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Abstract 
Fisher (1945a, 1945b, 1955, 1956, 1960) criticised the Neyman-Pearson approach to 

hypothesis testing by arguing that it relies on the assumption of “repeated sampling from 

the same population.” The present article considers the responses to this criticism provided 

by Pearson (1947) and Neyman (1977). Pearson interpreted alpha levels in relation to 

imaginary replications of the original test. This interpretation is appropriate when test users 

are sure that their replications will be equivalent to one another. However, by definition, 

scientific researchers do not possess sufficient knowledge about the relevant and irrelevant 

aspects of their tests and populations to be sure that their replications will be equivalent to 

one another. Pearson also interpreted the alpha level as a personal rule that guides 

researchers’ behavior during hypothesis testing. However, this interpretation fails to 

acknowledge that the same researcher may use different alpha levels in different testing 

situations. Addressing this problem, Neyman proposed that the average alpha level adopted 

by a particular researcher can be viewed as an indicator of that researcher’s typical Type I 

error rate. Researchers’ average alpha levels may be informative from a metascientific 

perspective. However, they are not useful from a scientific perspective. Scientists are more 

concerned with the error rates of specific tests of specific hypotheses, rather than the error 

rates of their colleagues. It is concluded that neither Neyman nor Pearson adequately 

rebutted Fisher’s “repeated sampling” criticism. Fisher’s significance testing approach is 

briefly considered as an alternative to the Neyman-Pearson approach. 
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Fisher (1945a, 1945b, 1955, 1956, 1960) criticised the Neyman-Pearson approach to 

hypothesis testing (Neyman & Pearson, 1933) by arguing that it relies on the idea of “repeated 

sampling from the same population” (Fisher, 1945a, p. 130; Fisher, 1945b, p. 388; Fisher, 1955, 

p. 71; Fisher, 1956, p. 77, 82, 91; Fisher, 1960, p. 480; see also Hubbard, 2004, p. 300; Johnstone, 

1987, p. 492; Perezgonzalez, 2015). The goal of the present article is to provide a critical evaluation 

of Neyman and Pearson’s responses to Fisher’s criticism. 

I start with a background discussion about the type of replication that is required to 

operationalize the Neyman-Pearson approach to hypothesis testing. I then explain Fisher’s 

“repeated sampling” criticism. I move on to explain and critique the responses to this criticism 

provided by Pearson (1947) and Neyman (1977). Finally, I consider some of the implications of 

adopting a Fisherian approach to hypothesis testing. 

 

What Type of Replication is Required in the Neyman-Pearson Approach? 

The notion of “repeated sampling from the same population” implies the repetition or 

replication of a test. Several different types of replication are possible. Hence, to begin with, it is 

important to consider what type of replication is required to operationalize the Neyman-Pearson 

approach to hypothesis testing. 

The first point to make is that the Neyman-Pearson approach does not require test users to 

actually carry out a series of replications that repeatedly sample from the same population. Instead, 

they can imagine a long run of replications in which they randomly draw a sample, conduct their 

test, and then, counterfactually, start afresh with a new random sample (e.g., Pearson, 1947, p. 

142). 

It is also important to appreciate that the Neyman-Pearson approach does not require a long 

run of exact replications that duplicate all possible testing conditions (i.e., the exact same sampling 

procedure, measures, testing environments, etc.).1 As Neyman (1937, p. 333) explained, “the 

statistician may be concerned with certain experiments which, if repeated under apparently 

identical conditions, yield varying results” (my emphasis). Hence, Neyman did not require 

researchers to use exactly the same testing conditions; only testing conditions that appear to be the 

same. This point is reassuring, because exact replications are impossible in a universe that is 

constantly and irreversibly changing (Nosek & Errington, 2020; Rubin, 2019; Stroebe & Strack, 

2014; Zwaan et al., 2018). 

Two types of non-exact replication have been distinguished: direct (sometimes called 

close) and conceptual (Rubin, 2019; Stroebe & Strack, 2014; Zwaan et al., 2018). In both cases, 

researchers assume that they have repeated the testing conditions that are equivalent to those of 

their original test, even if those conditions are not exactly the same as those of their original test. 

The difference between direct and conceptual replications is that this assumption of equivalence is 

more theoretically contentious in the case of conceptual replications. For example, imagine a 

researcher who conducts a test of gender differences in self-esteem. In this case, a conceptual 

replication might entail the theoretically contentious assumption that the testing conditions remain 

equivalent when the measure of self-esteem focuses on academic issues rather than general issues. 

In contrast, a direct replication might make the less contentious assumption that the testing 

conditions remain equivalent when the same self-esteem measure is presented online rather than 

via a paper-and-pencil survey. Despite this difference, it is important to understand that, in both 

cases, researchers must concede that their assumption of equivalence may be incorrect, and that 

their replications may entail non-equivalent testing conditions that have substantively altered the 

nature of their test. For example, in the case of the proposed direct replication, online surveys may 
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increase gender differences in self-esteem because computer webcams make participants more 

self-aware during testing. The uncertainty about whether testing conditions are equivalent in direct 

and conceptual replications means that any substantively discrepant results that occur during these 

replications may be explained as not only (a) false positives (i.e., Type I errors) and (b) false 

negatives (i.e., Type II errors), but also (c) the influence of non-equivalent testing conditions that 

have changed the substantive nature of the test. This last possibility is sometimes referred to as a 

Type III error (e.g., Dennis et al., 2019). In the case of Type III errors, a substantively different 

result occurs because “neither the null nor the alternative hypothesis model adequately describes 

the data” (Dennis et al., 2019, p. 2). 

