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These principles have a ring of  plausibility:

The probability you assign the conditional “If A then B” ought to be the same
as the conditional probability you assign B given A.

You ought to believe that A is good to the same degree that you desire that A
be the case.

Conditional on “Probably A”, you ought to be more confident in A than not-
A.

Conditional on it being better for A to be the case than B, you ought to desire
A to a higher degree than B.

David Lewis proved famous “triviality theorems” about the first two of  these prin-
ciples (1976; 1986; 1988; 1996). In the standard framework of  probability and
decision theory, each of  them has unacceptable trivializing consequences.

We have three goals in this paper. In Sections 1–3, we generalize Lewis’s results
to apply to a wide variety of  other principles that have a similar flavor—principles
about epistemic “might”, probability claims, and claims about comparative value,
including the last two in the list above. In Sections 4–5, we show how to streamline
these arguments in a more minimalistic framework, which doesn’t depend on stan-
dard conditionalization or numerical probabilities. Instead, the arguments turn on
structural principles about updating with new information—namely, that updates
are commutative in the sense that the order of  information doesn’t matter, and idem-
potent in the sense that repeatedly updating on the same information is redundant.1
In Section 7, we explore the prospects for maintaining some or all of  the prob-
lematic principles by giving up these structural principles about update, drawing

Thanks to Andrew Bacon, Sarah Moss, and several anonymous referees for helpful comments.
1These streamlined results are connected to existing “qualitative” triviality results in belief-revision

frameworks such as Gärdenfors (1986). But there are important differences between their assumptions
and ours, which we’ll discuss when we get there.
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on the resources of  dynamic semantics. Many philosophers (including Lewis, fol-
lowing Ernest Adams 1975) have been attracted to an “expressivist” reply to the
triviality results for conditionals, rejecting truth conditions for conditionals. Analo-
gous positions are also natural for epistemic modals or evaluatives. We argue that
the dynamic approach is a more promising version of  this expressivist idea than
the version Adams and Lewis influentially advocated. Along the way (Section 6)
we also consider a “contextualist” proposal for maintaining parameterized versions
of  these principles, and raise a general difficulty for it arising from anti-luminosity
considerations.

(The more abstract arguments in Sections 4 and 5 don’t strictly depend on the earlier
material, so while the gentler course is to read straight through, some readers might
prefer to take an accelerated track starting there.)

1 Probabilities	of	Conditionals

Lewis’s (1976) triviality theorem2 addresses a principle about what subjective
probability—or credence—it is reasonable to assign a conditional:

Stalnaker’s Thesis. For every reasonable credal state C, if C(A) > 0,

C(if A, B) = C(B ∣ A)

Here C(B ∣ A) is the conditional credence of B given A. This is standardly defined
as the ratio C(A ∧ B)/C(A). The qualification C(A) >  0 is necessary because the
ratio is undefined when C(A) = 0. (Note that for the next few sections we’ll be fol-
lowing Lewis in several technically standard probabilistic assumptions—including
the standard ratio definition of  conditional probability, which doesn’t make sense
for evidence with prior credence zero. But later we’ll examine how things go when
these assumptions are relaxed. It will turn out that not very much turns on them.)

We suppose that if C is reasonable and C(A) >  0, then the credal state that results
from C by conditionalizing on A is also reasonable. (This is the function CA such
that CA(B) = C(B ∣ A) for each proposition B.)

2There is of  course a whole cottage industry of  other triviality results for conditionals, using dif-
ferent assumptions from Lewis’s. (Some of  the main ones: Stalnaker 1976a; Hájek and Hall 1994;
Edgington 1986; Hájek 1989.) We won’t be engaging very much with these other results. One rea-
son for this is that we’ll be looking at generalizations to other domains on which these other results
don’t bear so obviously. Another reason is that it turns out that the “core” version of  Lewis’s original
triviality result is already more powerful than has generally been appreciated.
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We’ll say that propositions A and B are compatible (for credences C) iff C(A) > 0
and C(B ∣ A) > 0; otherwise they are incompatible. Here are two important
standard probabilistic facts about this notion of  compatibility.

Negation. For any reasonable credences, ¬A and A are incompatible.

Symmetry. For any reasonable credences, if A and B are compatible, then
B and A are compatible.

(This is easy to check using the ratio definition.) Note that given Symmetry and the
definition of  compatibility, if  follows that if C(B) = 0 then A and B are incompatible.
We’ll also say A implies B iff A is incompatible with ¬B.

Lewis derives from Stalnaker’s Thesis the surprising conclusion that contingent con-
ditionals imply their consequents: that is, for any propositions A and B, either A is
incompatible with ¬B, or else (if A, B) implies B. He goes on to draw other ab-
surd consequences from this fact. (For instance: no three propositions are possible
but pairwise incompatible.) But note that this consequence is already bad enough.
For example, you might not be sure whether Andrew is at the talk, nor whether if
Andrew is at the talk he’s happy. But when you learn the conditional—if  Andrew
is at the talk, he’s happy—this still generally leaves you in the dark about whether
Andrew is in fact happy. So Lewis’s extra bells and whistles aren’t necessary for
making trouble for Stalnaker’s Thesis.

Here’s a simplified version of  the argument. Consider any reasonable credal state
C for which A and ¬B are compatible, and thus by Symmetry, ¬B and A are com-
patible. Let C¬B be the credal state that results from conditionalizing C on ¬B; this
is another reasonable state, and

C¬B(A) = C(A ∣ ¬B) > 0
C¬B(B) = C(B ∣ ¬B) = 0

(The first is because ¬B is compatible with A for C, and the second follows from
Negation.) Since C¬B(B) = 0, it follows that A is incompatible with B for C¬B, and
so C¬B(B ∣ A) = 0. Then Stalnaker’s Thesis implies

C(if A, B ∣ ¬B) = C¬B(if A, B) = C¬B(B ∣ A) = 0

That is, ¬B is incompatible with (if A, B) for C. Then by Symmetry, (if A, B) is
incompatible with ¬B, which is to say that the conditional implies its consequent.
QED.
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2 Desire	as	Belief

Lewis’s second “triviality” result is about subjective values. Let’s start by saying a
bit about what these are like.

Somebody flipped a coin, and if  it came up heads they put $100 in Box A; if  it came
up tails, they put in nothing. Box B contains $80. One of  the boxes is yours. Which
box would you rather it be? There’s one sense in which, if  unbeknownst to you the
coin came up heads, Box A being yours is better than Box B being yours. But for
you in your ignorance, there’s a “subjective” sense in which it’s better news to find
out you got Box B.

Lewis follows Richard Jeffrey (1983 [1965]) in representing subjective values with a
function V from propositions to degrees of  desirability. For a proposition A, the value
V(A) is how desirable you expect reality to be, conditional on A. For a tautology ⊤,
V(⊤) is just how desirable you expect reality to be given your current information.
So in general V(A) is equal to VA(⊤), where (CA, VA) is the result of  conditionalizing
(C, V) on A.3 In the case where C(A) = 0, conditionalization on A is standardly
undefined, and so V(A) is undefined as well.

The target of  Lewis’s triviality argument is the “anti-Humean” view that there are
necessary connections between subjective value and beliefs about what is good.

Then the Desire-as-Belief  thesis says that Frederic desires things just when
he believes they would be good. Or better, since we must acknowledge that
desire and belief  admit of  degree, he desires things just to the extent that he
believes they would be good. (1988, 325–26)

So for a proposition A we have a corresponding proposition (good A), such that the
following correspondence holds:

Desire as Belief. For every reasonable combination of  a credal state C with
an evaluative state V, if C(A) >  0 then

C(good A) = V(A)

As Lewis and others have shown, this thesis is disastrous. We’ll present a simplified
argument, which deploys the following key fact about standard conditionalization:4

3The definition of  conditionalization for a credal-evaluative pair (C, V) and a proposition A is the
pair (CA, VA) such that, for each proposition B, (i) CA(B) = C(A ∧ B)/C(A), and (ii) VA(B) = V(A ∧ B).

