et al. (2019) demonstrated how these methods can be used to update belief af-
ter learning (a certain kind of) conditional, in a manner that is apt to deployment in
my schema. This may well help to close the remaining imprecision for very general
kinds of reports: one chooses the closest posterior which matches the constraint. This
amounts to integrating my model with the strategy van Fraassen (1981) outlined.

A final note on imprecise probabilities: I have considered different kinds of prob-
abilistic report, in the sense of the expert reporting unconditional probabilities, con-
ditional probabilities, etc. But I assumed that these reports were precise in all cases:
the expert reported single numbers. However, the model could easily be extended to
cover imprecise probabilistic reports, of any kind. The belief revision framework that I
use involves determining the “input” that the learning experience provides. There is no
reason to suppose that this input must be precise. The expert report could just as eas-
ily require that the agent’s posterior probability for the relevant proposition lie within
a range. More would need to be said about how to conduct the propagation step for
such an imprecise input, but there do not seem to be new difficulties here beyond those
already found in the imprecise probabilities literature. So, if one is willing to accept
imprecise probabilities at all, my approach can be adapted to handle them.

5 Awareness growth
At the outset, I pointed out that one of the distinctive features of expertise is that experts

often talk about things that laypeople have never heard of before. In this section I will
show how expert deference as a belief revision schema can go together with one model

17



for rational awareness growth, thereby allowing agents to defer to experts who report
on such unfamiliar propositions.

Let us return to our initial case, Hurricane: You open your weather app and see,
to your complete surprise, that there is a 30% chance that London will be struck by a
hurricane on Thursday.

In reviewing this example above, I said that one implausibility of supra-Bayesianism
is that the agent had never considered this possibility before. They simply have no at-
titude toward it. This will be my definition of unawareness: a state in which an agent
has no attitude to a proposition. Therefore, in our model, it is natural to represent this
with a proposition, e.g., H, that is not in the domain of P. As P’s domain is the whole
algebra Q, this means that H ¢ Q

We know where we would like to end up: the agent comes to have an attitude
to H, in particular Q(H) = 0.3. The problem of awareness growth is to find rational
constraints on @, linking it with the prior belief state P.

Here is how my proposal goes. We can think of the expert’s report as having two
parts: the proposition it concerns (its content), in this case H, and the probabilistic
information it conveys about that content (its value), in this case 30%. I will separate
my treatment of awareness growth into two stages, corresponding to these two parts.
(The separation is conceptual, and should not be taken to imply that the agent follows
this sequence.) The first stage is purely a matter of awareness: the agent becomes aware
of the new proposition(s) and we determine how their old attitudes can be extended
to an algebra that contains the new proposition(s). The second stage is a matter of
learning: the agent became aware of the proposition(s) via a learning experience, and
in particular an experience of expert testimony. This gives them evidence about the
new propositions. In the second stage, I will apply my expert deference proposal and
show how it fits naturally with one theory of rational awareness growth.

I will start with some discussion of awareness growth in general, to set the stage.
Bradley (2017, 256-8) differentiates between two kinds of awareness growth, distin-
guished by the kind of belief change they require of the agent.'3

First, an agent may come to realise that the possibilities they considered were too
coarse. Refinement involves making new distinctions, dividing up the possibilities into
finer units. Suppose I am considering the weather, and I initially entertain just two
options: rain (R) or shine (S). I later realise that temperature is important too. I dis-
tinguish two temperatures, warm (W) and cold (C), and recognise that it can be rainy
and warm, rainy and cold, sunny and warm, and sunny and cold. (At this point in the
story, I know nothing about the relations between temperature and precipitation.) Note
that because this is a refinement, {R, S} is still a partition for me (RV S = T). What
has changed is that R and S are no longer “primitive possibilities,” in the sense that
they aren’t maximally specific: I am now aware of two ways that it might rain, RW
and RC. The primitive possibilities are now the four elements of the joint partition
{RW,RC,SW,SC}.

In the second kind of awareness growth, expansion, the agent becomes aware of
a new primitive possibility. Suppose again that I am considering the weather, and I

3Bradley takes these two options to be exhaustive; other forms of awareness growth are reducible to
combinations of them, perhaps in combination with two corresponding forms of awareness contraction. I do
not need this to be true in what follows.
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initially entertain just two options: rain (R) or shine (S). Then, upon looking at my
app, I consider a third option which I see as mutually exclusive of these two: hurricane
(H). Before, I regarded {R, S} as a partition: S =—-R and RV S = T. After my aware-
ness grows, RV S is merely a contingent proposition, =R =SV H, and {R,S,H} is a
partition.