Critically, Type III errors are not permitted within the Neyman-Pearson long run of 

imaginary non-exact replications (Dennis et al., 2019). Type III errors are only permitted outside 

of this long run (e.g., because a long run of replications is based on an unsatisfactory mathematical 

model; e.g., Neyman, 1952, p. 27; Neyman, 1955, p. 17). Hence, the Neyman-Pearson long run 

cannot refer to either direct or conceptual replications. Instead, we need to distinguish a third type 

of non-exact replication in order to operationalize the Neyman-Pearson long run. I describe this 

type of replication as an equivalent replication, and I contrast it with the variable replications that 

are represented by direct and conceptual replications. 

Equivalent replications include only equivalent testing conditions and no non-equivalent 

testing conditions. Importantly, test users can only imagine undertaking equivalent replications if 

they are sure about which testing conditions are equivalent and which are non-equivalent. It is this 

surety of equivalence that allows test users to rule out non-equivalent replications. If test users are 

unsure about which testing conditions are equivalent and non-equivalent, then they may only make 

an assumption of equivalence, and they must concede that this assumption may be incorrect. In 

this case, they may only imagine undertaking variable replications that contain an unknown mix 

of equivalent and non-equivalent replications. 

Both direct and conceptual replications represent variable replications because, in these 

cases, test users are never sure which replications are equivalent to one another and which are non-

equivalent. So, for example, a test user who imagines a long run of direct replications must concede 

that this long run may contain some tests that may not be equivalent to their original test. 

The distinction between equivalent and variable replications has important implications for 

the types of conclusion that can be drawn about substantively discrepant results that occur during 

replications. In the case of equivalent replications, test users’ surety of equivalence allows them to 

rule out the possibility of a substantive change in testing conditions. Consequently, substantively 

discrepant results may only be attributed to Type I and Type II errors. In contrast, in the case of 

variable replications, test users’ assumption of equivalence may be incorrect, and they must 

concede that substantively discrepant results may be due to substantive changes in their testing 

conditions. Hence, discrepant results during variable replications may be attributed to Type III 

errors as well as Type I and Type II errors. 

Importantly, the Neyman-Pearson approach must operate on the basis of equivalent 

replications rather than variable replications. If it operated on the basis of a long run of variable 

replications, then it would need to consider the possibility of Type III errors during this long run, 

and the Neyman-Pearson approach does not permit Type III errors within its long run of 

replications. Hence, Neyman-Pearson replications must refer to non-exact but equivalent 

replications rather than to variable replications. 
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Understanding Fisher’s “Repeated Sampling” Criticism 

Fisher criticised the Neyman-Pearson approach for being limited to cases of “repeated 

sampling from the same population.” It is worth noting a couple of potential ambiguities in the 

phrasing of this criticism before explaining it in depth. 

First, the term “population” may be taken to encompass not only units of analysis (e.g., 

people, animals, plants, etc.), but also testing conditions (e.g., sampling procedures, measures, 

testing environments, etc.). Hence, the phrase refers to a series of equivalent replications in which 

the same test procedure is used to repeatedly sample from the same population (e.g., Neyman, 

1937, p. 339). 

Second, just as the Neyman-Pearson approach does not require exactly identical testing 

conditions, it does not require repeated sampling from exactly the same population. Hence, it is 

not necessary to imagine sampling from a fixed population that remains static over time. Test users 

can also imagine sampling from a dynamic population that changes into different populations. 

Critically, however, in order to rule out Type III errors from the imaginary long run of replications, 

the new populations must be conceived as being equivalent to the original population in all relevant 

respects. In other words, the different populations must belong to a composite population that 

contains only admissible equivalent simple populations (e.g., Neyman & Pearson, 1933, p. 294; 

Neyman, 1977, p. 106). In this case, although each sample may be drawn from a different simple 

population, the differences between the simple populations are regarded as being irrelevant with 

respect to the substantive test results, and so the populations are accepted as being equivalent to 

one another. 

In summary, the Neyman-Pearson approach is not limited to a consideration of the same 

testing procedure that repeatedly samples from the same population. It also applies to equivalent 

testing procedures that repeatedly sample from equivalent populations. Given this point, it is fair 

to ask whether Fisher’s criticism of “repeated sampling from the same population” (my emphasis) 

is applicable to the Neyman-Pearson approach. I believe it is, because Fisher’s criticism applies to 

both exact and equivalent replications. In particular, Fisher’s objection is that the idea of “repeated 

sampling” from either the same population or equivalent populations is inappropriate in scientific 

contexts because scientific researchers do not possess sufficient knowledge to adequately define 

their tests and populations as being either the same or equivalent. Instead, researchers’ lack of 

knowledge limits them to considering variable replications, and variable replications do not 

guarantee repeated sampling from either the same population or equivalent populations. I explain 

this point in greater detail below. 

