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Abstract: India dropped its target of 
500 GW of renewable energy capacity
fossil fuel sources by 2030. Its responsibilities
the United Nations Framework Conven
Climate Change [UNFCCC],and reducing
radiations by one billion tonnes by the end of the 
decade at the COP26 conference, held in Glasgow 
in November 2022.Researchers are continually 
searching for inexhaustible and reasonable energy 
sources. Solar energy is one of the greenest sources 
of energy and is also one of the cleanest. The most 
important factor in using solar energy is the 
location of the solar power plant.
objective of this study is to find the best location 
for a new solar power plant in a specific region 
called Bundelkhand region of Uttar Pradesh
India. Here we offer an extension of ELECTRE III 
method as two-phase Pythagorean neutrosophic
elimination and choice translating reality 
ELECTRE-III) method to adapt with fuzzy, 
ambiguous, unsure, and indeterminate criteria. The 
Pythagorean neutrosophicnumbers [PNNs]
the group decision support system of PN
ELECTRE III to measure performance of the 
alternatives. The options are entirely outclassed in 
the subsequent stage in view of the past stage's 
evaluations of them. By defining PNN
the technique of indifference threshold, preference 
threshold and veto threshold functions, which 
provide a more stable basis to drop outranking 
relations. By calculating the concordance 
credibility, discordance credibility and net 
credibility degrees of each alternative, the ranking 
module of the PN-ELECTRE III approach is made 
simpler. In order to confirm the applicability of the 
strategy suggested in this paper, the location 
selection problem for solar plants is finally solved.
 
Keywords: Solar Power Plant, Multi
Decision-Making, Pythagorean Neutrosophic
ELECTRE-III Method. 
 
1.  Introduction 
 

With the expansion in environmental concerns 
and the exhaustion of non-sustainable power assets
renewable energy sources are well known.
energy is one of the most abundant renewable 
energy sources. However, the location of the solar 
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reducing carbon 
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Researchers are continually 
searching for inexhaustible and reasonable energy 

Solar energy is one of the greenest sources 
of energy and is also one of the cleanest. The most 
important factor in using solar energy is the 

plant. The main 
the best location 
a specific region 

Bundelkhand region of Uttar Pradesh in 
an extension of ELECTRE III 

neutrosophic 
elimination and choice translating reality (PN-

with fuzzy, 
ambiguous, unsure, and indeterminate criteria. The 

[PNNs] used by 
the group decision support system of PN-
ELECTRE III to measure performance of the 

The options are entirely outclassed in 
the subsequent stage in view of the past stage's 

N we describe 
indifference threshold, preference 

and veto threshold functions, which 
is to drop outranking 

. By calculating the concordance 
credibility, discordance credibility and net 

e, the ranking 
ELECTRE III approach is made 

simpler. In order to confirm the applicability of the 
strategy suggested in this paper, the location 
selection problem for solar plants is finally solved. 

Multi-Criteria 
Neutrosophic Sets, 

in environmental concerns 
sustainable power assets, 

are well known. Solar 
energy is one of the most abundant renewable 
energy sources. However, the location of the solar 

plant is critical as it affects the efficiency and 
profitability of the plant. A suitable site for the 
solar plant should have high solar irradiance, fla
terrain, and adequate space. 
choosing the right location for the solar plant is a 
crucial task. In decision making for selecting the 
suitable location for the solar plant is a 
criteria decision-making [MCDM]
(Akram, Ilyas, and Garg 2020; Akram, Garg, and 
Zahid 2020). The MCDM problem deals with 
selecting the best alternatives based on
criteria. The ELECTRE-III method 
MCDM method that considers multiple criteria and 
ranks alternatives based on the 
Wang 2007a), although the ELECTRE
does not consider uncertainty and vagueness in the 
decision-making process. 

Fuzzy set theory is an extension of the 
traditional crisp set theory (Zadeh 1965)
makes it a useful tool in MCDM problems, where 
the criteria can frequently be uncertain or 
imprecise. By giving the logical framework for 
fuzzy set [FS], whose distinctive feature is to show 
cryptic data by the dint of membership function, 
Zadeh made an extraordinary commitment 
area(Zadeh 1965). In order to rank Sicily's 
international airports and vendors, 
Aleskerov F. and Monjardet B., presented m
versions of the ELECTRE-III process in fuzzy 
environment (Aleskerov and Monjardet 2002)
Gao et, al., analysis of the competitiveness of 
China's Quanzhou port combined the fuzzy
and ELECTRE-III techniques (Gao et al. 2018)
The fuzzy ELECTRE-III method was used by La 
Fata et. al. (La Fata and other authors 2019)
examine a situation involving It
healthcare. 

In 1986 (Atanassov 1986)
developed the basis for a realistic model with a 
changed structure, namely, intuitionistic fuzzy set 
[IFS], to explain the ambiguous information using 
satisfaction and dissatisfaction degrees 
given constraints. With the use of the ELECTRE
III approach for intuitionistic fuzzy 
al., investigated a case for the selection of the most 
suitable location for an offshore wind power 
station(Wu and other authors 2018; Xu, Chen, 
and Wu 2008). IFS theory is a further extension of 
the traditional fuzzy set theory. It allows elements 
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theory is a further extension of 
the traditional fuzzy set theory. It allows elements 



to have degrees of membership and non-
membership that are not necessarily equal to one 
another, making it a useful tool in dealing with 
uncertainty in MCDM problems (Akram, Ilyas, and 
Al-Kenani 2021). Further Pythagorean fuzzy 
subsets the extension of IFS, made problems more 
advanced(Yager and Abbasov 2013; Ren, Xu, and 
Gou 2016; Umamageswari and Uthra, n.d.; Akram, 
Dudek, and Ilyas 2019; Akram, Zahid, and 
Kahraman 2023; Akram, Dudek, and Dar 2019; 
Zhang and Xu 2014; Akram, Zahid, and Kahraman, 
n.d.; Akram and Ali 2020; Akram, Ilyas, and Garg 
2020; Zhang 2016; Akram, Ilyas, and Al-Kenani 
2021). 

Neutrosophic set theory [NST]as an extension 
of the traditional crisp, fuzzy, and intuitionistic 
fuzzy set theories introduced by Smarandache F., in 
1998 (Smarandache 1998). It allows elements to 
have degrees of membership, degrees of non-
membership, and degrees of indeterminacy that are 
independent of one another, making it a useful tool 
in dealing with incomplete or inconsistent 
information in MCDM problems. By introducing a 
new neutrosophic outranking relation based on the 
concept of truth-membership, falsity-non-
membership, and indeterminacy-membership 
degrees, the ELECTRE-III method has been further 
extended to handle neutrosophic sets 
(Smarandache, Ali, and Khan 2019; Ali and 
Smarandache 2017; Ye 2018; Abdel-Baset et al., 
n.d.; Akram, Shumaiza, and Smarandache 2018; 
Singh, Arora, and Arora 2022; Khatter 2020; 
Smarandache, n.d.; Rizk-Allah, Hassanien, and 
Elhoseny 2018; Dat et al. 2019; Kumar et al. 2019). 

Recently in 2019 Smarandache and Broumi 
(Smarandache and Broumi 2019) introduced the 
Pythagorean neutrosophic set [PNS], which was a 
further extension of the NST. It allows elements to 
have three independent values such as truth-
membership, and indeterminacy-membership and 
falsity-membership degrees. PNS are a useful and 
effective tool to handle incomplete or inconsistent 
information in MCDM problems. Pythagorean 
neutrosophic programming [PNP]approach is a 
generalization of FS theory and NST that can 
handle uncertain, incomplete, and inconsistent 
information in the decision-making 
process(RAJAN and KRISHNASWAMY, n. d.; 
Jansi, Mohana, and Smarandache 2019b)In the 
present research problem, we are utilizing PNP 
approach with the ELECTRE-III technique, which 
can improve the decision-making process. 

In this paper, we propose a two-phase 
decision-aiding system for the solar plant location 
problem using the ELECTRE-III method in the 
PNP approach. The first phase of the proposed 
system uses the PNP approach to handle uncertain 
and incomplete information in the decision-making 
process. In the second phase, the ELECTRE-III 
method is used to rank the alternatives based on the 
criteria (Akram, Ilyas, and Al-Kenani 2021). The 
proposed system can provide decision-makers with 

a set of feasible alternatives and their ranking based 
on the criteria. 

A case study on green energy in Bundelkhand 
region of India is conducted to demonstrate the 
effectiveness of the proposed system. The study 
considers seven potential sites for the solar plant, 
and the decision criteria are as solar abundant, 
solar radiation, flat & open land,high land and 
construction costs,demand for electricity, extreme 
weather conditions, higher elevation from sea level, 
proximity to transmission lines and average dust 
density to the substation.The results show that the 
proposed system can provide decision-makers with 
a set of feasible alternatives and their ranking based 
on the criteria, which can help decision-makers in 
selecting the most suitable site for the solar plant. 

 
1.1 Motivation Behind the Current Study 
 

The increasing demand for clean and 
sustainable energy has led to a surge in the 
installation of solar power plants (Tahri, Hakdaoui, 
and Maanan 2015; Uyan 2013). However, 
identifying the optimal location for a solar plant is 
a complex problem due to numerous factors such as 
weather conditions, land availability, infrastructure, 
and environmental impact. In this context, 
decision-aiding systems can assist decision-makers 
in identifying the best location for solar plant 
installation. This study aims to develop a two-phase 
decision-aiding system(Akram, Ilyas, and Al-
Kenani 2021) using the ELECTRE-III method in 
the PNPapproach for the solar plant location 
problem(Abdel-Baset et al., n.d.; Khatter 2020; 
Kaur and Yadav 2022; Ye 2018; RAJAN and 
KRISHNASWAMY, n.d.; Smarandache and 
Broumi 2019; Jansi, Mohana, and Smarandache 
2019b; Palanikumar, Arulmozhi, and Jana 2022). 
The proposed method considers the imprecise and 
uncertain nature of the decision-making process in 
the solar plant location problem. A contextual 
analysis on green energy in Bundelkhand region of 
India is conducted to demonstrate the applicability 
and effectiveness of the proposed method. 

The consequences of this study can help 
policymakers and partners in pursuing informed 
choices in regards to the optimal location for solar 
plant establishment. This research also contributes 
to the literature on decision-making under 
uncertainty using PN-ELECTRE-III method. 