Here is how I propose to model these learning experiences. First, we deal with
the purely awareness related part of the experience. We will “grow” the algebra Q to
include the content. Then we will extend the agent’s prior credence function P to the
new, wider algebra Q®. The thought here is that some aspects of P will be preserved
in a process of rational awareness growth, and so we can specify some conditions that
any credence function on Q% must have in order to “fit” with P. Second, we model
the learning experience. Here I bring in my belief revision schema, beginning with a
perturbation using the report: the probability for H is set by the report’s constraint ¢p.
Finally, I “fill in” this Q to “match” the extended prior, in a move analogous to the
propagation part of a belief revision process. (All of the terms in scare quotes are loose
descriptions that will be made more precise as we go.) For clarity I will separate each
stage—awareness change and learning—into two steps.

Step 1: Growing the algebra.

Having outlined what awareness growth is, we can consider how to revise belief in the
face of expert testimony on novel propositions. The first step makes use of only the
content of the testimony, setting aside its value. We start by forming a new algebra,
containing all the propositions the agent was previously aware of and the propositions
reported on.

Making this more precise requires slightly more mathematical machinery than we
have thus far employed (following Bradley, 2017, 258-9). I have been using a logi-
cal framework in which Boolean algebras are lattices of propositions, ordered by an
implication relation. In order to make the lattice structure explicit, I will now write
Q=(Z" ), where 2  is a set of propositions and |= is the implication relation that
acts as the order for the lattice. The top element of the algebra is typically denoted
T, but in the context of multiple algebras it is useful to think of it as merely being the
upper bound of the set 2™: \/ 2.

In general we can suppose that the agent becomes aware of a set of propositions
U, withU ¢ 2, for all U € % . We start by forming ¢/, the closure of % U 2" under
the Boolean operations. Then QEE/ = (%, &) is a Boolean algebra, which Bradley calls
the extension of Q by % . Note that \/ 2° € %, and in general \/ 2" # \/ # .14

The old algebra is related to the new one via an embedding. A lattice embedding is
a one-to-one homomorphism: a function that maps each proposition in the old algebra
to a proposition in the new algebra, and which preserves the lattice operations, meet

4Note a persistent idealisation here: = is the implication relation which ordered the old algebra, and it
also orders the new propositions. So, the agents that we model in this framework are logically omniscient (as
is standard) and this omniscience extends to propositions they were previously unaware of. The problem of
logical omniscience is a significant one for someone with my non-ideal theory interests. However, treating
it is notoriously difficult. I therefore put up with this idealisation, noting that allowing agents to be unaware
does mitigate force of the problem of logical omniscience.
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and join—which is to say, logical conjunction and disjunction. It does not preserve
logical complements.

We can see this by considering the weather example again. Simple lattices can be
usefully visualised with Hasse diagrams, such as those in figure 1. The lines connect the
higher-up propositions with logically stronger propositions below, which entail them.
The figure highlights in blue the elements of the new algebra which correspond to
the old propositions. Note that the element RV S is in Q¥ in both the expansion and
refinement case. In the expansion case it is now merely a contingent proposition, as
the tautology in Q% is RV SV H. In figure 1(b) it is easy to see that the old algebra is a
sub-algebra of the new. In the refinement case, RV S is also (or, if you prefer, still) the
top element of QF. Figure 1(c) shows how much more complicated things look with
more propositions.

Figure 1: Hasse diagrams showing Bradley’s two kinds of awareness growth. (a) Orig-
inal algebra, (b) expanded algebra, (c) refined algebra.
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Step 2: Extending the probability function.

What we have now is an algebra, Q®, which contains the new propositions. But P is
not defined on Q®, but rather on Q. Our second task is to extend P to Q. “Extension”
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is not belief revision. I am interested here merely in what the prior P has to say about
Q.

There are different proposals for how to extend a probability function to a wider
algebra. Two prominent proposals are “Reverse Bayesianism” (due to Karni and Vierg,
2013) and “Rigid Extension” (due to Bradley, 2017). I will employ the latter method.