4Lewis’s 1988 result was more complicated, and involved assumptions about Jeffrey conditional-
ization. Our presentation is closer to the simpler arguments given by Arló Costa, Collins, and Levi
(1995) and Lewis (1996), though it is not quite the same as either of  those.

4



Commutativity. Let (C, V) be a reasonable credal-evaluative pair, and let A
and B be propositions which are compatible for C. Let (CA, VA) be the result of
conditionalizing (C, V) on A, and let (CB, VB) be the result of  conditionalizing
(C, V) on B. Then the result of  conditionalizing (CA, VA) on B is the same as
the result of  conditionalizing (CB, VB) on A. More concisely:

(CA)B = (CB)A

(VA)B = (VB)A

The Commutativity principle thus stated is a theorem of  standard decision theory.
In contrast, other epistemological claims that go by the same name are contested.
For a representative example, Frank Arntzenius offers this thesis: “if  the relevant
evidence and experience collected is the same, then the order of  collection should
not matter for the final degrees of  belief ” (2003, 364). Of  course, on the supposition
that “the final degrees of  belief ” are always calcluated by standard conditionaliza-
tion, Arntzenius’s thesis would follow from the theorem. But that supposition is
highly controversial. We will return to these issues in Section 4.

Like the argument against Stalnaker’s Thesis, this argument also relies on a more
substantive, but very natural assumption about conditionalization: if (C, V) is a rea-
sonable pair of  states for which C(A) > 0, then (CA, VA) is also reasonable.

Given these assumptions, we can derive a surprising Pessimistic Conclusion: for
any reasonable state (C, V) for which A and (good A) each have non-zero credence,
¬ good A implies A. In other words, whatever is not good, must be the case. (Lewis
draws other trivializing consequences from the Desire as Belief  thesis. But the Pes-
simistic Conclusion looks bad enough.)

Here is the argument. Let (C, V) be a reasonable credal-evaluative pair for which
C(A) is non-zero, and let B be any proposition. Note that by the probability calculus,

CA(A ∨ B) = C(A ∨ B ∣ A) = 1

Moreover, conditionalizing on what you already are certain of  doesn’t change your
attitude. So (VA)A∨B = VA, and thus by Commutativity, (VA∨B)A = VA. Thus:

VA∨B(A) = (VA∨B)A(⊤) = VA(⊤) = V(A)

By two applications of  Desire as Belief:

C(good A ∣ A ∨ B) = CA∨B(good A) = VA∨B(A)
= V(A) = C(good A)
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This much shows that Desire as Belief  requires that good A is probabilistically inde-
pendent of A ∨ B, for any proposition B. But suppose that B is itself  the proposition
(good A): then B is independent of A ∨ B, and this can only hold if ¬B implies A.
(This follows because independence is symmetric, and so C(A∨B) = C(A∨B ∣ A) = 1,
and thus C(¬A ∧ ¬B) = 0.) That is, ¬ good A implies A. QED.

3 Triviality	Theorems	Galore

Now that we’ve got the hang of  these core arguments, we can extend the same ideas
to make trouble for other plausible-sounding theses. In this section we’ll continue
to assume that if (C, V) is a reasonable pair of  credal and evaluative states, then so
is (CA, VA), if C(A) > 0.

Let’s start with “probably”. Here’s a thesis with a similar kind of  appeal to Stal-
naker’s Thesis: conditional on the claim that A is probably the case, you should
assign A higher probability than ¬A.

Probably. For any reasonable credal state C, if C(probably A) > 0, then

C(A ∣ probably A) > 1⁄2

But Probably has the trivializing consequence that (probably A) implies A. As in
Lewis’s proofs, the trick for showing this is to update on the right piece of  evidence:
in this case, ¬A. Suppose for reductio that for some reasonable credal state C, ¬A and
probably A are compatible. This tells us that if C¬A is the result of  conditionalizing
C on ¬A, then

C¬A(probably A) = C(probably A ∣ ¬A) > 0
Applying Probably to C¬A, we can then conclude

C¬A(A ∣ probably A) > 1⁄2

But also,
C¬A(A) = C(A ∣ ¬A) = 0

This implies that probably A is incompatible with A for C¬A, and so

C¬A(A ∣ probably A) = 0 < 1⁄2

This is a contradiction. So it must be that our supposition was false, and ¬A and
(probably A) are incompatible for C. Then by Symmetry, (probably A) is incom-
patible with ¬A, which is to say that (probably A) implies A.
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Exactly the same style of  proof  makes trouble for other principles about probability
claims. For instance, this also has the ring of  plausibility: conditional on the claim
that the probability of A is x, you should assign credence x to A.5

Exact Probability. For any reasonable credal state C, if

C(the probability of A is x) > 0

then
C(A ∣ the probability of A is x) = x

But this implies that for any x > 0, (the probability of A is x) implies A, by updating
on ¬A and reasoning in the very same way.

Here’s another. If  you learn that A is more probable than B, you should assign
higher credence to A than B.

Comparative Probability. For any reasonable credal state C, if

C(A is more probable than B) > 0

then

C(A ∣ A is more probable than B) > C(B ∣ A is more probable than B)

But again, conditionalizing on ¬A shows us that (A is more probable than B) implies
A. (In this case we could also draw the conclusion that (A is more probable than B)
is incompatible with B, using a similar argument involving conditionalizing on B.)

Using the same technique, we can make trouble for similarly attractive principles
concerning epistemic modals that aren’t explicitly probabilistic. The simplest case
is epistemic “might”. Here’s the target principle:

Might. For any reasonable credal state C, if C(might A) > 0, then

C(A ∣ might A) >  0

The same style of  proof  shows that if  Might is true, then (might A) implies A.6

5Note this principle has the same structure as a (synchronic) reflection principle. (For discussion
see e.g. Christensen 2007; 2010.)

6Yalcin (2007) discusses a related puzzle about epistemic “might”: it is difficult to understand the
supposition of  “not-A and it might be that A”, but also, not-A and might A are not straightforwardly
incompatible. His response broadly falls along the lines of  the positions we consider in Sections 4 and
7.
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Similar considerations apply to many plausible-sounding theses about subjective
value. We’ll frame these theses in a way that avoids a couple of  oddities of  Lewis’s
formulation of  Desire as Belief, the equation C(good A) = V(A). First, note that it’s a
bit odd to put credences and values on the same numerical scale. After all, credences
are bounded by zero and one, but values are plausibly unbounded, and there’s no
obvious sense to a zero-point or a unit on the scale of  desirability.7 Furthermore, the
Desire as Belief  thesis conflates two intuitively separate concerns: the probability of
something being good, and how good it might be. It could be that getting a box
of  unknown contents is very likely to just pass the threshold of  goodness, but this
doesn’t require it to have a high degree of  desirability. It may be certain to at best
just pass the threshold for goodness (say containing a pair of  socks). Moreover, it
could be that in the unlikely event that getting the box is bad, it is really terrible (say
containing a deadly python). Then even though it’s probable that getting the box is
good, it is subjectively highly undesirable.

These are problems for theses that directly link up credences about values to de-
grees of  desirability. We’ll set aside Lewis’s particular form of  Desire as Belief. But
there are other interesting theses linking desire and belief  that don’t take this form.
Consider the proposition that A is more desirable than B. Suppose you learn this.
It seems plausible that in this case, you ought to assign higher subjective value to A
than you do to B. This suggests the following principle:

Comparative Value. Let (C, V) be any reasonable state such that

C(A is better than B) > 0

and let (C+, V+) be the result of  updating with (A is better than B). Then

V+(A) > V+(B) unless C+(A) = 0 or C+(B) = 0

Again, this principle has unacceptable consequences. We’ll present an argument
that relies on Commutativity together with the following further fact about standard
conditionalization:

Idempotence. Let (C, V) be a reasonable credal-evaluative pair for which
C(A) > 0. Then if (CA, VA) is the result of  conditionalizing on A, the result of
conditionalizing (CA, VA) on A is the very same pair. More concisely:

(CA)A = CA

(VA)A = VA
7One manifestation of  this point is the problem utilitarians face of  making sense of  interpersonal

comparisons of  desirability; for discussion see e.g. Hausman (1995).
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The idea behind this is that if  you have conditionalized on A, then you’re certain
of A, and conditionalizing on what you already certain of  does not change your
attitudes.

