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ABSTRACT

CONSENSUS-BASED DATA MANAGEMENT WITHIN FOG

COMPUTING FOR THE INTERNET OF THINGS

by

Firas Qais Mahammed Saleh Al-Doghman

The Internet of Things (IoT) infrastructure forms a gigantic network of inter-

connected and interacting devices. This infrastructure involves a new generation

of service delivery models, more advanced data management and policy schemes,

sophisticated data analytics tools, and effective decision making applications. IoT

technology brings automation to a new level wherein nodes can communicate and

make autonomous decisions in the absence of human interventions. IoT enabled

solutions generate and process enormous volumes of heterogeneous data exchanged

among billions of nodes. This results in Big Data congestion, data management,

storage issues and various inefficiencies. Fog Computing aims at solving the issues

with data management as it includes intelligent computational components and

storage closer to the data sources. Often, an IoT-enabled infrastructure is shared

among many users with various requirements. Sharing resources, sharing opera-

tional costs and collective decision making (consensus) among many stakeholders

is frequently neglected. This research addresses an essential requirement for adap-

tive, autonomous and consensus-based Fog computational solutions which are able

to support distributed and in-network schemes and policies. These network schemes

and policies need to meet the requirements of many users. In this work, innovative

consensus-based computational solutions are investigated. These proposed solutions

aim to correlate and organise data for effective management and decision making in

Fog. Instead of individual decision making, the algorithms aim to aggregate several

decisions into a consensus decision representing a collective agreement, benefiting

from the individuals variant knowledge and meeting multiple stakeholders require-



ments. In order to validate the proposed solutions, hybrid research methodology is

involved that includes the design of a test-bed and the execution of several experi-

ments. In order to investigate the effectiveness of the paradigm, three experiments

were designed and validated. Real-life sensor data and synthetic statistical data

was collected, processed and analysed. Bayesian Machine Learning models and An-

alytics were used to consolidate the design and evaluate the performance of the

algorithms. In the Fog environment, the first scenario tests the Aggregation by

Distribution algorithm. The solution contribute in achieving a notable efficiency

of data delivery obtained with a minimal loss in precision. The second scenario

validates the merits of the approach in predicting the activities of high mobility

IoT applications. The third scenario tests the applications related to smart home

IoT. All proposed Consensus algorithms use statistical analysis to support effective

decision making in Fog and enable data aggregation for optimal storage, data trans-

mission, processing and analytics. The final results of all experiments showed that

all the implemented consensus approaches surpass the individual ones in different

performance terms. Formal results also showed that the paradigm is a good fit in

many IoT environments and can be suitable for different scenarios when applying

data analysis to correlate data with the design. Finally, the design demonstrates

that Fog Computing can compete with Cloud Computing in terms of accuracy with

an added preference of locality.

Dissertation directed by Dr. Zenon Chaczko and Dr. Wayne Brooke

School of Electrical and Data Engineering
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1

Chapter 1

Introduction

1.1 Background

We are living in the era of the Internet of Things (IoT) where everything is, or

about to be, connected to the Internet. From home facilities to industrial machiner-

ies throughout transportation vehicles, engines, exercise equipment and even pets

and cattle, all be represented as ’things’ in it. However, what have been accom-

plished till now is still far from expected, 50 billion objects by 2020 and 1 trillion

by 2030 [22][23][24]. The Internet of Things (IoT) represents the upcoming stride in

the direction of the digitisation of our society and economy, presenting fascinating

opportunities across an amazing range of applications, where objects and people are

interconnected through communication networks [25]. This number of devices that

are connected to the Internet can produce a massive amount of a neuromas vol-

ume of data and create serious Big Data related problems [26] [27][28][29] [30]. Big

data characterise with properties of having complexity, heterogeneity, autonomous,

and distributed form of a continuously expanding dataset. The challenges emerge

with the expansion of data that are extremely getting out of the scope of ordinarily

used tools and software to deal with their management and analytics problems [31].

Big data in real-time have miscellaneous and autonomous exemplification bringing

exceptionally unstructured and independent data based relationships in generating

faulty and complex outcomes. The features of heterogeneous data are regarded as

various data representations. In order to lessen the impact of heterogeneous and

complex data; a computational operations are to be presented at localised scheme
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taking into account that they are having improved computational power. Transform-

ing data into a fusion of common forms of data can be a way of high compatibility

for data linkage and proportionality indexing for acquiring better analytical results

[32][33][34] [35][36].

The need to handle the growing concerns of being able to deal with big data gen-

erated and travelled within the networks, knowing it contains a prominent portion

of redundancy, in real time and work within the limits of the available bandwidth

leads to the emergence of Fog Computing which operate along the continuum from

beyond the Cloud towards the front-end devices and supplies a distributed comput-

ing based network services and storage [37][38]. The interest in Fog Computing is

motivated by the fact that it is crucial to deal with potential errors and intensive

data flow, so it does not flood the whole system, at early stage [25]. Fog Computing

represents a supplement to the Cloud paradigm which runs geo-distributed appli-

cations across the network. In opposition to the Cloud, the Fog not only carries

out latency-sensitive applications near the network front-end, but also carries out

latency-tolerant tasks effectively at nodes with powerful computational capability

at the network intermediate level. Cloud Computing, at the top of the Fog layer,

with data centres that are still a preferred technology for performing deep analytics

tasks [39]. In the recent times, yet another important concept of Edge Computing

was defined the context of the IoT. The concept relates to technology and solutions

facilitating data processing and management that is done at the network edge and

near the source of data generation [40] [41][42][43][44].

Usually, the extraction of all data, particularly in a real-time setting, is in most

cases nonviable. Furthermore, presently applied procedures for dealing with big

data are still not sufficient. Thus, a need exists for a platform holding the qualifi-

cation of delivering real-time prediction reaction for data analysis [45]. Advanced

sensing devices play a pivotal role in acquiring data generation, transition, and dis-
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semination for the IoT. Particularly, the applications of IoT and the sensing devices

intelligent systems, like Wireless Sensor Networks (WSNs), are jointly connected.

Modern intelligent sensing systems collect mass volumes of sensing data, more than

the processing capabilities of common techniques and tools. Therefore, collecting,

managing, then processing big sensing data in IoT within a sufficient time duration

is a challenge with a good potential for both industrial and research applications

[46].

There is a need to manage the resources within IoT in order to mitigate Big Data

problem and its redundancy related issues. Data Aggregation methods can be used

as one of the techniques of Fog Computing by which only the requisite data is to be

forwarded to the ascendant node and so forth up to the Cloud. Data aggregation

involves the process of forwarding a synopsis of several data packets rather than

the whole packets [47]. The accelerated use of IoT type of technologies (like sensors

and actuators) would generate immense amount of data having enormous level of

redundancy. To realise this proposition, it needs to be managed in a smart way

that considers some policies by involving voting to produce a consensus aggregation

that would gain resource efficiency. Consensus-based management is one of less ex-

plored techniques that uses voting mechanism amongst specific nodes (aggregators)

according to a policy to reach agreement about what events or activities happens

within the network environment as well as how to manage the resources. By ac-

complishing this, less data will travel across the network which will save bandwidth,

energy, traffic control processes, computation, time, etc. It also will make the sys-

tem more flexible to adapt or modify any computing rule or policy according to the

system status. The proposed management methodology applied to the Fog platform

within the IoT context has a two ways technique in which it can be implemented

on data in an upstream direction as in deciding about combining sensed data and

decisions related to them, then sending them up to the Base Station (BS). It also
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applied on ’controls’ in a downstream orientation for deciding how to integrate actu-

ation commands from the base station down to the actuators where there may be a

presentation of redundant commands and/or it is targeting specific actuators. The

process accumulate data/controls in the aggregator node according to an agreed ap-

proach and propel the accord one to the ascendant node. Additionally, the proposed

mechanism includes a Machine Learning process that leads the decision operation

and deals with nodes reliability issue by discovering status change and faulty nodes

within the network.

Fog network data analysis may be considered influential in increasing the effi-

ciency of data aggregation in IoT as an information intermediary, informing nodes

of a higher levels about network status. Their role involves conducting determina-

tion about data boundaries and patterns in different operational modes, and issuing

decisions based on their knowledge (machine learning). Therefore, an opportunity

exists to understand the importance of enhancing the quality of data reached to

base station of the network as well as data analysis, by investigating different types

of operational modes and the link between data patterns or boundaries and the

decision to be made. In other words, this thesis addresses the need to understand

what and how data patterns are learned by Fog network nodes to determine which

data is of a value to the end users as well as the efficiency of network resources. An

investigation of use of IoT Fog network by simulation and implementation of case

studies will help achieve this. In addition, such an investigation provides an oppor-

tunity to examine the various factors driving the use of Data aggregation by the

guidance of Group Decision Making techniques. The introduction of the Fog based

platform in this work has macroscale impact and use within the IoT environments

but is not limited to specific applications such as mobile networks.

The process of mitigating Big Data problem caused by the huge amount of IoT

nodes generating a massive amount of data with a large amount of redundancy and



5

heterogeneity, pass through data organisation performed from the front-end so that

only the valuable data is to be pushed to the upper levels. This requires knowing the

boundaries of the desired data and what is of a value to the network and its users

which will leads to the need of data analysis to specify the types and limits of the

desired data as well as the quantities and cycling periods of delivering them to their

destinations. After performing data analysis, the data needs to be coordinated in a

way of introducing a degree of decision making within the Fog network levels. This

ends up in a data that is considerably accurate, as opposed to raw data without

decision making, at different levels which helps in saving packets (we don’t have to

transmit extra packets for a redundant information). In this direction, we will save

energy and other network resources caused by network confusion, so the efficiency

of the system will improve.

1.2 Research Objectives

The aim is to effectively manage data in Fog Computing architecture by us-

ing adaptive, collective and collaborative method to achieve autonomous decision

making paradigm close to data sources within IoT framework.

This research is based on the following objectives:

i. Correlate and analyse data.

ii. Recognise event and activities within the network.

iii. Achieve distributed in-network Fog Computing.

iv. Develop an effective Consensus model.

v. Save network resources while maintaining accuracy levels.
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1.3 Research Gap

There have been various attempts by researchers to perform practices of col-

lecting and managing data in various networks. In most cases, data collection and

management is performed using fixed criteria with no adaption according to network

status. In addition, the researches, in most of times, did not consider the higher

level application requirements and they did not give a clear description of the data

collected. Also, projects aimed to improve the efficiency of data delivery have been

undertaken by many researchers in the literatures. These initiatives include net-

works for sharing information and best practice, research collaboration, and the

development of IoT and Fog Computing frameworks. However, those practices have

not consider data analysis and intelligent data organisation at the network edge to

extract what is of a value to the network and its users. Improvements to the guide-

lines and frameworks for Data management practices of IoT can only be made by

having a better understanding of the use of intelligent data analysis and organisation

near the front-end.

1.4 Research Problem and Motivations

The research problem is that within IoT, a huge mass of uncoordinated hetero-

geneous data with a large amount of redundancy will be generated and exchanged

by billions of devices which will yield to Big Data issue. The existence of this is-

sue causes traffic congestion and affects network efficiency. Most of the front end

IoT infrastructure resources are shared among authorised users and software agents,

still data generation and transmission is not well organised, i.e. there are no po-

lices bounding what is of a value to the users among the whole measured data and

no data analysis to anticipate it. This results in poor data quality generation and

transmission since there is a lack of decision making at the front-end to specify the

required data that suits users’ needs. All of that leads to the question of how to
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manage data in an intelligent manner to achieve the research objectives.

The Motivation of this work is the need to have a better ways of managing

data and transferring them in an organised manner based on real-time data analysis

at the network edge. There is an increase roll of front-end devices like intelligent

gateways and access points which need to include smart processing.

1.5 Research Significance

This study will contribute in the Enhancement of data quality in the Internet of

Things, not only at front-end but also in other part of the paradigm. The research

will encourage the mitigation of Big Data issues like heterogeneity, incoordination,

and redundancy and also consider the needs of network users. Additionally, the

system will apply automation within Fog network nodes and adapt its performance

to improve the efficiency of network resources.

The outcome to be considered consists of the following: the enhancement in all

components of network metrics such as energy efficiency, overall packets savings,

the reduction in network congestion, traffic control computation, data redundancy

elimination, delay and bandwidth reduction, etc.; development of Fog network to-

wards automation; increase in system flexibility to adapt or modify any computing

rule or policy according to the system status to meet users demand; improve the

reliability of the system due to its ability to detect the change in network status as

well as discover ( and possibly eliminate the effect of) faulty nodes.

1.6 Problem Statement

There is a need to autonomously handle the organisation of data generation and

transmission within shared Fog network using consensus-based set of algorithms. Big

Data is a serious problem within IoT. It is required to mitigate Big Data inherent

heterogeneity, incoordination and redundancy as well as considering users needs.
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Additionally, high levels of automation and fault tolerance is needed within IoT

to cop up with the rapid growth of the IoT infrastructure and related technology.

These infrastructures may potentially have billions of nodes exchanging data which

makes it hard to process it at a point far from its source.

1.7 Research Hypothesis

In this work, it is hypothesised that it is possible to design adaptive and

fault-tolerant Consensus-based Machine Learning algorithms for data

management in Fog Computing.

1.8 Validation

In order to validate the proposed solutions, hybrid research methodology is in-

volved that includes the design of a test-bed and the execution of several experi-

ments. In order to investigate the effectiveness of the paradigm, three experiments

were designed and validated. Real-life sensor data and synthetic statistical data was

collected, processed and analysed. Bayesian Machine Learning models and Analytics

were used to consolidate the design and evaluate the performance of the algorithms.

In the Fog environment, the first scenario tests the Aggregation by Distribution

algorithm. The solution contribute in achieving a notable efficiency of data delivery

obtained with a minimal loss in precision. The second scenario validates the merits

of the approach in predicting the activities of high mobility IoT applications. The

third scenario tests the applications related to smart home IoT. All proposed Con-

sensus algorithms use statistical analysis to support effective decision making in Fog

and enable data aggregation for optimal storage, data transmission, processing and

analytics.
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1.9 Research Contribution

The main contribution of the research can be summarised as follows:

i. Introducing the accommodating Fog Consensus Management Paradigm that

can suit a lot of IoT scenarios within it and can fit in many experiments and

IOT environments.

ii. Developing the consensus decision making model which its accuracy surpasses

individual decision making.

iii. propose the Likelihood Multiplication Consensus algorithm that can achieve

markedly good performance when used to aggregate decisions resulted from

Bayesian classifiers.

iv. Implementation of Fog Computing experiments in an IoT environment and

demonstrate that its accuracy performance can compete with the Cloud.

v. Introducing Consensus Management which depends on voting mechanism in a

way that leads to consensus about aggregation process which can be extended

to self-management as an upcoming stage.

vi. Including the Machine learning mechanisms within the consensus algorithm as

a data analysis tool to maintain the reliability of the system and contributed

in fulfilling the big picture of reliable IoT.

1.10 Thesis Organization

This thesis is organised as follows: The first part gives a brief overview and

introduction to the topic of this report. In general, the main aim of this research is

to apply intelligent management to Fog Computing nodes within IoT. Other chapters

of this thesis present the following:
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Figure 1.1 : Mind Map

• Chapter 2: This chapter presents a survey of different literature related to the

research topic and directions.

• Chapter 3: The Hybrid methodology are derived in this chapter explaining

the operation of the Consensus-based management set of algorithms.

• Chapter 4: This chapter presents an experiment design that tested to detect

events based on environmental data generated by environmental and air qual-

ity sensors. The experiment tests the Aggregation by Distribution algorithm

as well as implements the consensus-based algorithm using Bayesian Machine

Learning models and Analytics.

• Chapter 5: This chapter presents another experiment which is used to con-

solidate the design and evaluate the performance of the proposed algorithms
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predicting human activities based on mobile movements and position sensors.

The proposed algorithm is executed using Bayesian Neural Networks.

• Chapter 6: This chapter presents a third experiment to test the applications

related to smart home IoT activities based one fixed movement and air qual-

ity sensors. The Consensus-based operation is implemented with the help of

Bayesian deep learning practices.

• Chapter 7: A brief summary and conclusion of the thesis contents are given

in the final chapter. Recommendation for future works is given as well.
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Chapter 2

Literature Survey

2.1 Introduction

Much research has been introduced to explain the significance of Fog Comput-

ing, aggregation processes, agreement mechanisms, fault tolerance approaches and

autonomic computing which helped to build and support this research. The Fog

Computing implies a number of characteristics that portray the Fog as a non-trivial

extension of the Cloud while aggregation practices helped to reduce resource con-

sumption in the networks it applied to. However, it’s crucial to stratify reliable

mechanisms for detecting and eliminating diverse threats, attack sources, and mali-

cious nodes which is why the Byzantine Fault tolerance was examined.

The IoT is the network of multibillion interoperable devices (sensors) used for

information or data acquisition, communication, analysing, decision making and re-

porting to intelligent systems, which are the part of such network. This information

then can be used for manipulation and controlling the behaviour of physical devices

in certain environmental settings. Due to this dynamism of IoT systems, both the

academia and industries are getting attracted towards it.

2.2 The Internet of Things

The Internet of Things has been gaining a vast volume of attention since it was

introduced and a large number studies have been proposed [48]. A scenario of a

converged IoT based on a WSN and a smartphone was implemented in Tsitsigkos

et al. (2012) to accomplish a monitoring service and object mobility tracking inside
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a house [1].

Figure 2.1 : A typical smart home IoT scenario [1]

The Internet of Things gained a numerous amount of attention since it was intro-

duced and an extensive literature has been proposed. It demands real time response

and optimum resource utilization in many applications and services, with huge data

influx and bandwidth bounds. A one scenario (illustrated in Figure 2.2 as a part of

capstone project) of keeping track of temperature in the set environment and notify

the user if a temperature reading is out of the desired range was implemented in

[25] to accomplish a monitoring service.

2.3 Fog Computing∗

2.3.1 Characterisitcs

The Fog Computing contains a number of characteristics which portray it as a

non-trivial expansion of Cloud Computing. In terms of IoT, Bonomi et al. (2012)

∗parts of this section come from my paper ”A review on Fog Computing technology”(2016)
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monitoring System diagram.jpg

Figure 2.2 : Enhanced IoT Monitoring System Scenario

outline the vision of Fog Computing, define its main features and discuss that the

characteristics of Fog Computing makes it the suitable architecture for numerous

critical IoT practices and services. Fog nodes features are elaborated as low-latency

and location awareness, wide-spread physical location, mobility, massive node num-

bers, pre-dominant part of wireless access, robust existence of streaming, hetero-

geneity and real time applications. There is an argument about the Fog model for

it having three tiers including the one designed for M2M (Machine-to-Machine) re-

ciprocal action. This is dedicated for data acquisition, processing and controlling of

actuators, also it isolates the part of data for local use with rest of the data which

it will push towards the top tiers. While HMI (Human-Machine-Interface) interac-

tions are handled through the second and third tiers (visualization and reporting),

as well as M2M (systems and processes).Further, Cloud provides global centraliza-

tion which is used as data repository and business intelligence analytics base, while

the Fog nodes offer the localization [49][50]. Yannuzzi et al. (2014) [51][52] men-

tions about the Fog Computing being the promising platform for IoT. This paper
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observes some of the challenging and encouraging IoT scenarios, highlights the in-

evitable interaction of the Cloud and Fog in upcoming time and review some of

the technologies that will necessitate substantial improvement so as to support the

future IoT applications. Similarly Stojmenovic and Wen (2014) [53][54] reveal the

new paradigm of Fog computing and the identical work under the same canopy and

also have discussed about the attack of man-in-the-middle for the security domain

in Fog Computing. Moreover, they have demonstrated the novel Fog Computing

and have illustrated some applications and benefits of it in different areas including

smart grids, sensor networks (WSNs), Internet of Things (IoTs) along with software

defined networks (SDNs). Besides it, they have reported on some common issues like

privacy and security in the Fog Computing. Fog Computing architecture considers

a number of characteristics that portrays it as a non-trivial extension of Cloud Com-

puting. The migration of trust and the services amongst Fog nodes or sensors and

between the Cloud and Fog is commonly described in terms of IoT. However, Shi

et al. (2015) discusses the Fog Computing characteristics and what services it can

support. They introduce the discussion of the application of Fog Computing in the

forthcoming healthcare systems, where its service support model has been discussed

in Shi et al. (2015). The features of Fog Computing makes it a robust addition of the

cloud by which it can minimize the overall interval by exchanging data within the

local area network. Also, Fog Computing supports a small amount of data storage

and by using different sorts of storage strategies it will consume reasonable comput-

ing power to attain precise analyses. Furthermore, it is able to do some altering and

aggregation processing and filter out invalid or corrupted data before sending it to

Cloud and should prioritise flow of what content to send, in which format and when

to send it i.e. time. It has been said that Cloud is linked to servers, though Fog is

connected by the smart devices in place and performs in distributed setting instead

of centralised performance as in the case of Cloud. The Fog nodes process clusters
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of data which are disintegrated with the huge computational power. It has been

summarise that Fog is the mediator between the Cloud and the networked devices

and facilitate them with pushing service to ingest the data and for updating the

processed information on the Cloud for deep mining and long lasting storage added

that data altering and aggregation need some rules, analysis (online) requires actual

or associated data to calculate and realise the intelligent on-line analytics, and also

mentioned that ephemeral and semi-permanent storage has to be supported by Fog

[55].