Bradley (2017, 257) begins by considering simple examples of refinement and ex-
pansion, like my weather case. He characterises refinement as coming to realise that
the possibilities I previously considered are too coarse-grained. But introducing finer-
grained possibilities should not change my attitude to the coarse-grained possibilities;
realising that there are two kinds of rainy weather should not change the probability of
rain overall.

For expansion this is not the case. Introducing an entirely new kind of weather
must change my attitude to at least one of the possibilities I previously considered,
since my degrees of belief must sum to one. But, Bradley argues, there should not
be any relative change between the old propositions: if I previously thought rain and
shine equally likely, I have no reason to alter that relative comparison now that I have
discovered that those alternatives do not exhaust the possibilities.

The core idea here is simple, and in line with our discussion above: minimal
change. Bradley argues that the Conservation condition for three Bayesian belief re-
vision rules (Bayes, Jeffrey and Adams updating) involves the rigidity of conditional
beliefs. So, he concludes, a Conservation condition for extension to a wider algebra
should also preserve conditional probabilities. He provides such a condition which
captures the intuitions that he defends about refinement and expansion cases.

Specifically, “the agent’s new conditional probabilities, given the old domain, for
any members of the old domain should equal her old unconditional probabilities for
these members.” (Bradley, 2017, 258) Or, to use terminology Bradley introduces, the
new belief states must be rigid extensions of the old.

Rigid Extension. A probability function P® on Q% is called a rigid ex-
tension of P iff, for all X € Q, PP(X|Tq) = P(X).

In general, there will be many rigid extensions of a credence P to a wider algebra
Q% Rigid Extension concerns only the parts of the new function that involve proposi-
tions from the old algebra, so it leaves open many possible assignments of probability
to the new propositions, and combinations of new and old. (Rigid Extension does con-
strain the latter.) In figure 1, these elements of the old algebra are shown in blue, when
embedded in the new algebras on the right.

This is a minimal condition, and will therefore typically result in imprecise poste-
rior credences even if one starts with a precise credence P on Q. I will denote the result
of Bradley’s procedure P?; it is the set containing all the rigid extensions of P to Q.

Step 3: Perturbation.

P? is an intermediate construct. It represents what the agent’s old probabilities have
to say about the new space of possibilities the agent is aware of. We can now model
the learning experience that the agent undergoes in virtue of hearing an expert report
about those new possibilities.
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As before, the report provides a constraint ¢p on any credence function that is
Responsive to the learning experience. Note that in this case a single experience is
producing both the growth of the algebra and the perturbation of the credence function.
The decomposition into two steps is merely a logical decomposition, helpful in mod-
elling awareness growth—there is no implication that the two are separated in time, or
occur separately.

The constraint in example 1 is that Q(H) = 0.3, and so we will work with the set
of potential functions Q = {Q is a credence on Q¥ : Q(H) = 0.3}.

Step 4: Propagation.

We now want to further constrain Q, so that it fits with our extended prior P®. In
our simple belief revision cases above, we accomplished this by using a Conservation
condition that told us which parts of the prior should be conserved. We used these con-
served quantities, together with ¢, to fix the posterior (uniquely, in cases of kinematic
belief revision).

As discussed above, the Conservation condition depends on the nature of the learn-
ing experience. In our example, the report provides us with an unconditional probabil-
ity for H. When we encountered reports of this kind before, we were able to motivate
for the rigidity of conditional probabilities as the Conservation condition, and therefore
to use Jeffrey conditioning as our propagation procedure. We cannot do that here. The
agent was unaware of H before the learning experience, and so does not have prior con-
ditional probabilities concerning H.'® As they don’t exist, they cannot be the subject of
any Conservation condition such as rigidity. A similar argument blocks the use of any
kinematic rule for any awareness-growing instance of expert testimony. The challenges
we face here are therefore akin to those discussed in section 4.2 for general reports.

There will be some cases where we can make progress. If the algebra is simple
enough, and the constraint @¢ restrictive enough, we might nevertheless determine a
unique posterior Q. I present two simple cases, to illustrate the difficulties and how
they can sometimes be avoided.

Expansion: Considering the weather, you initially entertain the possibil-
ities {R,S}, assigning each credence 0.5. You later become aware of H,
which you take to be a distinct possibility, when you hear the weather
report, W(H) = 0.3.

Let’s work through the four steps.