 
1.2 Objectives of Current Investigation 
 

The objective of this investigation is to 
propose a two-phase decision-aiding system for 
selecting suitable locations for solar plants in 
Bundelkhand region of India, using the PN-
ELECTRE III method. The proposed system aims 
to consider various factors such as economic, 
social, environmental, and technical aspects to 
select the optimal location for solar plants in 
Bundelkhand. The first phase of the proposed 



system involves the development of a PN-
ELECTRE III method to evaluate the suitability of 
potential locations for solar plants. The second 
phase involves the development of a decision-
aiding system to prioritize the locations based on 
the evaluation results of the first phase. The 
proposed system will take into account the 
uncertainties and imprecision in decision-making 
using PNP.The study will contribute to the field of 
decision-making in renewable energy by 
developing a comprehensive decision-aiding 
system that considers multiple criteria and 
uncertain information[9, 41, 42]. The proposed 
system will also provide valuable insights into the 
selection of optimal locations for solar plants in 
seven districts as Banda, Chitrakoot, Hamirpur, 
Jalaun, Jhansi, Lalitpur and Mahoba of 
Bundelkhand region and help policymakers and 
investors to make informed decisions. 

 
1.3 Related Research Work 

 
The proposed approach builds on the existing 

literature on decision-making methods and multi-
criteria decision-making in particular. The 
ELECTRE III method has been widely used in 
previous research for decision-making in different 
contexts, such as supply chain management, 
transportation, and environmental management. For 
instance, Guitouni and Martel (Guitouni and 
Martel 1998) applied the ELECTRE III method to 
select the best location for a landfill site in Quebec, 
Canada. Similarly, Kaya and Kahraman (Kaya and 
Kahraman 2010) utilized the ELECTRE-III 
method to evaluate and rank different wastewater 
treatment technologies. Moreover, the Pythagorean 
Neutrosophic programming approach has been 
used in previous research to address decision-
making problems under uncertainty. Wang et al. 
(Wang et al. 2021) applied the Pythagorean 
Neutrosophic programming approach to rank 
different photovoltaic power plant locations in 
China. Additionally, Abbas et al. (Abbas et al. 
2020) used the Pythagorean Neutrosophic 
programming approach to evaluate and select the 
best supplier for a manufacturing company. 

 
2. Preliminaries 

 
In this segment, some fundamentals 

preliminary concept of Neutrosophic sets [NS] 
(Smarandache 1998), single valued Neutrosophic 
set [SVNS] (Ye 2014), PNS (Smarandache and 
Broumi 2019) and PNN are briefly presented 
which will enable the conversation in the following 
sections. 

 
Definition 2.1. [50, 51]: Let U be a non-empty set. 
A NS P on U, containing ( )P u  as degree of 
membership, ( )P u  as degree of indeterminacy 
and ( )P u as degree of non-membership, defined as 

 , ( ), ( ), ( ) :P P PP u u u u u U   
 

where ( ), ( ), ( ) 0,1P P Pu u u         such that 

0 ( ) ( ) ( ) 3P P Pu u u        for all .u U  
 
Definition 2.2. [50, 51]: A SVNSP on a non-empty 
universal set U is defined as

 , ( ), ( ), ( ) :P P PP u u u u u U    where

 ( ), ( ), ( ) 0,1P P Pu u u     such that 
0 ( ) ( ) ( ) 3P P Pu u u       for all ,u U and 

( )P u  is membership degree function, ( )P u  is 
indeterminacy degree function and ( )P u is non-
membership degree function. 
 
Definition 2.3. (RAJAN and KRISHNASWAMY, 
n.d.; Jansi, Mohana, and Smarandache 2019b) 40]: 
Let Ube a non-empty universal set of discourse. A 
PNSP on U is defined as 

 , ( ), ( ), ( ) :P P PP u u u u u U     

Where  ( ), ( ), ( ) 0,1P P Pu u u     such that 

     2 2 20 ( ) ( ) ( ) 2P P Pu u u       for all 
,u U and ( )P u  is membership degree function, 

( )P u  is indeterminacy degree function and ( )P u  
is non-membership degree function. Here truth 
 ( )P u and falsity  ( )P u are dependent 

components and indeterminacy  ( )P u is an 
independent component. The triplet 

 ( ), ( ), ( )P P PP u u u    is called a PNN. 
For convenience, we represent a PNN 

 ( ), ( ), ( )P P PP u u u    as  , ,P P PP    , 
throughout in this article. 
 
Definition 2.4.(Jansi, Mohana, and Smarandache 
2019a):[Operation] Let three PNN  , ,P P PP    , 

 1 1 11 , ,P P PP     and  2 2 22 , ,P P PP     then the 
elementary mathematical operations over these 
PNNs are defined as: 

(i) Complement:  , ,C
P P PP     

(ii) Union: 

   
 

1 2 1 2

1 2

1 2 max , ,min , ,

                                                 min ,

P P P P

P P

P P    

 



 
(iii) Intersection: 

   
 

1 2 1 2

1 2

1 2 min , ,max , ,

                                               max ,

P P P P

P P

P P    

 



 
(iv) Addition: 

 1 2 1 2 1 2 1 2

2 2 2 2
1 2 , ,P P P P P P P PP P              

 



(v) Multiplication: 




1 2 1 2 1 2

1 2 1 2

2 2 2 2
1 2

2 2 2 2

, ,

                                       

P P P P P P

P P P P

P P      

   

     

  

 
(vi) Scalar Multiplication: 

     2. 1 1 , , :  0.
r r r

P P Pr P r       
 

 
(vii) Exponentiation 

     2 2, 1 1 , 1 1  : 0.
r rrr

P P PP r         
 

 
 
Definition 2.5. (Garg and Nancy 2018), [De-
Neutrosophication] 

(i). Score Function:   2 2 2
P P Ps P       

(ii). Accuracy Function:   2 2 2
P P Pa P       

(iii). Normalized Euclidean Distance: 
 

       1 2 1 2 1 2

2 2 22 2 2 2 2 2
1 2, P P P P P Pd P P           

 
Definition 2.6. (Akram, Ilyas, and Al-Kenani 2021; 
Garg and Nancy 2018), [Comparison] 

(I) If 1 2( ) ( )s P s P , then 1 2P P  ( 1P is 
superior to 2P ) 

(II) If 1 2( ) ( )s P s P , then 
a. If 1 2( ) ( )a P a P , then 1 2P P ( 1P

is superior to 2P ) 
b. If 1 2( ) ( )a P a P ,then 1 2P P฀ ( 1P

is superior to 2P ) 
 
Definition 2.7.(Palani kumar, Arulmozhi, and Jana 
2022), [Aggregation]: Let   , , ,

i i ii P P PP   

 1 2 3, , ,..., nw w w w w and  
1

1n
ii

w


  
(1) PNWA Operator 

 

     

1 2 3

1 1 2 2 3 3

2
1 1 1

, , ,...,
...

1 1 , ,i i i

i i i

w n

n n

w w wn n n
P P Pi i i

PNWA P P P P
w P w P w P w P

  
  

    

    
 

  
  (1) 

(2) PNWG Operator 
 

   

 

1 2 3

1 1 2 2 3 3

2
1 1

2
1

, , , ...,
...

, 1 1 ,

                                    1 1

i i

i i

i

i

w n

n n

w wn n
P Pi i

wn
Pi

PNWG P P P P
w P w P w P w P

 



 



    

  


  


 



 (2) 

 
3. ELECTRE III Method 
 

Let  1 2 3, , ,..., ,...,a f      be a set of 
available f alternatives and 

 1 2 3, , ,..., ,...,b g      be a set of g criteria 
corresponding to each alternative for a MCGDM 
problem. A group  1 2 3, , ,... ,...t h       of h 
expert or Decision-Maker [DM]allocates the 
feasibility or performance or the evaluation 
information of alternative a  with respect to 
criterion b  as; ( )b a  . The more the 
alternative satisfy the criterion, the lower or higher 
the value of ( )b a  , which be subject to upon 
whether the objective is to minimize or to 
maximize for the criterion b . Subsequently, the 
performance/ feasibility information of an 
alternative a on the basis of multiple criteria will 
be represented by the vector 
        1 2,  ,  . . . ,  a a ga a       as all the 

criteria can have their own importance considering 
objective of the MCGDM problem thus criteria 
weight vector will be denoted by 

 1 2 3, , ,..., ,...,b gw w w w w w such that
1

1.g
bb

w


  
Similarly, the importance expert weight vector will 
be  1 2 3, , ,..., ,...,t h      such that

1
1.h

tt
   

The ranking process of the ELECTRE-III 
method consists of two modules(Roy 1978)]. After 
the performance evaluation of alternatives by 
evaluators or DM’s over multiple criteria, the 
establishment of preference and indifference 
threshold functions, the determination of 
concordance and discordance indices, and 
ultimately the revelation of credibility index come 
under first module in the formation of an 
outranking connection. Using outranking relations 
to deduce a comprehensive feasibility ranking of 
alternatives makes up the second module. 
 
3.1  Module I: Developing Outranking Relations 
 

In the MCGDM process, an alternative 1  
outranks another alternative 2 , represented by 

1 2S  , if there is sufficient evidence to believe that 

1  is at least as good as 2  and there are no 
compelling counterarguments. The ELECTRE 
method's fundamental tenet is to establish a 
preference relation—often referred to as an 
outranking relation—among the acts assessed 
across a number of criteria. The basis for 
establishing the outranking relation 1 2S   is 
provided by the credibility index, which is the 
degree of outranking. Concordance index and 
discordance index, computed throughout each 
criterion b  , are used to calculate the degree of 
credibility. 
 



3.1.1 Erection of Threshold Functions 
 

The ELECTRE III model's assessment 
technique include establishing indifference 
threshold function, preference threshold function 
and veto threshold function for disclosing 
concordance and discordance indices, determining 
the degree of credibility, and ranking the 
alternatives. Let ( )bq  be the indifference threshold 
function and ( )bp  be the preference thresholds 
function for corresponding criteria b . 
 

Let if for any two given alternatives 1 2,   ,

1 2( ) ( )    , then, 

1 2 2 1 2( ) ( ) ( ( ))p P          (3)

 2 2 1 2 2 1 2( ) ( ( )) ( ) ( ) ( ( ))q p Q              

   (4) 
2 1 2 2 1 2( ) ( ) ( ) ( ( ))q I             

    (5) 
where ( )   is the criterion score value of the 
alternative , , and P signifies strong preference, Q 
weak preference, and I indifference. 
 