2.3.2 Resource Management in Fog Model

Fog Computing is a paradigm that was introduced recently, so there has been no

existing standard architecture as such regarding computing resource management.

The Fog model for resources management is presented in Aazam and Huh (2015)

[56]. They elaborate that for the IoT, it is very much essential to have an effi-

cient and effective framework for management of resources. They further illustrated

that the model should emphasize on prediction of resources, advance reservation,

customer-based resource reservation and estimation and based on the characteristics

of old or new customers, the model must focus on the pricing as well. Their dynamic

and flexible model is executable in myriad settings by incorporating diverse scenar-

ios and is capable of adjusting according to different scenarios. The implementation

of the model was made using Java/NetBeans 8.0 and the evaluation was done by

CloudSim toolkit. As per the needs of industrial process, Gazis et al. (2015) [4]

describes the facilitating infrastructure of Fog Computing as an AOP (Adaptive

Operations Platform) which provides end-to-end management. AOP is built on the

service capabilities of the following layers: Fog Computing Infrastructure which in-

volves networking equipment with specific Fog capacities and supplies Operational

Support System (OSS) and end-to-end communication services which influence the
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Figure 2.3 : Architecture of the Adaptive Operations Platform (AOP)

Fog Infrastructure to give the standard resource the executives and business support

capacities (e.g., stock, upkeep, provisioning, and so forth.). To effectively use key

highlights of the Fog Infrastructure, AOP incorporates a few useful components.

The Model Building (MB) practical component consolidates static data about the

disappointment models of the gear types found in the modern site alongside unique

information gathered amid the last’s task. The practical component of the Rule

Mapper (RM) entrusted with mapping the intertwined model with a huge traffic

dealing and with guidelines comprehended by the software defined networking foun-

dation. The utilitarian i.e. Rule Deployer (RD) component having a massive traffic

handling and with principles and portrayal of the capacities detected in SDN frame-

work registers the sending intend for applying this arrangement of guidelines over

the fitting components. This model can be altered as in Fig. 2.3 to describe a more

complete IoT model.
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Table 2.1 : Outcomes Comparison between Cloud and Fog

Cloud Computing Fog Computing

Prediction Latency 5 sec. 1.5 sec.

latency of Web page dis-

play

8 sec. 3 sec.

Internet Conjestion 75 Kbps 10Kbps

Hardware usage Amazon Web Server Raspberry Pi

The technique used by Krishnan et al. (2015) to advises a method for transferring

the computation from the cloud to the network, Fog Computing, by presenting an

android like appstore on the networking devices where in the user can select the

data which is to be processed on the edge and that which will be processed on the

Cloud. It includes labelling packets which are to be processed on the network device

while unlabelled packets are sent straight to the Cloud without any transitional

processing. The deployment of Arduino tool for connection to Wi-Fi and Raspberry

Pi for measuring surrounding temperatures for each 5 seconds and then sending

it to the router i.e. to RPi, which has remained their approach for implementing

Fog. At the acquisition of temperature information, a python script executed by

RPi throws temperature readings in separate file(s) readable by Arduino tool. The

records are to be time-stamped and the outcomes need to be written into MySQL

databank instance running over cloud and later web interface is to be established

for displaying information by Could PHP instance readings. Finally they suggest

incorporating Fog Computing in the Routers and using machine language techniques

for deciding which packet should be processed by the Fog and which one to be done

at the Cloud. The results (Table 2.1) showed that Fog based architecture has a

better response time compared to the cloud architecture [57].
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Fog Computing model has a significant layer of the Cloud as Madsen et al.

(2013) [58][59] described and also have stated for examining the reliability of smart

devices networks. They present the reliability challenges introduced by current

computing paradigms and prolongs the argument towards reliable Fog platforms

integrating smart devices networks that communicating among themselves as well

as the Cloud and discuss whether reliable Fog Computing platform is practicable for

real life projects or not. The issue of pairing or utility-based matching within the

same domain of IoT nodes is to be implemented with Irvings matching algorithm

in a Fog model as highlighted to be effective IoT node pairing scheme in Abedin

et al. (2015) [2] The classical pairing algorithm being the modified proposition

explodes Fog Computing with improved utility factor in the context of a facilitating

and expert method of M2M communication and it can pledge collaborative pairing

among nodes for instance, one node to multiple nodes. Simulation was used to

study the effectiveness of proposed algorithm which is used for solving the stable

roommate issue by considering one-to-one steady matching. The aim of tuning

Irvings pairing algorithm is for supporting quota-based nodes’ pairing, wherein every

node has the ability to facilitate both one to multiple as well as one to one pairing.

Figure 2.4 depicts the performance outcome of the proposed procedure within node-

pairing approach where the comparative results demonstrate the Irvings matching

algorithms efficiency for 5 pairs of nodes with quota. It also outperforms the Greedy

algorithm in which the nodes are matched by considering the neighbouring nodes.

The blend of quoted-based method and the highest utility based nodes’ selection

matching is the cause of this distinguished efficiency. Further, the overall utility of

huge pairing between one to many nodes is described due the escalated collaboration

between IoT nodes. Also, this scenario suggests that having a big number of nodes’

quota based pairing and node set, the entire utility of node’s domain set will be

augmented.
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Figure 2.4 : Comparison outcome example illustrating the improvement of the entire

utility of node pairs for the proposed matching procedure [2]

A shared parking model was constructed by Tran et al. (2015) [60] by considering

parking problem from IoT perspective where Roadside Cloud and Fog Computing

are employed for finding an available location. In the model, the Fog server ma-

chines function as a connection between parking lot sensor and Roadside Cloud, in

which information regarding parking slot i.e. either vacant or reserved will be com-

municated with Fog server locally installed. Then the information of the managed

free sport will be delivered from Fog servers to RUSs. The system can control all

available parking data (RFPARK) and at each RSUs the (RFPARK) will bridge the

Fog servers to advice drivers for an optimal spot based on matching theory method,

where the parking slots association is formulated similar to many-to-one pairing

game, wherein, a group of vehicles will be allocated a group of parking lots using

preference concept to pattern the common and inconsistent regard. Stojmenovic

and Wen (2014) [53] introduces a survey article which expands the Fog notion for
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the distributed control of a small building and identifies the Cloudlets as a particular

instance of Fog Computing and also associates it with the software defined network

(SDN) scenarios. He discusses the scheduling of Cooperative information, the issues

in SDN based vehicular networks adaptive traffic light, and the administration of

demand response in micro grid based smart grids and macro station. He also claims

that Fog Computing is becoming a significant class of cyber physical systems (CPS)

and its role in several interesting scenarios was expounded: smart building control,

vehicular networks, smart grids, and wireless sensor and actuator networks. There

is strong need of reconsidering the licensing of software, privacy, business models

and certain other problems in the context Fog Computing and Cloudlets.

2.3.3 Design and Architecture

The growth of IoT, according to its diverse and dynamic nature, shifted the

paradigms many times in terms of the design of network architectures and many

approaches have been presented and proposed. The crucial design and implementa-

tion of a new Fog node named as the IoT Hub was presented by Cirani et al. (2015)

[3] as a mediating network entity which combined the tasks of application layer and

the border function of router, targeting IoT applications located at multiple phys-

ical edge of networks for creating IP based IoT network that can be deployed as a

structure of the growth of WoT (Web of Things). The aim for building IP-based IoT

network, being utilised as a foundation of the organization of IoT implementations

which can enhance the network abilities by implementing cross-proxy, border router,

cache and directory of resource as functions. The integrated IoT Hub has the ability

to completely cover the heterogeneous nature of smart objects which can relate to

them by using uniform interfaces without the need of any preceding configuration.

The interaction with smart objects through the IoT Hub occurs as shown in Fig.2.5.

The performance appraisal has shown that the IoT Hub, using limited process-
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Figure 2.5 : Interaction between clients and heterogeneous smart objects with the

mediation of the IoT Hub [3]
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ing and memory resources, is able to administrate several heterogeneous physical

networks which makes it possible to install it on low-end devices like the RPis. The

method of implementing the IoT Hub was to use a Java based application about

CoAP and the associated drafts deployed to an RPi and used to administrate re-

sources installed in heterogeneous Smart Objects in a real world IoT infrastructure.

The IoT Hub can decrease the handling load on smart objects while moving a portion

of it to the network edge. The results are shown in Fig. 2.6.

In Datta and Christian (2015)[61] an architecture for connecting vehicles where

the Fog platform is deployed at the Road Side Units (RSUs) and M2M gateways.

Such an architecture enables customer-centric services such as M2M data analytics

including semantic web technologies, connected vehicles management and IoT ser-

vices discovery which empowered by Fog Computing distinctive features where the

whole Fog architecture is combined into one M2M typical architecture to explore

Fog Computing paradigm advantages. The goal of Sarkar et al. (2015) [62] was

to develop a mathematical model computing model of Fog and examining the suit-

ability of the model for IoT, particularly when its critical to match the necessities

of latency-sensitive applications operating at the network edge within the structure

of IoT. Additionally, a relative performance for assessment of Cloud Computing

is executed with the Fog Computing for situation where high number of Internet-

connected devices need real-time services. The model was done by mathematically

characterizing the power consumption, CO2 emission, service latency, and cost of

Fog Computing network, and performing performance evaluation in a high numbered

devices, connected to internet environment with real-time service demand. The work

focusing on analysing Fog suitability within the IoT framework for crucial encounter

of the latency requirements for the operating applications at the network-edge had

the aim to build a mathematical model of Fog Computing. The work eventually

rationalise the Fog as an enhanced, eco-friendly platform for computing which can
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(a)

(b)

Figure 2.6 : Evaluating performance : a- Heap memory used (dimension in MB); b-

CPU usage (dientional) [3]
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better sustain the IoT as compared with the prevailing computing platform of Cloud.

However, Yannuzzi et al. (2014)[51] examines some of the promising and challenging

scenarios of IoT applicability and discusses the inevitable interplay of Fog and Cloud

Computing in the near future, along with a review of some of the technologies that

will require significant margins improvement so as to bolster the applications that

the IoT market will requisite. A notable work Gazis et al. (2015)[4] reports on a

novel scenario of using Adaptive Operations Platform (AOP) chased by evaluation

scenarios for two specific cases and proposes an industrial-oriented solution for ap-

plications of inference maintenance utilising the Fog model and the technology of

DMo. The setup is that of N interconnected sensors monitoring the status of the

deployed machinery and aggregate the measurements to evaluate the performance

of the Fog Components and report the captured values through a router to a central

server, as depicted in Fig.2.7 a, further store the measurements in a database. This

holds the objective of investigating potential machinery anomalies. Testing is done

amidst a common router and a router or gateway (Fig.2.7 a and b) supporting DMo,

for comparing the centralised scheme to the APO approach.

The first use case is the reduction of the amount of data received from the router

supporting DMo, the generated traffic characterised by a Gaussian distribution,

with most of the values within [50, 70] - the normal behaviour of the machine mon-

itored, and potential anomalies falling outside it. In order to reduce the amount

of data stored, it is possible to apply the AOP approach. Here, the server runs

a Machine Learning (ML) algorithm (e.g., k-Means) trained to grasp the standard

behaviour of the appliance, then and sets a rule to receive data outside the normal

range representing anomalies and send to the operator. In this case, the average of

the received values is estimated near 60, which corresponds to normal behaviour,

updating a new rule to forward only the values representing anomalies. The range

of values can differ according to thresholds, and the results are illustrated in Fig.2.8.
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(a)

(b)

Figure 2.7 : Scenario using a normal router (a) and a router supporting DMo (b)[4]
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Figure 2.8 : Router CPU usage and the total number of packets received

As expected, the number of transmitted packets has decreased drastically and the

DMo use claims only 8% of the CPU for a 1/3 reduction in the received traffic. A

second use case targets demonstrating the proposed system capability to dynami-

cally change the rules. Specifically, the temperature inside the rack with appliances

is to be measured to alert the operator only when it exceeds a certain threshold

(an anomaly). In order to save bandwidth and other resources in the server, a rule

was created in the DMo router to send only measurements from the rack sensor.

Analysing Fig. 8, an estimate is obtained that an abnormal event occurs inside the

rack without designating which appliance has an anomaly. In this case, the server

receives values above the threshold and it sends a new rule (created by the Rule

Mapper) to the DMo for the router to forward the data from all the sensors. This

produces a temporary increase in received packet number, helping identify the ap-

pliance with the anomaly. At this point, the ML identifies the sensor sending this

surplus data above the threshold, then instructs the DMo router to transmit only

from this sensor in addition to the rack sensor. This rule is applicable till the rack
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Figure 2.9 : Fog Computing Platform Yi et al. (2015)[5]

situation returns to normal conditions. After that, the operator will again receive

the measurements of the rack sensor alone. According to Stojmenovic (2014) [63]

Fog Computing function, being the main class of Cyber-Physical-System (CPS) has

numerous applications in smart grids, networked vehicles, wireless sensor/actuator

networks and control of smart buildings with Cloudlets as an important special case.

Yi et al. (2015) [5] has built a proof of concept Fog platform, with two fog sub-

systems having ’OpenStack’ installed in and possessing 1 router and 3 servers each.

Those routers were inter-connected with through LAN, towards the Cloud (Amazon

EC2) by WAN, and unified with Wireless AP function. Four OpenStack modules

were installed: Keystone for security, Glance of Virtual Machine image manage-

ment, Nova as a compute entity; and Cinder a block-level storage module. When

comparing latency and bandwidth, Fog has stronger advantages over Cloudlets.

VM migration is vital in Fog Computing and its function was applied in two

means: first, Fog 1 capturing a snapshot of the VM to be voyaged, compressing and

later transmitting information to Fog 2., in which it decompresses and re-launches

that VM; second, Both Fogs save a VM base snapshot, with only the incremental
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part transmitted. The user will only remark Transmission time + Post-transmission

time and the incremental method is better in this experiment. A running face

recognition application across a smartphone and a Fog or a Cloud was implemented

as well. Similar actions were run on Fog as well as on the Cloud ( Amazon EC2).

Nevertheless Shi et al. (2015) introduce an alternate option to Fog hierarchical view

by enabling device clouds to reciprocate in a P2P way with smart device or sensor

clouds by focusing on the use of the IoT protocol CoAP as a method of linking

clouds of sensors & smart devices via mobile devices with users [64].

2.3.4 Mobile Edge Computing

Mobile Edge computing, also known as Multi-access edge computing (MEC), is

a network structural design model, defined by ETSI Standards Developing Orga-

nization, that supports the capabilities of cloud computing and the services of an

IT environment near the front end devices of a cellular network and at the edge

of any network [65][66]. The main purpose of MEC is to reduce network conges-

tion and allows a better application performance through running the applications

and performing correlated processing duties nearer to the cellular customer. MEC

technology is deliberated to be carried out at the edge nodes such as cellular base

stations, and facilitates rapid and flexible distribution of newly added applications

and services[67].

A vital upcoming target setting for MEC deployments is 5G networks based on

the specifications of 3GPP 5G. The system specification of 5G and its architecture

facilitate the service-based interlinkages among various network functions. Such

specification allows the alignment of system operations with the Software Defined

Networking and network virtualization models, which is similar to the features of

MEC specifications. Moreover, the enablers of edge computing are described by

3GPP 5G system specifications, which allow 5G and MEC systems to cooperate in
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Figure 2.10 : Case study: Co-existence of heterogeneous networks may be managed

in part by clients, Chiang(2016) [6]

policy control and traffic routing processes. Edge computing enablers are crucial in

the support for integrating MEC in 5G networks creating a robust environment for

edge computing [68][69].

Chiang (2016) [6] examine a client-based HetNets control, a use case implement-

ing 3GPP standard, where management, control, inference and configuration of Fog

control plane networks were illustraited.in the case study, a client can examine its

local settings and choose a network to join. This local arrangements can converge

globally towards a desirable configuration by performing randomisation and hys-

teresis.

Considering ETSIs MEC framework and reference architecture (defined in the

Group Specifications (GS) MEC 003 [70]), which declares and clusters the systems

high-level functional units [7], a respectable possibility for this research to suit within

the framework can be found. In the proposed blueprint operational framework in

figure 3.2, the front end devices can easily fit in the network level components of

MEC framework. Likewise, the Fog-Decision level of the proposed blueprint can
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Figure 2.11 : ETSIs MEC framework and reference architecture [7]

be fitted in the MEC host level management entity, while the MEC system level is

retaining the global view of the whole MEC system similar to the gate way level in

the proposed blueprint.

2.4 Data Aggregation†

The objective of Data aggregation processes is to minimise the amount of ex-

changed data in a network and accordingly reduce the packet overhead and improve

energy efficiency. Consensus aggregation is the process that use voting to reach an

agreement about the way to collect information coming from different sources and

push the results to the ascendant node. In this section, some literatures concerned

with data aggregation methods are introduced to support the proposed approach.

†parts of this section come from my paper ”A review of aggregation algorithms for the internet

of things”(2017)
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2.4.1 Data Aggregation Reviews

In order to understand the classifications and methodologies used to implement

data aggregation, several survey and review papers were studied. Vodel and Hardt

(2012) present data aggregation common methods, including the adapted communi-

cation process and analytically explain theory benefits and compare these theoretical

advantages with measured real-world results. They have intentionally presented a

roadmap for corresponding data aggregation method’s advantages and disadvan-

tages in a resource-limited situations and indicate the significance of the difference

between theoretical data aggregation notions and experimental practices and that

the use of elementary uncoordinated aggregation structures in collaborated sensor

network setting. This negatively stimulates and effectiveness on communication

behaviour specifically in terms of limited bandwidth architectures of embedded sys-

tems. Also propose practicable means for optimising data aggregation procedures

and avoiding distributed sensor network architectures negative effects. Approaches

like data compression, data fusion and data aggregation have to be performed to de-

crease the volume of communicating info so as to lessen the transmission function’s

relevant power consumption [71].