5Bradley’s approach fits naturally with my topic of expert deference. I want the posterior attitudes to
the new propositions to come from the expert reports, and therefore it is helpful to maintain the separation
between these steps. Karni and Vierg (2013) do not provide anything like this clean separation. In other
cases, this methodological separation may be not be desirable: in a forthcoming paper Steele and Stefansson
(forthcoming) argue that this two-step procedure is baseless. In my case I think the value of the separation is
clear.

16Put another way: P has no constraints on conditional probabilties involving H that aren’t just conse-
quences of Rigid Extension.
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1. Grow algebra: Your initial algebra Q is generated by the two-element partition
o/ = {R,S}. The expanded algebra Q¥ is generated by the three-element parti-
tion {R,S,H}. It has the structure shown in 1(b).

2. Extend prior: Your prior P is fully specified by P(R) = 0.5. A function P® on
Q% is a rigid extension of P iff P®(X|Vv &) = P(X|RV S) = P(X). So, your
extended prior consists of all such functions, for which P®(R|RV S) = 0.5 =
PE(SIRVS).

3. Perturb: Here we simply form the set of all Q’s on Q% such that Q(H) = 0.3.

4. Propagate: To make progress we consider the structure of the algebra. This
testimony has introduced a third primitive proposition, making {R,S,H} a par-
tition. The constraint Q(H) = 0.3 determines the probability of Q(RV S) =
1 —Q(H) = 0.7. By rigid extension we know Q(R|RV S) = 0.5, and this is suf-
ficient to fix a unique Q, specified by the following probabilities for the atoms:

O(R) = 0.35 = Q(S),0(H) = 0.3.

We are able to make progress here because between the report and the demands of
rigid extension, we fix the probabilities of the atoms of the new algebra. This will not
always be the case.

Refinement: Considering the weather, you initially entertain the possibili-
ties {R,S}, assigning each credence 0.5. You later become aware of tem-
perature, & = {W,C}, which you know can combine with R, S, when you
hear the weather report W(W) = 0.6.

Things are harder in the refinement case. We can follow the steps just described,
but there is an important difference. Refinement changes the atoms of the algebra:
that’s part of what it means to fine-grain in this setup. The atoms of the new algebra
are the elements of the finest joint partition over all currently known partitions. (These
are the maximally specific possibilities.)

If ¢p is specified at the level of the new algebra’s atomic propositions —in the
example, {WR,WS,CR,CS}—and determines the probabilities for all atoms, then Q
will be uniquely specified. If not, it will be under-specified. There are many ways that
a probability function can satisfy Q(W) = 0.6: temperature might be independent of
precipitation, or warmth may be more likely if there is no rain, or warmth may be more
likely if there is rain.

If the constraint is at the level of the new coarse-grained partition, rather than the
joint partition, the result will be an imprecise posterior Q, containing all the joint dis-
tributions meeting the constraint.

We can now see how my proposal for expert deference as a belief revision schema
fits naturally with this approach to awareness growth. The fact that the agent is unaware
of the content of the expert report means that more orthodox Bayesian methods could
not make progress here. It is implausible that the agent has a prior for the reported
proposition, or any attitudes about the proposition that the expert make the report they
do about the content. In my proposal, this is no problem. Expert reports are not within
the model, but rather act as external constraints on posterior credences. It does not
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matter that the propositions these reports concern are not in the old algebra, as they
only play a role after we have formed a new algebra and extended the agents priors to
that new algebra.

My discussion highlights the difficulties of rational awareness growth. When one
becomes aware of a new proposition, one needs to consider not only one’s attitude
to that proposition but also how it relates to all familiar propositions. If the learning
experience that goes along with the growth of awareness does not speak to these logical
connections, then the agent will not have enough information to form a unique posterior
credence. This is not a feature of my proposal for handling expert testimony, however,
it is a feature of the problem of awareness growth.

6 Disagreeing experts

We now return to the problem of Expert Disagreement. The belief revision schema I
outlined above has not yet said anything about how to deal with the general n-expert
case. Nor do I have a complete solution to offer, for this is not a question that deference
models are suited to.

Let us examine what is difficult about disagreement, by looking at one of the above
cases of deference. Consider a report of unconditional probabilities and suppose now
that we have two experts each reporting on the same partition X, so that the agent
receives 75]( and 752( My proposal says to take these as exogenous constraints, and
update by Jeffrey conditioning. Now, these successive Jeffrey updates will not com-
mute, which can be easily seen by noting that the agent’s probabilities for X will match
whichever report is deferred to last. Indeed, this is a reason that some philosophers
dislike Jeffrey conditioning: because of its supposed non-commutativity—i.e., when
considering two Jeffrey updates, we get different final probabilities depending on the
order of the updates.