According to Fisher, the Neyman-Pearson concept of repeated sampling from the same or 

equivalent populations is only appropriate in the case of “acceptance procedures” that are 

employed in non-scientific contexts (Fisher, 1955, p. 69; Fisher, 1956, pp. 76-77, pp. 99-100). 

Fisher illustrated this point by referring to quality control tests in applied settings such as industrial 

production (e.g., Fisher, 1955, pp. 69-70; Fisher, 1956, pp. 99-100). For example, a quality 

controller might sample 100 light bulbs from a given batch of 10,000 and then test each bulb’s 

luminosity in order to make an inference about the mean luminosity of the entire batch. In this 

situation, the quality controller is sure about all of the equivalent and non-equivalent aspects of 

their luminosity test and population (batch). Hence, it is reasonable for them to imagine a long run 

of equivalent replications that repeatedly sample from the same population (e.g., Batch 57), 

because they have no doubts about how to correctly define their test and population. Consequently, 

it is also reasonable for them to rule out potential Type III errors during this long run (e.g., 

accidentally sampling from Batch 56 instead of Batch 57). Quality controllers are also given a 
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clear standard of quality that allows them to determine which populations should be classed as 

“unacceptable” (e.g., a batch of light bulbs in which the mean luminosity is either ≤ 1,425lm or ≥ 

1,575lm). Consequently, it is possible for quality controllers to determine their test’s smallest 

effect size of interest and to make firm and final decisions about whether an observed sample 

belongs to one of two known, adequately specified populations (i.e., an “unacceptable” alternative 

population or an “acceptable” null population). 

Again, Fisher believed that it is appropriate to use the Neyman-Pearson approach of 

repeated sampling from the same or equivalent population as an “acceptance procedure” in cases 

of quality control. For example, he believed that the Neyman-Pearson approach can be used to 

identify low quality parts during the manufacture of aircraft. However, he regarded this approach 

as being inappropriate in the case of scientific investigations. As he explained:  

I am casting no contempt on acceptance procedures, and I am thankful, whenever I travel 

by air, that the high level of precision can really be achieved by such means. But the logical 

differences between such an operation and the work of scientific discovery by physical or 

biological experimentation seem to me so wide that the analogy between them is not 

helpful (1955, pp. 69-70). 

The “logical differences” between scientific researchers and quality controllers relate to 

the extent of presumed knowledge about the populations under investigation and the types of 

conclusion that may then follow. By definition, scientific researchers must concede that they do 

not possess sufficient knowledge about all of the equivalent and non-equivalent aspects of their 

populations. Indeed, it is this lack of knowledge that motivates them to investigate the particular 

populations that they study. Given this self-professed lack of knowledge, researchers must always 

be ready to admit that they have made a Type III error in conceptualizing their populations. As 

Fisher (1956, p. 78) explained, for researchers, “the population in question is hypothetical,…it 

could be defined in many ways, and…the first to come to mind may be quite misleading.” Put 

differently, researchers must always confront the reference class problem: If a researcher samples 

from a population of “1st year undergraduate psychology students,” then is their population “1st 

year undergraduate psychology students” or, more narrowly, “1st year undergraduate psychology 

students from the researcher’s university” or, more broadly, “psychology undergraduate students” 

or, even more broadly, “young people,” etc.? In contrast, there is no reference class problem for 

quality controllers, because their population is consensually defined in a single, objective, and 

unequivocal manner (Fisher, 1956, p. 77). A quality controller accepts without question that Batch 

57 is Batch 57. They do not consider reconceiving this population as, for example, part of the 

broader population of “lightbulbs that were manufactured after 2020.” 

Similarly, researchers do not know which aspects of their testing conditions are equivalent 

and non-equivalent. Does the time of day of testing matter? Does the ambient temperature matter? 

Does historical or cultural context matter? Again, by definition, researchers are always unsure 

about these matters. In contrast, quality controllers are sure about the limits of their tests. For 

example, they know that time of day of testing does not matter, but that the ambient temperature 

must be held between 15-30°C in order for their test to be valid. 

Researchers also lack clear knowledge about when to describe one population as being 

substantively different to another (i.e., non-equivalent). Any researcher who has struggled to make 

an a priori specification of their smallest (non-zero) effect size of interest will recognize this lack 

of knowledge. In contrast, quality controllers are given a precise quality standard that prescribes 

the minimum degree to which an alternative population must be different from a standard (null) 
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population in order to be classed as being “unacceptable” (e.g., in the light bulb example, ≤ 

1,425lm or ≥ 1,575lm luminosity). 