Chhabra and Singh (2015) [72] report on the practices of minimising the de-

tected data using single node of a sensor and have surveyed the influence of the

current aggregation protocol. Different aggregation methods can be implemented

based on the resiliency in various applications. For saving the energy of WSN by

reducing massive amount of transmission, the clustering protocols and data process-

ing at a single nodes methods can be effective functions of data aggregation. Also,

the data fusion helps in making decisions, which could not be possible by reading

an individual sensor node and can be done irrespective of boosting the lifetime of

network. The data fusion has been defined as the method of deploying data inte-

gration extracted from several sources and gathering such information for attaining
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inferences, correlations and association, which are much effective and possibly more

precise than if achieved by a single source. While, for reducing or eliminating the

redundant data, the process of summarizing the data inputted from various SNs

is done with data aggregation which in turn is a subgroup of data fusion. Also,

the factors like, association among the sources, the level of abstraction and the link

between input and output has been categorized as part of data fusion. For the re-

lationship among sources there are three classes: Complementary, Redundant and

Cooperative; whereas the level of abstraction contains: Signal, Pixel, Feature and

Symbol levels. However, the relationship between input and output class includes:

Data in - (Feature-out), Data (In) - Data (out), Feature in (Feature-out), Fea-

ture in (Decision-out) and Decision in (Decision-out) sun-classes. SNs are designed

for building up a tree and classification of tree structure is classified for aggrega-

tion protocols. The hierarchical and planar protocols are the wider classification

of the tree structure and the hierarchical algorithms are sub categorized as, cluster

(structure), cluster (tree-structure) and cluster (grid-structure) algorithms. How-

ever, query (routing based), chain (routing based) and suboptimal aggregation tree

algorithms are the classifications of planar algorithms.

Rajagopalan and Varshney (2006) [73][74][75] introduce a survey of data aggrega-

tion procedures in WSN, with contrasting and comparing various algorithms based

on performance measures such as lifetime, data accuracy and latency. They argue

that data aggregation algorithms mainly focus on efficient organization, routing and

data aggregation tree construction. The main characteristics, the advantages and

disadvantages of each algorithm were explained and the discussion of special char-

acteristics of data aggregation such as source coding and security was extended.

They argue that data aggregation algorithms mainly focus on proficient organiza-

tion, routing and data accumulation tree construction. The main characteristics, the

advantages and disadvantages of each algorithm were explained and the discussion
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Figure 2.12 : PBFT example

of special characteristics of data aggregation such as source coding and security was

extended. Also, the compromise of energy efficiency, latency and data precision has

been emphasised and the protocol of data aggregation performance was combined

with network bases. Data aggregation classifications explained in this paper were

displayed as shown in Fig 2.14.

Shu et al. (2011) [76][77] Summarise a special problem that challenges the dis-

tributed intelligence and data fusion for sensor systems from the viewpoint of data

aggregation and data storage, coding and channel allocation, security, routing, mo-

bility and distributed services. How to enhance energy optimisation and power sav-

ing methods is the pivotal concern in WSN and therefore, data fusion and distributed

intelligence can boost this method by making them smarter, flexible, adaptable, safe

and scalable.

Stojmenovic (2014) [63] examines CPS beyond M2Mmodel and considers futuris-
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Figure 2.13 : PBFT example results

Figure 2.14 : Data aggregation classifications
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tic applications and explain few particular scenarios that motivate the improvement

of the M2M communication primitives fitted to large-scale CPS. None of the nodes

in a cooperative network communicate directly with each other, but rather via gate-

way where the gathered information are then aggregated at possibly multiple layers

of aggregation nodes. The aggregation function can decrease the amount of infor-

mation retransmitted at each aggregation layer by filtering information based on

relevance or by eliciting higher-level information from aggregated data. In order to

enable a system of billion nodes, the data aggregation is deployed sot that devices

i.e. (M2M) can be cost and energy efficient and have a limited operating field while

post processing facilities and storage applications might be assisted by the Cloud.

The presented communication and coordination paradigm can be exemplified as in

Figure 2.15, assuming that the only criterion for choosing responding robot is the

distance to the event for simplicity. The robots at distance 11 were reported about

a fire event, so it initiates auction for perceiving nearest robot for the event by re-

ferring the neighbouring robots at mentioned 15, 10 and 5 distances. The one at

distance15 evaluates which its neighbour at distance twenty, as well as all the other

ones are more likely connected to it, will not be designated as the best answerers, so

it will not ask it, in this case, it replies back (as shown in the green arrows) choosing

itself as best offer. Then Robot at distance ten asks its neighbours (at distances

twelve and eighteen) and the neighbour at distance twelve discoveries that its fellow

neighbours (distances eighteen and nineteen) are not competitive enough, so it will

not ask them. However, instead of that it suggests itself as the best service provider.

The Robot at distance five negotiates its neighbour at distance eight, then suggests

itself to robot at distance ten, which then answers the auctioneer robot about best

option. Then the auctioneer robot requests the ’winner’ at distance five (through

yellow arrows) to appear at the event.
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Figure 2.15 : Choosing responding Robot criteria. The robot at distance eleven

holds an auction (red arrows used for contacting, green is for bids) in order to

choose the nearest responder, which is the robot at distance five (through yellow

arrows). Stojmenovic (2014)[8]

2.4.2 Data Aggregation Models

There have been a lot of researches done related to data aggregation models,

algorithms, schemes and protocols in order to decrease the amount of data traveling

through the network and improve the efficiency of its resources. Data aggregation

involves the process of forwarding a synopsis of several data packets rather than the

whole packets. One of the practices of the aggregation process is to produce a tree

rooted at the final destination of the information whose leaves are the sources of the

measured data. Snader et al. (2007)[78] introduce intelligent aggregation algorithm

in WSN ”Tethys”, where the resolution to where and when to aggregate depends

on cost and aggregation efficiency as well as the higher bound to transfer data from

source to destination. This model was then used to create a lightweight, powerful,

dynamic, distributed aggregation tree creation protocol. They also has explained
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the issue of aggregating different kinds of data in WSN. While Hoang et al. (2012)

[9] adopt an optimisation algorithm to make the optimal data aggregation trees in

WSNs in which improvements to the basic IWD algorithm to enhance the struc-

ture of the tree by trying to boost the probability of choosing optimum aggregation

nodes(see figure 2.16). Similarly, Commuri and Tadigotla (2007) [79] address the

problem of applying dynamic data aggregation in WSNs through the proposal of

reconfigurable cluster heads (RCHs) using FPGAs where various data aggregation

algorithms can be professionally applied in run-time. When examined the model it

showed the power use and processing periods of request, which quickly grows as the

amount of aggregation operations rise. However, Chen et al. (2008) [10] suggest an

’adaptive data aggregation (ADA)’ structure for clustered sensor networks in which

the degree of timely-based aggregation is organised through reporting frequency at

the nodes. In the same time cluster heads control the space-based aggregation by

the aggregation ratio then they would be calculated by the current system state

according to the reliability. The purpose of the ADA structure is primarily accom-

plished at the sink, leaving a tiny task at CHs and sensor nodes. The application

of a single-hop clustered sensor network is considered concerning discovery of activ-

ity features depending on data collection of various sensors observing the activity.

Assuming an activity occur at an area near the sensors, the sensors can sense the

activity and send the data to the related CH which would perform the aggregation

process and send the aggregated information to the sink as illustrated in Figure 2.17.

The results of analysing and simulating the system converges the wanted reliabil-

ity commencing from an arbitrary initial state. Bohm et al. (2010)[11] introduce

a monitoring system performing a large-scale distributed computation setting as a

first stride toward scalable system monitoring. The method based on categorizing

all the collected monitoring entities relying on singular requirements and also on

aggregating information that has modules of singular monitoring entities which use
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the practice of network’ tree-based overlay. Its prototype is capable of decrease the

volume of collected monitoring info. The Figure in 2.18 shows the entire monitor-

ing system architecture where the procedure of back-end are positioned on all of

the nodes and execute monitoring with a classification of gathered entities so as to

decrease the volume of the transmitted info. The medium procedure, located in

a subset of the nodes, perform aggregation gathering entities in a tree style. The

front procedures implements additional computations then saves the results in a

database to be processed through extra tools. In addition, Park et al. (2008)[12]

as well as Enam (2014) [80] examine the elimination of redundancy. While Park

et al. (2008)[12] introduce a novel collaborative data reduction process for elim-

inating the redundancy coming from various sensors by using a tree-based model

for data propagation to demonstrate the procedure of collaboration between many

sensors. In the order to relieve time-delay issue during aggregation processes, the

scheme separates the data aggregation process from the collaboration process, so

that enough data to detect faults could be captured at the time of decreasing the

info dimension as validated through the experimental outcomes. PCA and partial

correlation were utilised to capture the linear redundancy while non-linear redun-

dancy could be erased through applying the process in a kernel space. This scheme

has 2 phases, collaboration and a data reduction. This is demonstrated in Figure

2.19. In the first phase, each sensor recognises the partition that its collaborative

data reduces so as to eliminate the redundancy by using a tree-based data prop-

agation information is important or non-redundant when it counts other sensors

information. A middle device would take the information given by the leaf devices

and execute the process of generalised data reduction. It results in a small dataset

parts, denoted by an indices set and saved in the sensor memory till following col-

laboration phase, which need to be transferred. Data partitions are send over in

the second phase, according to the indices. Enam (2014) [80] established an adap-
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tive model of data aggregation that employs the space-based association between

sensors. The main characteristic of the technique is that it reduces the redundancy

transmission cost in the network. Also, it optimally exploits the obtainable space

within packets at CHs. The simulation outcomes have revealed that the payload

size requirement reduces to almost quarter of the non-compressed one and that

the distortion percentage declines by 16% to 41% in comparison with the mean

aggregation method. As related to clustering-based aggregation, Gionis et al.

Figure 2.16 : Flowchart of the IWD algorithm for constructing data aggregation

tree in WSNs Hoang et al. (2012)[9]

(2005) [81] proposed an approach that group a setting of objects within a cluster

which has the ability to acknowledge with a an existing clustering as much as pos-

sible then explain many applications regarding to clustering aggregation containing

clustering categorical data, handling heterogeneous data, detecting outliers, and en-

hancing clustering robustness. They also presented some procedures dealing with

the problems of clustering correlation and aggregation taking into account a sam-

pling procedure that can handle large amount of data without significantly losing
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Figure 2.17 : Data aggregation process in single-hop clustered WSN Chen et al.

(2008)[10]

Figure 2.18 : Employing a tree based overlay network, like MRNet, as a scalable

aggregation / analysis for real-time observation data. Bohm et al. (2010)[11]
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Figure 2.19 : Overall process of Collaborative data reduction method Park et al.

(2008)[12]

the quality. Guo et al.(2014) [13] discuss the problem of reliable data aggregation

route in WSNs which is a multi-objective and non-linear constrained optimization

problem . Firstly, to enhance the energy efficiency in the WSN, a data aggregation

adaptive route algorithm was proposed in that the construction process attained us-

ing ’discrete particle swarm optimization (DPSO)’ so as to save the energy expenses

and construct better routing tree taking into consideration communication and ag-

gregation cost. Secondly, an adaptive route algorithm was offered to equilibrium the

network load and launch a reliable network. The outcomes indicate that the pro-

posed algorithm can effectively decrease energy consumption and trade off network

lifetime in comparison with other tree routing algorithms. The network diagram is

shown in Figure 2.20. Proposing a fault-tolerance techniques about data aggrega-

tion had gained a good attention. Iskander et al. (2012) [82] introduced and analyse

a confidentiality preserving in-network aggregation protocol with fault-tolerant for

placements of collaborative WSNs. The protocol permits the collection of data as
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Figure 2.20 : Network model diagrams Guo et al. (2014)[13]

preserving end-to-end confidentiality for the aggregated outcome and the singular

sensor readings. This protocol promises that with high probability all sensor read-

ings will engage to the concluding aggregate through techniques of error detection

and error correction. The presented scheme aims to achieve confidentiality where

sensor readings and their aggregate values are only revealed to the sink rather than

any external or internal attacker, fault tolerance in that lost sensor readings due

to link errors are compensated through a parent node, exact aggregation outcome

if there is no link failures instead of executing probabilistic query aggregate out-

comes and if link failures exists, the concluding aggregate deviates by precisely the

lost worth (not by some derivative of that worth), and low energy overhead on the

size of packets transferred and amount of computation. A fault tolerant distributed

method which can be made over topmost aggregation process and can generate cor-

rect results even in the existence of node failures was developed in Gansterer et al.

(2013)[83] along with an aggregation algorithm for averaging or summing dispersed

values, the push-flow algorithm that can reach higher flexibility characteristics in
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connection to failures in comparison with present aggregation methods. Thus, a

survey related to existing DDAAs and the study of their pros and cons in terms

of fault tolerance was prepared with a focus on enhancing fault tolerance and ex-

plaining the new push-flow algorithm to examine the creation of proper distributed

algorithms for matrix calculations constructed over the distributed data aggregation

algorithm (DDAAs). Applebaum et al. (2010) [14] implements a privacy-preserving

data aggregation (PDA) within a big quantity of members, where efficiency and

scalability is attained via a partially-centralised design which splits accountability

amongst a proxy which ignorantly covers the user incomes and database which sums

data with keywords (blinded) and recognises such keywords whose values fulfil some

assessment function. The scheme leverages a cryptographic protocol which provably

guards the privacy of the keywords and the participants, as long as that proxy and

database do not conspire, even if both of them may be independently malicious.

The protocol contains five steps (as in Figure 2.21). The proxy interrelates with

the participants, in the first two steps, to gather the blinded keys along with their

related values encoded by the DBs public key, and deliver them to the DB. Then

the DB aggregates the blinded keys, in the next two steps, with the related values in

a table, then elects which rows should be exposed in accordance with a predefined

function. Finally, the DB requests the proxy to unbind the consistent keys. Steps

4 and 5 are conditional statement additions to PDA, as well as extension input in

step 2 (all shown in blue). Fs is a keyed hash function whose key s is identified

only by the proxy. Bao and Lu (2015) [15] introduce a novel secure data aggrega-

tion model that can attain fault-tolerance as well as differential privacy in parallel

’DPAFT’. An artful constraint relation is assembled for data aggregation motivated

by the key exchange protocol of DiffieHellman. With this constraint, DPAFT can

provision fault tolerance for malfunctioning smart meters flexibly and efficiently

and it can also improve to resist in opposite to differential attacks by enhancing
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Figure 2.21 : High-level system architecture and protocol.Applebaum et al.

(2010)[14]

the elementary cryptosystem of BonehGohNissim to be more appropriate to the

practical circumstances. They conduct a comprehensive performance evaluations to

show that their scheme outperforms the modern data aggregation models in con-

siderations with storage cost, utility of differential privacy, computation complexity,

the user addition and deletion efficiency, and robustness of fault tolerance. They

study a classic smart grid communication design for residential users, that contains

a residential gateway to aggregate data and forward it in a secure way, a trusted

authority to organise the system, a large number of residential users in a residen-

tial area which supplied with a smart-meter as well as several smart-appliances to

gather the real-time data and report them in a specific period, and a control cen-

tre that collects, processes, and analyses the real-time data as illustrated in Figure

2.22. A case study that gives an outline of the differences in resolution reduction,

aggregation and perturbation of real-life energy consumption data in the Internet of

Things (IoT) was proposed in Pohls et al. (2015) [84] where privacy, accuracy, com-

putational overhead and compression-ratio of selected perturbation and aggregation

methods was analysed. A real-life data set of in depth energy consumption logs of a

particular family household was measured and privacy by simple, threshold-driven

machine-learning algorithms was introduced which extract behaviour features. The
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Figure 2.22 : System model under consideration Bao and Lu (2015)[15]

correctness of this extraction is used as privacy metric. The outcome is that a lot

of detections for sensible estimates and intelligent responses are still promising with

lower quality data and he damage in data quality can always be seen as a privacy

gain.

2.5 group Decision Making

2.5.1 Group-based Recommendation Systems

In order to obtain consensus and amend the system policy, Recommendation

Systems are used so that the system can grasp personalised demands and present

customised services. Figure 2.23 shows the Consensus pattern which consists of one

of the Recommendation System models that may include one of the aggregation

strategies to obtain consensus values. There are five models of recommendation :

the general model which avails crowd wisdom and advise the most popular items in

one recommendation list for all users, the personal model that uses the standards

Collaborative filtering algorithm to examine users individually and generates one
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Figure 2.23 : Consensus Pattern

list per each user, while the aggregated preferences model and the aggregated pre-

diction model exploit the group-based recommendation procedures which generate

one list for each group. Many forms of hybridization were made to combine the

group-based models forming the hybrid model such as the switching scheme that

switches between the models according to system’s condition. Maney efforts were

made to investigate the GRS models and strategies. Berkovsky and Freyne (2010)

examine the usage of several existing group recommendation models (Generic, Ag-

gregated Models, Aggregated Predictions, and Personalised) and analyse the effect

of switching model on the performance of the system [85]. While De Pessemier et al

(2013), Carvalho and Macedo (2013), and Hu et al (2013) research the group-based

models (Aggregated Models and Aggregated Predictions) along with a third model

( combined model for De Pessemier et al (2013), generic model for Carvalho and

Macedo (2013), while Hu et al (2013) propose a Deep-architecture model) [86][87]

[88].
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Figure 2.24 : Recommendation generation process

2.5.2 GDM model

For the GDM system to be implemented within the network as automation

approach, let A = {a1, a2, . . . , an}, be a finite set of feasible alternatives, (n ≥ 2), to

be classified from best to worst by using the data provided by a set of participants

or decision makers, P = {p1, p2, . . . , pm}, (m ≥ 2) whose weight vector is indicated

as G = {g − 1, g2, . . . , gm}T , where gk > 0, k = 1, 2, . . . ,m, and
∑m

k=1 gk = 1. Each

participant presenting its preference relation on Ai as aik ∈ S, and S is an ordered

finite set of labels S = {s0, s1, . . . , st}, in which si > sj for i > j.

As presented in [89, 90, 91] and many others, there was an assumption that for

each participant pk ∈ P , the preferences over alternatives’ set A could be represented

as one of the four following ways:

- Alternatives’preference orderings . In this circumstance, Ok = {ok(1), . . . , ok(n)},
where ok() is a permutation function over {1, . . . , n} index set for the partici-

pant pk, outlining an alternatives ordered vector, from best to worst.
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- Utility functions. For this circumstance, the participant pk provides its pref-

erences as Uk = uk
1, . . . , u

k
n, u

k
i ∈ [0, 1], where uk

i is the utility evaluation of pk

to the alternative ai.

- Fuzzy preference relations. In this circumstance, the preference are expressed

by a fuzzy preference relation F k ⊂ A × A, with a membership function,

μF k ⊂ A × A → [0, 1], where μF k(ai, aj) = fk
ij denotes the preference degree

of ai over aj.

- Multiplicative preference relations. For this, the preferences are ex-pressed by

a positive preference relation Ak ⊂ A×A, where the preference’s intensity akij,

is calculated by means of a ratio scale, precisely the 1
9
to 9 measure.

Within this context, the resolution procedure of the GDM involves attaining a set

of solution alternatives from the Participants preferences. As it assumed that the

participants preferences are given in different ways, so the first step should deal with

obtaining a uniform representation for the preferences. These ways can be trans-

formed into the different representations by using different mathematical transfor-

mation functions. In this paper, we will consider multiplicative preference relation

as the basis for information uniforming. When the uniform exemplification has been

accomplished, we can apply the analytic hierarchy process (AHP), as it uses multi-

plicative preference relations, to gain the solution set of alternatives. This resolution

process is represented in the next section.

2.6 Consensus

There has been many literatures introduced covering the area of voting/consensus

aggregation. Adaptive Cumulative Voting-based Aggregation Algorithm (A-CVAA)

was studied by Saeed and Salim (2013) to combine many clustering of chemical

structures while Muravyov and Khudonogova (2015) suggest a preference aggrega-
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tion method for multisensory accuracy improvement depends on interval voting.