3.1.2 Calculating the Concordance Index of the 

Assertion 1 2S   
For each pair of alternatives, the 

comprehensive concordance index is 

1 2 1 21
( , ) ( , )g

b bb
w   


     

   (6) 
where bw  represent the weight of thb criteria 

and 1 2( , )b    represent the partial concordance 
indices over the criteria b is calculated as  

 

 

2 1

1 2 2 1

2 1

0,              if    ( ) ( ) ( )
( , ) 1,              if     ( ) ( ) ( )

( ) ( ) ( )
,    otherwise

( ) ( )

b b b

b b b b

b b b

b b

p
q

p
p q

    
      

    
 


    
  
 



   (7) 
Thus 1 20 ( , ) 1.b      
 
3.1.3 Calculating the Discordance Index of the 

Assertion 1 2S   
For each criterion, the discordance index 

1 2( , )b    is calculated 
 

 

2 1

1 2 2 1

2 1

0,              if   ( ) ( ) ( )
( , ) 1,               if   ( ) ( ) ( )

( ) ( ) ( )
,   otherwise

( ) ( )

b b b

b b b b

b b b

b b

p
v

p
v p

    
      

    
 


    
  
 



  (8) 

Thus 1 20 ( , ) 1b     . 
 
3.1.4Disclosure of Credibility Index 

The credibility index, denoted by the notation 
 1 2,   , is used to determine the degree of 

outranking relation 1 2S  is defined as 
 

     

 
  
  

1 2

1 2 1 2 1 2

1 2
1 2

1 2

,

, ,  if   , , ,  

1 ,
, ,      otherwise

1 ,

b

b

b

b



  

      

 
 

 



     


 
   


   (9) 
where     1 2 1 2: , , .bb            
 
3.2 Module II: The Exploitation of Outranking 

Relations 
  

The standard ranking approach of ELECTRE 
III employs a structured algorithm via two 
intermediate ranking procedures, one of which is 
descending distillation, where the alternatives are 
ranked from best to worst, and the other of which is 
based on ascending order from worst to best 
alternative (ascending distillation). In contrast, a 
new ranking approach based on the introduction of 
three concepts such as the concordance 
credibilitydegree, the discordance credibility 
degree, and the net credibility degreeis used, 
According to Li and Wang (Li and Wang 2007b) 
1.   For each alternative, the concordance 

credibility degree defined as: 
   , ,   .

b

a a b a


     



     

   (10) 
The concordance credibility degree represents 

outranked a  (demonstrating how a  
outperforms over all of its alternatives in  ). 

2.   For each alternative, the discordance credibility 
degree defined as: 

   , ,   .
b

a b a a


     



     

   (11) 
The discordance credibility degree represents 

outranked b  (demonstrating how b  
outperforms over all of its alternatives in  ). 

3. For each alternative, the net credibility degree 
defined as: 

      ,   .a a a a            
   (12) 

 
The attractiveness of alternative a  increases 

with the value of net credibility degree  a  . 
Consequently, based on the level of net credibility, 
the possible alternatives can be ranked in 
decreasing order. 

 



4. Two-Phase Pythagorean Neutrosophic 
ELECTRE III Method (Algorithm) 

 
In this part, the two-phase PN-ELECTRE 

IIIgroup decision support system is created by 
combining the PNSs and traditional ELECTRE-III 
approach. 

InPythagorean Neutrosophicenvironment, let 
for a multi-criteria group decision making 
[MCGDM] problem,  1 2 3, , ,..., ,...,a f      be 
a set of availablefalternatives and 

 1 2 3, , ,..., ,...,b g      be a set of g criteria 
assigning to each alternative. A group 

 1 2 3, , ,... ,...t h       ofh expert or DM assigns 
the feasibility information of alternative a 
with respect to criterion b  as; ( ).b a   All the 
criteria can have their own and unequal importance 
considering objective of the MCGDM problem thus 
criteria weight vector will be denoted by 

 1 2 3, , ,..., ,...,b gw w w w w w such that
1

1.g
bb

w



Similarly, the importance expert weight vector will 
be  1 2 3, , ,..., ,...,t h      such that

1
1h

tt
  . 

Let the subscript set of criterions i.e.
 1,2,3,..., .g   

 
4.1 Phase I: Pythagorean Neutrosophic 
Evaluation Phase 
 

Step-1. 
First, we establish some linguistic variables/terms 
in the form of PNN for the evaluation of, feasibility 
ratings of alternatives, importance weights of 
criterion, importance weights of experts and 
establishment of threshold functions.  
Step-2. 
Systematically assessing each alternative

 1,2,3,...,a a f   with respect to each criterion

 1,2,3,..., .b b g  Expert  1,2,3,...,t t h 
provides his/her evaluation information in the form 
of Pythagorean Neutrosophicdecision matrix 
 
[PNDM] ( ) ( )[ ]t t

ab f gM M  , as in table 1.where 

 ( ) ( ) ( ) ( )( ), ( ), ( )
a a a

t t t t
ab M b M b M bM       is the PNN 

allocated by the DM t , with ( ) ( )
a

t
M b   is 

membership degree function, ( ) ( )
a

t
M b   is 

indeterminacy degree function and ( ) ( )
a

t
M b   is non-

membership degree function. Here truth  ( ) ( )
a

t
M b 

and falsity  ( ) ( )
a

t
M b  are dependent components 

and indeterminacy  ( ) ( )
a

t
M b   is an independent 

component. 
 

Table 1: PNDM by DM 

     
   

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

( )
1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 2 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 1 1 1 2 2 2

( ), ( ), ( ) ( ), ( ), ( ) ( ), ( ), ( )

( ), ( ), ( ) ( ), ( ), ( ) ( ), ( ),

t
g

t t t t t t t t t
M M M M M M M g M g M g

t t t t t t t t
M M M M M M M g M g

M   

                  

                 





  

     

2

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 2 2 2

( )

( ), ( ), ( ) ( ), ( ), ( ) ( ), ( ), ( )
f f f f f f f f f

t
M g

t t t t t t t t t
f M M M M M M M g M g M g



                  

    



 

 

Step-3. Weight of tht expert can be determined by 
the following Eq. 

1

t
t t

t t
t

h t
t tt

t t


 

 


 

 

 
   
  

     


 ,  

  (13) 
Where the t satisfy the normalized condition 

1
1.h

tt
   

Step-4.The distinct opinions of DM or experts 
required to be combined into a collective opinion to 
construct aggregated PNDM  ab f g

M M


  by 

using Pythagorean Neutrosophic weighted 
 

averaging [PNWA] operator (Palanikumar, 
Arulmozhi, and Jana 2022; Garg and Nancy 2018). 
Where  ( ) ( )t t

ab f g
M M


  is the PNDMof the expert 

t . 

 (1) (2) (3) ( ), , ,..., h
ab ab ab ab abM PNWA M M M M 



 

(1) (2) (3) ( )
1 2 3 ... h

ab ab ab h abM M M M       

 

      2( ) ( ) ( )
1 1 1

1 1 , ,
t t th h ht t t

ab ab abt t t
  

  

 
    
 

  
  

   (14) 
where  ( ), ( ), ( )

a a aab b b bM M MM         
 , 

1,2,3,...,a f and 1,2,3,...,b g consequently, the 
matrix M can be ready as in table 2. 
 
 



Table 2: Aggregated PNDM 

     
     

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

1 2

1 1 1 1 2 2 2

2 1 1 1 2 2 2

( ), ( ), ( ) ( ), ( ), ( ) ( ), ( ), ( )

( ), ( ), ( ) ( ), ( ), ( ) ( ), ( ), ( )

g

g g gM M M M M M M M M

g g gM M M M M M M M M

f

M   

                  

                  
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


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     1 1 1 2 2 2( ), ( ), ( ) ( ), ( ), ( ) ( ), ( ), ( )
f f f f f f f f fg g gM M M M M M M M M                       

 

Step-5.Let B  and C  represent the corresponding 
collections of criteria that are of the benefit-type 
and cost-types. The aggregated PNDM, 

 ab f g
M M


  , can be converted into the 

normalized aggregated PNDM,  ab f g
M M


  

which displays the evaluation information of each 
alternative with respect to each benefit or cost 

criterion, in standard form, for additional 
calculations. PNN for abM can describe as follows: 

 
 

   

( ), ( ), ( )

( ), ( ), ( ) ,      if 

( ), ( ), ( ) ,  if 

a a a

a a a

a a a

ab M b M b M b

ab M b M b M b b B

C

ab M b M b M b b C

M

M

M

     

      

      



  


 





  

  





 (15)

 
Table 3 demonstrates how the matrix M is built.

 
 

Table 3: Normalized Aggregated PNDM 

     
     

 

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

1 2

1 1 1 1 2 2 2

2 1 1 1 2 2 2

1 1 1 2 2

( ), ( ), ( ) ( ), ( ), ( ) ( ), ( ), ( )

( ), ( ), ( ) ( ), ( ), ( ) ( ), ( ), ( )

( ), ( ), ( ) ( ), ( ),
f f f f f

g

M M M M M M M g M g M g

M M M M M M M g M g M g

f M M M M M M

M   

                  

                  

           







    

   2( ) ( ), ( ), ( )
f f f fM g M g M g      

 

Step-6.  Not all criteria might have equally 
significant. Let  ( ) ( ) ( ) ( )( ), ( ), ( )t t t t

b w b w b w bw        

represent the PNN that the expert t  assigned for 
the relative weight of criterion b . By aggregating 
the opinions of experts on ,b  determine the PN 

weight  ( ), ( ), ( )b w b w b w bw        as follows: 

 (1) (2) (3) ( ), , ,..., h
b b b b bw PNWA w w w w 

 

(1) (2) (3) ( )
1 2 3 ... h

b b b h bw w w w       

 

      2( ) ( ) ( )
1 1 1

1 1 , ,
t t th h ht t t

b b bt t t
  

  

 
    
 

  
  

  (16) 
Thus, the following criteria weight row matrix can 
be obtained. 

 
 

 

1 1 1

2 2 2

( ), ( ), ( )
( ), ( ), ( )

( ), ( ), ( )

T
w w w

w w w

b

w g w g w g

w

     
     
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 
 
 
   
 
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 





  

   (17) 
It is established the weight matrix 

 1 2 3, , ,..., ,...,b gw w w w w w for the criteria. The 
following equation is used to determine the 
normalized weights of each criterion based on the 

total weights of the criteria bw , which adhere to the 

condition
1

1g
bb

w


  . 