Suppose (for reductio) that (C, V) is a reasonable state for which A, B, and
(A is better than B) are compatible. Then ((CA)B, (VA)B) is a reasonable pair, and
we can conditionalize this on (A is better than B). As a shorthand, let

CAB+ = ((CA)B)A is better than B

VAB+ = ((VA)B)A is better than B

That is, (CAB+, VAB+) is the result of  conditionalizing (C, V) on A, then on B, then
on (A is better than B). Comparative Value tells us

VAB+(A) > VAB+(B)

On the other hand,

(VAB+)A = (((VA)B)A is better than B)A

= (((VA)A)B)A is better than B by Commutativity
= ((VA)B)A is better than B by Idempotence
= VAB+

By similar reasoning, (VAB+)B = VAB+. So

VAB+(A) = (VAB+)A(⊤) = (VAB+)B(⊤) = VAB+(B)

This contradicts the inequality stated above. So Comparative Value entails that, for
every reasonable pair (C, V), A, B, and (A is better than B) are jointly incompatible.
But this is a very strange result. For instance, suppose A is the proposition that you’ll
receive a million dollars, and B is the proposition that you’ll have a pleasant lunch.
A being better news than B doesn’t preclude both being true.

Similar arguments apply to some other plausible-sounding principles about subjec-
tive value. Setting aside Lewis’s somewhat idiosyncratic version of  Desire as Belief,
here is a more minimal principle about the proposition that A is good. If  you learn
this, then A should be good news for you: that is, you should assign higher subjective
value to A than to the status quo—your value for A should exceed your value for,
say, 2 + 2 = 4.

Good News. Let (C, V) be a reasonable state for which C(good A) >  0, and
let (C+, V+) be the result of  updating with good A. Then for a tautology ⊤,

V+(A) > V+(⊤) unless C+(A) = 0
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For the same reason, there is bad news for Good News. Just substituting ⊤ in for B in
the argument about Comparative Value, we conclude that for any reasonable state,
good A, A, and ⊤ are jointly incompatible. Since (C⊤, V⊤) = (C, V), this means that
good A and A are incompatible. So Good News implies Converse Pessimism: what
is good cannot be true.

Consider one last principle. Suppose you learn that A is desirable to degree x. In
that case, it seems plausible that the subjective value you ought to assign A is x.8

Exact Value. Let (C, V) be a reasonable state for which

C(the value of A is x) >  0

and let (C+, V+) be the result of  adding as evidence (the value of A is x). Then

V+(A) = x unless C+(A) = 0

By a similar line of  reasoning, this principle implies that for any distinct values x and
y, the four propositions A, B, (the value of A is x), and (the value of B is y), are jointly
incompatible. Again, this is a very strange result. The information that there is ten
dollars in Box A and twenty dollars in Box B surely doesn’t rule out the possibility
that you will get both boxes. (We defer the proof  of  this fact until after we introduce
simpler notation in Sections 4 and 5.)

4 No	Truth	Value?

Let’s return to conditionals. A standard reply to Lewis’s triviality theorem is to say
that Stalnaker’s Thesis can be retained if  we maintain that conditional sentences
“have no truth values, no truth conditions, and no probabilities of  truth” (Lewis
1976, 303).9 Of  course, the argument didn’t have any premises explicitly about
truth. So for this idea to help escape triviality, it needs to be elaborated. As Lewis
points out:

Merely to deny that probabilities of  conditionals are probabilities of  truth,
while retaining all the standard laws of  probability in suitably adapted form,

8Here we could assume some arbitrary numerical scale of  value, and let x be a number on that
scale. But there’s no need to do that: x could just as well be a quantity of  desirability itself, rather than
a number.

9The “expressivist” idea that certain declarative sentences lack truth values is argued for indepen-
dently in each of  the domains we’ve discussed. On conditionals, for overview see Bennett (2003, sec.
38) and Edgington (2014, sec. 3). On probability operators, see Yalcin (2012). On evaluatives the
literature is vast; see van Roojen (2014) for an overview.
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would not yet make it safe to revive the thesis that probabilities of  conditionals
are conditional probabilities. It was not the connection between truth and
probability that led to my triviality results, but only the application of  standard
probability theory to the probabilities of  conditionals.

Accordingly, Lewis goes on to offer two ways someone might modify standard prob-
ability theory.

He might drop the requirement that the domain of  a probability function is a
Boolean algebra, in order to exclude conjunctions with conditional conjuncts
from the language. Or he might instead limit … the law of  additivity, refusing
to apply it when the disjuncts A and B contain conditional conjuncts. Either
maneuver would block my proofs (1976, 304).10

But in fact, neither maneuver looks like it blocks our simplified proof. Look again,
and you’ll see that the proof  never conjoined a conditional with anything, and never
appealed to the law of  additivity.11

Of  course, we did use certain facts about conditional credences and conditional-
ization, so it’s natural to worry that we might have illicitly smuggled in some such
assumptions about conjunctions or additivity, in which case the streamlined argu-
ment could be blocked by one of  these maneuvers after all. Indeed, the standard
definition of  conditional probability makes reference to the probability of  a con-
junction: for instance, the credence C(if A, B ∣ ¬B) is standardly identified with the
ratio of  credences

C(¬B ∧ (if A, B))
C(¬B)

This ratio involves a conjunction that Lewis’s first maneuver might exclude.

But identifying conditional credences with ratios of  unconditional credences is in-
dependently problematic. An ideally sharp dart thrown at a square region has zero

10These maneuvers have become standard responses to the triviality results. Adams (1975) identifies
the assumption to be rejected thus: “[T]he probability of  a proposition is the same as the probability that it is
true. A more exact statement is that the probability of  a proposition is the sum of  the probabilities of
the possible states of  affairs in which the proposition would be true …” (p. 2, original emphasis). That
is, for Adams giving up probabilities of truth amounts to giving up the additive law for probabilities.
Proposing restrictions on embedding conditionals is also a common reaction. See Bennett (2003, sec.
39) for overview.

11There’s a more radical way of  developing the claim that conditionals don’t have truth conditions:
by denying that conditional sentences express anything which is a fit object of  credence at all, or
which can be learned or supposed. (And of  course one might take the same line on epistemic modals
or evaluatives.) This approach doesn’t provide a way of  maintaining Stalnaker’s Thesis (or the other
theses we’ve considered). For that thesis says which credence you ought to assign a conditional, and
thus implies that you ought to assign some credence to a conditional. Since we’re specifically interested
in “expressivism” as a way of  defending these theses from triviality, we’ll set this radical version aside.
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probability of  landing on the left edge (E); but even so, it might do so, and condi-
tional on it hitting the edge it seems sensible to assign probability 1⁄2 to it hitting the
upper half  (H). In this case, the probability of E is zero and the ratio C(H ∧ E)/C(E)
is thus undefined—but the conditional probability C(H ∣ E) remains perfectly intel-
ligible (Hájek 2003). Furthermore, zeros aside, even if  there is no conjunction with
a conditional conjunct, and thus the ratio formula for C(if A, B ∣ E) is undefined, it
still makes perfect sense to ask how your credence in the conditional should evolve
when you get new evidence; thus it still makes sense to assign it a conditional cre-
dence given such evidence. So someone who denies the existence of  conjunctions
with conditional conjuncts has an additional reason to reject the identification of
conditional credence with a ratio of  unconditional credences.