However, Yu et al. (2007)[92] and Farnoud et al. (2012)[93] consider the voting ag-

gregation problem and procedures. The efficiency of clustering was assessed in Saeed

and Salim (2013) relay on the capability of clustering to distinct the active from the

inactive molecules in every cluster then the outcomes were related to Wards tech-

nique. Experiments propose that the ’adaptive cumulative voting-based consensus’

scheme, which includes two main phases the partitions generation and combination

using the consensus function, can efficiently enhance the effectiveness of merging

various clustering of chemical structures. The approach in Muravyov and Khudono-

gova (2015) [16] permits to determine an amended value of a measured factor based

on imprecise measurement data, obtained from neighbouring multi-sensors. Kemeny

rule is used to find a resulting intervals to determine consensus relation that intro-

duced as ranking which can contain a strict order relation and an correspondence

relation. voting problem is counted as a consensus relation determination problem,

where a group of participants rank a set of alternatives. Locate every interval along

a real line of finite length as in Figure 2.25. Core steps of the preference aggregation

procedure are illustrated in Figure 2.26 where in the first stage, real values range is

determined while preference profile is formed in the second and the profile matrix

is calculated in the third stage. The fourth stage engage with the recursive branch

and bound algorithm which uses Kemeny rule for determining consensus relation

for a given profile where The aim is to compute a consensus relation that would

provide a combined estimation of all alternatives. In the fifth stage, if many con-

sensus relations are obtained, they would be convoluted into single relation. With

the election voting scheme in Yu et al. (2007)[92], a few elimination voting mod-

els, including Kemeny approaches, were analysed in a graph theoretic method as

an addition to Borda: a classical voting rules. A novel heuristic elimination voting

algorithm is introduced in Farnoud et al. (2012)[93] as Kemeny ranking problem is
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NP-hard. To evaluate the voting procedures on rank aggregation, a few experimen-

tations have been executed on TREC data and they show that these elimination

algorithms have equivalent performance with Borda algorithms, and even outper-

form it in some cases. Similarly, consider the algorithmic characteristics related to

the aggregation process for non-uniform vote aggregation. Two diverse aggregation

approaches were presented for a new phase of weighted distance measures on votes.

The first procedure used Spearmans foot rule distance to approximate the weighted

distance measure, with guaranteeing verifiable constant approximation while the

second one is based on a non-uniform Markov chain method motivated by PageR-

ank, for which presently only heuristic guarantees are recognised. The performance

of the suggested procedures on a number of distance measures was illustrated for

which the optimum resolution might be straightforwardly computed. Kumar et al.

(2004) explain a fully distributed data aggregation and consensus protocol for ob-

ject position and tracking applications installed within WSN which can decreases

the amount of data to be exchanged to generate consensus and decreases the state

information needed to maintain the structure of the network. The protocol fulfils

agreement, termination and validity properties. When an event is detected, a local

reading is compared with a fixed threshold probability by the node and it would

execute consensus if that local reading has value more than the probability. Ul-

timately one or more nodes will commence consensus and a PROPOSE message

will be directed to the other nodes in the communication neighbourhood. An ac-

knowledgment reply will be received by the initiating node from other participating

nodes and later it would evaluate the readings utilizing a simple majority vote to

find the right outcome. Finally, a DECIDE message will be broadcasted by the

node which generated a consensus request. By reaching a consensus, only a single

message referencing the detected event requires to be sent to the tracking applica-

tion at the base station, resulting in a substantial savings in communication costs
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Figure 2.25 : Preference aggregation approach and Kemeny selection rule Muravyov

and Khudonogova (2015)[16]

and extending network life [94]. Beliakov et al. (2014) Propos two consensus oper-

ators constructed from fuzzy implication operators and aggregation functions and

explain the key properties with an adaptation to their definitions to the setting of

inputs existed over the unit interval. Considering the consensus setting, both op-

erators hold a fine semantic interpretation. They also disclosed how the choice of

modules for the given consensus prototypes affects the fulfilment of these proper-

ties [95]. Ah-Pine and Corporation (2003) introduce data fusion using consensus

aggregation functions where M rankings generated by M judges can be fused by a

fusion system by calculating values of an aggregation function for items of the M

rankings and building an aggregation ranking depends on the aggregation function

values. Finally, informational content were outputted exemplifying the aggregation

ranking[96].

Herrera-Viedma, et al. introduce a consensus model that use a comparison for the

alternatives positions between the individual solutions and the collective solution.

The model provides feedback proposing the way in how these experts should modify

their preferences depend on the offset of individual solutions and the consensus
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Figure 2.26 : Main stages of the preference aggregation procedure Muravyov and

Khudonogova (2015)[16]
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level. In result, the experts opinion is to be compromise for the sake of consensus.

Additional shortcoming of this consensus measure is the absence of experts opinion

weighting.

2.7 Byzantine Fault Tolerance

Reliable systems need to deal with faulty modules which provide contradictory

information to various parts of the system. Software errors and malicious attacks are

increasingly prevalent and may cause faulty nodes to reveal illogical behaviour. It is

recognised that simple majority voting does not answer the problem of gaining in-

teractive consistency when designing fault-tolerant distributed computing systems,

especially when it comprises possibly malicious components. When requiring to

achieve very high reliability for the distributed computing system, the Byzantine

agreement procedures can afford a solution although it appears to be integrally ex-

pensive. Byzantine-fault-tolerant algorithms is important because they can permit

systems to remain to function correctly even in the existence of software errors.

Lamport et al. (1982) introduce the concept of Byzantine Generals Problem and

proposed some solutions showing how they can be used to implement reliable sys-

tems. They express that a group of the Byzantine army generals camped around

an enemy city with their troops. The generals have to agree upon a mutual battle

plan by communicating only with messenger. However, one or more generals may be

traitors trying to confuse other generals. The challenge is to construct an algorithm

which ensures that the loyal ones will reach agreement. They express that if more

than two-thirds of the generals are loyal, this problem can be solved otherwise it

cannot[97][98] as shown in Figure 2.27. Patnaik and Balaji (1987)[99] objective at re-

vising the concept of ’Byzantine resilient distributed computing systems’, the related

protocols, and their potential applications. They discuss the interactive consistency

problem, the consensus problem, and the generals problem and summarise different
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Byzantine generals problem agreement algorithms in terms of level of fault-tolerance

and performance. The discussed Byzantine agreement algorithms classes were: the

randomised, approximate, and deterministic agreement protocols. Finally, Byzan-

tine agreement protocols application to clock synchronization was illustrated. In

Castro and Liskov (1999) the practical Byzantine Fault tolerance was introduced to

tolerate Byzantine faults, enhance the response time of earlier procedures and func-

tion in asynchronous environments. They applied a Byzantine-fault-tolerant NFS

service by using their replication algorithm and measured its performance. The out-

comes indicate that the service is only 3% slower than a typical non-replicated NFS.

The algorithm is a procedure of state machine replication (as shown in Figure 2.28)

which preserves the service state and carry out the service operations. The replicas

transfer along a sequence of configurations called views in which one of them is the

primary while the others are backups. When it seems that the primary has failed,

a view change operation are executed. In approximation, the algorithm works as

follows: A client directs a request to appeal a service operation to the primary which

multicasts the request to the backups, then replicas perform the request and direct

a reply to the client which waits for one replies from various replicas with the same

result; which is the result of the operation. Two requirements were imposed on

replicas: they must be deterministic and they must begin in the same state. With

that, the algorithm guarantees the safety property by ensuring that all non- faulty

replicas agree on an over-all order for the implementation of requests despite failures

[100][101][102].

Oluwasanmi et al. (2010) propose a novel practical algorithm, based on a previ-

ous theoretical outcome showed that it is potential to solve the Byzantine agreement,

universe reduction and leader election problems in the full information scheme. The

fault model was reduce, to attain the algorithm, by permitting the adversary to ad-

ministrate only a 1/8 part of the processors; and supposing the presence of a cryp-
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Figure 2.27 : Byzantine Generals Problem Algorithm Lamport et al. (1982)

Figure 2.28 : Normal Case Operation of Practical Byzantine Algorithm Castro and

Liskov (1999)
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tographic bit commitment primitive. The procedure assumes a partly synchronous

communication scheme and that the clock speeds of the non-faulty nodes are nearly

the same though the clocks do not require to be synchronised. The algorithm needed

less overall bits to be transferred for all networks and also less messages sent for large

size networks (about 65000 or above). The outcomes propose that the algorithm

could be an important step toward evolving Byzantine agreement algorithm for large

networks [103][104]. Distler and Cachin (2016) introduce Resource-Efficient Byzan-

tine Fault Tolerance (REBFT), a method which reduces the resource usage of a BFT

system throughout normal-case operation approach, where the agreement procedure

and implementation of client requirements ordered by the active influence of sub-

group models. It will certainly be not required to remodel the system from start in

this mode, instead using available protocols like Byzantine fault-tolerant for reach-

ing the process of resource-saving in general can be helpful. In case of suspected

or detected faults, the activation of passive replicas has remained reliable methods

[105]. Klempous (2006) examine classic perceptions of Byzantine Failure Tolerance

that can be used in fault-tolerant system design and propose a Byzantine algorithm

that can help to decrease the impact of false alarms or a single disturbance in WSN

so local distortion or disturbances issues can be resolved locally without comprising

the whole infrastructure. The scheme is to validate suitability of alternatives of

Byzantine Algorithms based on supplementary information flow for resolving such

glitches locally. The procedure is done as follows: a sensor senses an event, false or

true and then directs information to other sensors in a particular communication

range. ‘The sensor waits for some time T for response from other sensors and collects

received information in a table (agreement matrix AM), if there is no response from

a sensor it led to that there is no recognition of an event or object. A sensor also

has information about the number of sensors in his Agreement Range (Ar) so after

executing a majority function it can choose what to do. If the majority of sensors
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senses an event the information will be directed to CH and then to the Sink. If not,

then no data will be transferred through the network. In the design, an additional

requirement was introduced that only the highest energy level sensors can transfer

data to CH which reduces the communication load [17]. Chai and Zhao (2014) study

how to provide an autonomic system built with the technology of event stream pro-

cessing and explain how to plan such a scheme that is resilient to malicious attacks

and hardware failures. A set of lightweight techniques was proposed which helps

attain the event processing of Byzantine fault tolerant for autonomic computing

based on a broad threat investigation of event stream processing. The techniques

involve voting at the event consumers and a technique of on-demand state synchro-

nization initiated when an event consumer fails to gather a minimum of matching

decision messages. reliable ABFT matrix multiplication depends on linear codes

that is suitable to P2P computing. The suggested protocol tolerates the potential

unpredictable behaviour of the P2P network A mechanism of an evidence-based

safe-guarding was also introduced which avoids a faulty event consumer from bring-

ing unnecessary state synchronization rounds. By using the event stream processing

scheme for autonomic computing it is likely to use event processing middleware that

facilitate autonomic components design and implementation, as in Figure 2.29 as

well as decouple the autonomic components, the sensors, and the scheme to be self-

managed, which simplify upgrading and maintaining individual components [106].

In consideration of P2P, Fedotova and Veltri (2006) study and indicate the possi-

bility of applying some classical resolutions for Byzantine Generals Problem and its

mathematical model in aP2P environment to resolve some security problems based

on the principles of Distributed Hash Tables (DHT) since it is very significant to de-

tect reliable mechanisms of finding and eliminating various threats, malicious nodes,

and attack sources [18][107], Figure 2.30. However, Roche et al. (2009) introduced

a generalization of reliable ABFT matrix multiplication depends on linear codes



59

Figure 2.29 : Standard WSN vs. WSN with Byzantine Algorithms Klempous

(2006)[17]

that is suitable to P2P computing. The suggested protocol tolerates the potential

unpredictable behaviour of the P2P network; instead of limiting to 2D checksums

which tolerate only a slight quantity of node failures, a suggestion to set up disk-less

checkpointing on linear codes that possibly tolerate a big sum of faults. Then, we

analyse and compare Low Density Parity Check (LDPC) usage to classical Reed-

Solomon (RS) codes in relation with various fault models to fits P2P systems which

offers efficient fault tolerance for peer disconnection as well as Byzantine errors (even

involving malicious peers). The LDPC disk-less checkpointing technique is suitable

when only node disconnections are examined, but cannot consider Byzantine peers

while the RS disk-less checkpointing technique tolerates such byzantine errors, but

is limited to precise finite field computations [108][109]. Different systems can be

built with Byzantine fault tolerance including Cloud Computing systems and some

literatures were made explaining such models. Reiser (2011) presents a position

paper to outline the architecture of the CloudFIT project and analyse the impact of

utilization in the cloud and explore to what degree the prevailing BFT algorithms
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Figure 2.30 : Overview of a event stream processing system for autonomic computing

Fedotova and Veltri (2006)[18]

could be executed for augmenting security and availability in the suggested archi-

tecture and what concerns need to be determined in the future [110][111]. Whereas

AlZain et al. (2013) report for a practical paradigm for system building, comprising

Byzantine fault tolerance in a multi-Cloud setting which depends on a new method

which integrates Byzantine Agreement protocols with Shamirs sharing method of se-

cret for sensing Byzantine failure within a multi-Cloud setting of computing and also

endorsing the security of stored data in the Cloud. In the paradigm of BFT-MCDB,

2f+1 clouds interconnect with an entity of Cloud manager which takes the majority

before outcomes are to be retrieved by client from the clouds. The 3 main model

components include, cloud manager, the clouds side, and BFT communication pro-

tocol as shown in Figure 2.31. First, the cloud manager is in charge of submitting

requests to the clouds from the clients and also executing secret sharing approach

of Shamir on the trusted information, as well as directing regained outcomes to the

client after voting them from the clouds. Second, the BFT of queries is presented to

clouds and client by a communication protocol. Third, the side of cloud is in charge
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of executing queries for the client on Shamirs before directing replies to the cloud

manager. A series of client requests directed by the cloud manager relates to the in-

put of proposed model, whereas the output is a series of the committed replies from

the clouds [19][112]. Nevertheless, in the given framework of Zhang et al. (2011)

of Byzantine fault tolerance for building optimal system in the environments of

voluntary-resource cloud which ensures the robustness of system for conditions like,

up to f of overall 3f +1 resource providers are defective, having random behaviour

errors, crash errors, etc. The framework chooses voluntary devices depending on

the performance of reliability and QoS features which adjust to that vastly dynamic

environment representing voluntary resource Cloud Computing. The resources of

the faulty voluntary was supposed to substitute with another appropriate resources

the moment they were being recognised. Its experimental outcomes illustrates the

efficiency of the method to assure the reliability of the system in Cloud Computing

environment. Figure 2.32 displays the work procedures of BFTCloud model where

the input is a series of queries with indicated QoS requirements (like preferences on

price, bandwidth, capability, response latency, workload, failure probability, etc.)

directed by the cloud component whereas its output is a series of committed replies

corresponding to the queries. The model contains 5 phases explained as:

i- A primary selection: When accepting certain query from an element related

to the cloud, a node is chosen as the primary by executing the algorithm of primary

selection based on the requirements of QoS of the query.

ii- A Replica Selection: By applying a replica selection algorithm, nodes’ set is

chosen as replicas based on the requirements of QoS the query. The query is then

forwarded by the primary to the entire set of replicas for implementation and the

chosen replicas form a BFT group along with the primary.

iii- A Request Execution: The entire BFT group members apply the query locally
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Figure 2.31 : BFT-MCDB Model Overview AlZain et al. (2013)[19]

and propel their replies back to the cloud element. After gathering replies from the

group in a specific time period, the component of the Cloud is to evaluate the

replies’ consistency. when the group consistently replies, the present query is to be

committed and the element of the Cloud is to direct the upcoming query but if reply

is not consistent, then the procedure of fault tolerance would be triggered tolerating

a maximum of f faulty nodes along with triggering the algorithm of primary updating

and/or the algorithm of replica updating for updating the members of the group. If

there were more faulty nodes than f, the query will be resent to the updated group

and go in the phase of query execution once more.

iv- A Primary Updating: If there exist a faulty primary, it will be recognised in

the group and substituted by a fresh chosen one.

vi- Replica Updating: Faulty replicas will be recognised in the group and it

will be replaced in accordance with the data attained from the phase of request

execution by applying the algorithm of replica updating to substitute the faulty one

with another proper devices in the Cloud Computing [20][113].
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Figure 2.32 : Work Procedures of BFTCloud Zhang et al. (2011)[20]

Autonomic Computing has receive a lot of attention and many researches has

been introduced in this promising field. Endo et al. (2011) [114] discuss about

concerns to make self-adaptive systems for Autonomic Clouds, concentrating on in-

frastructure administration level and Buyya et al. (2012) recognise open problems in

autonomic resource provisioning and introduce inventive administration methods for

assisting SaaS applications located on Clouds and introduce a theoretical design and

early outcomes proving the welfares of autonomic administration of Clouds [115].

While Yang et al. (2013) introduce Auto Solar Powered WSN, a new distributed

framework to attain sustainable data gathering while improving the performance of

end-to-end network for SP-WSNs. They also suggest a routing protocol SP-BCP,

two protocols for self-adaptive network, and a rate control structure PEA-DLEX.

The framework is an energy-aware provision module that offers consistent energy

monitoring and prediction [116]. Nevertheless, Alaya et al. (2012) presented an in-

voluntary system of computing which depend upon M2M standardised architecture

and comprised of standard and extensible involuntary administrators and by ex-

perimenting a smart metering scenario to demonstrate the suggested solution. The

solution differentiates three kinds of M2M machines including the M2M gateway, the

M2M server and M2M device and permits for executing the job of administration

classified in 3 levels i.e. service, application and communication. A Smart Metering
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Figure 2.33 : Smart Metering automation scenario architecture Alaya et al.

(2012)[21]

use case which can be considered as the autonomic Fog Computing environment

that self-manages a room facility, depending on different actuators and sensors, in

order to optimise the consumption of the energy. The network composed of M2M

efficiency and maintenance servers and other components and devices as shown in

Figure 2.33 [21][117].

All published events were collected from sensors by Gateways application man-

agers in a specific format and the relevant ones like lighting glare, possession, sta-

tus of lamp, and status of blind events were filtered and normalised. Afterwards,

the knowledge model is updated by Server Application manager with received nor-

malised events. Then the server incorporates the rules to deduce conditions for

instance, lower or higher lighting, occupied or unoccupied space, On/Off lamp and

open or close a window blind. Further, it uses specific directions for gathering new

change request, for example minimise or maximise luminosity. The knowledge base

was then checked by the planner to acquire the actual room status and on spot
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behaviours and facts for making decisions and the optimum order of actions or be-

haviours which were determined to attain the aims for instance, opening and closing

of lamp or window blind. The actions like, set-lamp / set-blind (String-Boolean)

were sent back to the application managers for gateways to function as per plan,

which was checked by executor which verifies the knowledge model to govern the

details of web service analogous to each action. The network application manager

could be capable of showing an alert memo having errors to the user to bring back

the prior status of application layer or building up new action plans by considering

recorded errors, all in case of the unsuccessful process of management. The subse-

quent control loop process occurs on the initialisation of the autonomic framework

in the case of successful process of management. The significance of this proposition

is that individual autonomic manager is autonomous.

2.8 Data Science

Data science is a systematic procedure aimed to extract insights from data. The

usage of data science approaches can enhance the evaluation of many data-based

projects to a great extent. They also allow evidence-based decisions to be made

which can increase the confidence of the made decision that substantially raise their

attractiveness. The objectives of data science are to obtain predictions and classifi-

cations based on data and to appoint a model that explains the data. Data science

involves statistics, data analysis, machine learning and their related techniques. As

shown in figure 2.34, data science procedure starts with collecting data from source

nodes and pass it to be analysed to check the relationships between data variables

or features. After that, the data is prepared for cleaning and unifying its com-

plex sets through the processes of data wrangling. Following this step, hypothesis

is to be presented about the best candidate models to perform the desired task.