1

( )( ) ( )
( ) ( )

( )( ) ( )
( ) ( )

w b
w b w b

w b w b
b

g w b
w b w bb

w b w b

w

    
   

    
   

 
    

  
     


   (18) 

 
Step-7. The weighted normalized aggregated 
PNDM,  ˆ ˆ

ab f g
M M


  is created as shown in table 

4 in the order of integrating the data from the 
normalized aggregated PNDM and the criteria 

weight matrix  ˆ ˆ ˆ
ˆ ( ), ( ), ( )

a a aab b b bM M MM        

may be generated by using the specified 
multiplication operator (Zhang and Xu 2014),  

 
 

ˆ ( ), ( ), ( )

                                 ( ), ( ), ( )
a a aab M b M b M b

w b w b w b

M      

     




 


2 2 2 2

2 2 2 2

( ) ( ), ( ) ( ) ( ) ( ) ,

                              ( ) ( ) ( ) ( )

a a a

a a

M b w b M b w b M b w b

M b w b M b w b

           

       

    

  

 (19)
  



Table 4: Weighted Normalized Aggregated PNDM 

     
     

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 1 1 1 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 1 1 1 2 2 2

ˆ ˆ ˆ1 1

ˆ

( ), ( ), ( ) ( ), ( ), ( ) ( ), ( ), ( )

( ), ( ), ( ) ( ), ( ), ( ) ( ), ( ), ( )

( ), ( ),
f f f

g

g g gM M M M M M M M M

g g gM M M M M M M M M

f M M M

M   

                  

                  

     







    

     ˆ ˆ ˆ ˆ ˆ ˆ1 2 2 2( ) ( ), ( ), ( ) ( ), ( ), ( )
f f f f f fg g gM M M M M M

            

 
4.2 Phase II: Pythagorean Neutrosophic 
Ranking Phase (PN-ELECTRE-III) 

 
The first phase of the Pythagorean decision 

support system collects the PN assessment data for 
each alternative, and the second step uses the PN-
ELECTRE-III approach, which uses the aggregated 
evaluations to produce the whole ranking of 
alternatives. 
 
4.2.1 Module I: Developing Outranking 
Relations 
 
Step-8. For each criterion b , determine the 
preference threshold values ( )bp   and indifference 
threshold values ( )bq  , as shown in section 3.1.1. 
Step-9. The partial concordance indices (X. Peng 
and Yang 2015),

 ( , ) , , 1,2,3,..., , ,b b i j f f
i j f i j 


      

 1, 2,3,...,b g and over each criterion b  can 
be obtained using Eq. (7), in table 5 as follows: 

Table 5: Partial concordance indices over each 
criterion

1 2 1

1 1 2 1 1 1

2 2 1 2 1 2

1 1 1 1 2 1

1 2 1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

b f f

b b f b f

b b f b f

f b f b f b f f

f b f b f b f f

   

      

      

      

      







   





   

   



   

   







    





 

and after that for each pair of alternatives, the 
comprehensive concordance index 

 , , 1,2,3,..., ,ij f f
i j f i j


       is calculated 

using Eq. (6), in table 6 as follows: 

 
Table 6: Comparative concordance index 

1 2 1

1 12 1( 1) 1

2 21 2( 1) 2

1 ( 1)1 ( 1)2 ( 1)

1 2 ( 1)

f f

f f

f f

f f f f f

f f f f f

   












   




   
   


   
   







    





 

Step-10.For each criterion, the discordance index 
 ( , ) , , 1,2,3,..., ,b b i j f f
i j f i j 


       and 

 1,2,3,...,b g  is calculated using Eq. (8), in 
table 7 as follows: 

Table 7: Discordance index over each criterion 

1 2 1

1 1 2 1 1 1

2 2 1 2 1 2

1 1 1 1 2 1

1 2 1

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

b f f

b b f b f

b b f b f

f b f b f b f f

f b f b f b f f

   

      

      

      

      







   





   

   



   

   







    





 

Step-11.The credibility index, denoted by the 
notation  , , 1,2,3,..., ,ij f f

i j f i j 


     ,is 

used to determine the degree of outranking relation 
1 2S  can be determine using Eq. (9).in table 8 as 

follows: 

Table 8: Credibility index  

1 2 1

1 12 1( 1) 1

2 21 2( 1) 2

1 ( 1)1 ( 1)2 ( 1)

1 2 ( 1)

f f

f f

f f

f f f f f

f f f f f

    
   
   

   
   







   

















    





 

 
 
4.2.2 Module II: The Exploitation of Outranking 
Relations 

To get the comprehensive preference ranking 
of alternatives, compute the concordance credibility 
degree, discordance credibility degree, and net 
credibility degree as described in section 3.2. 
 



  

4.3 Algorithm Diagram: 
Figure1: Algorithm diagram of the two-phase group decision-supporting system inorder to provide a step-by-
step process for problem-solving. 

 

 

5. Case Study: Solar Power Plant Location 
Selection Problem 

 
Bundelkhand is a region in central India, 

covering parts of Uttar Pradesh and Madhya 
Pradesh. Bundelkhand region has a high potential 
for solar power generation due to its abundant 
sunlight and vast areas of flat land. According to 
the India meteorological department [IMD], 
Bundelkhand region falls under the "Hot and Dry" 
climate zone, which is characterized by high 
temperatures and low humidity. The region 
receives an average of 300-325 days of sunshine 
per year, making it an ideal location for solar power 
generation.In recent years, the government of India 
has also taken various initiatives to promote solar 
power generation in the region. The region has 
been identified as a potential hotspot for solar 

power development under the National Solar 
Mission.  

Uttar Pradesh has a total installed solar 
capacity of around 29.858 GW, of which 
Bundelkhand region's contribution included. 
However, it is worth noting that the Uttar Pradesh 
new and renewable energy development agency 
[UPNEDA] has been actively promoting solar 
power projects in the region. In 2018, the 
UPNEDA invited bids for the development of a 
500 MW solar park in Bundelkhand, which would 
have been one of the largest solar parks in the 
country. Furthermore, in 2019, the UPNEDA 
invited bids for the development of 1,000 MW of 
solar power projects across the state, including in 
Bundelkhand region. 

This section identifies a case study that focuses 
on solving an MCGDM problem in order to 
highlight the applicability of the suggested 



technique in realistic decision-making situations. 
This study is conducted by one of the Indian NGOs 
working for solar energy in Bundelkhand region in 
Uttar Pradesh, INDIA. The organization, which is 
involved in various activities such as promoting 
renewable energy policies, conducting research on 
renewable energy technologies, providing training 
and awareness programs, implementing renewable 
energy projects, and development of solar power 
park/plants projects in seven districts of 
Bundelkhand region. 

 
5.1 Available Alternatives 

 
In this study, the districts that fall under the 

Bundelkhand region in Uttar Pradesh are taken as 
alternatives  1 2 3 4 5 6 7, , , , , ,         

 
 

Table 9: Available Location(Alternatives) in Seven 
District of Bundelkhand Region  

 

1

2

3

4

5

6

7

    S.l.    Alternative City Name Alternative Code   
1 Banda
2 Chitrakoot
3 Hamirpur
4 Jalaun
5 Jhansi
6 Lalitpur
7 Mahoba









 
5.2. Selection of Criteria 

 
One of the important issues in MCDM analysis 

is criteria selection. The main criteria that affect 
solar power plant location selection are economic, 
geographic and environmental, technical, and 
social. Choosing the right criteria is crucial to 
analyse and get accurate results. There are several 
favourable/ Benefit-type/ Positive (+) and 
unfavourable/ Cost-type/ Negative (-) criteria that 
can make a location suitable/unsuitable for a solar 

power plant. Here are some of the top criteria
 1 2 3 4 5 6 7 8, , , , , , ,         : 
 
1. Abundant Solar Radiation (+): The first 

and foremost factor is the availability of 
solar radiation. Solar power plants require 
a significant amount of sunlight to 
generate electricity. Locations with high 
levels of annual solar radiation or high 
numbers of annual sunshine hours are 
ideal for solar power plants. 

2. Flat& open land (+): Solar power plants 
require large, open spaces to 
accommodate solar panels. Flat land is 
ideal as it requires less grading and 
construction work, reducing the cost of 
building the solar power plant. 

3. High land and construction costs (-): 
Solar power plants require large, flat 
spaces that are expensive to develop. 
Locations with high land and construction 
costs may not be financially viable for 
solar power plants. 

4. Demand for Electricity (+): The 
population should have a sufficient 
demand for electricity to justify the 
installation of a solar power plant. Areas 
with low population density or low 
electricity consumption may not be 
suitable for large-scale solar power plants. 

5. Extreme weather conditions (-): 
Extreme weather conditions such as 
hurricanes, tornadoes, or heavy snowfall 
can damage solar panels or disrupt the 
generation of electricity. Locations with 
high levels of extreme weather conditions 
may not be ideal for solar power plants. 

6. Higher elevation from sea level(+): At 
higher elevations, the air is thinner, which 
can lead to lower air density and less 
atmospheric absorption of solar radiation. 
This can result in higher solar irradiance 
values and more direct sunlight reaching 
the solar panels. Additionally, the 
temperature at higher elevations can be 
lower, which can help to reduce the 
operating temperature of the solar panels 
and increase their efficiency. 

7. Proximity to transmission lines (+): 
Solar power plants generate electricity that 
needs to be transmitted to the grid. 
Locations near transmission lines reduce 
the cost of connecting the solar power 
plant to the grid. 

8. Average Dust Density (-):Dust density is 
a measure of the amount of dust particles 
in the air, and it can have an impact on 
solar panel efficiency. The presence of 
dust particles on the surface of the solar 
panels can reduce the amount of sunlight 
that reaches the cells, thereby reducing 
their efficiency. 

Figure 1: Bundelkhand Region of Uttar Pradesh (Source 
 



 

Table 10: List of Most Effective Area  

1

2

3

https://mausam.imd.gov.
S.l. Criteria Name Unit Criteria Code Type Source
1 Abundant Solar Radiation W/m² +ve
2 Flat, Open Land m² +ve
3 High Land & Const

in/
https://mausam

ruction Cost Cost/
.imd.gov

m² 
.in/

http-ve







4

5

6

4 Demand for Electricity kW/Unit +ve
5 Extreme weather 

s://ldo.gov.in/Index.aspx
https://www.upenergy.in/

https://maconditions -ve
6 Higher elevation from sea level km +v

usam.imd.gov.in/
https://sealeve .ne l









7

8

asa.gov/
https://www.upenergy.in/

Average dust densi
7 Proximity to transmission lines km +ve
8 mg/m³ty https://www.mines.gov-ve .in/





 

 

5.3. Stepwise Procedure 

 The whole PN-ELECTRE III process is 
used in the phases that follow to find the best 
location for the installation of solar power 
plant/park unit. 
 
