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Abstract

How should a group with different opinions (but the same values) make deci-
sions? In a Bayesian setting, the natural question is how to aggregate credences: how
to use a single credence function to naturally represent a collection of  different
credence functions. An extension of  the standard Dutch-book arguments that
apply to individual decision-makers recommends that group credences should
be updated by conditionalization. This imposes a constraint on what aggrega-
tion rules can be like. Taking conditionalization as a basic constraint, we gather
lessons from the established work on credence aggregation, and extend this work
with two new impossibility results. We then explore contrasting features of  two
kinds of  rules that satisfy the constraints we articulate: one kind uses fixed prior
credences, and the other uses geometric averaging, as opposed to arithmetic av-
eraging. We also prove a new characterisation result for geometric averaging.
Finally we consider applications to neighboring philosophical issues, including
the epistemology of  disagreement.

1 A Problem
The board of  Acme Corp is deliberating over whether to invest in an anvil factory. It
may succeed, it may fail. If  the investment succeeds, the company stands to make 10
thousand dollars profit; if  it fails, Acme will lose 11 thousand. But there is disagree-
ment among them over the future of  the anvil market. They are evenly divided into
two blocs of  opinion. One bloc thinks the factory has probability 2⁄3 of  success; the
other puts its chances at only 1⁄3. They all agree that the only important thing is to
maximize the expected amount of  money the company makes. But they have differ-
ent views on the probabilities of  the different outcomes, and none of  them has any
more say than the others. They realize they have no protocol for resolving whether
to take the gamble.

They also know they will face many similar gambles in the future, so they want to
settle on a general rule for making this kind of  decision. Each of  them will state their
own credences (with perfect accuracy—they are remarkably good at introspection)
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and the rule will somehow aggregate those credences into a single “group credence
function” to represent the board collectively, which will dictate their betting behavior.

They start with a simple proposal: since no member has any more say than any
other, it seems equitable to take the group credence in each proposition to be the
average of  their individual credences in that proposition. This will always produce
a probabilistically coherent credence function (since each of  the individuals has per-
fectly coherent credences—they are also remarkably internally consistent). Since their
average credence that the factory will succeed is 1⁄2, the expected value of  the gamble
is a five hundred dollar loss; so they pass up the opportunity.

Acme Corp also has the opportunity to invest in a balloon factory. The fate of  that
investment, should it be made, will be decided a year after the fate of  the anvils. In
this case, they are divided in the same blocs of  opinion, but those who are optimistic
about anvils are pessimistic about balloons—and vice versa. The pro-balloon bloc
thinks this factory has a 2⁄3 chance of  success, and the pessimists assign it 1⁄3. The
costs and rewards are the same, so Acme Corp declines this opportunity as well.

Then an enterprising stockbroker approaches them with an offer: a bet on the
future of  both factories. Acme initially pays 20 thousand dollars. If  exactly one of  the
factories succeed, then they are paid back 37 thousand dollars; otherwise they lose
their money.

B ¬B

A −20 +17
¬A +17 −20

Table 1: Net pay-outs for the first gamble.

Everyone on the board agrees that the prospects for the two factories are indepen-
dent: each person’s credence that anvils boom is the same whether or not balloons
bust, and vice versa. So each bloc thinks that this gamble has a 5⁄9 chance of  paying
off. (For the pro-anvil camp, the probability of  anvils succeeding and balloons fail-
ing is 2 ⁄3 ·2⁄3 = 4⁄9, and the probability of  anvils failing and balloons succeeding is
1⁄3 · 1⁄3 = 1⁄9. For the pro-balloon camp these probabilities are reversed. For both
camps the two probabilities sum to 5⁄9.) Everyone agrees on this, so the average of
their credences is also 5⁄9. Since 37 times 5⁄9 is more than 20, the expected net re-
turn for this gamble is positive (about 560 dollars). It looks like a good move, to each
individual and also to the group collectively. So they take the gamble.

A year goes by; anvils do badly. The fate of  their gamble now hangs on balloons.
The same stockbroker approaches Acme Corp with another proposal, to hedge their
potential losses. If  they pay 18 thousand dollars now, they will be repaid 37 thousand
dollars if  the balloon factory fails. Otherwise, they lose their money.

2



1 A Problem

B ¬B

¬A −18 +19

Table 2: Net pay-outs for the gamble offered if  anvils fail.

The bloc who thought balloons would succeed still have the same opinion: they
still think the balloon factory has a 2⁄3 chance of  success. So this looks like a bad in-
vestment to them. But the anti-balloon bloc sees this as a great opportunity, since they
still think the balloon factory has only a 1⁄3 chance of  success. What about the group?
The average of  their individual credences in the success of  balloons is 1⁄2. So the
group’s expected net gain is 500 dollars. Their rules for resolving the disagreement,
then, commit Acme Corp to accepting the gamble.

Acme Corp paid a total of 38 thousand dollars for the two gambles. But whether
balloons succeed or fail, they will only get 37 thousand dollars back. The stockbroker
walks away with a thousand dollars either way.

Furthermore, she had a back-up plan in case anvils succeeded. In that case, their
first gamble would only have paid off  if  the balloons had failed. So she would have
offered Acme Corp a chance to hedge their losses by placing another bet, for the same
price of 18 thousand dollars, which would pay back 37 thousand dollars if  balloons
do well. In this case, the pro-balloon bloc would be in favor, the anti-balloon bloc
against—and since the average credence that the bet would pay off  would again be
1⁄2, their rule for resolving their differences would again commit Acme Corp to taking
the bet. But in that case, too, the stockbroker makes out like a bandit.

B ¬B

A +19 −18

Table 3: Net pay-outs for the gamble offered if  anvils succeed.

In fact, even if  the stockbroker told the board exactly what she would do in ad-
vance, their policy would still commit them to taking the bets and losing money. No
individual member would have been bilked this way, but collectively Acme Corp has
been diachronically dutch-booked.

The averaging rule got Acme into trouble because of  a well-known fact: aver-
aging credences doesn’t commute with conditionalization (see for instance Loewer
and Laddaga 1985). That is to say, if  every individual updates on new information
by conditionalizing, the resulting average credence won’t be the same as what they
would get from first averaging their unconditional credences in each proposition, and
then conditionalizing on the new evidence. (We’re taking conditionalization to be
defined in terms of  unconditional credences in the standard way.) This means that
even if  each individual would take bets like an ideally rational Bayesian agent, the
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group won’t. And this straightforwardly generalises: any group that fails to condition-
alise on new evidence they might receive can fall prey to standard diachronic Dutch
books, and so any way of  coming up with group credences that does not commute
with conditionalisation—like averaging—risks getting the group into trouble.

2 Some	Constraints
After this debacle, Acme’s board convenes to rewrite their policy. Now that they know
that appealing simple policies can get them into trouble, they try a more principled
approach, and begin by proposing some general constraints on what a satisfactory
aggregation rule would be like.1 They want a general rule for aggregating their indi-
vidual credences, no matter what those credences happen to be. This suggests that the
rule should be representable as a certain kind of  function. We are holding fixed who
is in the group and what propositions they are deliberating over; let n be the number
of  board members and let 𝐂 be the set of  probability measures on the given algebra
of  propositions.