Finally, researchers do not believe that they know all of the equivalent and non-equivalent 

features of their testing conditions and populations. Consequently, it is inappropriate for them to 

interpret their test results in relation to an imaginary series of equivalent replications that 

repeatedly sample from the same or equivalent population, because they concede that they are not 

sure what defines the same or equivalent population. Instead, it is only appropriate for them to 

imagine a series of variable replications that they assume to be equivalent but that they accept may 

be non-equivalent. In this latter case, researchers must consider the possibility of Type III errors 

as well as Type I and II errors during their imaginary replications, and this consideration makes it 

inappropriate for them to use the Neyman-Pearson approach (Dennis et al., 2019, p. 8; Hurlbert & 

Lombardi, 2009). In contrast, quality controllers are sure that they know all of the equivalent and 

non-equivalent aspects of their tests, and this surety allows them to rule out the possibility of Type 

III errors when they imagine a long run of replications. Hence, it is appropriate for quality 

controllers to use the Neyman-Pearson approach.  

To be clear, scientific researchers can and must use a priori theory and evidence to make 

educated guesses about what should count as an equivalent replication (Neyman, 1977, p. 99). 

However, because they operate in the role of “researcher,” they must also concede that these 

educated guesses may be flawed, that their assumptions of equivalence may be incorrect, and that 

imaginary replications that follow their potentially inadequate specifications may be variable 

rather than equivalent. If a researcher wishes to imagine a series of equivalent replications (i.e., 

repeated sampling from the same or equivalent population), then they must revoke their status as 

“researcher” and consider themselves to be more like a quality controller who is sure about the 

equivalence of their replications and who has no interest in discovering new knowledge about the 

generality and boundary conditions of their populations. Importantly, the same test user cannot 

have it both ways and adopt the roles of both quality controller and researcher. In other words, 

they cannot simultaneously claim that (a) they possess sufficient knowledge about a population to 

specify a long run of equivalent replications but that (b) they do not possess sufficient knowledge 

about that population and so must continue designing new studies to investigate its generality and 

boundary conditions. To avoid this epistemic inconsistency, test users must believe that they are 

either certain or uncertain about the adequacy of the population models that they employ. 

To illustrate this point further, reconsider the researcher who investigated gender 

differences in self-esteem. This researcher may specify in great detail what they believe to be the 

defining features of their testing conditions and population, including information about their 

sampling procedure, measure of self-esteem, testing environments, and eligibility criteria for their 

research participants. For example, they might explain that their research participants should be 

sampled from a population of “1st year undergraduate psychology students at the University of X.” 

They may then imagine repeatedly drawing random samples from “1st year psychology 

undergraduate students at the University of X.” However, if they accept that they are uncertain 

about the equivalent and non-equivalent aspects of their population, then they must also concede 

that they may have unknowingly overspecified some parts of their population and underspecified 

other parts. For example, the fact that their participants are 1st year undergraduate students, rather 

than 2nd or 3rd year undergraduate students, may be irrelevant to their test. However, the fact that 

their participants recently attended an undergraduate course that addressed the empowerment of 

women in society may be very relevant to their test. Hence, the researcher’s population may be 

something less and something more than “1st year psychology undergraduate students at the 
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University of X.” Given their uncertainty on these matters, the researcher must concede that they 

are only able to imagine a series of direct, variable replications that are based on a fallible 

assumption of equivalence and that may include Type III errors. Consequently, they are not 

warranted to use the Neyman-Pearson approach in this case. 

Finally, it is important to appreciate that Fisher’s “repeated sampling” criticism does not 

boil down to the point that “all models are wrong…[but] some models are useful” (Box et al., 

2005, p. 440). Certainly, “all models are wrong” in the strict sense of the term. But Fisher’s point 

is about whether test users question their model’s usefulness rather than its correctness. Quality 

controllers never doubt that each of their models represents a “useful approximation to reality” 

(Box, 2005, p. 440). Their question is only whether a particular population matches or does not 

match this useful approximation. For example, a quality controller’s null model might provide an 

adequate (not perfect) representation of the luminosity parameters of an acceptable batch of light 

bulbs. They might then decide whether the luminosity parameters of other batches of light bulbs 

are significantly different from this null model. In contrast, researchers must concede that they do 

not know all of the equivalent and non-equivalent aspects of their populations, and so they must 

continually doubt whether their models of these populations are adequate representations of reality, 

both statistically and substantively.2 Indeed, it is their job to consider whether each model is an 

adequate representation of reality, and, in doing so, they may often conclude that it is not adequate, 

and that they have made a Type III error. In this case, they must decide whether the model needs 

adjusting or abandoning. 

In summary, quality controllers have no doubt that, although their population models are 

wrong, they are adequate for their specific utilitarian purposes. Hence, quality controllers ask 

whether a target population is significantly different from an adequately specified null population 

and, therefore, the same as an adequately specified alternative population. Researchers ask the 

same question. However, in addition, they ask whether their null and alternative population models 

are adequately specified. I now turn to a consideration of Pearson and Neyman’s responses to 

Fisher’s criticism. 