5.3.1Phase I: Pythagorean Neutrosophic 
Evaluation Phase 
 
Step-1:Setting-up of Linguistic terms/variables- By 
using the decision support system of the suggested 
technique to solve the aforementioned problem, 
importance of weight degree to eight criteria and 
four experts are allocated in the form of linguistic 
terms/variable that are specified by PNNs as in 
table 11, 

 
Table 11: Linguistic Terms for Importance 

Weights Rating of Criteria and Experts  
Linguistic terms Code PNNs
Very High VH (0.92,0.25,0.11)
High  H (0.78,0.35,0.24)
Fairly High FH (0.64,0.42,0.37)
Medium M (0.50,0.55,0.50)
Fairly Low FL (0.36,0.74,0.63)
Low L (0.22,0.85,0.76)
Very Low VL (0.08,0.90

       

,0.89)

 

In table 12, specialists independently assess each 
location's feasibility/performance and threshold 
functions based on eight criteria, and the 
performance scores are presented using linguistic 
terms/variable shown. 

 
 
 
 
 
 
 
 
 

 
Table 12: Linguistic Terms for Feasibility Rating 
of Alternative and Threshold Functions  

 

Extremely Feasible EF (0.99, 0.05, 0.01)

Very Very Feasible VVF (0.95, 0.35, 0.15)

Very Feasible VF (0.90, 0.42, 0.25)

Feasible F (0.80, 0.55, 0.35)

Medium Feasible MF (0.70, 0.74, 0.40)

Medium M (0.55, 0

Linguistic terms Code PNNs

.85, 0.45)

Medium Unfeasible MU (0.45, 0.90, 0.55)

Unfeasible U (0.40, 0.55, 0.70)

Very Unfeasible VU (0.35, 0.65, 0.80)

Very Very Unfeasible VVU (0.25, 0.45, 0.90)

Extremely Unfeasible EU (0.15, 0.35, 0.95)

 

 
Step-2:Computing of the weights of Decision 
Makers–Table 13, lists the importance rankings 
that the president of NGO granted to each of the 
field specialists/Decision Makers 

 1,2,3,...,t t h  . EmployingEq.(13). it is possible 
to determine each expert's own weight. 

 
Table 13: Assigning and computing of Weights of 

Expert (DM) 

1

2

3

4

DMs Ling. Var.  PNNs              Weights ( )
FH (0.64,0.42,0.37) 0.2430
VH (0.92,0.25,0.11) 0.2832
H (0.78,0.35,0.24) 0.2832
M (0.50,0.55,0.50) 0.2077

t








 
Step-3:Assigning of the Decision Makers 
Judgements-The language expressions/ linguistic 
terms used in table 14 to describe the individual 
viewpoints of each Decision Makers on the 
decision-making panel with regard to each 
alternative and all taken-into-account criteria. The 
Pythagorean Neutrosophic decision matrix 



[PNDM] (1) (2) (3) (4), ,  and M M M M that highlight 
the unique opinions of the DM 1 2 3 4, ,  and     are 
shown in tables    15-18, respectively. 
 
Table 14: Judgement of Decision Expert in 
linguistic variables

1 2 3 4 5 6 7 8

1 1

2

3

4

5

6

7

2 1

2

3

4

5

χ χ χ χ χ χ χ χ
ε Λ MU VVF MU VF U F MF MF

Λ VVU EU MU M EU U MF F
Λ VU M VF MF MU VF EU VF
Λ MF M F EF VVF U MU F
Λ M VF VVF MU VU EU M MU
Λ F MF M MU VF EF U VU
Λ VVU MU MU MU VVF F F F

ε Λ VF M MU U VU M VU M
Λ F VF VVF VF F VF VF F
Λ M MU MU U U MF MF VU
Λ F VF VVF VVF EF EF VF M
Λ M

6

7

3 1

2

3

4

5

6

7

4 1

2

3

MF MU MU M M U MU
Λ VF VF F MU M MU MF VU
Λ U MF M MU MU F F F

ε Λ MU U U VU VU VVU EU VU
Λ MU M MU EU VVU M MU MF
Λ F F MF M MF MU VU VU
Λ EF VF VVF MF MF M M M
Λ MU U MF VU VVU EU F F
Λ VVF F MF M MU U U U
Λ VU VU U M MU MU U U

ε Λ MF MU U VU VVU VU VU F
Λ M MF MU U VU MF U U
Λ MF M MU VU VVU EU U V

4

5

6

7

F
Λ VVF EF VF VF F EF MF MF
Λ M MU MU M VU VU VVU EU
Λ M MF MF F F U VU VVU
Λ VVU VU U MF M U MF VF

 
 

Table 15: Judgement of Decision Expert 1ε  in linguistic variables 
(1)

1 2 3 4 5 6 7 8

1

2

(0.45,0.90,0.55) (0.95,0.35,0.15) (0.45,0.90,0.55) (0.90,0.42,0.25) (0.40,0.55,0.70) (0.80,0.55,0.35) (0.70,0.74,0.40) (0.70,0.74,0.40)
(0.25,0.45,0.90) (0.15,0.35,0.95) (0.45,0.90,0.55)

M        



3

(0.55,0.85,0.45) (0.15,0.35,0.95) (0.40,0.55,0.70) (0.70,0.74,0.40) (0.80,0.55,0.35)
(0.35,0.65,0.80) (0.55,0.85,0.45) (0.90,0.42,0.25) (0.70,0.74,0.40) (0.45,0.90,0.55) (0.90,0.42,0.25) (0.15,0.35,0.95) (0.90,

4

5

0.42,0.25)
(0.70,0.74,0.40) (0.55,0.85,0.45) (0.80,0.55,0.35) (0.99,0.05,0.01) (0.95,0.35,0.15) (0.40,0.55,0.70) (0.45,0.90,0.55) (0.80,0.55,0.35)
(0.55,0.85,0.45) (0.90,0.42,0.25) (0.95,0.35,0.15) (0.45,0.90




6

,0.55) (0.35,0.65,0.80) (0.15,0.35,0.95) (0.55,0.85,0.45) (0.45,0.90,0.55)
(0.80,0.55,0.35) (0.70,0.74,0.40) (0.55,0.85,0.45) (0.45,0.90,0.55) (0.90,0.42,0.25) (0.99,0.05,0.01) (0.40,0.55,0.70) (0.35,0.65,0.80)

7 (0.25,0.45,0.90) (0.45,0.90,0.55) (0.45,0.90,0.55) (0.45,0.90,0.55) (0.95,0.35,0.15) (0.80,0.55,0.35) (0.80,0.55,0.35) (0.80,0.55,0.35)

 

Table 16: Judgement of Decision Expert 2ε  in linguistic variables 
(2)

1 2 3 4 5 6 7 8

1

2

(0.90,0.42,0.25) (0.55,0.85,0.45) (0.45,0.90,0.55) (0.40,0.55,0.70) (0.35,0.65,0.80) (0.55,0.85,0.45) (0.35,0.65,0.80) (0.55,0.85,0.45)
(0.80,0.55,0.35) (0.90,0.42,0.25) (0.95,0.35,0.15)

M        



3

(0.90,0.42,0.25) (0.80,0.55,0.35) (0.90,0.42,0.25) (0.90,0.42,0.25) (0.80,0.55,0.35)
(0.55,0.85,0.45) (0.45,0.90,0.55) (0.45,0.90,0.55) (0.40,0.55,0.70) (0.40,0.55,0.70) (0.70,0.74,0.40) (0.70,0.74,0.40) (0.35,

4

5

0.65,0.80)
(0.80,0.55,0.35) (0.90,0.42,0.25) (0.95,0.35,0.15) (0.95,0.35,0.15) (0.99,0.05,0.01) (0.99,0.05,0.01) (0.90,0.42,0.25) (0.55,0.85,0.45)
(0.55,0.85,0.45) (0.70,0.74,0.40) (0.45,0.90,0.55) (0.45,0.90




6

,0.55) (0.55,0.85,0.45) (0.55,0.85,0.45) (0.40,0.55,0.70) (0.45,0.90,0.55)
(0.90,0.42,0.25) (0.90,0.42,0.25) (0.80,0.55,0.35) (0.45,0.90,0.55) (0.55,0.85,0.45) (0.45,0.90,0.55) (0.70,0.74,0.40) (0.35,0.65,0.80)

7 (0.40,0.55,0.70) (0.70,0.74,0.40) (0.55,0.85,0.45) (0.45,0.90,0.55) (0.45,0.90,0.55) (0.80,0.55,0.35) (0.80,0.55,0.35) (0.80,0.55,0.35)

 

Table 17: Judgement of Decision Expert 3ε  in linguistic variables 
(3)

1 2 3 4 5 6 7 8

1

2

(0.45,0.90,0.55) (0.40,0.55,0.70) (0.40,0.55,0.70) (0.35,0.65,0.80) (0.35,0.65,0.80) (0.25, 0.45,0.90) (0.15,0.35,0.95) (0.35, 0.65,0.80)
(0.45,0.90,0.55) (0.55,0.85,0.45) (0.45,0.90,0.55)

M        



3

(0.15,0.35, 0.95) (0.25,0.45,0.90) (0.55, 0.85,0.45) (0.45,0.90,0.55) (0.70,0.74, 0.40)
(0.80,0.55,0.35) (0.80,0.55,0.35) (0.70,0.74,0.40) (0.55,0.85,0.45) (0.70,0.74,0.40) (0.45, 0.90,0.55) (0.35,0.65,0.80) (0.35,

4

5

0.65,0.80)
(0.99,0.05,0.01) (0.90,0.42,0.25) (0.95,0.35,0.15) (0.70,0.74,0.40) (0.70,0.74,0.40) (0.55, 0.85,0.45) (0.55,0.85,0.45) (0.55, 0.85,0.45)
(0.45,0.90,0.55) (0.40,0.55,0.70) (0.70,0.74,0.40) (0.35,0.65




6

, 0.80) (0.25,0.45,0.90) (0.15,0.35,0.95) (0.80,0.55,0.35) (0.80,0.55,0.35)
(0.95,0.35, 0.15) (0.80,0.55,0.35) (0.70,0.74,0.40) (0.55,0.85,0.45) (0.45,0.90,0.55) (0.40,0.55,0.70) (0.40, 0.55,0.70) (0.40,0.55, 0.70)

7 (0.35,0.65, 0.80) (0.35,0.65,0.80) (0.40,0.55,0.70) (0.55,0.85,0.45) (0.45,0.90,0.55) (0.45, 0.90,0.55) (0.40,0.55,0.70) (0.40,0.55, 0.70)

 

Table 18: Judgement of Decision Expert 4ε  in linguistic variables 
(4)

1 2 3 4 5 6 7 8

1

2

(0.70,0.74,0.40) (0.45,0.90,0.55) (0.40,0.55,0.70) (0.35,0.65,0.80) (0.25,0.45,0.90) (0.35,0.65,0.80) (0.35,0.65,0.80) (0.80,0.55,0.35)
(0.55,0.85,0.45) (0.70,0.74,0.40) (0.45,0.90,0.55)