When choosing a model, data is to be divided into train subset and test subset
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then building a model on the train data and predict the output using test data.

The procedure’s performance is evaluated by calculating the accuracy and/or the

classification report to assess how accurate the used model is. With the case when

the model does not reach the desired accuracy, another model is to be trained and

tested till getting the best model to perform on the data. [118][119][120][121].

Figure 2.34 : Data Science main Procedure

2.8.1 Data Collection

Data collection is defined as the procedure of gathering, measuring and analysing

insights in an endorsed systematic approach, which then enables a researcher to as-

sess hypothesis, answer research questions, and evaluate the results. The aim behind
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data collection is to record quality evidence leading to the construction of substantial

and reliable explanations to the posed questions based on definite analysis [122][123].

2.8.2 Data Analysis

Data analytics refers to the science of raw data analysis so that conclusions can

be drawn on that information. Many of its practices and procedures were automated

into algorithms and mechanical processes which work to allow human consumption

over raw data. Techniques in data analytics can expose patterns and indicators that

would otherwise be lost in the information collection. This information may now

be utilised to optimise processes to enhance a system or businesss total efficiency

[124][125]. Data Analysis is performed through consistently applying statistical

and/or logical methods to characterize, evaluate, clarify, outline, and abstract data.

Its objective is to discover beneficial information, reach to a reasonable conclusion

and support the process of decision making. There exists a wide range of techniques

with many approaches to implement data analysis [126]. There are a lot of methods

to analyse data, each dataset is analysed according to its nature and the purpose it

is analysed for. Therefore, only some of those techniques will be discussed here as

they are used when analysed the data in the presented experiments [127].

Factor analysis

Factor analysis is a useful statistical approach used to investigate variability

among observed correlated variables that seeks to find underlying factors from a

subsets of unobserved interpretable variables[128].

Data Integration

Data integration comprises linking information exists in different sets and pro-

viding a unified vision about them. data integration cover a wide variety of tasks

including data mapping which means to create elements of data that associate one
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data model to another. It also involves the process of transforming information

between source and destination, data lineage analysis method that identifies data

relationships, the discovery of sensitive hidden information, data consolidation and

data elimination[129].

Feature engineering

In order for the machine learning model to be useful, the dataset has to be refined

into features (Prediction variables) before it is fed into the model. Without appro-

priate features, the model cannot be trained accurately, despite how sophisticated

the machine learning procedure is. Feature engineering is the process of utilising the

datas domain knowledge to extract features from a raw dataset so as to empower

the machine learning algorithm to function[130].

2.8.3 Data Wrangling

Data wrangling is the process for easing the access and modelling of data in a

way to clean and unify disordered and complex data sets. It is a method to map

and transform raw data from one format to another in order to make it more suit-

able and worthy for a wide range of downstream considerations including analytics.

Some of the main practices of data wrangling include: data cleaning, data encoding,

data modelling and data transforming. There are several practices to perform data

wrangling, according to its aim and usage. Thus, only some of those practices will

be introduced next as they are used in the presented experiments.

Data cleaning

Data cleaning is the procedure of reforming the outliers and other unfitting

and undesirable parts of the information. It includes the processes of modifying,

replacing, or deleting the dirty or coarse information such as anomaly values [131].
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Feature Scaling

Feature scaling is the procedure of normalising a Data range of independent

variables or features. This procedure is also known as data normalisation in the

context of information processing and it is usually executed during the data pre-

processing period [132].

One hot encoding

In order to suit the classification variables to be fitted machine learning opera-

tions, One hot encoding procedure is used. The objective from using this procedure

is to enable the ML algorithms to ensure a better decision making prediction[133].

Botstrapping

Botstrapping is the process of recurrently drawing and resampling non-repeated

large quantity of small samples from a population with replacement for the purpose

of generating synthetic data[134].

Data Augmentation

When there is a lack of an adequate size of training data, increasing the effec-

tive volume of existing information is possible by the mean of data augmentation

process. Data augmentation is a strategy that has the impact to effectively increase

the dataset through perturbing a segment of existing data to produce new ones by

creating multiple augmented variants of that segment. Data augmentation has con-

tributed to considerably enhance the performance of deep neural networks. It assists

the network in becoming more robust through driving it learning relevant features.

Data augmentation is also a way to reduce overfitting, where size of training data

is increased utilizing information exists in the training data itself[135]. This model

can be used to solve the data imbalance issue through increasing the volume of the
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small classes in the data.

2.8.4 Data Modelling

Data modelling is the method of building a data model designed for an infor-

mation system via applying definite recognized practices. In order to manage data

modelling as a resource, the practices and approaches are utilised to model data in

a typical, predictable, reliable way. Basically, data models are constructed during

the phases of a projects analysis and design in order to assure full understanding

of a new applications requirements. Additionally, it can be invoked later within

the lifecycle of data to justify data schemes that were initially built on an ad hoc

basis [136][137][138]. A communal task in machine learning practices is algorithms

study and construction which can learn from and make forecasts on data. Through

constructing mathematical model from input data, those algorithms work to form

data-driven predictions or decisions[139][140].

2.8.5 Train and Test

When creating the final mode, the data used to construct it normally originates

from multiple data sets which usually utilised in different phases of model formation.

In order to fit the model parameters, the model is to be apply on the training

dataset whereas testing dataset is used to evaluate models performance [141][142].

Train data is used for model training and parameter tuning. The purpose behind

using it is to learn patterns from the data yielding a model that can make near-

expected predictions. Although validation data, which is a subset of train data

that insights are iteratively taken from, is used for parameter tuning to understand

model behaviour and generalisability on unseen data resulting in insights on how to

tune your model. However, the use of test data aimed for understanding how the

model would perform in real world scenario providing a complete unbiased estimate

of model performance. [143][144][145].
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Figure 2.35 : Training validation and test dataset and its contribution in Model

prediction

2.8.6 Model Evaluation

Although accuracy is the key metric to evaluate models, there are other metrics

which are to be considered such as robustness, flexibility and scalability. Looking

at the models full image, like realising data and making predictions, aids in under-

standing the model in-depth and assists in enhancing it [146][147].

2.9 Machine Learning

Machine learning (ML) is the technical study of procedures and statistical ap-

proaches used by computer systems so as to accomplish a particular task efficiently
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employing data patterns to infer a specific decisions or outcomes without utilising

explicit commands as in programming[139].

2.9.1 Deep Learning

Mainly, Deep Learning practices are presented to solve massive intricate opti-

mization problems. Neural Networks are purely very complicated functions, com-

prising enormous amount of parameters, representing a mathematical solution to

a problem. Through training neural networks, it basically aims to minimise a loss

function in which the value of it gives a scale of how far is the performance of the

network from optimum on a given data.

Consider a Neural Network (NN) with layers equal to L (having hidden layers

equal to L-1 and a single output layer). Layer l weights and biases (its parameters)

are denoted as: W [l], which is the (layer l size x layer l-i size) weight matrix, and

b[l] represents the (layer l size x 1) bias vector[148] [149] [150]. Moreover, there are

intermediate variables that computed during the training process as:

Z [l] = W [l] ∗ A[l−1] + b[l] (2.1)

A[l] = g[l](Z [l]) (2.2)

wherein Z [l] is the linear activations at layer l, g[l](.) represents the non-linear func-

tion, and A[l] is the non-linear activations and A[0] is the input X. In deep learning,

to train a neural network, there are five main steps to be followed:

i. Initialise the parameters (weights and biases).

ii. Forward propagation: By the use of every layers input X, weights W and

biases b, the linear and non-linear activation functions (Z and A) are to be

computed. At the final layer, the activation function f(A(L− 1)) is computed

which could be a sigmoid, softmax or linear function which would give the

prediction yhat.
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iii. The loss function is to be computed: It represents the function of the actual

and predicted labels (y and yhat). It determines the actual difference between

the prediction and the actual target. The objective of the whole process is to

minimise this loss function.

iv. Backward Propagation: Herein, the gradients of the loss function f(y, yhat)

in respect with the activation function A, weights W , and bias b are calcu-

lated (denoted as dA, dW and db). Using these gradients, the values of the

parameters are updated from the last layer to the first one.

v. Finally, steps ii-iv are to be repeated for n iterations (called epochs) till reach-

ing a minimised value for the loss function, without overfitting the trained

dataset.

LSTM

LSTM is an artificial Recurrent Neural Network (RNN) architecture in deep

learning field that can process an entire sequences of data. It has a feedback con-

nections which makes it capable of simulating any computer algorithm logic [151].

The LSTM RNN have the ability to learn features from a sequenced dataset in an

automatic way, support Multivariate data analysis, and produce a variable length

sequences which might be utilised for multi-step forecasting. An RNN is a neural

network wherein the output of a time step is delivered as an input for the subsequent

time step. So, it enables the model to predict a decision based on the current time

step input as well as a direct knowledge about the prior time step output. LSTM is

considered to be successful algorithm in resulting stable models since it overcomes

the challenges associated with training the RNN. It exploits the recurrent connection

of the prior time step outputs as well as contains an internal memory operating as

a local variable, giving it the ability of accumulating state over the input sequence.
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Adam optimizer

Adam is considered as an adaptive learning rate optimization procedure that

has been developed explicitly for training the DNNs [152]. It calculates distributive

learning rates for various factors. It is important to choose an appropriate opti-

mization algorithm for deep learning practice because it is directly related to speed

up the learning process. When presenting the procedure, Kingma and Ba (2015)

mention the benefits for employing Adam to be used on non-convex optimization

issues. They express that it is implemented directly with computationally efficient,

minimum memory requirements and typically need little tuning. It also a good

fit in dealing with large issues in terms of data and/or parameters or those with

very noisy or having sparse gradients[152]. Empirical outcomes from a lot of re-

searches showed that Adam functions well in practice and compares favourably to

other stochastic optimization algorithms. In the original paper [152], Adam was val-

idated empirically to demonstrate that convergence meets the expected theoretical

analysis. Being applied to the logistic regression algorithm, Adam was utilised on a

Multilayer Perceptron procedure and Convolutional Neural Networks on an image

recognition dataset. The conclusion was that Adam can efficiently mitigate practical

deep learning issues when utilizing large systems and datasets. Roder(2016) intro-

duce a thorough review abut recent gradient descent optimization procedures [153].

He mentioned that Adam marginally outperforms RMSprop when the optimization

nearly approaches the end as gradients become thinner due to its bias-correction.

He concluded that Adam could be the optimum overall decision. Karpathy et al.

(2016) suggested to use Adam algorithm as a default optimization procedure for

deep learning [154]. Additionally, Adam is being revised as a benchmarks in deep

learning techniques. While Xu et al. (2015) used Adam on attention in image

captioning[155], Gregor et al.(2016) utilised it on image generation [156].
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Random Initialization for Neural Networks

The task of building a neural network can be confusing, upon that modifying the

neural network so as to gain better outcome is very aggravating. The first step to

consider when building a neural network is parameters initialisation which is a crucial

practice for achieving optimisation in least period of time if done correctly[157].

In every neural network structure, there are weights between any two layers.

The weights liner transformation of the current layer together with the rates of the

former layers pass through a non-linear activation function in order to generate the

weights for the next layer. This procedure takes place layer to layer throughout the

forward propagation. As the back propagation operation occurs, the optimum rates

of these weights could be detected so that it can generate accurate values given the

input[158].

Thus far, randomly initialized weights have been utilised as an initialisation point

for machine learning operations. Initial values of these weights play a significant role

in concluding the cost functions global minimum of a deep neural network. There

are many methods used for weights initialisation between the layers such as zero

initialization, random initialization and He initialization[159].
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Chapter 3

Strategy, Methodology and Computation Models

3.1 Introduction

We started our methodology with a question; is there a relationship between

data organization and Decision Making techniques (consensus) when managing data

within Fog network?. This question was derived from the main research question; is

it possible to smartly organise Fog network data using consensus data organization?

We had investigated that relationship and tried to perform smart data organisation

and autonomous decision making as well as distributed computation among Fog

network nodes. This investigation had led us to realise that the research has mixed

qualitative and quantitative methods. As such, the decision is to be made based

on the network status (qualitative), whereas it is authenticated by measuring the

accuracy of that decision (quantitative). Our method focuses on measuring monitor-

ing data in built environments where network nods are the entrants of the decision

making process. A core practice in a decision making processes and data manage-

ment determination is data analysis. Analysing sensor data is crucial in examining

the patterns of each network status. Machine learning is one of the most effective

methods in analysing data and performing autonomous decisions.

To achieve our objectives, we introduce consensus based data management and

decision making set of algorithms which work together to perform data distribu-

tion and decision aggregation as well as carry out distributed computing within Fog

nodes. The outcome of this would be the data distribution illustrating the status of

data and a decision reporting the activities taking place within the network. Data
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management techniques can take many forms as explained in chapter 2. From those,

there was no calibration phase as explained in this research that investigate the sta-

tus of each front-end device and data range in the normal operation mode in order to

set up a data distribution. Also, they did not combine the decision aggregation to-

gether with data aggregation within their approaches. Data management takes two

forms in the proposed model, one is by composing data distributions with reference

to collected data and the other is through assembling decisions about activities that

occur in the network then forwarding both of them to the ascendant node. Data dis-

tributions are deliberated by calculating the distribution parameters (Mean and the

Standard Deviation (std)). For decision aggregation, Decision Making techniques

such as statistical and Machine Learning methods (accompanied with the consensus

methods explained later) to extract a decision about activities within the network.

After the aggregation process, the node sends one packet of data (at most times) to

the ascendant node containing data distribution parameters and the decision.

3.2 System Topology and Operational Platform

The proposed system topology and operational platform consists of three stages

that would integrated together to address the distributed computation and high

data quality through data analysis. IoT data needs to be analysed, due to its

heterogeneity, and its patterns needs to be investigated from an early stage i.e.

it requires a prediction which has three fundamental traits. The first is that a

continuous quantity is required to be predicted (IoT data is continuously generated

and transmitted). The second one is, predictions are made under uncertainty that’s

why a brief inspection is required to see how uncertain the predictions are. Third,

that those predictions are contingent to some observation. Basically the process is

not about obtaining a single answer, but in effect a range of answers to estimate each

individual answer’s probability. In summary: there exist a demand for a probability
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Figure 3.1 : Node Process diagram

distribution across a domain of answers given network data input so that to enhance

the prediction process and may even perform a better-informed decisions for network

administrator or even a user [139].

This Prediction process requires data analytics at network edge. Edge analytics

is a method for information ingathering and evaluation wherein an automatic ana-

lytical computation is executed on records at a sensor, network switch or any other

node rather than awaiting the data to be brought back to a centralised informa-

tion store. The plan to analyse data include Bayesian analytics as the probability

approach to perform predictions and construct network data distributions.

The topology and operational platform of the proposed system is shown in Fig.

3.2. The first level of it, Front-end Level (L0), is composed of front-end nodes (e.g.

sensors), while the next level, Fog-decision Level (L1), consists of network nodes
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Figure 3.2 : IoT Fog Topology and Operational Framework

that has the ability to aggregate data (Aggregators) representing cluster heads of

the subnetworks following them. This level can be made up of multi-sublayers

based on the network topology with first level of Aggregators attached to the front-

end nodes (as in L1.1 nodes in the figure) and top level aggregators represent the

”Participants” of the consensus operation (L1.2 in the figure).If the network topology

does not require multi-sublayers i.e. there is one aggregator node representing the

Fog-decision level, the aggregator node would have a ”Participant” entity to perform

its operations. The last level (L2) points out the back end of the network or the

Base Station (BS) which acts like a gateway that connects the network with the rest

of the IoT world.

The main responsibilities and functions for each level of the operational platform,

which is also represented by four levels, is demonstrated as follows:

L0:

In this stage, the devices have a low level access to the physical environment or

phenomena and they generate the raw data, check its boundaries (set by Bayesian
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Analytics representing a distribution suitable for the data), and communicate data

to the upper level.

L1:

The purpose of this stage is to reach a fine detailed conclusion about data status,

to make decision about the occurrence of any event or activity and to trigger the

action required (as will be explained in the next section). As mentioned above, this

stage can contain one or multiple sub-levels. The unimportant data is to be filtered

out, according to Bayesian analytics, in the early sublevels by the Aggregators and

then the rest of data is to be encapsulated in an abstract frame (data distribution)

and forwarded to next sub-level. While in the last sub-level, the required actions

depend on the communication between the responsible Participant node and its

peers in a way that it would provide a reliable decision not only based on its local

experience rather than based on the peer-participants as well. Bayesian analytics

plays a core role in every step of the process.

L2:

Monitoring the action of the system, set the rules and preferences when required,

and acts as a network Gateway.

As the methodology of our proposed system is based on Bayesian Analytics,

Each Participant node would have a Bayesian Classifier that analyses the mode of

operation for the system or parts of the system. The method starts with calibrating

each sensor of L0 under close monitoring for each mode of operation so that its

boundaries can be measured. Once that has been done, a distribution for each mode

of each sensor is to be saved in the corresponding Participant node besides saving the

normal mode distribution in the corresponding L1 node. After the calibration phase

is finished, the system operates under the utilization of Consensus Management

Procedure explained in section 4.



81

3.3 Operation Phases

The Operational framework of the suggested methodology lays in four phases.

The first two are to adjust the network intity and the others are to be performed

within the normal and abnormal modes.

3.3.1 Pre-Exploitation Modes

Before fully deploying the algorithm into the network and letting it operates

independently, network components need to be set in order to handle the operation

of the procedure within the network.

Sensor Calibration Phase

When monitoring an environment, the status of the atmosphere changes ac-

cording to climate, objects movements, atmospheric size or intervention of external

factors. The environment measures (temperature, humidity, light, movement, gyro-

scope ... etc.) are different between day and night time and among seasons while

the available open space in any sphere affects their scope. Also, the movement of ob-

jects within the environment is the cause of changing the activities in it. However,

abnormal changes in the environmental readings can take place according to the

occurrence of an event like rapid temperature rise, fire ignition or flood emergence.

In order to detect the happening of any event or the change in any activity within

the environment, we first need to measure the boundaries of the normal environ-

mental mode and the basic activity patterns within it. In this case, any reading

goes beyond them, it considered as an abnormal reading. We also need to define

some abnormal modes and measure their boundaries so that the system can detect

the mode and decide accordingly. This emphasises the importance of calibrating

the readings of each sensor in each mode. It works as training for sensors such that

each one can set the threshold boundaries for itself in each mode. The calibration
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phase involves continuously and closely monitoring sensors measurements in each

mode for a sufficient period of time so that we can set the range of values for each

sensor (or a certain patterns) within that particular mode. The readings are then

used to construct a mode probability distribution which will be used as a reference

to that mode. Each distribution has its main parameters (mean μ and std σ) that

the mode threshold boundaries will be set accordingly. As we know from statistics

analysis that for Normal Probability distribution, for example, approximately 99.99

% of the data readings lie within μ ± 5σ boundaries, we can set the first threshold

value (th1) to μ ± 6σ and the second (th2) to μ ± 8σ. The Normal Mode Distri-

bution is to be stored in each sensor’s memory as well as at the correspondent L1

Aggregator which constructs a general distribution for its network based on sensors

distributions. Other Modes are to be stored at Participant based on the trained

data obtained from the sensors at that mode and/or data gathered from an outside

project or site that describes the operation of that mode like datasets obtained from

fire or flood event or any recognised activity within the network.

Aggregator Training

The aggregators’ classifiers are to be trained to recognise different operation

modes and various activities within the network workspace. During the time of

calibrating sensors ranges under a supervised monitoring, the aggregators of the

network is to be trained as well. Data to be fed to the aggregator has to be annotated

with the modes of operation and/ or the activity happening within the network by

the network administrator. By having these annotations, the aggregator classifier

entity can be trained to relate data to the mode or activity. The mean and variance

of the data distribution will be constantly updated as more readings are received

from sensors. In the same time, the aggregator Classifier is trained and updated

using the distributions parameters and the annotated data.
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3.3.2 Exploitation Modes

When the network settlement is done, the system starts its independent op-

eration. During operation mode, a sequence of processes would be performed as

illustrated in Fig.3.3. These processes will be explained from a different perspective

by dividing the operation into two phases as in the next sub sections.