Functionality: There is a function ag ∶ 𝐂n → 𝐂 that takes any sequence of  proba-
bility functions—“the individual credences”—to a probability function—“the
group credences”.

(Functionality is a background assumption we will generally hold fixed, and usually we
won’t mention it in what follows. Note that Functionality by itself  is very weak in some
respects. For instance, the function is allowed to “build in” an arbitrary amount of
detail about the psychology of  the individuals, or the intrinsic plausiblity of  particular
propositions. On the other hand it does imply a “Universal Domain” condition: ag is
defined for any sequence of  probability functions. We will consider some natural ways
of  relaxing Universal Domain later on.)

1There is a rich mathematical literature on credence aggregation. Genest and Zidek (1986) pro-
vide a useful survey of  the classic work on this topic. Fitelson and Jehle (2009) present more recent
philosophical discussion of  some of  these results, in the context of  the epistemology of  disagreement.

This line of  inquiry is inspired by parallel results in social choice theory—beginning from Arrow’s
theorem (1970), which gives an impossibility result for combining preference orderings. This family of
results typically involves constraints similar to those we’ll discuss, such as Irrelevant Alternatives, Non-
Dictatorship, Anonymity, Neutrality, and Unanimity. Arrow’s work has also inspired influential work on
aggregating “on-off ” judgments (for instance, List and Pettit 2002). There is also important work on
the more general case of  simultaneously aggregating credences and preferences (such as Mongin 1995;
Gilboa, Samet, and Schmeidler 2004)—which is not the case we are considering.

The key difference between our work and these earlier results is the prominence we give to Condi-
tionalization, which has no natural analogue in aggregating either preferences or full beliefs, and which
(perhaps surprisingly) also has not received much attention in the credence aggregation literature. Two
conditions that have received significant attention instead are (Conditional) Independence Preservation
and the External Bayesian Condition, which we discuss below. But as the rules we will consider make
clear, neither of  these conditions are implied by Conditionalization, and so our results go beyond those
which appeal to either of  them.
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(We’ll also generally make the simplifying assumption that 𝐂’s algebra of  propo-
sitions is generated by a finite set of  possible worlds, except when otherwise noted.
This is not as implausible an assumption as it might seem, since the subject matters
for many interesting decision problems like those that face Acme Corp plausibly only
distinguish finitely many possibilities. And in any case, it’s often useful to start by an-
alyzing the simplest case of  a complex question. We’ll also assume there are at least
three worlds and at least two individuals, to avoid triviality.)

Acme Corp doesn’t want to be taken in by any more diachronic Dutch books. So
(unlike the averaging rule) ag should commute with conditionalization:

Conditionalization: For any C = ⟨C1, …, Cn⟩ in 𝐂n, if C′ = ⟨C1 ∣A, …, Cn ∣A⟩ is the
result of  conditionalizing each individual credence function on a proposition A,
then ag C′ is the result of  conditionalizing ag C on A.

C
conditionalize each Ci on A−−−−−−−−−−−−−−−−−→ C ′y y

agC
conditionalize on A−−−−−−−−−−−−→ agC ′

Figure 1: Conditionalization

(Ci ∣ A is defined in the usual way, as the credence function that assigns to each
proposition B the probability Ci(B ∣ A) = Ci(A ∧ B)/Ci(A). There is a complication: if
someone has credence zero in A, then conditionalizing on A is undefined. What the
Conditionalization rule should be taken to mean is: if  conditionalizing each individual
credence on A is defined, then so is conditionalizing the group credence function, and it
agrees. Note that this has the consequence that if  every individual gives a proposition
A positive credence, then so does the group. An alternative way to go would be to do
everything in terms of  primitive conditional probabilities, so conditionalizing on a zero-
probability proposition might still make sense. But we won’t take up the challenge of
adapting the results presented here to that setting.)

The board consists of  equal partners: no one should have more say than anyone
else. It shouldn’t make any difference to the rule who has which credences, so if  we
switch which individual has which credences, the group credence should remain the
same:

Anonymity: If C′ is any permutation of  a sequence C in 𝐂n, then ag C = ag C′.

Anonymity is a condition on the “content” of  the rule, not how its content was
fixed. For instance, if  Acme Corp decides to pick a dictator by lot, then though their
way of  choosing the rule might be intuitively fair, the rule would still not count as
Anonymous in this setting. Similarly, the rule might be intuitively unfair while still
counting as Anonymous, if  one member usurps control of  the board and imposes his
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C
permute individuals−−−−−−−−−−−−→ C ′y y

agC agC ′

Figure 2: Anonymity

own favorite Anonymous aggregation rule—such as one that builds in very opinion-
ated prior credences. (We’ll discuss rules along these lines in Section 3.) Even if  these
happen to be the usurper’s own credences, this will still count as Anonymous so long
as the rule says to use them even in cases where the usurper has different opinions.

Another initially appealing thought is that there should be some simple rule for
combining credences in a single proposition, which we can then apply to different
propositions one by one.2

Systematicity: For any C and C′ in 𝐂n and any propositions A and B, if Ci(A) =
C′

i (B) for each i, then ag C(A) = ag C′(B).

If  this held, then the credence in a proposition wouldn’t depend on anything specific
about the proposition besides the numerical value of  each individual credence in it.
A rule like this would be “topic neutral” in a certain sense. The group credence in a
proposition also wouldn’t depend on the credences assigned to other propositions. So
the rule would be “local” in a certain sense.

Unfortunately, it has been shown that the only kind of  aggregation rule that has
this property is a weighted average of  the individual credences.3 But—generalizing
the observation of  the previous section—the only way a weighted average rule can
obey Conditionalization is if  all but one of  the weights are zero.4 This means that
such a rule violates not only Anonymity, but even this weaker condition:

2This principle goes by a variety of  names in the literature, including “the strong setwise function
property”, “strong label neutrality”, and “the context-free assumption”.

3This was shown independently by McConway (1981) and Wagner (1982). See Genest and Zidek
(1986, 117).

4Suppose ag C is the weighted average ∑i ai ⋅ Ci (with weights a1, …, an). Conditionalization tells us

∑
i

ai · Ci(B ∣ A) · Ci(A) = ∑
i

ai ⋅ Ci(A ∧ B) = ag C(A ∧ B) = ag C(B ∣ A) ⋅ ag C(A)

= (∑
i

ai · Ci(B ∣ A)) · (∑
i

ai · Ci(A))

In other words, the weighted average of  products is the product of  weighted averages. This only holds
when every weight but one is zero. We can see this by supposing aj ≠ 0 and looking at how the group
opinion changes when we adjust the the jth conditional credence in B given A, holding everything else
fixed. Consider any C, C′ ∈ 𝐂n where Ci(A) = C′

i (A) ≠ 0 for all i, Ci(B ∣ A) = C′
i (B ∣ A) for all i ≠ j, and

Cj(B ∣ A) ≠ C′
j (B ∣ A). Applying the equation above to both C and C′ and taking the difference yields

aj ⋅ (Cj(B ∣ A) − C′
j (B ∣ A)) ⋅ Cj(A) = aj ⋅ (Cj(B ∣ A) − C′

j (B ∣ A)) ⋅ (∑
i

ai ⋅ Ci(A))
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Non-Dictatorship: There is no i such that for every C in 𝐂n, ag C = Ci.