M        



3

(0.40,0.55,0.70) (0.35,0.65,0.80) (0.70,0.74,0.40) (0.40,0.55,0.70) (0.40,0.55,0.70)
(0.70,0.74,0.40) (0.55,0.85,0.45) (0.45,0.90,0.55) (0.35,0.65,0.80) (0.25,0.45,0.90) (0.15,0.35,0.95) (0.40,0.55,0.70) (0.90,

4

5

0.42,0.25)
(0.95,0.35,0.15) (0.99,0.05,0.01) (0.90,0.42,0.25) (0.90,0.42,0.25) (0.80,0.55,0.35) (0.99,0.05,0.01) (0.70,0.74,0.40) (0.70,0.74,0.40)
(0.55,0.85,0.45) (0.45,0.90,0.55) (0.45,0.90,0.55) (0.55,0.85




6

, 0.45) (0.35,0.65,0.80) (0.35,0.65,0.80) (0.25,0.45,0.90) (0.15,0.35,0.95)
(0.55,0.85,0.45) (0.70,0.74,0.40) (0.70,0.74,0.40) (0.80,0.55,0.35) (0.80,0.55,0.35) (0.40,0.55,0.70) (0.35,0.65,0.80) (0.25,0.45,0.90)

7 (0.25,0.45,0.90) (0.35,0.65,0.80) (0.40,0.55,0.70) (0.70,0.74,0.40) (0.55,0.85,0.45) (0.40,0.55,0.70) (0.70,0.74,0.40) (0.90,0.42,0.25)

 



Step-4:Aggregation of the Decision Makers 
Judgements-According to the PNWA operator and 
the decision-making experts' normalised weights, 
the individual judgements of each decision maker 

are combined. Table 19 contains the combined 
Pythagorean Neutrosophic decision matrix

 7 8abM M


  . 

Table 19: Aggregated PNDM 
1 2 3 4 5 6 7 8

1

2

(0.7182, 0.6964, 0.4118) (0.7300, 0.6175, 0.404) (0.4274, 0.7127, 0.6166) (0.6344, 0.5575, 0.5807) (0.3461, 0.5782, 0.7936) (0.5710, 0.6106, 0.5737) (0.4566, 0.5689, 0.7076) (0.6333, 0.6991, 0.4837)

(0

M        







3

.5967, 0.6537, 0.5232) (0.7135, 0.5452, 0.4458) (0.7485, 0.6888, 0.3807) (0.6718, 0.5022, 0.5095) (0.5363, 0.4837, 0.6810) (0.7259, 0.6085, 0.4139) (0.7199, 0.6243, 0.4281) (0.7274, 0.5952, 0.4188)

(0.6484, 0.6891, 0.4724) (0

4

.6265, 0.7694, 0.4455) (0.7073, 0.7099, 0.4172) (0.5342, 0.6872, 0.5585) (0.5069, 0.6435, 0.5993) (0.6948, 0.5815, 0.4648) (0.4842, 0.5604, 0.6667) (0.7481, 0.5339, 0.4736)

(0.9283, 0.2843, 0.1177) (0.9148, 0.3204, 0.1478) (0

5

.9199, 0.4057, 0.2049) (0.9390, 0.2765, 0.1121) (0.9345, 0.2704, 0.1078) (0.9342, 0.1903, 0.0773) (0.7299, 0.6859, 0.3904) (0.6659, 0.7430, 0.4131)

(0.5265, 0.863, 0.4747) (0.7052, 0.6206, 0.4424) (0.7584, 0.6791, 0.3685) (0.

6

4521, 0.8156, 0.5829) (0.4039, 0.6359, 0.7014) (0.3623, 0.5117, 0.7419) (0.5868, 0.5864, 0.5509) (0.5716, 0.6488, 0.5463)

(0.8698, 0.4946, 0.2676) (0.8053, 0.5825, 0.3379) (0.7081, 0.7037, 0.3963) (0.5896, 0.8002, 0.4747) (0.

7

7353, 0.6643, 0.3906) (0.8165, 0.3531, 0.2329) (0.5139, 0.6193, 0.6142) (0.3473, 0.5760, 0.7912)

(0.3272, 0.5253, 0.8123) (0.5146, 0.7298, 0.6002) (0.4616, 0.7013, 0.5825) (0.5465, 0.8511, 0.4880) (0.7311, 0.7070, 0.3847) (0. 6852, 0.6270, 0.4559) (0.7177, 0.5850, 0.4327) (0.7778, 0.5200, 0.3925)

 

Step-5:Normalization of Aggregated PNDM- Let 
B  and C  represent the corresponding groups of 

criteria that are of the benefit-type(Positive) criteria 
 1 2 4 6 7, , , ,B      , cost type (Negative) 

criteria  3 5 8, , .C     The aggregated PNDM, 

 7 8abM M


  , can be converted into the 

normalized aggregated PNDM,  7 8abM M


  
which displays the evaluation information of each 
alternative with respect to each benefit or cost 
criterion, in standard form, for additional 
calculations. Table 20 demonstrates how the matrix 
M is built andone can describe the PNN for abM , 

Table 20: Normalized Aggregated PNDM 
1 2 3 4 5 6 7 8

1

2

(0.7182, 0.6964, 0.4118) (0.7300, 0.6175, 0.404) (0.6166, 0.7127, 0.4274) (0.6344, 0.5575, 0.5807) (0.7936, 0.5782, 0.3461) (0.5710, 0.6106, 0.5737) (0.4566, 0.5689, 0.7076) (0.4837, 0.6991, 0.6333)

(0.5

M        





3

967, 0.6537, 0.5232) (0.7135, 0.5452, 0.4458) (0.3807, 0.6888, 0.7485) (0.6718, 0.5022, 0.5095) (0.6810, 0.4837, 0.5363) (0.7259, 0.6085, 0.4139) (0.7199, 0.6243, 0.4281) (0.4188, 0.5952, 0.7274)

(0.6484, 0.6891, 0.4724) (0.6

4

265, 0.7694, 0.4455) (0.4172, 0.7099, 0.7073) (0.5342, 0.6872, 0.5585) (0.5993, 0.6435, 0.5069) (0.6948, 0.5815, 0.4648) (0.4842, 0.5604, 0.6667) (0.4736, 0.5339, 0.7481)

(0.9283, 0.2843, 0.1177) (0.9148, 0.3204, 0.1478) (0.2

5

049, 0.4057, 0.9199) (0.9390, 0.2765, 0.1121) (0.1078, 0.2704, 0.9345) (0.9342, 0.1903, 0.0773) (0.7299, 0.6859, 0.3904) (0.4131, 0.7430, 0.6659)

(0.5265, 0.863, 0.4747) (0.7052, 0.6206, 0.4424) (0.3685, 0.6791, 0.7584) (0.45

6

21, 0.8156, 0.5829) (0.7014, 0.6359, 0.4039) (0.3623, 0.5117, 0.7419) (0.5868, 0.5864, 0.5509) (0.5463, 0.6488, 0.5716)

(0.8698, 0.4946, 0.2676) (0.8053, 0.5825, 0.3379) (0.3963, 0.7037, 0.7081) (0.5896, 0.8002, 0.4747) (0.39

7

06, 0.6643, 0.7353) (0.8165, 0.3531, 0.2329) (0.5139, 0.6193, 0.6142) (0.7912, 0.5760, 0.3473)

(0.3272, 0.5253, 0.8123) (0.5146, 0.7298, 0.6002) (0.5825, 0.7013, 0.4616) (0.5465, 0.8511, 0.4880) (0.3847, 0.7070, 0.7311) (0.68 52, 0.6270, 0.4559) (0.7177, 0.5850, 0.4327) (0.3925, 0.5200, 0.7778)

 

Step-6:Erection of weight matrix of criteria-The 
decision-making panel's linguistic labels for each 

criterion, PN-weights, and normalised weights of 
the criteria are shown in table 21. 

Table 21: Linguistic Variables to Unfold Importance of Criteria   

1 2 3 4 5 6 7 8

1

2

VH VH M FH M VL M FH
(0.92, 0.25, 0.11) (0.92, 0.25, 0.11) (0.50, 0.55, 0.50) (0.64, 0.42, 0.37) (0.50, 0.55, 0.50) (0.08, 0.90, 0.89) (0.50, 0.55, 0.50) (0.64, 0.42, 0.37)

H VH
(0.78, 0.35, 0.24) (0.9

Criteria
Expert        








3

L M H FH VH L
2, 0.25, 0.11) (0.22, 0.85, 0.76) (0.50, 0.55, 0.50) (0.78, 0.35, 0.24) (0.64, 0.42, 0.37) (0.92, 0.25, 0.11) (0.22, 0.85, 0.76)

M H FH VH H
(0.50, 0.55, 0.50) (0.78, 0.35, 0.24) (0.64, 0.42, 0.37) (0.92, 0.25, 0.11) (0.78, 0.35,

4

FL FH M
0.24) (0.36, 0.74, 0.63) (0.64, 0.42, 0.37) (0.50, 0.55, 0.50)

FH VH H FL VL M L VL
(0.64, 0.42, 0.37) (0.92, 0.25, 0.11) (0.78, 0.35, 0.24) (0.36, 0.74, 0.63) (0.08, 0.90, 0.89) (0.50, 0.55, 0.50) (0.22, 0.85, 0.76) (0.08, 0.90, 0.89 )  

 

 1 2 3 4 5 6 7 8, , , , , , ,

0.7721,0.3778,0.2641
0.8961,0.2734,0.1354
0.5850,0.5272,0.4461
0.7221,0.4442,0.3259
0.6660,0.4753,0.3766
0.4682,0.6215,0.5617
0.7267,0.4482,0.3279
0.4444,0.6455,0.5

( )
( )
( )
( )
( )
( )
( )

898(

W         

)

T
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

And

1

2

3

4

5

6

7

8

( )
( )
( )
( )
( )
( )
( )
( )

0.1375
0.1449
0.1187
0.1338
0.1283
0.1028
0.1347
0.0992

w
w
w
w
w
w
w
w
























 

 



Step-7: Construction of Weighted normalized 
aggregation PNDM-The weighted normalized 
aggregated PNDM,  ˆ ˆ

ab f g
M M


  is created as 

shown in table 22 in the order of integrating the 
data from the normalized aggregated PNDM and 

the criteria weight matrix 

 ˆ ˆ ˆ
ˆ ( ), ( ), ( )

a a aab b b bM M MM        may be 

generated by using the multiplication operator, 
which is specified in Eq(19). 