Environment Monitoring Phase (Normal Operation Mode)

The Environment is to be continuously monitored by sensors and as long as the

readings are within the boundaries of the Normal Mode Distribution (NMD), the

measures will be sent to the upper levels to train the aggregators nodes considering

the management strategy as follows:

At Sensors Level (L0):

Data to be sensed and periodically forwarded to the upper level every certain time

period designated as Normal Cycle Length (NCL) which is to be set according to

the particular network demands. During this mode, each sensor forms a distribution

of its readings each NCL and calculates its mean and variance as well as setting the

thresholds as explained in calibration phase section. If the reading is beyond the set

boundaries (thresholds), a Flag on will be passed indicating an abnormal mode of

operation, otherwise a Flag off is to be moved onward.

At First Aggregator level (L1):

The L1 aggregator receives sensed data from its descending sensors each NCL

time period, analyses and combines them according to their types (temperature,

pressure, humidity, movement, etc.) and checks if there is any change in the activity.

After that it abstracts a distribution representing the data within that period and

predicts a decision about the current activity then sends the distribution mean and

std along with the decision to the Participant node or entity. If there exist a change
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in the activity within the network, the Participant is to send the last period’s data

to its peer Participants requesting a consensus procedure to make a prediction about

the current activity. The parameters are then used to calculate the Participant ’s

cluster Distribution, of which its parameters and the final decision are to be sent to

the BS.

At Base Station (L2):

If the network is at normal mode, the BS receives a number of packets cor-

responding to the number of participants in the network each specified time (set

according to network requirements or a request).

A huge savings in packets generated and transformed within the network as it

requires only one packet to be forwarded from each level to its ascendant level in

the normal mode of operation.

Event Handling Phase (Abnormal Operation Mode)

The network goes into this phase of operation when there will be sensor readings

outside the boundaries of the normal mode indicating the occurrence of an event.

In this case the network needs to automate its response rapidly and frequently in a

much shorter cycle period called the Abnormal Cycle Length (ACL) that is present

according to network specifications.

At L0:

In case the abnormal value is greater than th1 but less than th2, the sensor waits

for another value in the same range within the same NCL. If a second value occurs

within the range or the reading goes beyond th2 from the first time, the sensor

changes NCL to ACL and starts sending the data to L1 switching the Flag in the

packet to ”On” state.

At L1:
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When L1 aggregator receives sensed data with an ”On” Flag, it requests immedi-

ate data from all other sensors within its network. Once it has received the responses,

it checks whether the data lies within the normal mode boundaries related to its

general Normal Mode distribution or not. In case of normal state, the Aggregator

continues to work as in the normal phase, otherwise, it starts to forward the sensed

data with a notification of Abnormal readings to the ascendant level. This prcedure

is to be repeated at each ascendant level aggregator if there is multiple layers in the

Fog-desicion Level until the data reaches the Participant aggregator node. In case

of only one node representing L1, the aggregator forwards the sensed data with a

notification of Abnormal readings to the Participant entity within the aggregator.

If the Participant node or entity finds out that there is an abnormal readings, it

starts Mode Recognition Process using Bayesian Analysis. This process involves

matching the abnormal readings with all modes distributions stored in it using the

Bayesian Classifier formula to obtain the probabilities of all modes of operations.

At the same time, it pushes the abnormal data with a request for consensus to its

fellow Participants. The Participants would check the data related to their own

classifiers that were trained by separate data sets from every Peer-Participant ’s par-

ticular network cluster. Each Peer-Participant would send back its own calculated

probabilities for each mode. Finally the Participant would stratify the Consensus

Process (like the Maximum A Posterior (MAP) estimation or ensemble learning or

any other consensus process) in order to estimate consequent mode which depends

on the all Participants’ decisions (consensus). The mode which will have the maxi-

mum probability is to be chosen to represent the current mode of operation and the

network will act accordingly as in the network policy.

At L2: The decisions and data are to be sent to the BS for storage or any further

check.
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Figure 3.3 : Process diagram
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3.4 Consensus Management Procedure

A consensus is general agreement among a group of participants to reach a solid

decision about area of interest. However, our consensus model is built by bringing

those techniques to decide about a network status or activity in real time learning

from their previous own network data and updating at each certain period. The pur-

pose is to improve the precision and efficiency of the system and to reach automation

within the Fog Computing platform. Hence, combining the decisions of individual

classifiers (Participants) may not indeed surpass the performance of the best Par-

ticipant, but it definitely limits the overall risk of deciding a specific poor choice.

Consensus algorithms are principally used to enhance the overall performance of

a model (prediction, classification, function approximation, and many others), or

minimise the probability of an individual model arriving at an unfortunate decision.

Other applications of consensus algorithms consist of setting confidence to the choice

made through the model, data fusion, nonstationary learning, deciding on optimum

(or semi optimum) features, correcting errors, and incremental learning.

The ensemble based systems could be beneficial while handling large amount of

information or lack of sufficient information. When the training information volume

is very large and its hard for a single classifier to preform training, the information

may be strategically subdivided into smaller subsections. Each subdivision could

then be utilised to train a single classifier that could then be joined utilizing a

proper management rule. If, alternatively, there is very little information, then

bootstrapping may be used to train various classifiers using multiple data bootstrap

samples, wherein every bootstrap sample is an arbitrary data sample drawn with

a substitute and considered as if it was individualistically drawn from the original

distribution.

Specific issues are sometimes hard to be solved by a given classifier. In reality,
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the choice boundary that isolates information from distinctive classes may be very

complex, or lie exterior to the space of capacities that can be performed by the

selected classifier model. In logic, the classification framework follows a divide-and-

conquer method by partitioning the information space into reduced and easier-to-

learn segments, where each classifier learns only one of the simpler segments. The

basic complex choice boundary can at that point be approximated by a suitable

combination of various classifiers.

The consensus framework normally permits allocating a confidence to the choice

made by such a framework. Reflect the case of having a consensus operation among

some classifiers trained on a classification issue. When a large majority of the

classifiers agree with their choices, such a result can be translated as though the

consensus operation has a high level of confidence in its choice. In case, however,

half the classifiers make one choice and the other half make a diverse choice, this

could be translated as the consensus having a low level of confidence in its choice.

In our model, consensus plays a crucial part in reaching the final decision about

the network mode or activities that lie within it. The consensus computation starts

after each participant make a decision. However, the procedure starts long before

that. When an out of boundaries sensor reading is detected, it is an indication of a

change in the network mode or activities. From then, the series of steps described

earlier would take place leading the model to make decisions by each participant

and setting them ready to gain the consensus decision.

The system would start operating using the Consensus Management set of algo-

rithms once the calibration and training phases finish. To achieve the methodology

goal, we will explain in detail how to apply the consensus Management model to

the system. The procedure to be performed within the network has four operational

segments executing distributed computation. The first operational part would be
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in front-end level where sensors pass their readings along with a flag to the corre-

sponding aggregator at each certain time period. In the second stage of operation

the aggregator receives the data and checks the flag, if an ”on” flag status is detected

(i.e. readings beyond thresholds), more data from other sensors will be requested

and the sample rate will be heighten as well in order to check the network for an

abnormal mode or activity change. If so, the readings with notification will be

transferred to the Participant node or entity (whether there is a sublevel within the

Egde-decision layer or not). For ”off” flag situation (data within boundaries), the

mean and variance (distribution parameters) will be calculated and moved forward.

At the Participant node or entity, a comprehensive distribution is to be collected

by combining distribution parameters then sending it to the Base station which will

significantly enhance the quality of data delivery process. The third phase, operates

in the Participant node or entity of Fog-decision level, a decision about the current

mode of operation or current activities happening will be made by analysing data,

appended in the same datagram as the data distribution and then sending it to the

base station. Data analytics would be performed applying Machine Learning meth-

ods to train Bayesian Classifier in the Participant (during learning phase) exploiting

all the data derived to it using Bayesian Classification rule since each sensor read-

ings are independent from other sensors’ readings and patterns. This would qualify

the classifier to segregate different modes. So, when an event occurs in the network

detecting a change in the patterns, the classifier would detect the change, initiate

the consensus process and survey the current mode of operation. When a consen-

sus decision is made, the corresponding Participant would check the policy to act

accordingly. The last operational segment would be to deploy a new strategy on

the network as exists in the policy procedure. Also, after each time period, set by

system administrator, the classifier would be updated by training the measured data

and the decisions made as result from the consensus operation within that period.
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The consensus routine includes the operation of checking the most suitable mode

or activity for the current network status depending on the readings, the process of

negotiation, reaching consensus procedure and finally updating preferences based on

historical experience of each Participant. Many Events can affect the network and

the system planner/administrator have to introduce each type of event and activity

describing the typical data distribution of each mode and activity within that event

type and train the Participants to identify them.

3.4.1 Consensus Models

Various techniques are used to reach an agreement about an aim. To repre-

sent consensus, there are many techniques that can be utilised each of which has

a different way of performing. Some of them are simple to compute like the al-

gebraic combiners (minimum, maximum, sum, mean, product, median, etc.) or

the voting based methods (majority voting or weighted majority voting or the pro-

posed Likelihood Multiplication). There are also more sophisticated techniques.

These incorporate Dempster-Schafer rule which calculates the plausibility based be-

lief measures for each class; Borda count which considers the class support rankings;

”decision templates” (Kuncheva 2001) which computes a resemblance degree be-

tween the present choice profile of the unidentified instance and the mean choice

profiles of instances from every class; and behaviour knowledge space(Huang 1993)

which employs a lookup table that records the foremost common accurate classes for

each conceivable class combinations provided by the classifiers. However, there are

many techniques that utilise machine or deep learning to perform consensus, called

ensemble based systems. Ensemble learning is the technique through which numer-

ous models, including classifiers or experts, are strategically generated and mixed

to resolve a precise computational intelligence issue. An ensemble-based system is

acquired through combining various models. Thus, such systems are also called mul-
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tiple classifier systems, or simply ensemble systems. There are numerous situations

in which utilizing a consensus based system makes statistical sense. In each case, the

last selection is made through aggregating the individual choices of multiple expert

participants. In doing so, the essential purpose is to limit the unfortunate choice of

an unnecessary process or an insufficient learned node.

Commonly used ensemble learning algorithms including Bagging, Boosting, Stack-

ing, and Bucket of models. Bagging, involves the use of bootstrapping to get replicas

of the training data to obtain a variety of classifiers. To reinforce the variance of

the model, every model in the ensemble is trained employing an arbitrarily drawn

subset of the training set. A different same-type classifier is trained by each of

these subsets. After that, the individual classifiers decisions are aggregated using

a simple majority vote mechanism. At each instance, the ensemble decision repre-

sents the class selected by most classifiers. As the training datasets may overlap

considerably, extra actions can be utilised to escalate diversity, like training each

classifier utilizing a different subset of the training data. An example of Bagging is

the random forest algorithm which combines bagging with random decision trees to

attain a very accurate classification (Breiman 1996). Boosting generates classifiers

ensemble by means of information resampling as well, then they are to be combined

by a majority voting method. Boosting encompasses incrementally constructing an

ensemble via passing every new model instance through training to give emphasis to

the training instances which the former models mis-classified. Boosting has been re-

vealed to gain superior precision than bagging at particular cases, though it inclines

to over-fit the training information as well. Considerably, Adaboost is the most fa-

mous operation of boosting, even though some innovative procedures are conveyed

to attain enhanced outcomes. In Stacking, bootstrapped samples of the training

part of dataset is primarily utilised to train the classifiers ensemble, producing the

first tier of classifiers. The next step would be to take their outcomes and train
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a second classifiers tier (Wolpert 1992). The principal behind this is to test if the

trained dataset has been appropriately learned. Stacking includes the training of

a learning system in order to combine some other learning procedures predictions.

It starts with training all the individual procedures employing the existing dataset,

after that a combiner process is trained to produce a concluding decision using the

predictions of all the individual procedures as an input. Generally, logistic regression

model is used as a combiner. Stacking normally results in better performance than

any of the individual trained models. The ensemble method of a bucket of models is

an algorithm selection process which is used to pick the best trained algorithm for

each case. Cross-validation Cross-Validation Selection is the most popularly used

method for model-selection and Gating is a generalization of that method. It in-

cludes training additional learning methods to elect which of them is best-suited

to resolve the issue. The gating model normally utilises perceptron to choose the

best method, or it may be utilised to provide a linear weight to the predictions from

every method in the bucket.

Bayesian parameter averaging (BPA) is a consensus method that aims to esti-

mate the Bayes optimum classifier by sampling assumptions from the assumption

space, and aggregating them utilizing Bayes’ law. While Bayesian model combina-

tion (BMC) is an algorithmic modification to BPA. As a replacement of sampling

individual models, it samples from the space of possible consensus models. This cor-

rection beats the inclination of BMA to converge toward offering the whole weight

to only one model.

Likelihood Multiplication Consensus Models

This model is a proposed algorithm to achieve consensus. It is applied to the first

experiment and compared with other methods. To model the Consensus operation

within the network and to refer to Bayesian classifier, let Y = {y1, y2, . . . , yn} be a
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finite set of alternatives (classes), (n ≥ 2), to be classified for network status (like

Normal weather, Hot or Fire), and let the set of participants be S = {s1, s2, . . . , sm},
(m ≥ 2) whose weight vector is marked as G = {g1, g2, . . . , gm}T , where gk > 0,

k = 1, 2, . . . ,m, and
∑m

k=1 gk = 1. Taking X = {x1, x2, . . . , xd} as a set of features

from the training data (which is the classifier’s input data), Each participant sk ∈ S

presenting its probabilities in relation to yi ,where i = 1, . . . , n, as P k(yi|X) which

is a finite set of probabilities for participant sk and it’s defined as:

P k(Y |X) = {P k(y1|X), P k(y2|X), . . . , P k(yn|X)} (3.1)

where
n∑

i=1

P k(yi|X) = 1 (3.2)

After applying Bayesian analysis and obtaining the set of probabilities for each

participant about all alternatives, the outcome of the Consensus process is calculated

by first aggregating the corresponding probabilities of the same alternative from all

participants with the weighted geometric mean according to the following equation

[160]:

P (yi|X) =
m∏
k=1

P k(yi|X)gk (3.3)

Then collecting the overall probabilities of all alternatives provided by the partici-

pants P T (Y |X) as:

P T (Y |X) = {
m∏
k=1

P k(y1|X)gk , . . . ,
m∏
k=1

P k(yn|X)gk} (3.4)

At this point, the analyses of Bayes Classifier should be considered. Bayes ap-

proaches are a set of supervised learning algorithms established by applying Bayes

theorem. Given y (class variable) and x1 through xn (dependent feature vector),

Bayes theorem expresses the relationship:

P (y|x1, ..., xn) =
P (y)P (x1, ..., xn|y)

P (x1, ..., xn)
, (3.5)
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The inference is assumed to be independence, the observations’ probability den-

sity given the parameters, in which it is factored over states in the training set

(because of the independence assumption)[161] where

P (xi|y, x1, ..., xi−1, xi+1, ..., xn) = P (xi|y), (3.6)

so for all i, the relationship is simplified as following

P (y|x1, ..., xn) =
P (y)

∏n
i=1 P (xi|y)

P (x1, ..., xn)
, (3.7)

Since given the input, P(x1, ..., xn) is constant , the following classification rule

can be used:

P (y|x1, ..., xn) ∝ P (y)
n∏

i=1

P (xi|y), (3.8)

ŷ = arg
max

y
P (y)

∏(
n

i = 1

)
P (xi|y) (3.9)

and the Maximum A Posteriori (MAP) estimation can be used to estimate P(y) and

P(xi|y); then the former is the training set’s relative frequency of class y.

Bayes classifiers differ generally according to their assumptions regarding the

probability distribution P(xi|y).

In order to continue the derivation of the Likelihood Multiplication model, equa-

tion 3.4 is to be substituted with (3.8) to have:

P T (Y |X) ∝ {∏m
k=1 P

k(y1)
∏d

i=1 P
k(xi|y1)gk , . . . ,

∏m
k=1 P

k(yn)
∏d

i=1 P
k(xi|yn)gk}

(3.10)
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where d is the total number of samples of training data sets. The final decision

about the mode resulting from the consensus ŷ will be (as in (3.9)) :

ŷ = arg max P T (Y |X) (3.11)

To avoid having the situation when one of the probabilities is zero from affecting

the decision, we take the logarithm of the probability values and sum them to get

the same decision, then equation (3.3) would be:

Zi =
m∑
k=1

ζki (3.12)

Where Zi=logP (yi|X) and ζki = logP k(yi|X)gk . Also eq 3.4 would alter to:

ZT = {Z1, . . . , Zn} (3.13)

where ZT = logP T (Y |X) and finally the decision would be made upon the

following formula:

ŷ = arg max ZT (3.14)
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Table 3.1 : Table of Notation

Notation Description

i index value for store locations

BS Base Station or Network Gateway

NCL Normal Cycle Length

ACL Abnormal Cycle Length

NCC Normal Cycle Counter

ACC Abnormal Cycle Counter

SRD Sensor Readings Distribution

t Sensor Transmission period

τ Aggegator Transmission period

T Participant Transmission period

St sensing rate

F Flag($)

Distτ Aggregator Normal Mode Distribution (NMD)

DistT Participant Normal Mode Distribution (NMD)

lhD last hour Distribution($)

th1 First threshold (μ ± 6σ)

th2 Second threshold (μ ± 8σ)

thx threshold update factor

N number of Participants connected to BS

n number of sensors/ nodes connected to the aggre-

gator

agg number aggregators/ nodes connected to the par-

ticipant P k

r′ number of received readings from a node

r” number of received readings from an Aggregator

r′′′ number of received readings from a Participant

nt abnormal mode notification message

req a request to obtain Modes Probabilities

C Consensus resultant decision

NSPk Network Status Mode Probabilities for participant

Pk

MAP Maximum A Posterior Process

NSM Network Status Mode

M Current Network Mode

Decision Variables

v = {vi; for i=1, 2, ..., r; where r: number of readings

in a time period }
Dl = {(v, F )lj ; for j= 1,2, ...,r’ and l=1, 2, ..., n}
Ia = {(D = [Distτ/Dl], nt/F )ab ; for b= 1,2, ...,agg and

a=1, 2, ...,r” }
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Algorithm 1: Sensor level Operation
Input : Sensor reading values vi

Output: v and F

1 while all vi in v do

2 if |vi| < th1 then

3 t = NCL

4 append vi to v

5 F = ’off’

6 transfer (v and F )at t;

7 else

8 if |vi| > th2 or |vi| > th1 in v then

9 t = ACL

10 v= vi

11 F = ’on’

12 transfer (v and F )at t;

13 else

14 t = NCL

15 append vi to v

16 F = ’off’

17 transfer (v and F )at t;

18 end

19 end

20 Update lhD

21 end
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Algorithm 2: Aggregator level Operation
Input : vl and F l from each connected sensor l

Output:

⎧⎪⎨
⎪⎩

Distτ , if Normal Mode

Dl otherwise

1 for l = 1, . . . , n do

2 if F l =′ on′ and/or |vl| > thd1 then

3 request all connected nodes for more real-time data;

4 send all data vl with nt at τ =ACL

5 else

6 append vl to Dl

7 Call Distribution

8 end

9 end

10 Function Distribution(vl):

11 Calculate distribution parameters (μ, σ) from Dl

12 update Distτ

13 transfer Distτ at τ =NCL

14 return;

Algorithm 3: Participant level Operation

Input :

⎧⎪⎨
⎪⎩

Distτ , if Normal Mode

Dl otherwise

Output: DistT

1 for l = 1, . . . , n do

2 if nt �=′ null′ then

3 request all connected nodes for more real-time data;

4 Call ConsensusProcedure Send the Results to BS

5 else

6 append Distτ to Ia

7 Call T2Distribution

8 end

9 end

10 Function T2Distribution(Distτ):

11 Calculate distribution parameters (μ, σ) from Ia

12 update DistT after adding the new parameters

13 transfer DistT at T =NCL

14 return;
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Algorithm 4: BS level Operation

Input :

⎧⎪⎨
⎪⎩

Rk, if Normal Mode

C otherwise

1 for l = 1, . . . , N do

2 if ntl �=′ null′ then

3 initiate the AbnormalModeProcedure

4 else

5 append Rk to network dataset

6 end

7 end

Algorithm 5: Consensus Procedure
Input : Dl

Output: M

1 Add recieved data to Ic

2 Check Ic in relation to NMD

3 if |Ic| < thd1 then

4 Return

5 else

6 Send nt and Ic to all other participants with req

7 Apply Ic to Bayesian Classifier

8 Obtain the Probabilites of each Mode of Operation

9 Receive NSP k from all other Participants P k Compare all NSPk and etimate the consequent

NSM using (MAP)

10 if NSM = M then

11 Update threshoulds by thx Diploy the new thresholds on the affected branch nodes

12 else

13 Upadate M(M = NSM)

14 Act according to ModeChangeProcedure in the Participant’s preferences

15 end

16 end
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Chapter 4

Environmental Event Detection by Consensus

Bayesian Machine Learning

4.1 Introduction

This Chapter introduces an experiment representing data delivery using the con-

sensus management within Fog Computing environments. The aim is to simulate

and implement the IoT environment introduced in Figure 3.2. This experiment clar-

ifies the role of Consensus Data Aggregation using Bayesian analysis in maintaining

the quality of data delivery within IoT. The approach is to exploit the consensus

style of management methods to handle the delivery of data from a large number of

sources so that the whole process of delivering big data within Fog environment can

be improved. The goal of the proposed method is to collect data in an intelligent

manner reducing traffic and eliminating redundancy and possible errors as well, so

only the essential and non-faulty data is to be pushed further. Each level of the

proposed paradigm has a decision making capability. This is because the purpose

of the proposed model is to achieve automation and distributed computation within

Fog Computing.