In short: no Non-Dictatorial rule satisfies Systematicity and Conditionalization.
Systematicity combines two ideas: “topic neutrality” and “locality”. We’ve seen

that we can’t have both, if  our rule is to obey Anonymity and Conditionalization.
What if  we try to respect just one of  the two ideas? Let’s begin by looking at locality:
the idea that the group credence in a proposition shouldn’t depend on the individual
credences in other propositions. This amounts to saying that the group credence in
a proposition is a function of  the individual credences in that proposition, where the
function might vary from proposition to proposition.5

Irrelevant Alternatives: For any cases C and C′ in 𝐂n, if Ci(A) = C′
i (A) for each i,

then ag C(A) = ag C′(A).

Can Irrelevant Alternatives fit with Conditionalization? One reason you might
think it doesn’t comes from another important result (Lehrer and Wagner 1983): Ir-
relevant Alternatives is incompatible with the principle that the group credence pre-
serves independence (as long as there are at least five worlds).

Independence Preservation: If A and B are independent according to each indi-
vidual credence function, then A and B are independent according to the group
credence.

But this doesn’t show that Irrelevant Alternatives is incompatible with Conditional-
ization. There are aggregation rules which obey Conditionalization, but violate Inde-
pendence Preservation. (We will discuss some examples of  such rules in Section 3.) So
in general, standard results involving Independence Preservation do not have direct
consequences for Conditionalization.6 (The same goes for the even stronger principle
of conditional indepependence preservaion.)
Cancelling non-zero factors, Cj(A) = ∑i ai ⋅Ci(A) = ag C(A). This can only hold generally if j is a dictator,
that is, if ai = 0 for all i ≠ j.

5This is also called the “weak setwise function property”, or (confusingly) “Independence”. Here is
another equivalent version (McConway 1981; see Genest and Zidek 1986).

Marginalization: For any subalgebra 𝒜 of  propositions, if  sequences of  credence functions C and C′

agree on 𝒜 , then ag C and ag C′ agree on 𝒜 as well.

(The marginalization of  a credence function is its restriction to a certain subalgebra. So, if  you suppose
an aggregation rule to be extended to give you a rule that applies to credence functions defined on the
subalgebras as well, this principle amounts to saying that aggregation commutes with marginalization.)
The thought is that carving up the possibilities more finely, distinguishing more specific subcases, doesn’t
make any difference to the group credences in the coarse-grained possibilities.

6Independence Preservation is perhaps implausibly strong to begin with. There are cases where two
events happen to be independent according to each person’s credences, but intuitively it doesn’t seem
important that the group preserve this. Wagner gives this example: if  you think a six-sided die is fair,
then you should also think that whether an even number is rolled is independent of  whether a multiple
of  three is rolled. Suppose someone else thinks the die is weighted, but in a way that those propositions
still happen to come out independent. It’s hard to attach any great importance to keeping this feature
of  their credences when we combine them. Genest and Wagner (1987) and Wagner (2010b) give further
arguments along these lines.

7



2 Some	Constraints

Even so, a different result makes trouble for combining Irrelevant Alternatives
with Conditionalization. Note first that Conditionalization implies this:7

Zero Preservation: If  every individual has zero credence in A, then the group has
zero credence in A.

But Wagner also showed that the only kind of  rule that obeys Irrelevant Alternatives
and Zero Preservation is weighted averaging (see Genest and Zidek 1986, 118). And
as before, the only kind of  weighted averaging that obeys Conditionalization is a dic-
tatorship.

So it looks like Irrelevant Alternatives is hopeless. To sum up, straightforward
applications of  well-known results show this:

Fact 1: No rule satisfies Conditionalization, Non-Dictatorship, and Irrelevant Alter-
natives.

Let’s turn now to the other idea involved in Systematicity: topic neutrality. The
intuitive thought is that it shouldn’t make a difference which proposition is assigned which
credence. In other words, if  we uniformly rearrange individual credences over differ-
ent worlds, then the group credence should be the result of  rearranging the original
group credence over the worlds in the same way. Let’s put this a bit more precisely.
If 𝜋 is any permutation of  the set of  worlds and C is a credence function, let 𝜋C be the
credence function that assigns the same credence to each world 𝜋w that C does to w.

Neutrality: For any C = ⟨C1, …, Cn⟩ in 𝐂n and any world-permutation 𝜋, the group
credence ag⟨𝜋C1, …, 𝜋Cn⟩ is the same as 𝜋(ag C).

C
permute worlds−−−−−−−−−−→ πCy y

agC
permute worlds−−−−−−−−−−→ π(agC) = ag(πC)

Figure 3: Neutrality

This property has been less studied in the literature on credence aggregation than the
others we have considered so far. One motivation for taking this property as a con-
straint is the thought that the rule shouldn’t “cheat” by consulting outside information
beyond what is included in the individual opinions. You ought to be able to read off
the group credence from the pattern of  individual credences over the different worlds,
without knowing what each world represents.

Here is another natural constraint:
7This is because C(A) = 0 iff C ∣ ¬A is the same as C. (For the right-to-left implication, note that

C(¬A) = C(¬A ∣ ¬A) = 1.) So if Ci(A) = 0 for each i, then ag C = ag⟨C1 ∣ ¬A, …, Cn ∣ ¬A⟩ = ag C ∣ ¬A by
Conditionalization, and so ag C(A) = 0.
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Unanimity: If  each individual assigns the same credence to a proposition, then the
group also assigns that credence to the proposition.

It would seem strange if  every member of  the board agreed that a bet on a certain
outcome was a bad idea, and yet their rule for resolving disagreements committed
them to taking the bet anyhow.8

But though these conditions seem natural, another impossibility result follows
from them. This result is new, as far as we know.

Fact 2: No rule satisfies Conditionalization, Anonymity, Neutrality, and Unanimity.

The proof  turns on a simple symmetry argument. We’ll start by considering the sim-
plest non-trivial case, where there are two individuals and three worlds.

Consider a special kind of  symmetric case. Suppose that one individual assigns
the same credence to w1 that the other assigns to w2, and also vice versa, and that they
both assign the same credence to w3 (Table 4).

w1 w2 w3

C1 p1 p2 p3

C2 p2 p1 p3

ag⟨C1, C2⟩ q1 q2 q3

Table 4: A symmetric pattern of  credences.

In any case with this special structure, the group must assign the same credence to
w1 as it does to w2: that is, q1 = q2. (Let 𝜋 be the world-permutation that switches w1
and w2. If  we apply 𝜋 to the re-ordered pair ⟨C2, C1⟩, the result is equal to the original
pair ⟨C1,  C2⟩. So Anonymity and Neutrality guarantee that applying 𝜋 to ag C takes
us back to ag C. Since switching w1 and w2 leaves ag C unchanged, the credences in
the two worlds must be equal.)

8This constraint has the same flavor as Pareto principles—for instance, the one in Arrow’s theorem
for preference aggregation (see note 1), which says that if  every individual ranks X over Y, then the group
ranks X over Y as well. (For instance this is how Mongin (1995) motivates Unanimity.)

While we’re not sympathetic to Irrelevant Alternatives, it’s worth noting as a point of  logical geogra-
phy that Unanimity follows from Irrelevant Alternatives together with a weaker version:

Weak Unanimity: If  every individual has the same credences for every proposition, then the group
also has those credences.