 

Pearson’s (1947) Response 

Pearson (1947, p. 142) addressed Fisher’s (1945a) “repeated sampling” criticism by 

explaining that, 

in other and, no doubt, more numerous cases there is no repetition of the same type of trial 

or experiment, but all the same we can and many of us do use the same test rules to guide 

our decision, following the analysis of an isolated set of numerical data. Why do we do 

this? What are the springs of this decision? Is it because the formulation of the case in terms 

of hypothetical repetition helps to that clarity of view needed for sound judgement? Or is 

it because we are content that the application of a rule, now in this investigation, now in 

that, should result in a long-run frequency of errors in judgement which we control at a low 

figure? 

Hence, Pearson (1947) offered two potential interpretations of the alpha level. The first 

relates to a hypothetical, imaginary, series of repetitions of the same test. However, as explained 

above, this interpretation falls foul of Fisher’s “repeated sampling” criticism. It is only appropriate 

for a test user to imagine a series of equivalent replications when they are sure about the equivalent 

and non-equivalent aspects of their testing conditions and populations, and, by definition, scientific 

researchers are not sure about these things. 



“Repeated Sampling from the Same Population?”         8 

Echoing Neyman (1937, p. 349) and Neyman and Pearson (1933, p. 291), Pearson’s (1947) 

second interpretation assumes that particular researchers always use the same alpha level (e.g., α 

= .050) as a “rule” for their behavior, and that this rule limits the frequency of errors in judgement 

that those researchers make during hypothesis testing. Fisher (1956, p. 42) was characteristically 

scathing of this idea of a researcher’s personal alpha rule. He described it as: 

absurdly academic, for in fact no scientific worker has a fixed level of significance at which 

from year to year, and in all circumstances, he rejects hypotheses; he rather gives his mind 

to each particular case in the light of his evidence and his ideas. 

To be fair to Neyman and Pearson, many researchers habitually adopt the convention of 

using an alpha level of .050 in their day-to-day work. However, this is a social norm, rather than a 

personal rule, and, consistent with Fisher (1956), researchers often deviate from this norm and 

adopt different alpha levels (e.g., .10, .01, .005, .001) depending on the relative importance of 

making a Type I error in the particular situation under consideration (Lakens et al., 2018; Neyman, 

1977, p. 108). Hence, contrary to Pearson (1947), researchers do not tend to possess a personal 

alpha rule. 

 

Neyman’s (1977) Response 

Neyman’s (1977, pp. 108-109) response to Fisher’s “repeated sampling” criticism 

considered the “human experience” of particular researchers who conduct a series of different tests 

of different hypotheses. I quote Neyman at length in order to prevent any mischaracterisation of 

his position, although I have excluded some unnecessary passages: 

The theory was born and constructed with the view of diminishing the relative 

frequency of errors, particularly of ‘important’ errors. Thus, leaving aside the question of 

an error in testing some particular hypothesis, we have to contemplate a long sequence of 

situations, say {Si} = (S1, S2,..., Sn,... ) in which tests of some hypotheses will be performed. 

This sequence, which we may label ‘human experience’, will be very heterogeneous. Some 

situations will refer to problems of astronomy [48], others to highway traffic, still others to 

radiation biology [49], some to problems of big cities and slums or to weather modification, 

etc. etc. However, there will be some elements common to all the situations of the 

sequence. 

The elements common to all the situations typified by situation Si, will be: (1) a 

hypothesis Hi to be tested against an alternative 𝐻̅i and (2) a subjective appraisal of the 

relative importance of the two kinds of error, leading to the adoption of an acceptably low 

level of significance αi combined with an acceptable (hopefully ‘optimal’) power function. 

Let β(Hi|αi) denote the value of this function corresponding to some specified simple 

alternative to Hi that may be judged important. 

Eventually, then, with each situation Si, there will be connected a pair of numbers, 

αi, and β(Hi|αi). The question is: what can one expect from the use of the theory of testing 

statistical hypotheses in the above heterogeneous sequence of situations summarizing 

human experimence [sic] in ‘pluralistic’ studies of Nature? The answer is: 

The relative frequency of first kind errors will be close to the arithmetic mean of 

numbers α1, α2,...,αn…adopted by particular research workers as ‘acceptably low’ 

probabilities of the more important errors to avoid. Also, the relative frequency of 

detecting the falsehood of the hypotheses tested, when false, and the contemplated 

simple alternatives happen to be true, will differ but little from the average of 

β(H1|α1), β(H2|α2),…, β(Hn|αn),…. 
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This answer is a simple consequence of a theorem known as the central limit 

theorem of probability theory…. 

All the above is emphasized at some length for a particular reason. This is that, at 

a variety of conferences with ‘substantive scholars’ (biologists, meteorologists, etc.), 

accompanied by their cooperating ‘applied statisticians’, I frequently hear a particular 

regrettable remark. This is to the effect that the frequency interpretation of either the level 

of significance α or of power β is only possible when one deals many times with the same 

HYPOTHESIS H, TESTED AGAINST THE SAME ALTERNATIVE. Assertions of this 

kind, frequently made in terms of ‘repeated sampling from the same population’, reflect 

the lack of familiarity with the central limit theorem. 