Since we shouldn’t appeal to the standard ratio definition of  conditional credence,
it’s important for us to clarify what structural assumptions are involved in our argu-
ments. There are standard ways of  handling the mathematics of  primitive con-
ditional probabilities (such as Popper functions); but in fact the assumptions we
need are even thinner than those built into such frameworks. For example, we
won’t assume that an epistemic state involves assigning numerical credences to any
propositions. So we’ll restate the triviality proof  now using a simple, somewhat non-
standard technical framework.

We’ll take as primitive the notion of  a reasonable state S, and the notion of up-
dating a state on a certain proposition A; we label the state that results from this
update S[A]. These states are to be understood as abstract representations of  certain
epistemically important features of  agents (in the same spirit as credence functions,
or the “information states” of  e.g. Veltman 1996, which we discuss in Section 7). We
are neutral for now as to exactly which features are represented, but states shouldn’t
be understood as fully detailed psychological descriptions. Something that makes a
psychological difference between agents may, even so, make no difference to what
“state” they count as being in.

This is a good place to approach more carefully a point we’ve kept in the background
so far. We’ve sometimes glossed conditional probabilities as the probabilities that
one ought to have after learning a certain proposition. For many purposes this
gloss is unproblematic, but it may not generally be the best way to understand what
updating an epistemic state with a proposition really comes to.

One concern arises from standard objections to Ramsey’s famous test for condition-
als: “If  two people are arguing ‘If p will q?’ and are both in doubt as to p, they are
adding p hypothetically to their stock of  knowledge and arguing on that basis about
q” (1990 [1929], 155). There are cases where this way of  evaluating a conditional
seems to give wrong results. You can be confident that if  you’re being spied on you
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don’t know it. But on the hypothesis that the proposition that you’re being spied on
was added to your stock of  knowledge, you would know it. (This kind of  example is
attributed to Richmond Thomason; see Bennett 2003, 28–29.) Similarly, you may
assign high conditional probability to not knowing you’re being spied on, condi-
tional on being spied on. But we might think that after learning that you’re spied
on, you ought not assign high probability to not knowing it.

It’s not so obvious that this line of  thought shows that it’s wrong to equate the con-
ditional probability of H on E with the probability you ought to have in H upon
learning E—and nothing more. Normally when one learns that one is being spied
on, one also notices having learned that. That just means that learning you’re being
spied on and nothing more isn’t a normal case.

But there are other problems for the Ramsey Test that carry over more straightfor-
wardly. Take the proposition M that it’s raining and you never learn it. Conditional
on M, it’s sensible to have high conditional probability that you won’t get to hear
today’s weather report. But the hypothesis that you learn M is incoherent (given
that learning is factive and distributes over conjunction: see Fitch 1963, Theorem
4; see also Chalmers and Hájek 2007).

A better way to think about updating on new evidence is not in terms of  learning,
but rather in terms of supposing. While you can’t learn that it’s raining and you never
learn it, it’s easy to suppose this, and to consider what to think about other questions
given this supposition. So we’ll think of S[A] as the epistemic state that results from
adding to the state S the supposition that A. For simplicity, like standard Bayesians
we assume that for any state S there is at most one reasonable state that results from
adding a particular proposition as evidence.

But there may still be suppositions which do not result in any reasonable state—
for example, logical contradictions. Or if  you suppose that Bea was born in 1985,
then the additional supposition that Bea was born in 1980 leads to absurdity. In
general, let’s say that S rules out A iff S[A] is not a reasonable state. We’ll adopt
the convenient convention that if S rules out A, then S[A] is stipulated to be the
absurd state, which we denote ⊥. We also adopt the convention that ⊥[A] = ⊥
for any proposition A.

Similarly, A and B are incompatible (for a state S) iff S[A][B] = ⊥. That is, either
S rules out A, or else S[A] is a reasonable state that rules out B. (This is analogous to
the probabilistic definition of  compatibility in Section 1.) Finally, A implies B for
a state S iff A is incompatible with ¬B for S. We should emphasize that even though
these terms are obviously suggestive of  similar notions involving sets of  possible
worlds, classical consequence, or probability, we don’t mean to build in assump-
tions from any of  those domains. We’ll explicitly state the structural assumptions
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that our results rely on.

In this framework, assigning credence zero to a proposition no longer plays any
important role. Indeed, assigning numerical credences to propositions no longer
plays any role at all. So let’s restate a pared down version of  Stalnaker’s Thesis that
does without numerical credences as well.

New Stalnaker’s Thesis. Let S be any reasonable state that does not rule
out A. Then

S rules out (if A, B) iff S[A] rules out B

Notice the obvious way in which this is weaker than Stalnaker’s Thesis: it only
applies to an extreme attitude toward the conditional—ruling it out—and puts no
direct constraints on intermediate attitudes.12

In Section 1 we showed that Stalnaker’s Thesis leads to an unacceptable conclusion.
We’ll now extend that argument to New Stalnaker’s Thesis, using the following two
assumptions:

Negation. For any reasonable state S, the propositions ¬A and A are incom-
patible.

Commutativity. For any reasonable state S and propositions A and B,

S[A][B] = S[B][A]

Note that unlike the principle of  Commutativity that we discussed in Section 2, this
principle is not a theorem of  the probability calculus, but rather a basic postulate.
In due course we’ll explore the possibility of  dropping it. Of  course, if  you interpret
states to simply be (C, V) pairs, and S[A] to be (CA, VA), then the postulate follows
from the corresponding theorem. But our use of  the postulate does not assume or
depend on these identifications.

It’s instructive to compare this Commutativity principle with an alternative thesis
we briefly discussed in Section 2: “if  the relevant evidence and experience collected
is the same, then the order of  collection should not matter for the final degrees of
belief ” (Arntzenius 2003, 364). While it is related, this thesis differs from our pos-
tulate in two important ways. First, while Arntzenius’s thesis concerns arbitrary

12There is also a subtle way in which New Stalnaker’s Thesis might be slightly stronger than the
original. Since ruling out a proposition is no longer identified with assigning numerical credence
zero, one might have thought it was compatible with Stalnaker’s Thesis to have both C(if A, B) = 0
and C(B ∣ A) = 0, while ruling out just one of  them. But while it might obey the letter, clearly this
would be out of  the spirit of  the original proposal, which says that one takes the same attitude toward
(if A, B) as one conditionally takes toward B, given A.
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“evidence and experience”, our Commutativity postulate specifically concerns up-
dating on propositions. Of  course, if  updating on evidence and experience always
amounts to updating on some proposition, then this difference of  formulation is in-
significant. But Richard Jeffrey notably rejects this connection: for example, if  you
are presented with visual experience of  the color of  a cloth by candlelight, he argues
that “a change in the probability assignment is clearly called for, but … the change is
not occasioned simply by learning of  the truth of  some proposition E” (1983 [1965],
165). Moreover, on a natural construal of  Jeffrey’s alternative account of  updating,
the order in which non-propositional evidence is received can make a difference to
one’s final probabilities (Field 1978; Domotor 1980; see also Lange 2000; Weisberg
2009). Thus Jeffrey’s account is at odds with Arntzenius’s thesis; but it is not di-
rectly at odds with Commutativity as we have construed it, since Jeffrey-updating
is not a rule for updating on propositional evidence. (That said, Jeffrey’s view of
evidence does present a challenge to the generality of  our framework, though we
won’t explore that challenge here.)

The second point of  contrast is that Arntzenius’s version of  the thesis concerns the
(presumably temporal) “order of  collection” of  evidence. But our Commutativity
postulate does not explicitly involve an order in time, but only the “order of  op-
erations” in the mathematical sense. The state S[A][B] is the result of  updating
with B the state that results from updating S with A. Still, there is a straightforward
connection between “atemporal” Commutativity and temporally ordered updates,
since the beings whose epistemic life we wish to describe using these abstract states
typically realize them in a certain temporal order. You’re in state S, and then, after
supposing A, enter state S[A], and then after supposing something further, end up in
S[A][B]. Neither the states nor the update function themselves require this ordering.
By analogy, the abstract definition of  a transition function t for a Turing machine
does not explicitly say anything temporal: but any natural physical realization of
this abstract machine will first be in a state S, and then later in time be in the state
t(S).
Commutativity has two important corollaries we’ll use. (In fact, the argument
against New Stalnaker’s Thesis only relies on these weaker corollaries, rather than
full-fledged Commutativity.)