In this experiment, environmental events are to be detected by Bayesian Classi-

fiers utilizing machine learning approach. Then a consensus decision about network

mode is to be obtained by a consensus procedure employing the outcome of the

classifiers. Along with that, data would be aggregated utilizing the distributions of

the data transmitted from the front end till the base station considering the con-

ditions explained in chapter 3. Temperature-Fire events type are depicted as an
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environmental events that can happen in any setting. This type basically has four

modes: Normal, Hot-temperature, Fire-ignition and Fire. For the simplicity and

limited resources of prototype description, one event type (Fire) will be considered

as an abnormal event in this setting. Bayesian analysis is to be used to illustrate the

status of each mode (Normal or Fire) and how to determine the appropriate mode.

4.2 Data Collection and Analysis

To implement the experiment as shown in figure 3.2, a pre-simulation as carried

out to check the potential of the proposed model. Therefore, the network was sim-

ulated using a function that generates random numbers within boundaries around

standard room temperature environment. Also, some out of range values were in-

serted among the numbers to test the effect of events on the network operation. The

network consists of four main branches each of which contains five sub clusters and

are headed by a L2 Aggregator (Participant). Each sub-cluster has a L1 aggregator

serves 10 sensors. The Consensus Management set of algorithms were applied to the

network then a comparison was made to differentiate the network situation before

and after applying the aggregation operation in terms of the number of packets. The

results showed a huge savings in the number of packets after applying the aggrega-

tion algorithm even with the existence of events. The indication from these results

was to proceed with the implementation of the experiment to generate data.

On a second stage, one branch of the same topology was implemented using Rasp-

berry Pi Zero (RPi0) representing L1.1 and L1.2 Aggregators and 10 CC2650 Sen-

sorTags connected to each L1.1 aggregator (RPi) via BLE (Bluetooth Low Energy)

connection. The aim is to monitor a warehouse environment and act autonomously

if an event occurs. Then network operation was designed to get through the pre-

exploitation phases.
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4.2.1 Pre-Expliotation Mode

The first phase to be started with after setting the network is the calibration

phase of sensors. Data starts to be collected by the Rpi from each SensorTag under

close observation ensuring a normal mode of operation. The aim was to build the

Normal Mode Distribution (NMD) for each sensor by getting enough data collected

for several days. This step represents orientation for sensor data to set the threshold

boundaries based on the Distribution. Data is assumed to follow Gaussian distri-

bution, the formation of this distribution will be used to identify the occurrence

of an event if a deviation in the readings is to be indicated considering the mean

and variance of the distribution. Data distribution parameters (mean and variance)

will be constantly updated as more readings are received from sensors. After this

task, the experiment had to transmit to simulation due to limitations in resources

and space. In order to make four appliances to fulfil the design topology, Boosting

method was used to generate three other datasets each representing a branch of the

topology.

For measuring the distributions of other modes of operations, different data sets

could be directly measured, downloaded from the web, or simulated. Fire Dynamics

Simulator (FDS) was employed to simulate fire situation and measure environmental

readings from several sensors before and during the happening of fire event. Data

were collected from the simulator and then Fire Mode Distributions were constructed

for each sensor. The simulation were made to four different areas. Till this point,

both normal and fire datasets (four dataset for each mode) were ready. The last

data analysis to be done was to annotate the data as ’normal’ or ’fire’ to be fed into

the system.

In the second phase, aggregator training phase, the classifiers are to be trained

utilizing the annotated datasets. The purpose is to recognise different operation
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modes inside the network and to relate data records to that mode.

4.3 Experimental procedure

Bayesian analysis model was used to perform management for network’s data. It

was the utilised to classify the network mode of operation. In Bayesian analysis, each

mode will have a prior distribution depending on information collected. Then the

ongoing measured data will be used to calculate the likelihood function and finally

the posterior distribution can be extracted from these measures. When a reading

exceeds threshold, indicating out of normal mode distribution boundaries status,

the reading is to be applied on a scale that contains the distributions of relevant

modes. Then, the probability of that reading being within each distribution is to be

calculated, and lastly the distribution which has maximum probability value will be

selected and its mode will be chosen as the decision. The distribution parameters

for both Normal and Fire modes would be saved in L1.1 and L1.2 aggregators. At

L1.2 , each data record received are fed to Bayesian Classifier with a Normal Mode

or Fire Mode notations indicating that this record represents ”Normal Mode” or

”Fire Mode” operation status respectively. In this case the classifier can be trained

to designate the normal and fire modes. When the pre-exploitation phase finishes,

the network is ready to perform and, as expected, the performance would be in

either normal mode or abnormal mode (when an event occurs). At each level of

the model, a different responsibility and decision making is performed to attain

distributed computing and automation within the Fog.

4.3.1 Environment Monitoring (Normal Mode)

In this mode, all reading data are within the Normal mode boundaries.

At L0:

Periodically, data collected from sensors and sent to L1.1 aggregator according
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to Normal Cycle Length (NCL). While within normal mode boundaries, the mean

and variance of Normal Mode Distribution set in calibration mode is continuously

being updated.

At L1:

The L1.1 aggregator receives sensed data in each NCL time period, analyses,

combine them according to their types (temperature, pressure, humidity, etc.), then

abstract a distribution representing the data within that period and send its mean

and variance to L1.2 aggregator.

L1.2 aggregator gets the Normal mode distribution parameters (mean and std)

from all aggregators of L1.1, analyses and aggregates them in a combined distribu-

tion of all its sub-clusters. Finally it sends the parameters belonging to it to L2

Base Station.

4.3.2 Event Handling (Abnormal Mode)

When a sensor node reading goes beyond the threshold indicating abnormal

mode, the following will occur at different levels:

At L0:

In the case that the abnormal value was greater than th1 but less than th2, the

sensor waits for another value in the same range within the same NCL. If a second

value occurs within the range or the reading goes beyond th2 from the first time,

the sensor’s decision would be to send a notification (set the flag bit to ”on”) and

send data packets so that the aggregator would check it.

At L1:

The L1.1 aggregator receives packets with Flag on notification within packets

of data in less than the NCL time period. It analyses them, sends requests to all

its ascendant sensors requesting more data, then uses Bayesian analysis to indicate
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(a) Temperature

(b) Pressure

Figure 4.1 : Environmental Temperature and Pressure sensors data distribution

parameters with its corresponding resultant normalised distribution after applying

the aggregation
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(a) Light

(b) Humidity

Figure 4.2 : Environmental Light and Humidity sensors data distribution param-

eters with its corresponding resultant normalised distribution after applying the

aggregation
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Figure 4.3 : The difference in Packets count between the Aggregated and non-

aggregated (Baseline) cases with the savings in number of packets when using dif-

ferent communication techniques

whether its a Normal or an Abnormal situation. If the results from this process

denote its a normal mode, the process ignores the notification coming from the

sensor; if not, the decision would be to send these readings (not the distribution in

this case) along with a notification to its ascendant L1.2 aggregator (Participant).

When receiving data and an abnormal mode notification from L1.1 Aggregator,

the Participant tests the data in its Bayesian Classifier as well as sending the data

and a consensus request to its fellow Participants. Each Participant would test the

data based on its own classifier which trained using data generated in own network

cluster and obtained the resultant probabilities for each operation mode. The result

probabilities from all fellow participants for all modes (which is P(Normal — Data

) for Normal Mode and P( Fire — Data ) for Fire Mode) would be sent back to the

original participant. Then the latter will apply the consensus estimation module to

estimate the resultant mode based on all participant’s experience.
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The model simulation was run transferring packets that each carried readings

from the datasets generated as mentioned in the data collection and analysis sec-

tion. In the simulation, packets were aggregated as distribution parameters (mean-

ing there will be only one packet representing the whole readings each NCL from

each node) and transferred from the front-end nodes (L0 sensors) till the base sta-

tion (L2 node) passing by all the ascendant nodes in the hierarchy model. When a

packet carries an abnormal reading (notated as Fire Mode), the system would enter

the abnormal phase. In this phase, the packets carrying readings instead of dis-

tribution parameters would be transferred. Also, the consensus operation between

participants would take place including all the readings and notifications packets

transfer as well as the results probabilities packets among participant. As normal

mode is the dominant mode of operation in each network, the number of normal

mode records in the dataset is much higher the fire mode records. A comparison

was made to test the saving in packets number when applying the aggregation and

in the case when no aggregation were applied. The number of packets were recorded

for both cases.

The model was also tested by applying different communication means (BLE,

Zigbee, 6LowPAN, LoRa) to show how the system responds regarding packets de-

livery amount and savings and communication rate/delivery delay. Considering the

same network topology in figure 3.2, replacing each sensor with a SensorTag which

has multiple sensors in one apparatus (like the CC2650 with ten sensors). Each

sensor has different data length as in Table 4.1 which shows the size in Octets for

each sensors group within the SensorTag (IR temperature: consisting of object and

ambient sensors; movement: accelerometer, gyroscope and magnetometer; humidity:

relative humidity and temperature; pressure: barometer pressure and temperature;

optical: light intensity) as well as the IO service and Simple key services control

octets. Adding two more octets containing a Flag bit for each sensor, the payload



109

(which is the part of transmitted data of is the actual intended message) required

to represent each sensor reading within the sensortag is 60 octets. Since each sen-

sortag sends the readings every NCL, the payload amount sent from the sensortag

to the L1 aggregator is 60 multiplied by the number of sensing readings within

NCL octets. The test will consider each communication mean at a time to deliver

the same amount of data (same NCL) and count the number of packets that have

traveled within the network for the case of baseline communication with no aggrega-

tion and then when employing our aggregation method throughout the system and

thereafter calculating the savings in packets in accordance with aggregation. The

objective is to have a clear idea about which communication technique better suits

the proposed algorithm.

Assuming that the whole network utilises the same communication mean and

that the system operates in Normal mode with NCL time cycle throughout all levels,

packets number transferred over the entire network from L0 to L2 is to be calculated.

Since each transmission technique has its own maximum payload size based on

packet specifications standardised for that particular technique, a different number of

packets would transmit across the network according to the applied communication

mean. For a 6LoWPAN packet, as an example, the data units (PDUs) of the IEEE

802.15.4 protocol have various sizes based on the overhead it represents. Beginning

with a maximum packet size of 127 octets in the physical layer with a 25 utmost

frame overhead, the consequential maximum frame size is 102 octets at the media

access control layer. Further overhead is imposed at Link-layer security, leaving only

81 available octets in the utmost case. Moreover, the length of the IPv6 header is

40 octets leaving only 41 octets for upper-layer protocols, like UDP which utilises 8

octets in the header. Hence, only 33 octets is left for application data. This space

calculation demonstrations the worst-case state, and points out the need to perform

header compression [162] [163]. The quantity of compressed octets from the IPv6
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and UDP transport headers differs based on numerous factors like the used IPv6

addresses and 802.15.4 addressing modes, and the availability of network contexts.

The best compression case results in 6 octets from 48 [164] which concludes that

the maximum payload to be 75 octets (81-6 is 75). Since ZigBee technique also

depends on IEEE 802.15.4, it can consider the same payload size. For the ease of

explanation and visualization, 6LoWPAN will be considered as the case with full

header compression (75 octets) as its maximum payload size, while ZigBee would

contain 33 octets for the rest of this discussion.

In the same direction, we can consider that maximum application layer payload

for BLE version 4.1 is 27 octets and 251 octets for BLE version 4.2 (and above)

[165], while LoRa would have 13 octets (its maximum payload size varies based

on its transmission rate [166]). Figure 4.3 shows the packets count after applying

the communication means for the baseline non aggregated transmission and with

our Bayesian aggregation routing along with packets savings percentage for each

transmission technique.

4.4 Results

The consensus operation is performed to get the best coherent decision among

preferences, summing up the knowledge of all participants, and aiming for high level

of accuracy. Therefore, a consensus operation was applied on a network that has

three participants nodes and then another subnetwork (with different trained data

sets) that has four participants nodes. The Consensus was performed using the

Likelihood Multiplication method first, then by using the Majority Voting and the

Weighted Average method to compare their performance. Figures 4.4 and 4.5 show

the accuracy outcome of the individual participants decisions and the decisions of

the three consensus methods for the first and second subnetworks respectively.
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Table 4.1 : SensorTag Data Description

SensorTag Payload (Octets)

Sensor Group Data Size Notification Configuration Period

IR Temp. 4 2 1 1

Movement 18 2 2 1

Humidity 4 2 1 1

Pressure 4 2 1 1

Optical 4 2 1 1

IO Service 1 1

SK Service 1

Total Octets 58

Figure 4.4 : The effectiveness of Bayesian Classifier and Consensus Procedure in

mode detection accuracy (3 participants nodes)
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Figure 4.5 : The effectiveness of Bayesian Classifier and Consensus Procedure in

mode detection accuracy (4 participants nodes)

To test the consistency of the superiority of our proposed method, the network

with four participants nodes was run with the three consensus approaches respec-

tively for a hundred times on different parts of the data as shown in Fig 4.6.

Another tests to the proposed model were made, in which the number of nodes

within the network was gradually increased. Figure 4.7 shows the increment in pack-

ets savings in regards to the increase in Level 0 and Level 1 nodes in general. Also,

by considering various communication means, each of which has different payload

size for its packet. The results in figure 4.8 illustrate the savings that occur between

the proposed Bayesian Aggregation (BA) and the Non Aggregated (NA) in different

levels of the proposed model for each communication technique.



113

Figure 4.6 : Testing the consistency of the consensus approaches on detecting the

mode of operation

Figure 4.7 : Packets savings in Aggregated versus non aggregated cases with the

increase number of nodes
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Figure 4.8 : Packets savings in Aggregated versus Non Aggregated cases with the

increase number of nodes for each tested transmission technique

4.5 Evaluation

The aim behind our work is to gain high data quality that would increase the

reliability of a system and implement autonomous distributed computation which

can boost the efficiency of resources within Fog Computing using consensus based

management techniques. For this purpose, the experiment was implemented utiliz-

ing the Bayesian Classifier and distribution along with its precision and efficiency

will be evaluated in terms of mode detection as well as packet delivery. In order to

test the accuracy percentage of the system model, and as mentioned that each par-

ticipant’s Classifier was trained utilises different data set (as each classifier would be

trained by its own network data) as well as data distribution parameters of different

modes (with the mode type for each record). Then a test data would be fed to those

classifiers to check their ability in detecting the mode of operation of the network. In
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this direction, the classifiers are tested with the data set so that its mode is known

(but the mode was not fed to the classifier) and then the output was compared with

the original data to inspect the correctness of the classifiers output. This process

by which data separated into two parts is called cross validation, Training data to

train the classifier and test data which is used to check how accurately the classifier

was trained. The classifiers performance varied based on how relevantly close the

trained data set was to the test data (in the real world, the classifiers decision is

based on its own network data values).

When applying the proposed process on networks that has three then four partici-

pants nodes respectively, and as illustrated in the figures 4.44.5, is that the consensus

technique has a very high percentage of accuracy. The conclusion gained from it

is that it would be a reliable approach to achieve automation. This means that

involving more than a participant (with its own experience) increase the efficiency

of the model in distinguishing the mode of operation. Also, we can acknowledge

that the confidence of the system (from accuracy levels) increases by nearly 2%

when applying the Likelihood Multiplication Consensus method utilizing Bayesian

estimation classifier than the Majority Voting and the Weighted Average methods.

Also when consistently running the four participants nodes network with consensus

for one hundred times, the Likelihood Multiplication Consensus algorithm shows

the same attitude. It can be noticed that the likelihood Multiplication consensus

method has a consistent best decision when using the Bayesian Classifier as it is close

to the highest individual decision. However, the Majority Voting and the Weighted

Average methods made their decisions near the mean of the individual participants’

decisions.

In general, the consensus is consistently leading to improved detection accuracy.

Aggregation ideally involves lowering the operation delay rate via summarising con-

tinuous sequence of values produced by sensors. Typically this saves the bandwidth.
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Figure 4.9 : consensus impact: the accuracy of the aggregated data samples in-

creased as more nodes involved in the decision making (consensus) process

On the other hand, the summarisation may lead to accuracy loss as not the whole

generated bulk of data would reach the Base station. The expected accuracy loss

was quantified due to aggregation by comparing the case when no-aggregation ap-

plied (’all samples’) vs when applying aggregation. On average, the event detection

accuracy degrades by 2% when aggregation was applied considering one decision

maker. When we use consensus (participating another node in the decision making

process) the accuracy gap between the non-aggregated and the aggregated cases was

decreased, which proves the effectiveness of the proposed scheme. Interestingly, the

gap decreases as more nodes are included in the consensus process. This is evident in

the three-node census where the aggregation introduces only 0.7% loss in event de-

tection when using aggregation compared to considering all samples (no-aggregation

case). Figure 4.9 summaries the impact of the two core traits of proposed framework

on the event detection accuracy, namely the aggregation and consensus.

The aggregation by distribution approach used here significantly decreases the

number of packets travelled from L0 to L2. Instead of sending all sensed data
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(at least a packet for each SensorTag) readings within NCL all the way up to the

Base Station, only one packet can be sent from each aggregator representing the

distribution parameters of the entire sub-network. This leads to a huge save in

network bandwidth, transmission time, number of collision and re-transmission data,

memory and computation for higher levels, data scalability and energy consumption

for the entire network. All that savings and operation happening at the front end

(Fog Computing).