This is not actually correct for Jeffrey experiences. The non-commutativity arises
from simple applications of Jeffrey’s rule, without paying proper attention to the expe-
rience generating the changes. Let us say an agent “updates on a partition X" to mean
that they propagate probabilities for that partition across their probability function us-
ing Jeffrey’s rule, denoted Px. If we describe an agent updating first on a partition X,
then on another Y, the result will in general differ from that derived from first updating
on Y and then X: Pxy # Pyx. This is a fact of the mathematics of Jeffrey conditioning.
Nevertheless it isn’t right to say the result of sequential Jeffrey experiences doesn’t
commute, because this is not the proper representation of sequential Jeffrey experi-
ences. A careful analysis of sequential Jeffrey experiences, such as that provided by
Wagner (2002), allows us to model them in a commutative manner.'’

17Wagner presents his results as an extension of those which stipulate sufficient conditions for Jeffrey
conditioning commuting—see the next footnote. For Wagner, these conditions are two identities for the
Bayes factors generated by each of two experiences, relative to two different partitions X and Y. Let Bix
represent having the Ist Jeffrey experience occurring relative to partition X. Then Wagner’s identities are
Bix(Xi,X;) = Box(Xi, X;), Vi, j and the same for Y. But as Wagner notes, Bayes factors are the right way of
representing what is learned in an experience in a prior-free way. So if we stipulate that the experiences are
identical, then Wagner’s Bayes factor identities hold, and therefore Jeffrey conditioning commutes across
the order of the experiences.
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However, while successive Jeffrey experiences, properly modelled, will have com-
mutative effects, sequential deference to expert reports of the Jeffrey-type may be non-
commutative.'® This is because my procedure cannot be understood in terms of se-
quential Jeffrey experiences. There is no ineffable learning experience going on here;
all we are doing is making use of the machinery of Jeffrey conditioning in this particu-
lar instance of the belief revision schema of expert deference.

This should not surprise us in the context of expert disagreement. The general
lack of commutativity is precisely the problem of expert disagreement, realised in our
model. The model treats all experts similarly: as providing a constraint which poste-
riors must conform to. The idealisation which licences deference—that the expert is
completely reliable—also leads to all expert reports being treated identically.

This is a real limitation. But let me make a comment on its scope. In cases where
the experts don’t disagree very much, we can make some progress. Since the experts
are treated identically, we can treat a set of reports simultaneously, as providing a single
constraint ¢ that needs to be deferred to (rather than regarding the reports as distinct
experiences to be deferred to in some sequence, as I did above). The easy case is one
in which the expert reports, while different, are compatible. Consider one expert who
says that a probability is above 0.5, while another says that it is below 0.6. They didn’t
make the same report, and they disagree about the plausibility of certain ranges of
probability for this event. But there is a set of probability functions that is compatible
with both: those that say the relevant probability is in the interval (0.5,0.6).

My approach has a natural way of dealing with “easy” cases. The agent can defer
to this joint input, taking it as a perturbation of their belief state. Following the recipe
above, we can now look for propagation procedures. But we have a choice at this
stage. Our first option is to stick with a precise probability model, in which the agent
must have a single probability for the proposition, lying within the range (0.5,0.6).
The second option is to allow for imprecise probabilities, and have the agent adopt the
range (0.5,0.6) as their belief state.

If we stick with a precise model, we will need some principle for choosing from
the allowed range. There are many possibilities. Perhaps if the agent’s prior is within
the interval, then they can retain it. For the moment, however, let’s suppose that all
options are permissible. The agent then picks one and uses an appropriate propagation
procedure to bring their credences to coherence. If the content of the report is a familiar
proposition, then the agent proceeds as described in section 4. If it is an unfamiliar
proposition, they proceed as described in section 5.