Symmetry. For any reasonable state S, if A and B are incompatible, then B
and A are incompatible.

(If A and B are incompatible for S, then by Commutativity S[B][A] = S[A][B] = ⊥.)
This in turn implies:

Monotonicity. If S rules out A, then S[B] rules out A.
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(If S[A] = ⊥ then S[B][A] = S[A][B] = ⊥[B] = ⊥.)

Now consider any reasonable state S such that A and ¬B are compatible. Negation
tells us that S[¬B] rules out B, and Monotonicity then implies that S[¬B][A] rules
out B. So applying New Stalnaker’s Thesis to S[¬B] tells us that S[¬B] rules out (if
A, B). This means that ¬B is incompatible with (if A, B); or by Symmetry, (if A, B)
is incompatible with ¬B. In short, for any reasonable state for which A and ¬B are
compatible, (if A, B) implies B. This conclusion is exactly parallel to the conclusion
that Lewis originally derived; as we discussed earlier, this conclusion is unacceptable.

Symmetry and Negation were essentially the only assumptions we needed to prove
this result. So neither of  the two maneuvers Lewis proposed are to the point: the
proof  never involves embedding a conditional (not even under negation), and it
never appeals to additivity. If  denying that conditionals have truth conditions is
going to provide any way of  retaining New Stalnaker’s Thesis (a thesis which is at
least as compelling as the old one), it will have to be elaborated some third way.

It’s also worthwhile to consider how this result connects to results concerning a
different “qualitative” version of  Stalnaker’s Thesis (see Gärdenfors 1986; Stalnaker
1976b; Harper 1976). Let’s say S accepts a proposition A iff S[A] = S: adding A as
a supposition makes no difference when A is already taken for granted.13

Harper’s Thesis. For any reasonable state S, if S does not rule out A, then

S accepts (if A, B) iff S[A] accepts B

This thesis corresponds to the special case of  Stalnaker’s Thesis for probability one,
rather than zero (if  we set aside parallel concerns about how probability one and
acceptance might come apart in certain cases).

We can make similar trouble for Harper’s Thesis if  we add two further assumptions:

Idempotence. For any reasonable state S and proposition A,

S[A][A] = S[A]
13Introducing this notion of  acceptance raises some questions about the interaction between it and

the notion of  implication, as we’ve defined it. In particular, this is a plausible connection:
A implies B for S iff S[A] accepts B.

This connection can be derived using a further reductio-like postulate:
S rules out ¬B iff S accepts B.

(Apply the postulate to the state S[A] and use the definitions.) This postulate might be contested—for
instance, by intuitionists—but it’s worth noting that it is upheld by the standard dynamic model of
negation we discuss in Section 7 (Veltman 1996, Def. 2.3).
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Supposing something twice over is no different from just supposing it once. An
alternative way of  stating Idempotence is that S[A] accepts A.

Conditional Non-Contradiction. For any reasonable state that does not
rule out A, (if A, ¬B) and (if A, B) are incompatible.

If  the bottle might have fallen, and you suppose that if  the bottle fell it didn’t break,
then you thereby rule out the proposition that if  it fell it broke.

Given Commutativity, Idempotence, and Conditional Non-Contradiction, we can
similarly conclude that Harper’s Thesis implies that contingent conditionals imply
their consequents. The proof  is mostly the same as before. Suppose that S is any
reasonable state for which A and ¬B are compatible—so S[¬B] and S[¬B][A] are
reasonable states. Then by Commutativity S[¬B][A] = S[A][¬B], which accepts ¬B
by Idempotence. By Harper’s Thesis, S[¬B] accepts (if A, ¬B). Then by Conditional
Non-Contradiction, S[¬B] rules out (if A, B), and thus by Symmetry, (if A, B) implies
B.14

(We should comment briefly here on how this relates to an earlier triviality result
of  Peter Gärdenfors (1986), in a similar update-centered framework. Gärdenfors
claims that this result

is an even more general version of  Lewis’s triviality result. It is much more
general since it depends neither on the assumption that consistent revision
should be made by conditionalization, nor on the assumption that states of
belief  should be modelled by probability functions. (1986, 89)

But closer inspection reveals that this isn’t exactly right: in fact, Gärdenfors uses
assumptions that conditionalization does not obey—and indeed, which are incon-
sistent with Commutativity. This is a key assumption of  Gärdenfors’s proof  (propo-
sition (2) on p. 84, translated into our terminology and notation):

For any reasonable state S, if S rules out A, then A is logically inconsistent.

This might initially sound plausible: only the absurd leads to absurdity. But it im-
plies in particular that S[snow is not white] does not rule out (snow is white): the

14Here’s an alternative package of  assumptions we could use to derive similar trouble for Harper’s
Thesis. Rather than defining acceptance in terms of  update, we could take acceptance as primitive,
and use these linking principles instead:

If A and B are incompatible for S, and S accepts A, then S rules out B.
If S rules out A, then S accepts ¬A.

(That is, A and ¬A are exhaustive in a certain sense.) Using these assumptions together with Symmetry,
Negation, and Conditional Non-Contradiction, we can again show that Harper’s Thesis entails that
contingent conditionals imply their consequents. The proof  goes very similarly.
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framework requires updating sequentially on ¬A and A to have a well-defined non-
absurd result, unless A is ruled out by any state whatsoever.15 Gärdenfors also uses
these (plausible) assumptions:

S[A] accepts A

No reasonable state accepts both A and ¬A

Let A be neither a tautology nor a contradiction. Then according to these assump-
tions, S[A][¬A] accepts ¬A, S[¬A][A] accepts A, and both of  these are reasonable
states—and so they are distinct. So Gärdenfors’s assumptions are inconsistent with
Commutativity. But Lewis’s result—and ours—concern commutative updates, like
conditionalization. Thus, while there is a strong superficial similarity between Gär-
denfors’s result and ours, in fact they are doing importantly different things.)16

5 Streamlining	the	Other	Arguments

Applying this framework, we can see that the arguments from Section 3 rely on
similarly minimal assumptions. We’ll begin with “might”.

New Might. For any reasonable state S that does not rule out (might A),

S[might A] does not rule out A

(Under the simplifying assumption that ruling out A is the same as having zero cre-
dence in A, then Might and New Might say the same thing. But for the reasons
we’ve discussed—recall the dartboard example—we don’t assume that.)

As before, this principle has the bad consequence that might A implies A. Here’s
the argument. Suppose that S is a reasonable state for which ¬A and (might A) are
compatible. Then S[¬A] does not rule out (might A), and applying New Might to

15The thought here is that when you update on A, you then give up any previous supposition of
¬A. This is in the spirit of  theories of  “non-monotonic” updating—like AGM belief  revision—where
updates don’t merely add information, but can also take it way. (Not coincidentally, Gärdenfors is the
“G” in “AGM”.) But standard conditionalization doesn’t work like this.

16Stalnaker proves another related result (1976b, in correspondence with Harper; see Harper 1976).
Its context is Popper functions, which build in substantial probabilistic assumptions. But Stalnaker’s
proof  only makes trouble for the stronger thesis that P(B ∣ A) = 1 iff P(if A, B) = 1 even when P(A) = 0.
(Specifically, see step 5 on p. 114: note that the assumptions there guarantee that PA∧X(Y∨Z∨B) = 0.)
In contrast, our result applies even with no assumptions about what happens to a conditional when
its antecedent is ruled out—as is fitting, since conditionals with epistemically impossible antecedents
are a deviant case.
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this state tells us that S[¬A][might A] does not rule out A. But by Negation S[¬A]
rules out A, so by Monotonicity S[¬A][might A] does rule out A. This is a contradic-
tion, so we can conclude that ¬A and (might A) are incompatible for any reasonable
state S, which is to say (by Symmetry) that (might A) implies A. Again, the only as-
sumptions we needed for this argument were Negation and Symmetry.