 

Table 22: Weighted Normalized Aggregated PNDM 
1 2 3 4 5 6 7 8

1

2

ˆ

(0.5545, 0.7473, 0.4770) (0.6542, 0.6539, 0.4226) (0.3607, 0.8029, 0.5876) (0.4581, 0.6684, 0.6384) (0.5285, 0.6962, 0.4946) (0.2673, 0.7843, 0.7354) (0.3318, 0.6779, 0.7446) (0.2150, 0.8377, 0.7807)

(0

M        





3

.4607, 0.7135, 0.5696) (0.6394, 0.5914, 0.4620) (0.2227, 0.7877, 0.8048) (0.4851, 0.6323, 0.5816) (0.4535, 0.6380, 0.6234) (0.3399, 0.7833, 0.6579) (0.5232, 0.7158, 0.5207) (0.1861, 0.7895, 0.8324)

(0.5006, 0.7415, 0.5266) (0

4

.5614, 0.7890, 0.4617) (0.2441, 0.8011, 0.7744) (0.3857, 0.7592, 0.6205) (0.3991, 0.7392, 0.6019) (0.3253, 0.7706, 0.6807) (0.3519, 0.6722, 0.7101) (0.2105, 0.7635, 0.8443)

(0.7167, 0.4605, 0.2875) (0.8198, 0.4120, 0.1994) (0

5

.1199, 0.6299, 0.9364) (0.6781, 0.5086, 0.3427) (0.0718, 0.5315, 0.9441) (0.4374, 0.6391, 0.5653) (0.5304, 0.7595, 0.4935) (0.1836, 0.8595, 0.7981)

(0.4065, 0.8839, 0.5286) (0.6319, 0.6566, 0.4588) (0.2156, 0.7816, 0.8122) (0

6

.3265, 0.8551, 0.6402) (0.4671, 0.7341, 0.5309) (0.1696, 0.7396, 0.8320) (0.4264, 0.6897, 0.6151) (0.2428, 0.8138, 0.7490)

(0.6716, 0.5937, 0.3693) (0.7216, 0.6235, 0.3611) (0.2318, 0.7972, 0.7750) (0.4258, 0.8434, 0.5546) (0

7

.2601, 0.7533, 0.7783) (0.3823, 0.6803, 0.5938) (0.3735, 0.7123, 0.6665) (0.3516, 0.7812, 0.6531)

(0.2526, 0.6159, 0.8268) (0.4611, 0.7534, 0.6099) (0.3408, 0.7957, 0.6080) (0.3946, 0.8825, 0.5649) (0.2562, 0.7828, 0.7749) (0 .3208, 0.7922, 0.6766) (0.5216, 0.6887, 0.5240) (0.1744, 0.7579, 0.8616)

 

Step-8:Computation of Score degrees with respect 
to WNA-PNDM- table 23 contains the computed 
score values of corresponding PNNs in the 
weighted normalized aggregated PNDM M̂ . 

 
Table 23: Score Value of Weighted Normalized 

Aggregated PNDM 

1 2 3 4 5 6 7 8

1

2

3

4

0.4785 0.1782 0.8598 0.6445 0.4500 1.0845 0.9039 1.2650

0.6213 0.1544 1.2186 0.5027 0.5900 0.9309 0.5098 1.2816

0.5765 0.5205 1.1819 0.8126 0.7494 0.9514 0.8323 1.2515

0.2189 0

P        

        

        

        



5

6

7

.4626 1.2592 0.0837 1.1687 0.5367 0.5391 1.3420

0.8955 0.2423 1.2241 1.0344 0.6026 1.2105 0.6722 1.1643

0.0378 0.0016 1.1824 0.8376 1.1056 0.6693 0.8121 0.9132

0.9991 0.7270 0.8867 0.9422 1.1476 0

    

        

       

       .9825 0.4768 1.2864 

 

5.3.2 Phase II: Pythagorean Neutrosophic 
Ranking Phase (PN-ELECTRE III) 
 
5.3.2.1Module-I:  The construction of 
outranking relations 
 
Step-9.Establishmentof Threshold Functions- For 
each criteria b , Here are preference threshold 
values ( )bp   and indifference threshold values 

( )bq  and veto threshold values ( )bv   as shown in 
table 24, 

 

Table 24: Assigning of PNN’s Threshold functions and its Score Values  

 

1 2 3 4 5 6 7 8Threshold Values
F EF MF V

(0.80, 0.55, 0.35) (0.99, 0.05, 0.01) (0.70, 0.74, 0.40) (0.90, 0.42, 0.25) (0.55, 0.85, 0.45) (0.40, 0.55, 0.70) (0.95, 0.35, 0.15)

F M U VVF M

(0.45, 0.90, 0.55)

0.215

U
( )

( )
j

j

Criteria

q

s q

       









 

0 0.9775 0.2176 0.5711 0.6225 0.6325 0.7575 0.9100

(0.45, 0.90, 0.55) (0.55, 0.85, 0.45) (0.55, 0.85, 0.45) (0.80, 0.55, 0.35) (0.70, 0.74, 0.40) (0.35, 0.65, 0.80) (0.70, 0.74, 0.40) (0.5

MU M M F MF VU MF

5, 0.85, 0.45

M

)

0

( )

( )
j

j

p

s p





   

 .9100 0.6225 0.6225 0.2150 0.2176 0.9400 0.2176 0.6225

(0.99, 0.05, 0.01) (0.70, 0.74, 0.40) (0.90, 0.42, 0.25) (0.55, 0.85, 0.45) (0.45, 0.90, 0.55) (0.55, 0.85, 0.45) (0.55, 0.85, 0.4

EF MF VF M MU M M M

5) (0.7

F
(

0, 0.74, 0.40)
)jv

s



     

  0.9775 0.2176 0.5711 0.6225 0.6700 0.6225 0.6225 0.2176( )jv       

Step-10. Calculation of difference in the score 
degrees- The differences in the score 
values/degrees of the feasibility of every pair of 
alternatives are ccomputing of

   ( ) ( )  , 1, 2,3,..., 7,b
ij b j b is s i j i j        

, where b= 1,2,….8, in tables 25-28 as follows: 
 



1 2
1 2

0.1428 0.098 0.6974 0.417 0.4407 0.5206
0.1428 0.0448 0.8402 0.2742 0.5835 0.3778
0.098 0.0448 0.7954 0.319 0.5387 0.4226

 w.r.t. ,  , 1, 2,3,...,7,     w.r.t. ,  , 1,2,3Ta ,..ble 25 .,7,ij iji j i j i j i j   
   

 

  









     
0.0238 0.3423 0.6408 0.0641 0.1798 0.54

0.6974 0.8402 0.7954 1.1144 0.2567 1.218
0.417 0.2742 0.319 1.1144 0.8577 0.1036

0.4407 0.5835 0.5387 0.2567 0.8577 0.9613
0.5206 0.3778 0.4226 1.218 0.1036 0.961

       

3

   

    











    

88
0.0238 0.3661 0.617 0.0879 0.156 0.5726
0.3423 0.3661 0.9831 0.2782 0.5221 0.2065

0.6408 0.617 0.9831 0.7049 0.461 1.1896
0.0641 0.0879 0.2782 0.7049 0.2439 0.4847
0.1798 0.156 0.5221 0.461 0.2439 0.7286
0

   



   









 

 

   

.5488 0.5726 0.2065 1.1896 0.4847 0.7286 

 

3 4
3 4

0.3588 0.3221 0.3994 0.3643 0.3226 0.0269
0.3588 0.0367 0.0406 0.0055 0.0362 0.3319
0.3221 0.0367 0.0773 0.0422 0.0005

  w.r.t. ,   , 1, 2,3,..., 7,    w.r.t. , , 1, 2,3Table 26 ,...,7,ij iji j i j i j i j   
     

 







   

     
0.1418 0.1681 0.7282 0.3899 0.1931 0.

0.2952
0.3994 0.0406 0.0773 0.0351 0.0768 0.3725
0.3643 0.0055 0.0422 0.0351 0.0417 0.3374
0.3226 0.0362 0.0005 0.0768 0.0417 0.2957
0.0269 0.3319 0.2952 0.3725 0.3374 0.2957

   



  

   













2977
0.1418 0.3099 0.5864 0.5317 0.3349 0.4395
0.1681 0.3099 0.8963 0.2218 0.025 0.1296
0.7282 0.5864 0.8963 1.1181 0.9213 1.0259
0.3899 0.5317 0.2218 1.1181 0.1968 0.0922
0.1931 0.3349 0.025 0.9213 0.1968 0.1

    

  

     





 







046
0.2977 0.4395 0.1296 1.0259 0.0922 0.1046 

 

5 6
5 6

0.14 0.2994 0.7187 0.1526 0.6556 0.6976
0.14 0.1594 0.5787 0.0126 0.5156 0.5576

0.2994 0.1594 0.4193 0.1468 0.3562 0

  w.r.t. ,  , 1, 2, 3, ..., 7,    w.r.t. ,   , 1, 2, 3Table 27 , ..., 7,ij iji j i j i j i j   
     

    





 





     
0.1536 0.1331 0.5478 0.126 0.4152 0.102

0.15
.3982

0.7187 0.5787 0.4193 0.5661 0.0631 0.0211
0.1526 0.0126 0.1468 0.5661 0.503 0.545
0.6556 0.5156 0.3562 0.0631 0.503 0.042
0.6976 0.5576 0.3982 0.0211 0.