It is important to note the differences between Neyman’s (1977) position and Neyman and 

Pearson’s earlier concept of a researcher’s personal alpha rule (Pearson, 1947, p. 142; Neyman, 

1937, p. 349; Neyman & Pearson, 1933, p. 291). In contrast to the earlier position, Neyman (1977) 

proposed that the same researcher may select different alpha and beta levels in different hypothesis 

testing situations, depending on “a subjective appraisal of the relative importance of the two kinds 

of error” (Neyman, 1977, p. 108). Hence, as Lehmann (2008, pp. 63-64) observed, Neyman’s 

(1977) later position is less limited than the earlier position of a personal alpha rule because it 

allows the same researcher to use different alpha levels in different situations. Consequently, 

Neyman’s (1977) position concedes Fisher’s (1956, p. 42) point that “no scientific worker has a 

fixed level of significance.” 

Neyman (1977, p. 108) argued that the distributions of different alpha levels (i.e., “α1, 

α2,...,αn…”) and beta levels (i.e., “β(H1|α1), β(H2|α2),…, β(Hn|αn),….”) that are “adopted by 

particular research workers” across a range of different testing situations are bound to be normally 

distributed, following the central limit theorem. Consequently, a particular researcher’s frequency 

of Type I (“first kind”) errors across these testing situations will be close to the arithmetic mean 

of their different alpha values, and their frequency of Type II errors will be close to the mean of 

their different beta values across these situations. Hence, we can consider a particular research 

worker’s average alpha and beta levels as indicating their typical frequency of Type I and Type II 

errors respectively. For simplicity, I focus on the concept of a researcher’s average alpha level, 

because Type I errors are often regarded as being more important than Type II errors (Neyman, 

1977). However, the same arguments apply to a researcher’s average beta levels. 

 

Problems with Neyman’s (1977) Response 

Neyman (1977) explained that the concept of an average alpha level leaves “aside the 

question of an error in testing some particular hypothesis” (p. 108). To clarify, even in the case of 

specific alpha levels, frequentist hypothesis testing does not indicate the probability of a particular 

hypothesis given a set of observed data (i.e., a Bayesian, inverse probability). Instead, it indicates 

the probability of the observed test result, or a more extreme result, given a true null hypothesis 

and associated statistical assumptions. This probability can be compared with an alpha level in 

order to inform a decision to reject the null hypothesis as an explanation of the test result. 

Furthermore, a specific alpha level may be set after taking into account the particular costs of 

making an error during a specific test. Neyman’s point about leaving “aside the question of an 

error in testing some particular hypothesis” (p. 108) refers to this level of specificity, and he noted 

that this specificity is lost when we consider an average alpha, because average alphas do not 

necessarily tell us the Type I error rate of a specific test of a specific hypothesis. Instead, they tell 

us the typical Type I error rate “adopted by particular research workers” (Neyman, 1977, p. 108). 
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Neyman’s (1977) concept of a researcher’s average alpha level avoids Fisher’s “repeated 

sampling” criticism, because it refers to the frequency of errors that occur in a long run of some 

particular “human experience” (Neyman, 1977, p. 108) rather than a long run of repeated sampling 

from the same (or equivalent) population. However, a researcher’s average alpha is scientifically 

uninformative. For example, if John has an average alpha level of .050, and Tina has an average 

alpha level of .005, then we know that John will have made more Type I errors than Tina during 

the course of his research career. However, these two researchers’ average alpha levels tell us 

nothing about the Type I error rates of specific tests of specific hypotheses, either in the past, 

present, or future, and in that sense they are scientifically irrelevant. Hence, although Tina may 

have an average alpha of .005 over the course of her career, her alpha level for Test 1 of Hypothesis 

A may be .10, .001, or any other value. As scientists, we should be more interested in the nominal 

Type I error rate of Test 1 of Hypothesis A than in the typical Type I error rate of Tina. 

This is not to say that researchers’ average alpha levels are uninformative. They may be 

informative at a metascientific level that considers the behavior of particular scientists or groups 

of scientists. However, this metascientific issue is separate from the scientific concern of the error 

rate of specific tests of specific hypotheses. 

 

Summary and Implications 

Summary 

In summary, neither Pearson (1947) nor Neyman (1977) provided convincing rebuttals of 

Fisher’s (1945a, 1945b, 1955, 1956, 1960) criticism that the Neyman-Pearson approach depends 

on “repeated sampling from the same population” (Fisher, 1955, p. 71; Fisher, 1956, p. 77, 82). 

Pearson interpreted the alpha level in relation to a series of imaginary repetitions. However, this 

interpretation is only appropriate when test users are sure about all of the equivalent and non-

equivalent aspects of their testing method and population. By definition, scientific researchers are 

not sure about these things. Both Neyman and Pearson also interpreted the alpha level as a 

researcher’s personal rule for rejecting null hypotheses. However, this interpretation fails to 

acknowledge that the same researcher may use different alpha levels in different testing situations. 

Finally, Neyman proposed that we may calculate the average alpha levels used by particular 

researchers in order to estimate their typical Type I error rate. The concept of a researcher’s 

average alpha level avoids Fisher’s “repeated sampling” criticism, but it does so at the expense of 

making the alpha level scientifically irrelevant. A researcher’s average alpha level may be 

informative at a metascientific level, but it is not informative at a scientific level. 