We’ll briefly point out how things go for the rest. For the theses about probability,
we’ll first need to say something about the connection between the abstract “states”
of  our framework and assignments of  probability. Let’s suppose that for a state S and
a proposition A, CS(A) is the credence assigned to A in state S. To avoid excessive
subscripts, we’ll use CS(B ∣ A) as an alternative way of  writing CS[A](B).
Here’s a natural hypothesis:

Zero. If S rules out A then CS(A) = 0.

(Note that we won’t really need credences to be on a numerical scale for this to make
sense—we’ll just need comparisons of  lower or higher levels of  confidence, and a
lowest level of  confidence which we can call “zero”.)

Now we can state natural analogues to our original theses about probability.

New Probably. For any reasonable state S that does not rule out
(probably A),

CS(A ∣ probably A) > CS(¬A ∣ probably A)

New Exact Probability. For any reasonable state S that does not rule out
(the probability of A is x),

CS(A ∣ the probability of A is x) = x

New Comparative Probability. For any reasonable credal state S that
does not rule out (A is more probable than B),

CS(A ∣ A is more probable than B) > CS(B ∣ A is more probable than B)

The argument goes basically the same way in each case. For instance, suppose that
there is a reasonable state S for which ¬A is compatible with (probably A). In that
case, by New Probably, CS(A ∣ ¬A, probably A) should be high, and thus non-zero,
and thus S[¬A][probably A] should not rule out ¬A. But as before, by Negation
and Monotonicity, S[¬A][probably A] does rule out A. So we conclude that ¬A is
incompatible with (probably A), or (by Symmetry) (probably A) implies A.
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For the theses about value, we also need to say something about how the abstract
“states” of  our framework connect to value. Let’s suppose that for a state S, there is a
certain degree of  desirability VS, which is your subjective evaluation of  the goodness
of  reality. Again, to avoid messy subscripts, we’ll use VS(A) as an alternative way
of  writing VS[A], which is your evaluation for how things are conditional on A. (As
before, note that VS(A) may not make sense when S rules out A.)

New Comparative Value. Let S be any reasonable state which does not
rule out (A is better than B). Let S+ = S[A is better than B]. Then if S+ does
not rule out either of A or B, VS+

(A) > VS+
(B).

New Good News. Let S be any reasonable state which does not rule out
good A. Let S+ = S[good A]. Then if S+ does not rule out A, VS+

(A) > VS+
.

New Exact Value. Let S be a reasonable state which does not rule out (the
value of A is x). Let S+ = S[the value of A is x]. Then if S+ does not rule out
A, VS+

(A) = x.

Given Commutativity and Idempotence, these theses lead to trouble. Take the case
of  New Comparative Value. Suppose for reductio that S is a state for which A, B, and
(A is better than B) are compatible. In that case, we can apply New Comparative
Value to S[A][B], letting

S+ = S[A][B][A is better than B]

By Commutativity and Idempotence, S+[A] = S+ = S+[B]. But this implies that
VS+

(A) = VS+
(B), which violates New Comparative Value. So New Comparative

Value implies that A, B, and (A is better than B) are incompatible, for any reasonable
state S; or by Symmetry, (A is better than B) is incompatible with A and B. As before,
that conclusion is very weird.

The proof  that New Good News implies Converse Pessimism (good A implies ¬A) is
similar.

In the case of  New Exact Value, let x and y be distinct, let X be (the value of A
is x), let Y be (the value of B is y), and suppose for reductio that A, B, X, and Y
are jointly compatible. In that case we can apply New Exact Value to the state
S′ = S[A][B][X][Y] twice:

VS′[X][A] = VS′[X](A) = x
VS′[Y][B] = VS′[Y](B) = y
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But also, Commutativity and Idemopotence imply

S′[X][A] = S[A][B][X][Y][X][A]
= S[A][B][X][Y]
= S[A][B][X][Y][Y][B]
= S′[Y][B]

Together these equations contradict the fact that x ≠ y. So (the value of A is x),
(the value of B is y), A, and B, are jointly incompatible. This conclusion is also
unacceptable.17

The idea of  all three of  these proofs is the same: no news is not good news. If  a state
S accepts A, then VS(A), the value S assigns reality conditional on A, is just the value
VS that S assigns reality already. In particular, if S accepts both A and B, then S must
assign each of  them the same value.

6 Parameterizing	the	Principles

So far we’ve seen that a simplified version of  Stalnaker’s Thesis and a host of  simi-
larly plausible-sounding principles have unacceptable consequences given very lean
assumptions about how to update with new information. Subsets of  Commutativity,
Idempotence, Negation, and Zero suffice for us to derive absurdities from the prin-
ciples. (Specifically: Commutativity and Idempotence for the evaluative principles;
Negation and Symmetry, which follows from Commutativity, for “might” and “if ”;
Negation, Symmetry, and Zero for the probability principles.) These derivations
don’t turn on any details of  a theory of  probability, or on embedding conditionals,
modals, or evaluative claims in conjunctions or disjunctions. Even our use of  Nega-
tion is innocent enough in this respect: we only ever needed to negate “vanilla”
propositions involving no problematic conditionals, modals, or evaluations. So a
restricted version of  Negation, which says that ¬A is incompatible with A as long as
A is “vanilla”, will serve our purposes just as well.

Given how natural these assumptions are, the pressure is strong to reject the original
principles as based on some kind of  mistake. The literature contains some standard
suggestions about how this diagnosis might go. One standard thing to say is that
conditionals, modals, and evaluatives involve an autobiographical element, so the

17As we noted, Lewis’s original Desire as Belief  thesis is a bit less natural than these. Deriving trouble
for it in our framework also uses somewhat different assumptions. In particular, unlike the arguments
against the other theses, the argument against Lewis’s Desire as Belief  does depend on embedding
(good A) under disjunction (or, in alternative forms of  the argument, conjunction or negation).
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truth conditions for the sentence “it might be the case that A” vary along with the
epistemic state of  the speaker.18 There is no single proposition perspicuously labeled
(might A); rather, it would be more perspicuous to write (mightS A), parameterized
with a state S. In that case New Might should be rewritten as well.

Parameterized Might. If S does not rule out mightS A then S[mightS A]
does not rule out A.

This revised principle is not vulnerable to the triviality result. Recall that the result’s
proof  involved applying New Might to the state S[¬A]. Correctly parameterized, the
conclusion of  the argument is that mightS[¬A] A implies A. But it is plausible that,
for any reasonable state, this “might” claim should be ruled out—in which case the
implication would hold trivially. Suppose, as a simple toy model, that mightS A is
the proposition that that S does not rule out A. Then mightS[¬A] A would say that
S[¬A] does not rule out A. Anyone who knew the fact Negation, that S[¬A] does
rule out A, would then rule this out. So the properly parameterized conclusion of
the argument is acceptable after all.

This diagnosis works the same way for each of  the principles. For instance, suppose
(A is betterS than B) is the proposition that VS(A) > VS(B). For any state that already
includes the information that A, VS(A) is just the same as the value of  a tautology.
So for a state with both A and B added, VS(A) = VS(B). Thus anyone who knows
this much about how subjective value works should rule out (A is betterS[A][B] than
B). As in the case of  “might”, then, the parameterized conclusion of  the triviality
argument turns out to be acceptable.