Weak Unanimity is intuitively much weaker: it says nothing at all about what to do in cases of  disagree-
ment.

Another point to note is that the following arguments still go through if  Unanimity is restricted to apply
to cases where the group has “pooled evidence” so each individual assigns the very same propositions
credence one, as long as their evidence leaves open at least three worlds.
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⟨C1, C2⟩
switch individuals−−−−−−−−−−−→ ⟨C2, C1⟩

switch worlds−−−−−−−−→ ⟨πC2, πC1⟩ = ⟨C1, C2⟩y y y
ag⟨C1, C2⟩ ag⟨C2, C1⟩

switch worlds−−−−−−−−→ ag⟨C1, C2⟩

Figure 4: Symmetry

Furthermore, since in this special case both individuals have the same credence
in w3, Unanimity guarantees that the group has this credence as well: q3  =  p3.
Then, since the probabilities sum to one, for any case with this symmetric structure
the constraints uniquely fix the group credences: in fact, in this case they must be the
average of C1 and C2. Call this fact Symmetry.

But there are cases that are constrained by Symmetry in two different conflicting
ways. Here is one pair of  credences like that (Table 5). Symmetry leaves us no choice
about the group credences here.

w1 w2 w3

C1
1⁄7 4⁄7 2⁄7

C2
4⁄7 1⁄7 2⁄7

ag⟨C1, C2⟩ 5⁄14
5⁄14

2⁄7

Table 5: The credences that make trouble.

w1 w2 w3

C1 ∣ A 0 2⁄3 1⁄3
C2 ∣ A 0 1⁄3 2⁄3
ag⟨C1, C2⟩ ∣ A 0 5⁄9 4⁄9
ag⟨C1 ∣ A, C2 ∣ A⟩ 0 1⁄2 1⁄2

Table 6: The troublemaking credences after conditionalization.

Now conditionalize on the proposition A that holds at just w2 and w3. This takes
the individuals and the group to the credences in Table 6. But in this case, w2 and
w3 have the special symmetric pattern of  individual credences, so Symmetry again
requires the group credences to be the average of  the individual credences—and this
gives a different result from conditionalizing the original group credences. So in this
case Symmetry contradicts Conditionalization. What this shows is that there are cases
C and C ∣ A for which no possible choice of  group credences is consistent with all four
constraints.
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This establishes the result when there are two individuals and three worlds. It
is straightforward to generalize the argument. If  there are more than three worlds,
consider a parallel case where the two individuals have credences proportional to C1
and C2 on three worlds, and are completely unanimous on the rest. If  there are more
than two individuals, consider a case where two individuals have the credences just
described, and the rest of  the individuals have the average of  those two credence func-
tions.

We can also prove a result that does without the assumption of  Neutrality, using a
different argument.

Fact 3: For a group of  two individuals, no rule obeys Conditionalization, Anonymity,
and Unanimity.9

Conditionalization implies the following fact: the ratio of  the credences that the
group assigns to any pair of  worlds is a function of  the credence ratios that the indi-
viduals assign that pair (when these ratios are all defined). In other words, if  there
are two cases C and C′, and two worlds v and w such that for each individual i the
ratio Ci(v)/Ci(w) is the same as the ratio C′

i (v)/C′
i (w), it follows that ag C and ag C′ also

agree on the credence ratio for those two worlds. (See Lemma 1 in the Appendix.) (It
is important that we are restricting our attention to worlds here: Conditionalization
does not imply a more general version of  this property about the ratio of  credences in
arbitrary pairs of  propositions.10)

Anonymity guarantees that switching which person assigns which ratio can’t make
a difference to the group ratio. We will now show that adding Unanimity constrains
the ratios still further: if  the ratios that two people assign between two worlds v and w
are a and b (each of  which is at least one), then the group ratio for those worlds must
be a+b

2 . But this constraint is impossible to satisfy in general.
Once again, our strategy is to come up with cases of  credences with special sym-

metries, so they are constrained in more than one way. This time we consider two
pairs of  credence functions on three worlds (Table 7). Note that C and C′ assign the
same pair of  ratios between w3 and w1 (namely b−1 and a−1). So Conditionalization
guarantees that ag C and ag C′ must also agree on that ratio. Furthermore, the ratios
C assigns between w2 and w1 are a and b, while the ratios C′ assigns between those
worlds are b and a. That is, the sequence of  individual ratios between w2 and w1 given
by C just switches the order of  the individual ratios given by C′. So Conditionaliza-
tion and Anonymity together guarantee that ag C and ag C′ must agree on this ratio as
well. But since they agree on the ratio between w3 and w1 and also the ratio between
w2 and w1, ag C and ag C′ must be exactly the same. Furthermore, Unanimity tells
us that ag C must assign 1

a+b to w1 and also that ag C′ must assign 1⁄2 to w2. So the
9The argument straightforwardly generalizes to an even number of  people, by replacing each indi-

vidual with a unanimous bloc, but it is less obvious how this would go for an odd number.
10In fact, no Non-Dictatorial rule can satisfy the more general version—since the more general ver-

sion implies both Conditionalization and Irrelevant Alternatives (as a special case, considering ratios
with a tautology).
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2 Some	Constraints

ratio of w2 to w1 that ag C and ag C′ both give must be the ratio between these two
numbers: that is, a+b

2 .

w1 w2 w3

C1
1

a+b
a

a+b
b−1
a+b

C2
1

a+b
b

a+b
a−1
a+b

C′
1

1
2b

1
2

b−1
2b

C′
2

1
2a

1
2

a−1
2a

Table 7: The new problem cases.

Moreover, because Conditionalization guarantees that the group ratio between
two worlds is a function of  the individual ratios, in any case where individuals have
ratios a and b between w2 and w1 (for a, b ≥ 1), the group ratio must be a+b

2 . Similar
reasoning shows that if  the ratios between w3 and w2 are both at least one, then the
group ratio must be the average ratio; and similarly for w3 and w1. But these three
constraints on pairs of  worlds can come into conflict. The ratio between w3 and w1
is the product of  the ratio between w3 and w2 and the ratio between w2 and w1. But
the product of  averages is not generally the average of  products. For concreteness,
consider this particular pair of  credence functions:

w1 w2 w3

C1
1⁄5 1⁄5 3⁄5

C2
1⁄7 3⁄7 3⁄7

Table 8: The average of  ratios w3 ∶ w1 is not the product of  the
average ratios w3 ∶ w2 and w2 ∶ w1.

In this case, the average ratio between w2 and w1 is 2 (the average of 1 and 3), and
so is the average ratio between w3 and w2. If  these were the ratios the group assigned
to those pairs, then the group credence in w3 would have to be 4 times the group
credence w1. But the average of  the individual ratios between w3 and w1 is only 2.