I should note that neither Neyman nor Pearson appeared to have had strong convictions 

about their responses to Fisher’s “repeated sampling” criticism. After offering his two 

interpretations of alpha levels, Pearson (1947, p. 142) explained that he “should not care to 

dogmatize [which is more appropriate], realizing how difficult it is to analyse the reasons 

governing even one’s own personal decisions.” Similarly, after explaining his average alpha 

interpretation, Neyman (1977) asked: “Is the above answer to the question of what to expect from 

the theory of testing hypotheses satisfactory? This is a subjective matter” (Neyman, 1977, p. 109). 

Certainly, different researchers may prefer different philosophical approaches to statistical 

inference. Nonetheless, it is curious that the architects of the Neyman-Pearson theory of hypothesis 

testing had no firm view about how to conceptualize such an important aspect of their approach. 
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Implications 

What implications does the current critique hold for hypothesis testing? I would argue that 

Fisher’s “repeated sampling” criticism of the Neyman-Pearson approach is valid, and that the 

alternative interpretations of alpha levels that have been offered by Pearson (1947) and Neyman 

(1977) are inadequate. Consequently, scientific researchers should consider alternative approaches 

to hypothesis testing that do not rely on the idea of “repeated sampling from the same population” 

or equivalent populations. The Fisherian and Bayesian approaches both fit this criterion because 

they condition their inferences on current testing conditions and observed sample characteristics 

rather than on a long run of equivalent replications (Rubin, 2017, p. 327). I briefly consider Fisher’s 

approach here because there is already a considerable amount of literature covering the Bayesian 

approach to hypothesis testing (for an introduction, please see Hoijtink et al., 2019), and it is 

informative to consider how Fisher avoided his own criticism. 

Most importantly, the Fisherian approach rejects the idea of “repeated sampling from the 

same population” in the context of scientific investigations. In particular, it assumes that 

researchers have insufficient knowledge to adequately specify a series of imaginary equivalent 

replications. Instead, researchers must make educated guesses about the equivalent aspects of their 

direct or conceptual replications. These guesses may then be judged as being provisionally correct 

or incorrect during a series of real variable replications that each draw single one-off samples from 

populations that may be either equivalent or non-equivalent to one another. In each of these real 

replications, researchers may make a statistical inference to a (null) “population of samples in all 

relevant respects like that observed,” where the “relevant respects” are researchers’ educated 

guesses (i.e., Fisher 1955, p. 72). 

Importantly, Fisher’s approach requires that researchers are unable to recognize any 

relevant subsets within their hypothetical populations that would yield substantively different 

results (Fisher, 1956, pp. 32–33, 57; Fisher, 1958, p. 268). According to Fisher, every population 

contains these relevant subsets (non-equivalent subpopulations). In order for a researcher to make 

a valid probability statement about a population, they must not recognize any of its relevant 

subsets. For example, a researcher cannot make the probability statement that “men have higher 

self-esteem than women, p < .050” if they know that only young men have higher self-esteem than 

young women in their sample, and that this gender difference is reversed for older men and women. 

Age must remain a hidden, unrecognised moderator in order for the researcher to make their broad 

claim. It is this “postulate of ignorance” about relevant subsets within a hypothetical population 

(Fisher, 1958, p. 268) that (a) defines test users as “researchers” who lack critical knowledge and 

are open to revising their conclusions (Fisher 1955, p. 74; Fisher, 1956, p. 99), (b) enables a sample 

to be considered “random” and equivalent to other samples that could have been drawn (Fisher, 

1956, p. 33), (c) allows an inductive inference from the test results to the hypothetical null 

population (Fisher, 1956, p. 29), and (d) precludes an inference to a long run of repeated sampling, 

because new samples may be drawn from a different relevant subset to the first, making them non-

equivalent (Johnstone, 1987, pp. 492-493; Rubin, 2019). 

Fisher’s perspective has a number of implications for the debate regarding the role of exact, 

direct, and conceptual replications in the context of the replication crisis in science. First, Fisher 

would agree that “there is no such thing as an exact replication” (Schmidt, 2009, p. 92; see also 

Nosek & Errington, 2020), that exact replications are “an illusion” (Stroebe & Strack, 2014, p. 59), 

and that “it is impossible to conduct exact replications” (Zwaan et al., 2018, p. 6). Indeed, it is 

pointless to consider either real or hypothetical exact replications when we inhabit a universe that 

is changing constantly and irreversibly. It is more appropriate to consider non-exact replications 
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in which testing conditions and populations are similar to, but not the same as, those of the original 

test. Importantly, the distinction between exact and non-exact replications does not distinguish 

between the Neyman-Pearson and Fisherian approaches, because both approaches may operate in 

relation to non-exact replications that do not repeat every single testing condition. 

Second, Fisher’s “repeated sampling” criticism implies a previously unrecognised 

distinction between equivalent and variable replications. Equivalent replications are equivalent in 

all respects that are relevant to the test. In contrast, variable replications contain an unknown mix 

of equivalent and non-equivalent tests. Fisher’s approach only applies to variable replications, and 

it relegates equivalent replications to non-scientific contexts in which population models are 

regarded as being indisputably adequate, such as quality control tests in industrial settings. 