One thing worth noting is that if  features of  your own state are not always open
to introspection, then even principles like Parameterized Might are vulnerable to a
separate line of  attack.19 Consider again the toy model for (mightS A), and suppose
also that it’s possible to be in a state S that rules out A, without ruling out that S
does not rule out A.20 (To see the structure here, note that if  ruling out A were the

18Van Fraassen (1976) gives this reply to the original triviality results for conditionals. Hájek and
Pettit (2004) defend this kind of  reply to Lewis’s “desire as belief ” triviality result—they call it the
“indexicality loophole”. Kratzer’s (1977) semantics for epistemic (and other) modals explicitly involves
a contextually variable “modal base”.

19In the special case of  conditionals, there are further independent attacks on Parameterized Stal-
naker’s Thesis, from non-dynamic triviality results (see citations in footnote 1). These other results—
which turn on either details of  the logic of  conditionals embedded in conditionals, or (in the case of
Hájek 1989) on a semantics that assigns each sentence a finite set of  worlds. For critical discussion see
Bacon (2014, sec. 2.2). These other results don’t generally have obvious parallels for the other theses
we’ve discussed.

20Note that “rules out” is hyperintensional. If  you’re in the state S[¬A], which rules out A, then
you should rule out that S[¬A] doesn’t rule out A. But just because your state is S+ = S[¬A], it doesn’t
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same thing as knowing ¬A, then this would amount to a failure of  the KK principle,
that if  you know ¬A then you know you know ¬A. For arguments for the existence
of  such cases see e.g. Williamson (2002 ch. 4). For dissent see e.g. Greco (2014).)
In that case—since S does not rule out (S does not rule out A), and mightS A is
the proposition that S does not rule out A—S doesn’t rule out mightS A. But also,
since S rules out A—assuming Monotonicity—S[mightS A] still rules out A. This
contradicts Parameterized Might.

Similar considerations apply even to the parameterized principles about probability
and value. Take this one:

Parameterized Exact Value. Let S be a reasonable state which does not
rule out (the valueS of A is x). Let S+ = S[the valueS of A is x]. Then if S+
does not rule out A, VS+

(A) = x.

Let’s consider a toy model of  how uncertainty about subjective value might work.
Your state S consists of  a set of  worlds, as does each proposition. A state S rules out
a proposition A iff  their intersection is empty. You have a certain fixed assignment
of  a value V(w) to each possible world w. (For simplicity, let V(w) be a number.) The
subjective value for S of  the proposition A is the average value of  the worlds that are
in both S and A.21 You can be in doubt about your own state, so for each world w
in S, there is a certain state S(w)—your state according to that world—which may
vary from world to world, and in particular need not be identical to S.

Here’s a simple case (Figure 1). You’re either looking at a real Rembrandt or an
excellent forgery; if  it’s real, then you can rule out it being fake; but if  it’s an ex-
cellent forgery, you can’t rule out it being real.22 Keeping things simple, let A be
the proposition that is true at just two possible worlds, Good—it’s a Rembrandt—
and Bad—it’s a forgery. Your state in the Good world S(Good) rules out Bad but
not Good, while S(Bad) doesn’t rule out either world. Say V(Good) = 15 and
V(Bad) = 5. Thus the subjective value for S(Good) is 15, and the subjective value
for S(Bad) is 10, the average of V(Good) and V(Bad). Accordingly, the proposition
(the valueS of A is 15) is true just at Good, and the proposition (the valueS of A is 10)
is true just at Bad.

follow that you also have to rule out that S+ rules out A. Even if  your state includes ¬A, you might
truly say “I don’t know whether this state rules out A”. By analogy: you might be the loser, and rule
out the loser winning, without ruling out you winning.

21This is just the expected value, where we’re assuming for simplicity that the prior world-
probabilities are uniform.

22Cases like this are often discussed in connection to the asymmetry of  epistemic accessibility. For
example, it’s often thought that being embodied is compatible with the evidence a brain in a vat has,
but not vice versa (see e.g. Williamson 2002, ch. 7).
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Figure 1: A case of  uncertainty about one’s own subjective values.

Suppose you are actually in the Bad world, so S = S(Bad) = {Good, Bad} (even
though you don’t know this). In that case, you don’t rule out the valueS of A being
10. (Indeed, it is 10.) But consider

S+ = S[the valueS of A is 10]

This adds to S the information about what your subjective value in S is. Note that
when you learn this, you thereby learn what your state is. Learning that the valueS
of A is 10 eliminates the possibility that (the valueS of A is 15) is true, and thus it
eliminates the possibility that you are in the Good world. So S+ is the singleton
set containing just Bad. In that case, your new evaluation in S+ is just the value of
the Bad world, namely 5. So VS+

(A) = 5, and not 10 after all. This contradicts
Parameterized Exact Value.23

Aside from these technical objections, it’s worth noting that the parameterized prin-
ciples lose some of  the initial appeal of  the original formulations. After all (as two
referees pressed on us) why should learning your old value constrain you to have that
same value in your new state? Perhaps this constraint can be motivated, but it by
no means has the same straightforward ring of  plausibility as the simpler original
version.

7 Truth	Conditions	and	Commutativity

Earlier we considered and rejected two ways of  elaborating the idea that conditionals
(modals, evaluatives) lack truth conditions—either by saying that they don’t embed
under conjunction, or by giving up the additive law for probabilities. Saying either
of  those things can’t help save the plausible-sounding principles, since our arguments
raise trouble for those principles without relying on embedding or details about

23This case is analogous to Maria Lasonen-Aarnio’s “Clock Belief ” (2015, sec. IV; see also Chris-
tensen 2010). That example amounts to a counterexample to the parameterized version of  the prin-
ciple we’ve called Exact Probability.
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probabilities. Now we’re in a position to consider what a third elaboration of  the “no
truth value” position might look like. There’s really only one assumption common
to all of  the arguments that is worth targeting: Commutativity.

Note that Commutativity naturally falls out of  a standard truth-conditional picture,
where adding information to an epistemic state works by shrinking a set of  live pos-
sibilities, eliminating those possibilities at which the new information isn’t true. If
that’s how things work, then Commutativity looks no stronger than a mundane fact
about set intersection. If W is a set of  live possibilities, and we update with A and
then B, this leaves us with just the possibilities at which A is true and B is true—which
are precisely the same as the possibilities at which B is true and also A is true. To
give up Commutativity requires giving up this picture. So it wouldn’t be surprising
to see those who give up Commutativity also rejecting the “set of  live possibilities”
picture.

Indeed, this is what we find. Within formal semantics, the main rival to the standard
truth-conditional picture is dynamic semantics, and one of  its signal features that it per-
mits violations of  Commutativity.24 The key thought is that, in general, the seman-
tic value of  a sentence is not a truth condition—something like a set of  possibilities—
but rather a “context change potential”: a rule for updating the conversational state
of  play, or “context”. While set intersection must commute, this is a special feature
of  that particular kind of  update; there is no reason to think in advance that arbitrary
rules for updating a context will commute. This just isn’t how arbitrary sequences of
changes work. Following the recipe, “Add two eggs, stir, and bake for 30 minutes”
has a very different result from “Stir, bake for 30 minutes, and add two eggs.”

Let’s sketch a simple (and quite standard) model for how this goes for “might”
(translating things along the way into the terminology we’ve used in this paper).
A state S is a set of  possible worlds. There is one “absurd” state, the empty set.
A “proposition”— something that can be supposed—can in general be modeled
by any function from states to states.25 We get the result of  updating S with A by
function application: so S[A] is just A(S). A state S rules out A iff S[A] is the absurd
state.26

24For an overview see von Fintel and Gillies (2007), and works cited therein. Rothschild and Yal-
cin (2015) argue that violations of  Commutativity and Idempotence are in fact the defining feature of
dynamic semantics.

25The word “proposition” is often reserved for our “vanilla” propositions; but we’re using the word
in a very general sense throughout this paper.