     

545 0.042

 



   



 









36 0.0205 0.3942 0.2796 0.2616 0.0516
0.1331 0.0205 0.4147 0.2591 0.2821 0.0311
0.5478 0.3942 0.4147 0.6738 0.1326 0.4458

0.126 0.2796 0.2591 0.6738 0.5412 0.228
0.4152 0.2616 0.2821 0.1326 0.5412 0.3132

0.1

  

  

     

    













02 0.0516 0.0311 0.4458 0.228 0.3132 

 

7 8
7 8

0.3941 0.0716 0.3648 0.2317 0.0918 0.4271
0.3941 0.3225 0.0293 0.1624 0.3023 0.033
0.0716 0.3225 0.2932 0.1601 0.0202 0.3555
0

 w.r.t. ,  , 1, 2, 3, ..., 7,   w.r.t. ,   , 1, 2, 3, ..., 7,Table 28ij iji j i j i j i j   

 



  









     
0.0166 0.0135 0.077 0.1007 0.3518 0.02

.3648 0.0293 0.2932 0.1331 0.273 0.0623
0.2317 0.1624 0.1601 0.1331 0.1399 0.1954
0.0918 0.3023 0.0202 0.2

     

73 0.1399 0.3353
0.4271 0.033 0.3555 0.0623 0.1954 0.3353

  

  

  

 



    









14
0.0166 0.0301 0.0604 0.1173 0.3684 0.0048
0.0135 0.0301 0.0905 0.0872 0.3383 0.0349

0.077 0.0604 0.0905 0.1777 0.4288 0.0556
0.1007 0.1173 0.0872 0.1777 0.2511 0.1221
0.3518 0.3684 0.3383 0.4288 0.2511 0.3









 

   

 



  

      732
0.0214 0.0048 0.0349 0.0556 0.1221 0.3732 

 

Step-11:Calculation of Partial Concordance 
Indices and Concordance Matrix-The partial 

concordance matrices shown in tables 29-32 as 
follows: 

 

1 1 2 3 4 5 6 7 2 1

1

2

3

4

5

6

7

Table 29

0 0 0         0 0        0       
                                   

 
0 0 0 0 0 0
0 0 0 0 0 0
0.2287 0.6647 0.5279

      

1 0 1
0

                  

0 0 0 0 0
0 0 0

 
   

0 0.7182 1
0 0 0 0 0 0

 
       
























2 3 4 5 6 7

1

2

3

4

5

6

7

0 0.1726 0         0 0 0.4585
0 0.2056 0 0 0 0.4914
0 0 0 0 0 0
0

                                                 

.5858 0.5529 1 0.6746 0.3369 1
0 0 0.0839 0 0 0.3697
0 0 0.

 
  

4215 0 0.0364 0.7074
0 0 0 0

  
     


















0 0 

 

3 1 2 3 4 5 6 7

1

2

3

4

5

6

7

Table 30

1 1 1 1 1 0.5592
0 0.4122 0.5908 0.

                               

5097 0.4133 0
0 0.5818 0.6757 0.594

            

5 0.4982 0
0 0.4

         

031 0.3183 0.4159 0.3195 0
0 0.4

   
 

843 0

 

.3

  
      


















4 1 2 3 4 5 6 7

1

2

3

4

5

6

7

                                                     
0 0 0         0.2488 0 0.1157

0 0.1333 0 0.4536 0.1694 0.3205
0 0

994 0.5781 0.4006 0
0 0.5807 0.4958 0.6745 0.5934 0
0.4348 1

  
    

1 1 1 1

      


















0 0.0061 0 0
0.7374 0.5326 0.9802 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0









 



5 1 2 3 4 5 6 7

1

2

3

4

5

6

7

Tables 31

0.9016 1 1 0.9176 1 1
0.5466 0.9

                              

262 1 0.7401 1 1
0.3445 0.522 1 0.53

                         
   

8 1 1
0 0 0.1925 0.0063 0.6441 0.6974
0.5306 0.7081 0.91

 
      

















6 1 2 3 4 5 6 7

1

2

3

4

5

6

7

                                               
0.0733 0.0978 0 0.4072 0 0.1349

0.4401 0.2812 0 0.5

02 1 1 1
0 0.0704 0.2725 0.8041 0.0863 0.7774
0 0.0171 0.2192 0.7509

     
    

0.0331 0.6709

      


















906 0 0.3183
0.4156 0.2322 0 0.5661 0 0.2939
0.9108 0.7274 0.7519 1 0.4150 0.789
0.1063 0 0 0 0 0
0.7525 0.5691 0.5936 0.0984 0.9029 0.6307
0.3785 0.1951 0.2196 0 0.529 0









 

7 1 2 3 4 5 6 7

1

2

3

4

5

6

7

Tables 32

0 0.1712 0 0 0.1471 0
0.7273 0.6

                              

418 0.2917 0.4506 0.6177 0.2173
0.3

             

422 0 0 0.0656 0.2326 0
0.6923 0.2217 0.6068 0.

  

4156 0

          
    

      














 8 1 2 3 4 5 6 7

1

2

3

4

5

6

7

0 0 0 0 0

.5827 0.1823
0.5334 0.0628 0.4479 0.0978 0.4238 0.0234
0.3663 0 0.2808 0 0.0897 0
0.7667 0.2961 0.6812 0.3311 0.49 0.6

                                                       

5

    

71

      

















        0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0.1710 0.1921 0.1538 0.2691 0.0427 0.1982
0 0 0 0 0 0










 

Table 33:Comprehensive Concordance matrix   
1 2 3 4 5 6 7

1

2

3

4

5

6

7

0.2419 0.3051 0.247 0.3116 0.2668 0.2905
                                      

0.2133 0.3307 0.2377 0.3376 0.2832 0.3044

                  

0.133 0.1599 0.2085 0.2074 0.2

    

188 0.1585
0.

      














4019 0.3953 0.5701 0.578 0.4243 0.6113
0.1509 0.1568 0.2367 0.2101 0.2329 0.185
0.1437 0.1555 0.269 0.22 0.2947 0.4242
0.1938 0.1808 0.2612 0.2596 0.2433 0.2933







 
 

Step-12:Calculation of Discordance Matrix in 
tables 34-37. 

Table 34 

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 2                                                                           

0.4019 0.4394 1 0.1722 0.89

                

08 0.0854
0.6412 0.5591 1 0.2918 1 0.205
0.603

             












 

1

2

3

4

5

6

7

0.2476 0 0.8803 0.1574 0.4075 0
0.1987 0 0.8559 0.133 0.3831 0

6 0.484 1 0.2543 0.9729 0.1675 0.5742 0.5986 1
0 0 0 0 0.3065 0
0.8709 0.7513 0.7888 1 1 0.4347
0.1523 0.0327 0.0702 0.7366 0 0
0.9577 0.8381 0.8756 1 0.6083 1












 







0.5085 0.7586 0.0114
0 0 0 0 0 0
0.2889 0.3133 0 0.9461 0.4733 0
0.0388 0.0632 0 0.6959 0 0
0.786 0.8104 0.4349 1 0.7202 0.9704







 Table 35 

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1

2

3

4

5

6

7

3 4                                                                           

0        0        0         0        0        0
0

                          

.4

               











 

1

2

3

4

5

6

7

0.4557 0.0628 1          0 0.0311 0
038 0 0 0 0 0.3283 0.0961 0 1 0 0 0

0.3008 0 0 0 0 0.2252 0.489 0.6688 1 0 0.2442 0.1116
0.5178 0 0 0 0 0.4423 0 0 0 0 0 0
0.4193 0 0 0 0 0.3437 0.7703 0.95 0.5571 1 0
0.3022 0 0 0 0 0.2266
0 0 0 0 0 0










 

 
 

 




.5254 0.3928
0.5207 0.7005 0.3076 1 0.0264 0.1433
0.6534 0.8331 0.4402 1 0.159 0.4085




 Table 36 

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1

2

3

4

5

6

7

5 6                                                                                

0 0        0        0        0        0   

                      

     
0 0

               









 




1

2

3

4

5

6

7

       0 0 0.6135 0         0.3690 0
0 0 0 0 0 0 0.3303 0 0.0859 0

0 0 0 0 0 0 0 0 0.3681 0 0.1237 0
0.3632 0.0187 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.1191 0.0813 0.8457 0.6013 0.0240
0.2079 0 0 0 0 0 0 0 0 0 0 0
0.3113 0 0 0 0 0 0 0 0 0.4254 0 0.












 
 

 
 

 181 

  
 
 
 



Table 37 

1 2 3 4 5 6 7 1 2 3 4 5 6 7

1

2

3

4

5

6

7

7 8                                                                                

       0.2

     

349 0 

        

       0

       

.1965 0.0219 0        0.2782
0 0 0

             









 




1

2

3

4

5

6

7

0.2061 0.237 0.1442 0.3264 0.5839 0.2012
0 0 0 0.2402 0.254 0.1612 0.3435 0.601 0.2182

0 0.141 0.1026 0 0 0.1843 0.2093 0.1923 0.1303 0.3126 0.5701 0.1874
0 0 0 0 0 0 0.3021 0.285
0 0 0 0 0 0
0 0.1145 0 0.0761 0 0.1578
0 0 0 0 0 0












 







1 0.316 0.4054 0.6629 0.2802
0.1199 0.1029 0.1337 0.0409 0.4807 0.0979
0 0 0 0 0 0
0.2451 0.2281 0.2589 0.1661 0.3484 0.6059







Step-13:Calculation of Credibility Index- 
Table 38 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0.136 0.2461 0   0.3049 0.0157 0.2905
0.0712 0.2178 0 0.3346 0 0.2939
0.0

                      

129 0.0178 0 0.1049 0.00

          

12 0.1351
0.

             

324 0.3953 0.5701    0.578 0.248 0

 

4

       













 .6113

0.0036 0.0022 0.038 0 0 0.077
0.06 0.0551 0.2548 0 0.2947 0.4242

0.0009 0.0016 0.0255 0 0.0401 0






 

 
5.3.2.2 Module II: The Exploitation of 
Outranking Relations 
 
Step-13:Calculation of Credibility Index-Table 
Ranking of Alternatives 

Table 39 

1

2

3

4

5

6

7

0.9932 0.4726 0.5206 3
0.9175 0.6080 0.3095 4
0.2719 1.3523 1.0804 5
2.7271 0 2.7271 1
0.1208 1.6572 1.5364 6
1.0888 0.265

Alternatives Ra

3 0.8235 2
0.

nk

0681 1.8320 1.763

g

7

in

9

  








 







 

4 6 1 2 3 5 7             
Jalaun Lalitpur Banda Chitrakoot Hamirpur Jhansi Mahoba     

 
Thus, District Jalaun is the best Location in 

Bundelkhand region of Uttar Pradesh for Solar 
Power Plant/Park installation. 
 
6. Conclusion 
 

In conclusion, the research paper titled "Two 
Phase Decision-Aiding System for solar plant 
location problem using ELECTRE III Method in 
Pythagorean Neutrosophic programming approach: 
A case study on Green Energy in India" presents a 
novel approach to solving the solar plant location 
problem in India. The use of the ELECTRE III 
method in the Pythagorean Neutrosophic 
programming approach is a significant contribution 
to the field of decision-making under uncertainty. 
The paper's two-phase decision-aiding system 
allows for a comprehensive evaluation of potential 
solar plant locations, taking into account multiple 
criteria and stakeholder preferences. The case study 
on Green Energy in India demonstrates the 
effectiveness of the proposed method in identifying 

the most suitable locations for solar plants, 
considering economic, social, and environmental 
factors. 

Overall, the paper highlights the importance of 
using advanced decision-making tools to address 
complex problems in renewable energy 
development. The proposed method can serve as a 
valuable resource for policymakers, investors, and 
stakeholders involved in the planning and 
implementation of solar energy projects in India 
and other countries facing similar challenges. 
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