(Let’s comment briefly on what happens if  we drop the assumption that the al-
gebra of  propositions is given by a finite set of  worlds. The proof  of  Fact 3 relies on
applying the aggregation rule to discrete cases, where each individual assigns positive
probability to at least two worlds. This makes sense for propositions generated by a
countable set of  worlds. But in the context of  a larger infinite algebra of  propositions,
discrete probability measures like this might reasonably be thought to be a deviant
special case. In that context it is natural to restrict Functionality to exclude these dis-
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3 Some	Aggregation	Rules

crete cases from the domain of  the aggregation function. With such a restriction, our
proof  of  Fact 3 no longer applies. But Mongin (1995) proves a complementary result,
in a rather different way, which only applies to this infinitary context. Suppose that
the aggregation rule is restricted to credence functions which are each non-atomic
in the following sense: for any proposition A with probability p, and any q ≤  p there
is a proposition B such that A ∧ B has probability q. Mongin shows that in this con-
text Unanimity implies weighted averaging. As we have already discussed, weighted
average rules are incompatible with Conditionalization and Anonymity. So our re-
sult and Mongin’s together show that Fact 3 holds for both the discrete case and the
non-atomic case.)

3 Some	Aggregation	Rules
Now that we have a sense of  the constraints on aggregation rules, we’ll look at some
positive proposals for how to aggregate credences. Each rule we will consider obeys
Anonymity and Conditionalization. We’ve seen that this puts surprisingly strong con-
straints on what these rules can be like.

Thanks to Fact 1, we know that these rules must violate Irrelevant Alternatives:
the group credence in a proposition A must be “holistic” to some extent, depending
on other features of  the individual credences besides just their opinions about A.

Thanks to Fact 3, we also know that these rules must violate Unanimity: some-
times, the group credence must overrule the unanimous opinions of  the individuals.

One further thing to note is that all of  these rules violate Independence Preser-
vation: sometimes each individual takes two propositions to be independent, but the
group does not. (That means that each of  these rules fulfills our promissory note of
providing examples where Conditionalization is satisfied but Independence Preserva-
tion is not.)

One simple way of  getting a rule that obeys Anonymity and Conditionalization
is to ignore most features of  the group’s opinions. We can’t ignore everything, since
Conditionalization implies Zero Preservation. But we can get away with ignoring
everything else apart from the facts about which propositions get zero credence. So
one thing we can do is at the outset pick some particular prior credence function C∗,
and then for any sequence of  individual credence functions let the group credence be
the result of  conditionalizing away the worlds that everyone assigns zero credence. In
other words, if E is the conjunction of  propositions in which every individual is certain,
then the group credence is C∗ ∣ E. Call this the Fixed Prior rule.

(If  each individual might assign A positive probability while the prior is zero, then
conditionalizing on A would be defined for the individuals but not for the group, vi-
olating Conditionalization as we originally stated it. We can avoid this problem by
ensuring that every contingent proposition has positive prior probability. This is fine
as long as the algebra of  propositions is given by a countable set of  worlds, as we have
been assuming. On the other hand, this approach won’t work if  this assumption is
dropped. If  there are uncountably many mutually exclusive propositions, no countably
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3 Some	Aggregation	Rules

additive credence function can give positive probability to each of  them. But there is
a natural way of  relaxing Functionality— in particular, Universal Domain—that re-
pairs this. Rather than delivering group credences for arbitrary individual credence
functions, this version of  the Fixed Prior rule is only defined for individual credence
functions which assign zero probability to each zero-prior proposition. Probability
functions like this are called absolutely continuous, with respect to the prior. As
it turns out, a probability function is absolutely continuous if  and only if  it can be
represented by probability density: a function f from worlds to real numbers such
that the probability for any proposition A is given by integrating f over A with the prior
measure 𝜇 = C∗.11 See Figure 5. This density function is uniquely determined up
to differences with prior probability zero. The support of  the density function for an
individual credence function, the set of  worlds on which f is non-zero, represents that
individual’s “evidence”, up to 𝜇-zero differences. Then the Fixed Prior rule says the
group credences are given by conditionalizing 𝜇 on the conjunction of  these evidence-
propositions.)

f

µ(A)

C(A)
C(A) =     f dμ∫

A

Figure 5: Integrating a density function

Where might this fixed prior come from? It doesn’t have to be any particular
person’s prior credences—though it could be. (Choosing a single individual’s prior
might seem unfair, but remember that general standards of  fairness go beyond the
requirements of  Anonymity per se.) Or one could randomly generate some credence
function, or pick an individual’s prior by lot. Another possibility is to use the average
of  all of  the individual priors. (This doesn’t have to be the arithmetic mean—the
alternative kind of  averaging we will consider shortly would work just as well.)12 One
more option would be to let C∗ be some ideal objective prior, if  you believe in such a
thing. If  you want to know how the corporation should bet, a natural interpretation of
“should” presses in this direction.

If  a Fixed Prior rule is to obey the further constraint of  Neutrality—which rules
out “cheating” by consulting outside opinions—then C∗ must be “uninformative”: in
fact, it must be a uniform function that spreads credence evenly across the finitely many

11The Radon-Nikodym theorem implies that any absolutely continuous credence function can be
represented by a density function this way (see e.g. Halmos 1950, sec. 30–31). Because of  the integral
formula’s similarity to the fundamental theorem of  calculus, the density function f is often called the
“derivative” of  the measure C and is denoted dC

d𝜇 .
12Moss’s (2011) rule would work, too, if  it’s applied to the priors. But applied to the posteriors it will

violate Conditionalization.
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worlds. (If  you thought of  the ideal objective prior as a kind of  Carnapian indiffer-
ence measure, then the ideal objective prior and the uniform prior might naturally
coincide. Note that in the infinite case, there is no Neutral prior: there is no probabil-
ity function on an infinite 𝜎-algebra which is symmetric under arbitrary measurable
permutations.13)

If  we think of  having credence one in A as having evidence that A, then Fixed Prior
effectively conditionalizes on the individuals’ common ground evidence: the evidence
that everyone antecedently shares. An alternative is to instead conditionalize on the
individuals’ pooled evidence, so the corporation takes advantage of  the evidence any
individual has to offer.14 In other words, in this alternative version the group credence
is C∗ ∣ E where E is the conjunction of  every proposition that some individual is certain
of.

The pooled-evidence Fixed Prior rule potentially raises a problem that does not
arise for the common ground version: there are sequences of  credence functions on
which every world is assigned zero credence by some individual. In this case, their
pooled “evidence” would rule out every world, and so it would be impossible to con-
ditionalize on it. Any way of  dealing with this is going to involve relaxing the con-
dition of  Functionality, so that at some sequences of  credence functions the function
ag is allowed to be undefined. Suppose having evidence that A is factive. Then these
sequences of  credence functions, where pooled evidence rules out every world, are
simply impossible for any individuals to have. (If  you are thinking like this then you
probably won’t think of  credence one as a “subjective” state. This also makes the
thought that the individuals have access to their own credences look like a more ex-
treme idealization than it already did.) Apart from that, you might not expect there
to be anything satisfying to say about what to do if  this degenerate case of  radical
disagreement should arise. We continue to assume that an aggregation rule must be
defined in all other cases, that is, cases where at least one world is assigned positive
credence by every individual. (None of  our results relied on assumptions about these
degenerate cases, so they still hold using this more relaxed version of  Functionality.)

It’s clear that Fixed Prior obeys Conditionalization. In either variant, if  the “ev-
idence proposition” for certain individual credences is E, and each individual condi-
tionalizes on A, then the new evidence proposition is A ∧ E—and the result of  condi-
tionalizing on E and then A is the same as the result of  conditionalizing on A ∧ E.