26It’s worth noting that while the formal model we’re discussing comes from semantics, we’re really
deploying it for epistemic purposes, as a model of  how epistemic states should be updated with certain
kinds of  propositions. As a referee pointed out to us, the dynamicists’ distinctive account of  the se-
mantic values of  English sentences using “if ”, “might”, or “should” is, strictly speaking, a separate
issue. The epistemology and the semantics fit together naturally, but one could in principle accept
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For “vanilla” propositions, like “snow is white” or “Bea was born in 1985”, the
update function takes each state S to the intersection of S with some set of  worlds—
the set of  worlds at which the proposition is true. For propositions like these, updates
do commute. But for other cases, like epistemic modals, it doesn’t work like this. The
effect of (might A) on a state S is a test. The test is passed, and the result is S, just in
case S does not rule out A. Otherwise the test is failed, and the result is the absurd
state.

S[might A] =
{

⊥ if S rules out A
S otherwise

This is a model of  New Might. By the definition, if S rules out A, then S rules out
(might A). Contrapositively, if S does not rule out (might A), then S does not rule
out A, and in that case by the definition S[might A] = S. So if S does not rule out
(might A), then S[might A] does not rule out A.

To show that this model violates Commutativity, consider a state S that doesn’t rule
out either of A or ¬A. Then S[might A] passes the test, and thus is the same as S. So
S[might A][¬A] = S[¬A], which is not absurd. On the other hand, S[¬A] does rule
out A. So S[¬A][might A] fails the test, and is absurd. In particular,

S[¬A][might A] ≠ S[might A][¬A]

(cf. Veltman 1996, 223). This is not only a counterexample to Commutativity but
also a counterexample to the weaker principle of  Symmetry: ¬A is incompatible
with (might A) for the state S, but (might A) is compatible with ¬A. This also pro-
vides a counterexample to the even weaker principle of  Monotonicity. The negation
of (might A) is interpreted as the “inverse test”: S passes the test ¬(might A) if  and
only if  it fails the test (might A). Since S doesn’t rule out A, S rules out ¬(might A).
But S[¬A] is not absurd, and doesn’t rule out ¬(might A) (cf. Veltman 1996, 230).

It’s also worth noting that the dynamic account of (might A) also permits counterex-
amples to Idempotence (see Dorr and Hawthorne 2013). In the dynamic model,
the conjunction (A and B) isn’t understood on the model of  set intersection, but
rather as function composition. That is, updating on (A and B) has the same effect as
first updating on A and then updating on B:

S[A and B] = S[A][B]

(So for the reasons we just discussed, (A and B) need not be equivalent to (B and A).)
Now consider the proposition

B = might A and ¬A

this model for epistemic update, while denying that it is a good model of  natural language meaning.
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As before, let S be a state that doesn’t rule out either A or ¬A. When we update S
with B, we first apply the test (which it passes) and then update with ¬A. So

S[B] = S[might A and ¬A] = S[might A][¬A] = S[¬A]

This is not the absurd state. Now update this with B a second time.

S[B][B] = S[¬A][B] = S[¬A][might A][¬A]

This time, S[¬A] fails the “might” test. This means S[B][B] is absurd, and so it is
distinct from S[B].
We can also provide bare-bones models for the other principles along the same lines
as this model for New Might. While they are instructive, we don’t claim that these
models are realistic. Avoiding the triviality results is one thing; fleshing out a positive
theory of  conditionals, modals, and evaluatives that predicts the relevant principles
is quite another.

In the case of  conditionals, if  instead of  full-fledged Stalnaker’s Thesis we are only
concerned with the limiting cases corresponding to probability one and zero—what
we called New Stalnaker’s Thesis and Harper’s Thesis—we can provide a simple
dynamic model.27 In the framework we have just described, where states are sets of
worlds, we define the update on a conditional proposition as follows (where A ⊃ B
is the material conditional):

S[if A, B] =
⎧⎪
⎨
⎪⎩

⊥ if S[A] rules out B
S if S[A] accepts B
S[A ⊃ B] otherwise

That is, in the extreme cases where a state conditionally accepts or rejects B, we
treat the conditional as a test; in the intermediate cases we treat it as a material

27Recall that for the fully general version of  Stalnaker’s Thesis for conditionals, there are other
obstacles arising from “static” triviality results. The dynamicist has an easy reply to the finite-set-of-
worlds argument of  Hájek (1989), since this approach abandons the idea that a conditional has a set
of  worlds as its semantic value. As for the argument of  Stalnaker (1976a): unlike either the Lewis-
style or Hájek-style arguments, this one does turn on embedded conditionals. As we’ve discussed,
giving up embedded conditionals won’t help in the context that Lewis suggested it; but it may have
an alternative motivation as a reply to Stalnaker-style “static” theorems. (But see Bacon 2014 for an
alternative reply.)

Moreover, as a referee pointed out, there may be other distinctive motivations for rejecting em-
beddings which are internal to the dynamic approach. Standard denotational semantics doesn’t give
much guidance about how to interpret tests embedded within tests, or within more general context
change potentials. Some progress on this project has been made, but one could also head off  some of
these challenges by rejecting the felicity of  certain embeddings.
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conditional. The key features of  the material conditional we are using here are (i) if
S rules out A ⊃ B, then S[A] rules out B; and (ii) if S accepts A ⊃ B, then S[A] accepts
B.28 This model violates Symmetry: S[¬B] will always rule out (if A, B), but if A and
B are logically independent then S[if A, B] need not rule out ¬B.

We can use a similar “test” trick to give models for the probabilistic and evaluative
principles. An example should be enough to get the idea across. We can let the
proposition (A is better than B) also be a test, defined as follows:29

S[A is better than B] =
{

S if VS(A) > VS(B)
⊥ otherwise

It’s clear that this model satisfies New Comparative Value: if S does not rule out (A is
better than B), then it must be that VS(A) > VS(B), and S+ = S[A is better than B] =
S. As with the model for “might”, this model violates Idempotence and Commuta-
tivity, as well as Symmetry and Monotonicity (which, recall, are weaker than Com-
mutativity). For instance, let S be a state with three equiprobable worlds with values
5, 10, and 15; let A be true at just the 10-world, and let B be true at just the 5 and
15-worlds. Then in S the expected value for A is no greater than the expected value
for B (both are 10), and thus S rules out (A is better than B). But if C is only true at
the 5-world and the 10-world, then S[C] assigns value 10 to A and value 5 to B, and
so S[C] does not rule out (A is better than B). In these dynamic models, ruling out
a proposition does not preclude ceasing to rule it out after an update. (Similar tests
provide models for the other principles in Section 5.)

For anyone who wants to hang on to some or all of  Stalnaker’s Thesis and the other
analogous theses we presented (in their original non-parametrized forms), the only
real option is to go in for some account that violates Commutativity for conditionals,
epistemic modals and evaluatives. (It’s still open to maintain a restricted version of
Commutativity that only applies when both propositions are “vanilla”.) This will
likely involve rejecting an orthodox truth-conditional approach. The most promis-
ing way forward for the stalwart defender of  such theses isn’t any of  the usual expres-
sivist maneuvers (rejecting embeddings or standard probability theory) but rather
something like this dynamic approach.

Conversely, if  you are convinced that your attitude conditional on supposing A and
then supposing B is inevitably the same as your attitude conditional on supposing B

28There are other ways of  achieving the same effect. For instance, the last clause of  the definition
could just as well use A ∧ B in place of A ⊃ B.

29We are assuming in the background some function V that assigns a number VS to each reasonable
state S. This could be given in the standard way, as an expectation operator on the utilities of  the worlds
in S, but for our purposes it doesn’t matter.
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and then supposing A (even for conditionals, etc.), then you should despair of  keep-
ing the theses. In that case, you should seek to explain away their initial attraction.
The points we noted about subtler parameterized versions of  the principles, and
failures of  luminosity—which are easy to overlook—may help with this project.

Once we recognize the simplicity of  the core arguments underlying Lewis’s twin
triviality theorems, and the ease with which they generalize, it becomes clear that
there only a few defensible ways forward. This isn’t the place to adjudicate between
them.
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