Third, both direct and conceptual replications represent variable replications. 

Consequently, substantive discrepancies in results that occur during direct and conceptual 

replications may be attributed to not only Type I and II errors, but also Type III errors (i.e., a 

substantive change in the testing conditions and/or population). Conceptual replications are more 

theoretically contentious than direct replications, because there is greater doubt about the 

assumption of equivalence. Nonetheless, both direct and conceptual replications may discover 

previously unknown generality and boundary conditions (for similar views, see Machery, 2019; 

Nosek & Errington, 2020; Redish et al., 2018). 

Finally, the distinction between equivalent and variable replications helps to distinguish 

between the Neyman-Pearson and Fisherian approaches. Neyman-Pearson test users must be sure 

which testing conditions and populations are equivalent with respect to their test. It is this surety 

of equivalence that warrants an imaginary series of equivalent replications in which substantively 

different test results may only be attributed to Type I and II errors and not to Type III errors. If test 

users concede the possibility of Type III errors within their long run of imaginary replications, 

then it would be inconsistent for them to use the Neyman-Pearson approach. In contrast, if test 

users disallow the possibility of Type III errors in their imaginary replications, then it would be 

inconsistent for them to consider themselves as scientific researchers who are interested in 

reconceiving their hypothetical populations in the face of new information about generality or 

boundary conditions. Instead, it would be more appropriate for them to consider themselves as 

quality controllers who are interested in checking whether a sample belongs to one of two 

populations whose adequate specification is indisputable (Fisher, 1956, p. 99). 

In contrast to Neyman-Pearson test users, Fisherian test users are doubtful about which 

testing conditions and populations are equivalent to one another. Consequently, they must always 

concede the possibility of Type III errors as they undertake a series of real, variable replications. 

Furthermore, from a Fisherian perspective, Type III errors should be regarded less as “errors” and 

more as opportunities for “learning by observational experience” (Fisher, 1955, p. 73; Fisher, 

1956, p. 99), because each “error” allows test users to reconsider the generality and boundary 

conditions of their putative effects. From this perspective, “failure to replicate is not a bug; it is a 

feature” (Barrett, 2015, p. 23), and Type III errors may be reinterpreted as scientific discoveries 

(Redish et al., 2018; Rubin, 2019). 

Fisher was careful to build the potential for learning into his significance testing framework 

by stressing the tentative nature of researchers’ conclusions. As he explained, “the state of opinion 

derived from a test of significance is provisional, and capable, not only of confirmation, but of 

revision” (1956, p. 99, my emphasis; see also Fisher, 1955, p. 74). In my view, Fisher’s approach 

is more consistent with the doubtful, provisional, and changeable conclusions that scientists draw 

from their significance tests, especially in the context of replications. In this respect, I agree with 
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Shrout and Rodgers (2018), who suggested that “Fisher would have likely viewed the recent 

replication failures about which so much attention (and angst) has developed as ‘business as 

usual’” (p. 137). 
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Endnotes 
1. The concept of an exact replication can be defined as requiring the duplication of either (a) all 

possible testing conditions or (b) only those testing conditions that could potentially affect the 

results of the study. For example, Rubin (2019) defined exact replications in the second way, 

as requiring “the duplication of all of the aspects of an original study that could potentially 

affect the results of that study.” This second definition implies that researchers are sure about 

which aspects of their study are relevant (i.e., “could potentially affect the results”) and which 

are irrelevant. Hence, it is similar to the concept of an equivalent replication that I discuss later. 

http://hdl.handle.net/2027/mdp.39015007297982
https://doi.org/10.1007/BF00485695
https://doi.org/10.1098/rsta.1933.0009
https://doi.org/10.1371/journal.pbio.3000691
https://doi.org/10.2307/2332518
https://doi.org/10.3389/fpsyg.2015.00034
https://doi.org/10.1073/pnas.1806370115
https://doi.org/10.1037/gpr0000135
https://doi.org/10.1007/s11229-019-02433-0
https://doi.org/10.1037/a0015108
https://doi.org/10.1146/annurev-psych-122216-011845
https://doi.org/10.1214/074921706000000419
https://doi.org/10.1177/1745691613514450
https://doi.org/10.1017/s0140525x17001972


“Repeated Sampling from the Same Population?”         15 

In the present article, I adopt the first, more common, definition of an exact replication that 

requires the duplication of “all possible testing conditions,” including both relevant and 

irrelevant conditions. 

2. Following Spanos (2006), we can distinguish between statistical and substantive adequacy. 

Statistical adequacy occurs when a statistical model’s assumptions (e.g., normal, independent, 

and identically distributed data for a simple normal model) are sufficiently consistent with the 

observed data. Substantive adequacy occurs when the characteristics of the statistical model, 

sample, and testing methodology (e.g., sampling procedure, measures, testing environment, 

etc.) are sufficiently consistent with a theoretical data generating process or “chance 

mechanism” (Neyman, 1977, p. 99).  
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