There are, however, some prima facie desirable properties that the Fixed Prior rule
does not respect. First, as we already noted, Irrelevant Alternatives and Unanimity
both fail, as consequences of  Facts 1 and 3. It is also clear that this rule does not
Preserve Independence. If  the prior says A and B are dependent, the group will say

13This holds given the standard assumption that coherent credences are countably additive. If  this
assumption is dropped, there are neutral credence functions—for instance, one that assigns probability
one to each cofinite set of  worlds, and zero otherwise. (A set is cofinite if  it only leaves out finitely many
worlds.)

14Of  course, if  we restrict attention to cases where the individuals have already pooled their evidence,
this version agrees with the common ground version.
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3 Some	Aggregation	Rules

this in any case where no individual assign any world zero credence—regardless of
their own views on the independence of A and B.

The Fixed Prior rule is also discontinuous. An arbitrarily small difference in indi-
vidual credences can make a large difference to the group credence. In particular,
consider a series of  cases where one individual’s credence in w approaches zero, while
everyone else assigns some constant positive credence. In the pooled evidence version,
the group credence has the same positive value in each case—but if  that individual’s
credence reaches zero, the group jumps down to join her. A similar point holds for the
common ground evidence version, where instead each of  the other individuals assign
zero to w in each case. So either version of  the rule has cases involving a discontinous
jump around zero. In short, the Fixed Prior rule violates this:

Continuity: ag is a continuous function.

Finally, there is another notable consequence of  the fact that the Fixed Prior rule
is not sensitive to any differences in non-zero credences. Even if  every individual shifts
some of  their credence towards a world w, the group will ignore the shift. That fact
violates another plausible constraint, which generalizes Conditionalization. Suppose
C is a credence function, and 𝜂 is any function from worlds to non-negative numbers
(a likelihood function). Let the 𝜂-update of C be the result of  multiplying C by 𝜂
(pointwise) and renormalizing.15

External Bayesian Condition: For any 𝜂, if C′ is the sequence of 𝜂-updates of  a
sequence of  individual credence functions C, then ag C′ is the 𝜂-update of ag C.

This is equivalent to a condition involving standard Jeffrey conditionalization (R. Jef-
frey 1983): if  each individual Jeffrey-conditionalizes in a certain way, then the group
should Jeffrey-conditionalize in the same way—as long as “same way” is correctly
understood. The formulation in terms of  likelihoods encourages a particular way of
thinking about what updating on the same evidence across cases amounts to.16 Think
of  your evidence as a set of  instructions like “Halve your credence ratio between w1
and w2”, rather than a set of  instructions like “Set your credence in w to 1⁄3.” On
the first conception of  “same evidence” but not the second, two individuals might up-
date on the same evidence without arriving at the same particular credence in any
contingent proposition.

15Note that ordinary conditionalization amounts to the special case where 𝜂 is zero on some set
of  worlds and uniform elsewhere. As with Conditionalization, this version of  the External Bayesian
Condition builds in the assumption that the 𝜂-update is well-defined for the group when it is for the
individuals.

Again, to generalize this idea beyond the discrete case, it makes sense to restrict attention to absolutely
continuous credence functions; then the 𝜂-update is given by pointwise multiplication of 𝜂 with the
probability density function.

16Wagner (2010a) proves the equivalence with Jeffrey conditionalization. See Field (1978) and Wag-
ner (2002) for discussions of  the “same evidence” issue.
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The Fixed Prior rule is not Externally Bayesian. Suppose everyone has non-zero
credences in each of  a set of  worlds, and the group has the credences Old. The indi-
viduals shift their credences in those worlds by some non-uniform likelihood to new
non-zero credences. Since the Fixed Prior rule only cares about ones and zeros, the
result of  aggregating the new credences is exactly the same as Old. On the other hand,
the result of  updating Old by a non-uniform likelihood is of  course not the same as
Old.

Let’s now turn to another rule which may be a bit less natural to philosophers, but
which has been discussed in the statistics literature and does rather better with several
of  the constraints we have just discussed. It is similar to the original averaging rule, but
it uses a different kind of  averaging than the simple arithmetic mean. The geometric
mean of n numbers is the nth root of  their product. (Equivalently, the logarithm of
the geometric mean is the arithmetic mean of  logarithms.) The Geometric Rule
(or Logarithmic Rule) says that the unnormalized group credence in a world w is
the geometric mean of  the individual credences in w. The group credence in a world,
then, is the geometric mean of  the individual credences divided by the sum of  the
geometric means for all worlds.17

The Geometric Rule forces a pooling approach to evidence: the geometric mean
of  any number with zero is zero, so if  any individual assigns a world zero credence
the group must as well. This means, as noted above, the rule is not defined in the
degenerate case where every world is assigned zero by at least one individual.

This rule obviously satisfies Anonymity, and it also satisfies Conditionalization—
in fact, it obeys the stronger External Bayesian Condition. The general version follows
from the fact that if  you multiply some numbers by a common factor 𝜂(w) and then
take their geometric mean, this gives you the same result as if  you take the geometric
mean first and then multiply by 𝜂(w). So it doesn’t make a difference whether you
𝜂-update and then aggregate, or do it in the opposite order. Since the Geometric
Rule obeys Anonymity and Conditionalization, it follows from Fact 3 that it must
not satisfy Unanimity. The reason is that, even though taking the geometric mean
preserves unanimity, renormalizing the geometric mean may not.18

Let’s look at how this plays out for Acme Corp’s original diachronic Dutch book.
17This rule is attributed to Peter Hammond, who also noted the fact that it obeys the External

Bayesian Condition (Genest and Zidek 1986, 119–20). In a blog post (2012) Alexander Pruss makes
a closely related suggestion for aggregating credences in a single proposition from individuals with the
same evidence (namely, averaging the logarithm of  odds), and discusses some of  its nice features and an
alternative motivation.

18On the other hand, the Geometric Rule does obey these:

Pointwise Ratio Unanimity: For any pair of  worlds w1 and w2, if  each individual in C assigns the
same credence ratio between w1 and w2, then ag C also assigns that ratio.

Pointwise Comparative Unanimity: If  each individual assigns a higher credence in world w1 than
w2, then the group does as well.

As with Unanimity, there are natural analogies between these and the Pareto principle—though there
is also a disanalogy, in that these only apply “world by world”. The Geometric Rule does not satisfy the
more general versions for arbitrary propositions.
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The stockbroker’s second proposal to Acme, after the anvils had failed, was a bet with
a net payout of  19 thousand dollars if  balloons failed, and a net loss of  18 thousand
dollars if  balloons succeeded. The board was divided on this, one bloc giving the
happy outcome a probability of 1⁄3 and the other bloc giving it 2⁄3. The renormalized
geometric mean of  these credences is 1⁄2. So the Geometric Rule tells the group to
take the bet. (The same reasoning applies to the alternative second bet.) What about
the first bet? Recall that this was a bet with a net payout of  17 thousand if  exactly
one of  anvils and balloons succeeded, and a net loss of  20 thousand otherwise. Their
credences were as in Table 9. In this case, each individual favored the gamble. But
the Geometric Rule overrules their unanimous opinion—this is how the Geometric
Rule saves Acme Corp from being Dutch-booked. As we have shown already, any
rule that obeys Conditionalization must overrule unanimous opinions somewhere.19

A ∧ B A ∧ ¬B ¬A ∧ B ¬A ∧ ¬B

Pro-anvil 2⁄9 4⁄9 1⁄9 2⁄9
Pro-balloon 2⁄9 1⁄9 4⁄9 2⁄9
Geometric Rule 1⁄4 1⁄4 1⁄4 1⁄4

Table 9: Applying the Geometric Rule to Acme Corp’s original
credences.