If we go with an imprecise model, then we are in the same situation discussed
briefly at the end of section 4, where I considered imprecise reports. There is room for
disagreement here about how to conduct the propagation step. One natural approach

8Why only “may be”” non-commutative? In the finite setting, Diaconis and Zabell (1982) provide neces-
sary and sufficient conditions for commutativity. Consider two partitions and the sequences of probabilities
assigned to them in a Jeffrey update: {X, (x;)} and {Y, (yx)}. X and Y are Jeffrey independent with respect
to P, (x;) and (yx), if Px(¥) = P(¥x) and Py(X;) = P(X;) holds for all j, k. Then successive Jeffrey updates
commute, Pxy = Pyx, if and only if X and Y are Jeffrey independent with respect to P, (x;) and (y) (Diaco-
nis and Zabell, 1982, Theorem 3.2). This turns out to be a weaker condition than probabilistic independence,
so that if XY are probabilistically independent with respect to P, successive updates on them will commute
for any update probabilities (Diaconis and Zabell, 1982, Theorem 3.3). So, while some sequences of Jeffrey
updates will commute, in general we should expect them not to.
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is to generate an imprecise posterior state by performing the propagation using every
permissible function in the input. Suppose that we are in an unconditional probability
case, and the experts have reported on the probability of rain. The perturbation sets your
imprecise probability for rain to (0.5,0.6). You now propagate this through your belief
state by Jeffrey conditioning. But instead of doing it once, you do it for every value in
the interval (0.5,0.6). In this way you generate an imprecise posterior credence.

The hard cases involve contradictory reports. If the first expert said the probability
was below 0.5, and the second that it was above 0.6, then there would be no probability
functions compatible with both reports. Here, expert deference cannot help us without
further supplementation. The way the ideal expert idealisation is realised in this model
doesn’t make room for disagreement.!® Perhaps expert disagreement is a sign of some
failure, that needs to be dealt with by more realistic tools. Many exist! One might use a
form of opinion pooling to arrive at a single report, given a profile of different reports.
Alternatively, the experts might engage in a consensus-building process and produce a
single report themselves.

7 Conclusion

My proposal was constructed to deal with the problems identified for supra-Bayesianism
and expert deference as a constraint on priors. The problems with supra-Bayesianism

were: Cognitive Burden, Relevance of Priors, Sensitivity to Testimony, and Aware-

ness. The orthodox model of deference did better on the first three, but introduced two

additional problems: Arbitrariness, and Expert Disagreement.

The problems for supra-Bayesianism were associated with the propositions rep-
resenting the experts’ reports and the content of those reports. I therefore removed
the expert reports from the algebra entirely; instead of representing them as proposi-
tions, they are now externally given constraints on the agent’s posterior beliefs. The
Bayesian updating procedure has been replaced with expert deference (now realised
as the imposition of this external constraint) and a belief revision schema, in which
Bayesian conditioning is one element. This reduces the cognitive burden on agents,
as they are not required to have a myriad of prior beliefs. It does not depend on the
agent’s uninformed priors for the propositions in the expert domain, as those play no
role (and aren’t required to exist). In deferring, it is properly sensitive to the content of
the expert’s testimony.

I depart from strict Bayesian orthodoxy by considering a wider range of updating
rules. This allows me to avoid arbitrarily treating only expert reports of unconditional
probability as worthy of deference. My proposal does, therefore, inherit concerns about
the forms of heterodox updating I employ, including Jeffrey conditioning and Adams
conditioning.

1%In a recent presentation of some work in progress, James Joyce suggested a hierarchy of ideal experts,
such that reports from higher-ranked experts trump reports from lower-ranked experts. In his example,
learning the truth trumps learning the chances. This proposal could be built into my model, by taking only
the report of the highest-ranked expert as a constraint (and perhaps retaining some memory of the source of
one’s credences, so as not to later have a lower-ranked expert override a higher). This could in principle be
extended to cover any disagreeing experts, so long as the agent could order them by reliability, and assuming
that the fact of their disagreement did not undermine the grounds for deference to them.
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My proposal fits naturally with one proposal for rational awareness growth, Bradley’s
“rigid extension”. Cases involving awareness growth are difficult, often leading to very
poorly constrained imprecise credences. But this is not specific to my proposal (about
expert testimony), it is a feature of awareness growth as a phenomenon. Indeed defer-
ence provides a simple way of setting attitudes on the new algebra that would otherwise
be difficult to justify.

However, expert deference lacks the resources to deal with the final problem I high-
lighted: expert disagreement. (Though I noted that we can model some “easy” cases.) I
note this limitation because I developed the model with an eye to offering more realistic
guidance to policymakers interacting with experts. For them, disagreement is a present
and severe challenge. But while this model provides a more tractable implementation
of the deference idea, the way I idealised the experts means that it is limited to cases
without disagreement.
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