Note that the Geometric Rule does not say that the group credence in an arbi-
trary proposition is given by the geometric mean of  individual credences (followed
by some renormalization)—it only applies directly to worlds. How credences are dis-
tributed over subcases of  a proposition can make a difference. (This is a consequence
of  the fact that this rule violates Irrelevant Alternatives—which follows from Fact 1.)
Note, for example, that for Acme Corp’s first bet each individual thought that the
probability of  exactly one factory succeeding was 5⁄9. So if  we had simply applied the
Geometric Rule directly to the individual credences in the proposition “exactly one
factory succeeds” and its negation, ignoring their differences of  opinion on subcases,
then we would have got a different result—the renormalized geometric mean would
have been 5⁄9, and the rule would recommend taking the bet. But “coarse-graining”
their credences this way would wipe out all of  the information which is relevant to the
later bets on each one of  the factories.

The Geometric Rule also violates Independence Preservation. (A result of  Genest
and Wagner (1987, 82–3) shows that it in fact Preserves Independence as long as there
are no more than four worlds, but not otherwise.)

There are natural generalizations of  the Geometric Rule that give up Anonymity
or Neutrality, by respectively assigning non-uniform weights to particular individu-

19Naturally this goes for the Fixed Prior rule, too, but the details of  its recommendations will vary
depending on what the fixed prior is. Some versions will reject the first bet, and others will reject one of
the second bets.
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als or to particular worlds. To give different weights to different individuals, we can
use a weighted geometric mean—here the weights appear as powers in the product of
probabilities. The geometric mean of p1,  …,  pn with weights a1,  …,  an, is the product
pa1

1   ⋅  …  ⋅  pan
n . Call rules of  this form Weighted Geometric Rules: take a pointwise

weighted geometric mean, and renormalize. The unweighted Geometric Rule is the
special case of  this where each weight is 1⁄n.

To give different weights to different worlds—which you can think of  as treating
different worlds as building in some opinionated prior probabilities—we can introduce
an extra credence function as one more factor to this product, with some weight of  its
own. This is perhaps the best way of  generalizing the Fixed Prior rule in a way that
is sensitive to more features of  the individual credences than just ones and zeros.

We already noted that unlike Fixed Prior, the Geometric Rule is Externally Bayesian.
Another advantage it has over Fixed Prior is that it is Continuous. In fact, we can
characterize the rule this way.

Fact 4: The only rules which obey Conditionalization, Continuity, and Neutrality
are Weighted Geometric Rules.

Since the proof  of  this fact is a bit more technical than the others, we present it in
an appendix.20 If  we add Anonymity as a further constraint, this forces the weights
to be equal. If  we add the Weak Unanimity constraint—which says that in cases
where every individual has exactly the same credences about everything, the group
has those too—then this forces the weights to add up to one. So if  we add both of
those constraints each weight must be 1⁄n, so we have the standard Geometric Rule.
That is to say, the only rule which obeys Conditionalization, Continuity, Neutrality,
Anonymity, and Weak Unanimity is the Geometric Rule.

(The Geometric Rule extends straightforwardly to the case of  countably many
worlds.21 But the more general uncountable case is more complicated: in this case
arbitrary credences aren’t determined by credences in particular worlds, and so point-
wise geometric averaging doesn’t determine group credences. But there is a natural,
and technically standard, extension of  the opinionated version of  the rule, which uses
the same ideas as the infinitary generalization of  the Fixed Prior rule. The idea is

20This result complements those of  Genest (1984) and Genest, McConway, and Schervish (1986).
Genest (1984) shows that weighted geometric averaging is the only kind of  rule that is Externally Bayesian
and also obeys a weakened form of  Irrelevant Alternatives. (Viz: the group’s probability density at a world
is determined by the individual’s probability densities at that world, up to a constant normalization
factor.) Genest, McConway, and Schervish (1986) extend this result to a general characterization of
Externally Bayesian operators. The most important difference between our result and these is that we do
not rely on the External Bayesian Condition, but only the weaker Conditionalization principle. Also, our
Neutrality and Continuity conditions are orthogonal to Genest’s Irrelevant-Alternatives-style principle.
Finally, the context our result applies to countable probability measures, rather than probability densities
in a more general setting.

21This turns on the fact that if  the sums of  two infinite sequences converge, then the sum of  the
sequence of  their geometric means also converges. (This is clear, since this sequence is bounded by the
pointwise maximum of  the two sequences, and the sum of  the maximums must converge.)
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to first fix some “background” measure 𝜇.22 Functionality is restricted, so the do-
main of  the rule only includes individual credences which are absolutely continuous
with respect to 𝜇. This guarantees that the individual credences are represented by
probability densities. So we can apply the Geometric Rule by taking the pointwise
geometric mean of  the density functions, and renormalizing, to get a group density.
Note that the Neutral version of  the Geometric Rule for countably many worlds is the
special case of  this where the background measure 𝜇 is the counting measure, which
gives each world equal weight.)

4 Some	Connections
We’ve been focusing on the problem of  how groups of  individuals can collectively
have coherent credences. We’ll conclude by pointing to some applications of  these
ideas to other philosophical topics. One natural connection is to another issue in
social epistemology, namely how individuals should update their credences in response
to disagreements with their peers. Some philosophers have defended the view that
disagreeing peers should give “equal weight” to each person’s credences regardless of
whose they are, and adjust their own credences to some value that impartially reflects
all of  the disagreeing opinions (Elga 2007; Christensen 2007; for critical discussion
see Lackey 2008; Kelly 2010). In order to make sense of  a view like this, though, it is
necessary to have some idea of  what those impartially generated credences would be.
Both the limiting and positive results about aggregation functions have implications
for the shape that this sort of  view can take. (See also Fitelson and Jehle 2009; Moss
2011.)

Normally people are not “peers” about everything, but at best some distinguished
subject matter—the peer propositions. These presumably will not be an arbitrary
set: if  they are peers about A and peers about B, then they are also peers about ¬A,
A ∧ B, and A ∨ B. Then if  we restrict each peer’s credence function to the peer propo-
sitions, we get a credence function on this special subject matter—call these restricted
credence functions the peer credences. Then the idea of  the Equal Weight view
is that there should be some way of  generating impartial credences from the peer
credences, which are what each peer rationally ought to adopt. (Note that this set-up
assumes, for better or worse, that the impartial credence in a peer proposition does not
depend on any individual’s credences in a non-peer proposition. The set-up also leaves
open the question of  how peers ought to adjust the rest of  their credences. One natural
thought is that they should Jeffrey conditionalize on the impartial credences—there is
a technical sense in which this is the “minimal” adjustment.)

The most obvious Equal Weight view is one that says the impartial credence is the
arithmetic mean of  the peer credences. As we discussed in Section 1 this rule violates
Conditionalization. This failure is straightforwardly bad for betting board members,
but there is some debate about how serious it is here (see for instance Wilson 2010).

22This need not be a probability measure, but it should at least be 𝜎-finite, meaning that the worlds
can be partitioned into countably many pieces of  finite measure.
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Those who do think Conditionalization is an important constraint should also take
to heart the more general point (Fact 1) that no Conditionalizing rule besides dicta-
torships can also obey Irrelevant Alternatives. There is a general tendency in these
discussions to take Irrelevant Alternatives for granted by assuming that it makes sense
to consider peer propositions one by one, where the impartial view on any proposition
is determined by the peer credences in just that one. One lesson from the impossibility
results is that, if  you care about Conditionalization, you should be thinking holistically
about the whole peer subject matter rather than just single propositions. Discussions
also tend to assume that Unanimity is an important constraint: peers who already
agree on A shouldn’t move away from that credence when they learn of  their disagree-
ment on other matters. But as we have seen, if  you care about Conditionalization then
this principle is also difficult to sustain.

The aggregation rules we have discussed also give guidance on how to avoid some
of  these technical problems. For example, the Geometric Rule might be a much better
candidate than simple averaging for what “splitting the difference” between credence
functions ought to amount to. It implements a reasonable notion of  impartiality, while
still respecting Conditionalization. Similarly, an approach that averages peer priors
and then updates on peer evidence does better.

Besides social epistemology, aggregation issues also arise for individual epistemol-
ogy insofar as a person can be “double-minded” in various ways. There are natural
approaches to imprecise or “mushy” credences, higher-order uncertainty about one’s
own credences, and psychological fragmentation, which involve representing a single
person’s epistemic state by a family of  distinct credence functions (for instance, Levi
1980; R. C. Jeffrey 1983; for critical discussion based on concerns related to ours, see
Elga 2010). Despite this multitude of  opinions, we want to say something about how
a fragmented person can take a unified rational stance on gambles, which would seem
to require some way of  aggregating the fragments.

There are also potential applications to political theory. As we mentioned in foot-
note 1, there is a well-known body of  “voting theorems” constraining how individual
preferences can be aggregated, and these results have been extensively applied to the
theory of  democratic government. Constraints on credence aggregation have some
analogous implications, since of  course some political disagreements are naturally rep-
resented as conflicts of beliefs rather than conflicts of values.

A Proof	of	Fact	4
Let W be a countable set of  worlds. In this context, a credence function is given by a
function from W to [0, 1] that sums to one (i.e., a probability mass function). Let n be
the number of  individuals. Call a sequence of n credence functions admissible iff
there is some world that each function gives positive probability. (This restriction goes
with the idea discussed in Section 3 that credence one is factive.) Then the aggregation
rule ag is a function that takes each admissible sequence to a single credence function.
In this setting, Conditionalization says that for any sequence C = ⟨C1,  …, Cn⟩
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and set of  worlds E, if C ∣ E = ⟨C1 ∣ E,  …, Cn ∣ E⟩ is defined and admissible, then
ag(C ∣ E) = ag C ∣ E. In what follows C and C′ are admissible sequences of  credence
functions.

For a credence function Ci, let Ci(v ∶ w) stand for the ratio Ci(v)/Ci(w) (if  it is
defined).

Pointwise Ratios: For any v, w ∈ W, if  for each i, Ci(v ∶ w) and C′
i (v ∶ w) are

defined and equal, then ag C(v ∶ w) = ag C′(v ∶ w).

Lemma 1. Conditionalization is equivalent to Pointwise Ratios.

Proof. Let E = {v, w}. For each i, if Ci(v ∶ w) = C′
i (v ∶ w) then Ci ∣ E = C′

i ∣ E. So by
Conditionalization, ag C ∣ E = ag C′ ∣ E. This implies that ag C(v ∶ w) = ag C′(v ∶ w)
as well. So Conditionalization implies Pointwise Ratios.

Conversely, let E be any proposition such that C ∣ E is defined and admissible, and
let v be a world in E that each individual gives positive probability. Then for each
w ∈ E, C and C ∣ E both have the same well-defined ratios between w and v. So ag C
and ag(C ∣ E) also have the same ratios for each w ∈ E. So ag C ∣ E and ag(C ∣ E) are
proportional, and since each of  them adds up to one they are identical. So Pointwise
Ratios implies Conditionalization. QED.

Recall that Neutrality means that ag commutes with permutations of W, and
Continuity means that ag is a continuous function (with respect to the product topol-
ogy of [0, 1]W×n).

Fact 4: If ag obeys Conditionalization, Continuity, and Neutrality, ag is a Weighted
Geometric Rule.

Proof. Pointwise Ratios and Neutrality together imply that there is some function F ∶
[0, ∞)n → [0, ∞) such that for each pair of  distinct worlds v and w, if  the ratios C1(v ∶
 w), …, Cn(v ∶  w) are all defined, then

ag C(v ∶ w) = F(C1(v ∶  w),  …,  Cn(v ∶ w))

(Pointwise Ratios guarantees that for each v and w there is some function Fv,w that
determines the group ratio for v and w in terms of  the individual ratios, when they are
defined. Neutrality guarantees that Fv,w is the same for each v and w.) Furthermore,
if ag is continuous then F is continuous as well.

Ratios have the following property: if C(u ∶ v) and C(v ∶ w) are both defined,
then C(u ∶ w) = C(u ∶ v) · C(v ∶ w). This implies that F is multiplicative for positive
arguments:

F(r1  ⋅  s1,  …,  rn  ⋅  sn)  =  F(r1,  …,  rn)  ⋅  F(s1,  …,  sn)

(where each ri and si is positive.) It’s helpful to map this onto a logarithmic scale: there
is a continuous function G ∶ ℝn → ℝ such that

G(log r1, …, log rn) = log F(r1, …, rn)
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(for positive ri). It follows from F’s multiplicative property that G is additive:

G(x1  +  y1,  …,  xn  +  yn)  =  G(x1, …, xn)  +  G(y1, …, yn)

But any continuous additive function from ℝn to ℝ is linear. (This fact was noted by
Cauchy in 1821.) So G is linear, and thus there are weights a1,  …,  an, such that

G(x1, …, xn)  =  a1 · x1  +   ⋯   +  an  ⋅  xn

Undoing the transformation to the logarithmic scale, then,

F(r)  =  ra1
1   ⋅   ⋯   ⋅  ran

n

This fixes the value of F for positive ratios to be a weighted geometric mean. When
ri = 0, continuity forces F’s value be the limit value as ri approaches zero. Accordingly,
if ai > 0, then F(r1, …, rn) must be zero when ri = 0, which is consistent with geometric
averaging. For ai = 0, if  we consider 00 = 1 then again the geometric average extends
F continuously to ri = 0. For ai < 0 there is no finite limit at zero, so that case is
impossible for continuous F. So F—the rule for group ratios—is a weighted geometric
mean with non-negative weights.

This means that ag is a Weighted Geometric Rule. Let v be a world with positive
individual credences p1,  …,  pn, and say the group credence in that world is p. Then for
any other world w with individual credences q1,  …,  qn the ratios qi/pi are defined, and
the group ratio is a weighted geometric mean of  those ratios. So the group credence
in w is

p · (
q1
p1 )

a1
· ⋯ · (

qn
pn )

an

which, redistributing parentheses, is just the weighted geometric mean qa1
1   ⋅   ⋯   ⋅  qan

n
times a constant normalization factor. QED.
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