Another evaluation was made to check the effectiveness of the approach when

enlarging network size. The outcome of this experiment showed that the percentage

of savings in packets would increase by the increase of the network itself i.e. the

more nodes/brunches the network has, the more savings in packets. This conclu-

sion was obtained from observing figure 4.7. Similarly, when considering different

communication means, we found that the savings occur in different levels according

to the original payload size of each communication technique packet as shown in

figure 4.8, the savings between the proposed Bayesian Aggregation (BA) and the

Non Aggregated (NA). The smaller the payload size of a technique, the more sav-

ings we have when applying the approach. Considering figures 4.8 and 4.3, different

levels of savings occurred with the use of different communication techniques for

the same network. We can clearly notice that when performing with BLE 4.2, the

saving percentage in packet numbers is a bit low in accordance with others. This is

particularly due to the larger payload size when compared with other techniques.

The overall outcome of the system is benefited from the outcome of each level

which is a result of the analysis being performed at that level to get only the desired

data and push it forward. This leads the next level node to process the net data,

leads to achieve optimal performance on the overall system. Getting the data ab-

stract from the previous level nodes, where each level nodes eliminate redundancy,

get abstract of data and send it to the next level, not just saves network resource
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(such as packets, energy and delay time), but also directs the analysis and deci-

sion making towards the desired outcome. In this direction, level 0 outcome fed

into level 1 is already within the desired boundaries so that the analysis at level

1 would be directed within controlled normal mode boundaries to aggregate that

data and send it forward to the ascending node in the level (node 1.2). Then, that

node would directly abstract the received data and send it again causing big savings

in network resources and more controlled outcomes. Since level 1 abstracts data,

if normal mode, coming from vast amount of sensors into one frame, most of the

savings happening at that level.

4.6 Conclusion

Consensus Data Management is the method where certain aggregators agreed on

a plan based on a set model. In this experiment, the complication of Big Data in the

Internet of Things in terms of data quality and network efficiency is studied. Addi-

tionally, the use of Statistical Machine Learning is considered which would grant the

system to acts as an autonomous entity. The experiment demonstrates by means

of structured and operational framework that the proposed algorithms can attain

markedly better performance than current solutions in practical cases. Especially

the introductory of the Likelihood Multiplication process with Bayesian machine

learning (classifier) criteria that eases the L1.2 Aggregators to make decisions based

on the trained previous data which drives the algorithm to be a good candidate

for deployment on all Fog devices because of its light computations. However, the

model requires that the system first perform the calibration phase to extract the

distributions of all the front-end nodes and to train the participants. The system

is also required to send the data (not only the distribution) to the ascendant node

whenever an abnormal mode is suspected (when the threshold goes beyond bound-

aries) in order to perform the consensus-based decision making process. It is shown
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that bringing consensus using the probability approach of Bayesian analysis is per-

sistently leading to enhance detection accuracy and acquire the system to be able

to autonomously improve data quality. Additionally, the experiment results showed

that packets savings percentage would increase by increasing more nodes/brunches

in the network. Obtaining data distribution from each level nodes does not only

save network resource, rather directs the decision making and analysis towards the

desired output as well.
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Chapter 5

Human Activity Recognition by Consensus

Bayesian Deep Learning

5.1 Experiment description

Essentially, the experiment aims to test our proposed model over existing dataset

to check its suitability in handling different datasets i.e. different environments and

scenarios. In this experiment, we choose human activity recognition as a scenario

to evaluate the outcome when applying the proposed model. Human activity recog-

nition is concerned with the issue of forecasting what people are doing depending

on records of their movements employing sensors. It categorises a series of ac-

celerometer information recorded through specified harnesses or smart phones into

a recognised well-defined set of movements and surrounding environment changes.

Recognition can be achieved via exploiting the data coming from different origins

including environmental or body-worn sensors. The concept is that when the sub-

jects activity is identified and acknowledged, a smart computing system can then

provide services. It is a challenging issue given that in general there is no obvious

analytical process to link the sensor records to any particular activity. It is far too

technically difficult due to the huge amount of aggregated sensor data (the enor-

mous observations number generated every second), the observations’ time-based

nature, and the classical utilization of hand crafted heuristics and features from

these records in maintaining predictive models. Sensor-based activity recognition

pursues insightful knowledge regarding human actions from a mass of sensor records.

In recent years, conventional pattern recognition techniques have achieved superb



121

improvements. Still, those techniques frequently strongly depend on hand-crafted

heuristic feature extraction that can restrict their general performance. Lately, the

latest development of machine and deep learning makes it viable to perform auto-

mated high-level feature extraction, for that reason accomplishes promising overall

performance in lots of fields.

Principally, a consensus decision process was created over individual data sets,

then the same on an aggregated set. Finally the study will compare the decision

processes. The Aim is to investigate the liability of performing distributed Fog Com-

puting through consensus procedure and its feasibility over Cloud Computing. It

hypothesises that it is possible to use Bayesian Deep Learning approach to recognise

users’ activities and authenticate them through an ensemble approach.

5.2 Dataset

A typical dataset entitled Human Activity Recognition Using Smartphones Dataset

was made available on the UCI Machine Learning Repository by Davide Anguita,

et al. from the University of Genova, Italy in 2012. The dataset was described

in their paper [167] while it was modelled with machine learning procedures in the

paper [168]. The data was recorded from 30 people wearing a waist-mounted phone

and performing six standard activities movements, then the movement records were

labelled manually. The activities were: Walking, Walking Downstairs, Walking Up-

stairs, Standing, Sitting, and Laying (ladled as 1 to 6 in the processed data file and

the outcome figures). The movement records were linear acceleration (x, y, and z

accelerometer data) and angular velocity (gyroscopic data) from a Samsung Galaxy

S II smart phone. Every person performed a series of actions twice, first with the

phone on their left-hand-side and the second when it was on their right-hand side.

Several frequency and time features commonly utilised in recognising human activity

field were extracted from each window data using feature engineering. The outcome
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Figure 5.1 : Assumed Topology to suit the experiment dataset into the proposed

paradigm

was a 561 element features vector.

5.3 Assumptions

To adapt the data to the proposed model, I assumed that the data was measured

in four separate places and then aggregated by a node representing the cluster head

of the network in that place. In this case, and according to the proposed design,

the assumed topology of this layout would be to have L1 which contains one layer

of aggregators each of which contains a cluster head and Participant entity. Thus,

the whole training data was divided into four parts. Furthermore, each cluster

here would represent the participant of the consensus operation. Thus, the data

is partitioned into four separate training data sets then a statistical model with a

Bayesian Neural Network was built for each of the individual four training data sets.

In addition to having a testing dataset. The assumed topology would be as shown

in figure 5.1.
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5.4 Data Analysis

Neural Networks requires a large amount of data to perform deep learning and

output good results. When first dividing the training data into four partitions, each

of which has 25% of the total dataset, the accuracy level was not as high as expected

especially when using Bayesian Deep Learning procedure. The results were as shown

in table 5.1, therefore the human activity dataset used in this experiment required

certain processing and analysis before cross validating it (training /testing).The aim

behind this is to suit the model and to output the best possible outcome. The dataset

has quite a few features (561 features per raw), but its overall length is not that

long (only 7352 rows for the training set). Thus, partitioning the data into four sets

would make each partition quite small to train each of the subsequent models. In

this case, data was analysed using random bootstrap sampling before creating four

training data partitions. Bootstrap sampling is the technique of repeatedly drawing

a small sample from a single original sample by means of resampling lots of the same

size small samples to create a more complex and dynamic records. As the length

of each partition needs to be increased, Bootstrap sampling was implemented to

resample more data from the original dataset so that the Neural Network is trained

by employing more data. The resampling process were kept until each partition

length reached 95% of the original dataset. An important note here is that each

partition does not contain 95% of the original dataset rather having data length

equals to 95% of the dataset length results from resampling multiple samples from

a part of the original data.

5.5 Model Procedure

A Bayesian Recurrent Neural Network (BRNN) was utilised to develop a classi-

fication model for each training partition. The models were then used to categorise

one of six labels in a ’test’ data set. The process is then directed to obtain consensus
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Table 5.1 : Accuracy levels after using 25% of the dataset

Entitiy Prediction Accuracy

Participant 1 89.7%

Participant 2 87.1%

Participant 3 93.5%

Participant 4 93.7%

Weighted Average 89.7%

Majority Vote 89.7%

XGBoost 89.7%

Overall 96.93%

decision aimed to increase its accuracy. Three additional ’ensemble’ models were de-

veloped with various methodologies. First, a ’Weighted Average’ of the four training

models was developed for classification. The ’Weighted Average’ used the following

weights for each model: participants 1 and 2: 25%, participant 3: 50%, partici-

pant 4: 0%. Next, an Extreme Gradient Boosting (XGBoost) ensemble method

was developed using the training data. This method presents a model that makes

collaborative prediction from models that have weak predictions via decision trees

technique. This model is first developed in a stage-wise style same as other boost-

ing approaches, then it infers them by permitting optimization of a random loss

function. Finally, a ’Majority Vote’ ensemble method was developed using the four

training partitions. This combined the four model predictions for each of the six

labels and selected the winning model. We made one more BRNN model as we want

to test the advantage of the proposed distributed computing consensus process in

relation to the central computing process. The model is to train the overall dataset,

as in the case when the base station has an overall knowledge of all network data
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while each participant node knows only about its own data partition. The purpose

of this is to compare the accuracy of the overall model with that of each ensemble.

5.6 Outcome

The BRNN models result in a set of predictive accuracy. The confusion plot

in figure 5.2 shows the predicted outcome of the six activities’ status in relation to

the actual status recorded in the dataset. Where the diagonals show the number of

correct predictions, the ones bellow the diagonals represent the incorrect predictions

for each label. Subplots (a) to (d) output the BRNN prediction outcome for Partic-

ipants 1 to 4 respectively, while in figure 5.3 the (a) to (c) subplots represents the

ensembles prediction outputs vs the actual data. However, subplot (d) illustrates

that relation for the dataset as a whole (as a central computing node would perform

instead of the distributed nodes presented in our design).

In Machine Learning, when it is about classification issue, performance measure-

ment is a crucial task. In this case, an AUC-ROC Curve can be used. An AUC-

ROC curve is a classification task performance measurement at different threshold

settings. When the performance of a multi-class classification task is needed to be

checked or visualised, the AUC-ROC curve is used (AUC stands for Area Under

The Curve while ROC is Receiver Operating Characteristics). It is a very signifi-

cant evaluation metric when examining the performance of any classification model.

ROC represents the probability curve while AUC is the measure or degree of sepa-

rability. It illustrates the capability of a model to distinguish between classes The

higher the AUC, the better the model is at predicting or distinguishing between

labels [169][170].Figures 5.4 and 5.5 show the AUC-ROC performance curves of the

system before performing the random bootstrap sampling on the data. The first

figure 5.4 refers to each of the four data partitions (representing data at each partic-

ipant) performance after performing the Bayesian Deep Learning (BDL) algorithm
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(a) Participant 1 Confusion matrix (b) Participant 2 Confusion matrix

(c) Participant 3 Confusion matrix (d) Participant 4 Confusion matrix

Figure 5.2 : Confusion Plot of the Human Activity Recognition by Consensus

Bayesian Deep Learning. a-d are the four participants.
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(a) Majority Vote (b) Weighted Average

(c) Adaboost (d) Overall

Figure 5.3 : Confusion Plot of the Human Activity Recognition by Consensus

Bayesian Deep Learning. a-c are the consensus methods, while d is the overall

as if the whole data reached to the BS
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on each of them. The second figure 5.5 illustrates the consensus output of three

ensembles (Majority Vote, Weighted Average, and Adaboost) as well as the perfor-

mance of the whole data without partitioning (representing all the data received at

the BS or Cloud). In contrast, the performance AUC-ROC curves for the data after

applying the random bootstrap sampling is shown in figure 5.6 for the four new

partitions. Additionally, figure 5.7 shows the AUC-ROC performance comparison

after preforming the consensus Adaboost ensemble on the four partitions’ outputs

and when performing the BDL on the whole data.

5.7 Evaluation

The purpose of the second experiment is to test the suitability of the proposed

paradigm in a different environmet setting. This experiment explores the scenario

where sensors are mobile (attached to the people’s mobile phones) and are recording

the activities of the people in the environment. The setting has four locations to col-

lect data. Each location includes one aggregator that aggregates all sensors’ data in

that particular location as well as contains a participant entity to predict decisions

and perform consensus. Bayesian deep learning was employed as a decision making

method to vary it from the previous experiment. Since deep learning is a very effec-

tive practice, the intention behind using it is to execute a procedure that combines

the effects (output) of multiple deep learning appliances and investigates its out-

come. In the experiment, ensemble techniques were used for performing consensus.

The ensembles used were the Weighted Average, Majority Vote, and XGBoost.

At the beginning, the training dataset was divided into four partitions each of

which contain 25% of the data. This resulted in making the BRNN models to

have predictive accuracies of around 89% as shown in table 5.1 and figures 5.4

and 5.5 which contain the ROC plot of the participants, the ensembles as well

as the prediction’s accuracy of the overall dataset. The results of the individual
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(a) Participant 1 precision (b) Participant 2 precision

(c) Participant 3 precision (d) Participant 4 precision

Figure 5.4 : AUC-ROC Plot of the Human Activity Recognition by Consensus

Bayesian Deep Learning. a-d are the four participants
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(a) Majority Vote (b) Weighted Average

(c) Adaboost (d) Overall

Figure 5.5 : AUC-ROC Plot of the Human Activity Recognition by Consensus

Bayesian Deep Learning. a-c are the consensus methods, while d is the overall as if

the whole data reached to the BS
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(a) Participant 1 precision (b) Participant 2 precision

(c) Participant 3 precision (d) Participant 4 precision

Figure 5.6 : AUC-ROC Plot showing the precision of the 6 activities’ result by train-

ing each of the four participants after performing the random bootstrap sampling

on the data
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(a) Adaboost (b) Overall

Figure 5.7 : AUC-ROC Plot showing the precision of the 6 activities result from the

Adaboost consensus ensemble after performing the random bootstrap sampling on

the data vs. the overall model

participants and the consensus models are nearly close to the results obtained by

Kolosnjaji and Eckert(2015)[171] as they tested the same dataset using a pre-trained

neural networks with Dropout on the whole dataset. They compared the Dropout

procedure with the random forest classifier and the outcomes illustrate that the

Dropout had slightly better performance and that the training had given a precision

of nearly 90%. While when the BRNN was applied on the overall data, the accuracy

was much higher. This indicates the superiority of the BRNN over the other methods

mentioned in [171]. It also demonstrates that even when the BRNN has 25% of the

data to train on, it results in a nearly accuracy compared to those methods.

As deep learning practices require comprehensive amount of data to adequately

train the Neural Networks, the partitioning percentage of the datasets increased for

each dataset part. Random bootstrap sampling (which records random samples over

and over again from the same group of data even on the occasions that it records the
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same samples) was used for this purpose to obtain a size equal to 95% of the original

overall dataset for each partition in order to increase prediction accuracy. For in-

vestigating whether the proposed paradigm fits in another setting, a mobile sensors

data were picked to fulfil this purpose. The accuracy outcome for detecting correct

activities were very high which points out the suitability of the paradigm when us-

ing mobile as well as fixed position sensors. The prediction accuracy increased for

the participants as well as the ensemble to the accuracies shown in table 5.2. At

the time when most of deep learning studies are focused on image processing and

vision, this experiment shows the high degree of accuracy when using deep learning

to predict activities based on sensors’ data (i.e. its suitability with sensor data) with

a requirement for certain data analysis. It is evident that the consensus models sur-

pass the individual ones and that they reach the extent where they could overpass

the overall prediction accuracy. The results show that when using the distributed

computing with collaborative decision making (consensus), the accuracy trade-off is

less than 1.5%. The importance of this observation is that the experiment highlights

the possibility for the aggregate of decisions resulted from performing deep learning

on subdivisions of a dataset, to outperform the decision of applying deep learning

on the whole dataset.

5.8 Conclusion

The second experiment utilises deep learning techniques to perform the cross vali-

dation as well as the consensus operation (represented in the ensembles techniques).

Patterns recognition is a crucial part in this experiment to predict the activities

that occur within the environment. Data analysis (data cleaning, pre-processing,

and data wrangling) plays a vital part in preparing and amending data to be fed

into the system. The experiment shows that prediction accuracy increased for the

participants and the consensus models and that the accuracy of consensus models
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Table 5.2 : Models Prediction Accuracy

Entitiy Prediction Accuracy

Participant 1 95.57%

Participant 2 96.26%

Participant 3 96.01%

Participant 4 94.02%

Weighted Average 96.42%

Majority Vote 96.93%

XGBoost 97%

Overall 96.93%

surpass the individuals. This demonstrates that the paradigm is appropriate for

mobile and fixed location sensors. This Experiment also showed that after imple-

menting data analysis upon the data then applying the BRNN method, the results

shows a superiority over some other methods implemented by other research in [171]

over the same dataset. It also illustrates that each of the consensus methods were

able to surpass the accuracy of the overall model. The latter gives an indication that

Fog Computing processes can compete with Cloud Computing in terms of accuracy

with the added advantage of locality.
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Chapter 6

Recognizing Smart Home Resident Activities by

Consensus Bayesian Deep Learning

6.1 Experiment and Dataset Description

In smart homes, uncommon prospects offered by technologies like data mining

and pervasive computing provide context-aware services, incorporating home health

and wellbeing monitoring. Smart environment systems are required to identify and

track activities in which residents ordinarily do as part of their everyday habits in

order to provide such services. Nevertheless, recognising activities has normally in-

volved aggregating and classifying large quantities of data in each location in order to

learn the activities model in that location. Activity recognition is commonly utilised

to measure the residents functional health. It also allows the smart home to react in

a context-aware manner to requirements for attaining more security, wellbeing, and

energy efficiency. It is challenging to learn the activities since the captured sensors

data is rich in assembly and volume. Usually, each environmental circumstance has

been addressed as a discrete setting wherein to perform the learning process. What

can be researched in smart home is the capability to leverage knowledge of former

states in new settings or with new individuals.

When someone looks at photos or video of people doing normal residential activ-

ities like sleeping or eating, he recognises such activities directly, even if he has not

observed the environment or the residents before. This directs the concept of ob-

taining general models about activities from learning over particular environments

and residents. In this experiment, the proposed blueprint was applied by exploring
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Bayesian Neural Networks (BNN) algorithms to learn smart home activity mod-

els. Then, some consensus ensemble models were implemented to the output of the

BNNs to evaluate their performance and their fit into the proposed blueprint util-

ising the ARUBA datasets from CASAS Smart Home project [172]. The focus in

this experiment is on measuring the uncertainty, as it is one of the main reasons for

employing Bayesian deep learning technique.

The dataset noted as Daily Life activities was made available on the CASAS

Smart Home project developed at Washington State University. It was defined in

the paper [173] while it was demonstrated utilizing supervised and semi-supervised

machine learning procedures to explore setting-generalised activity models in the

paper [172]. The dataset contains sensor data collected in a volunteer womans

apartment with some relatives who visit regularly. The file contains raw annotated

sensor activities generated from motion, door closure, and temperature sensors. The

dataset marked eleven daily living activities, noted as: Eating, Bed to Toilet, Sleep-

ing, Enter Home, Leave Home, Meal Preparation, Housekeeping, Relax, Respiration,

Work, and Wash Dishes.

6.2 Assumptions

In order to fit the dataset into the proposed model, the data was assumed to

be measured in several similar apartments (the first assumption was to make ten

parts then it was changed to 4 as explained in section 6.3), so the training data

was separated into ten partitions (the final partitions were four). The assumption

involves aggregating each apartment data by a node representing the cluster head of

the network in that apartment. And each cluster head would symbolise the partici-

pant in the consensus operation. Then, a Bayesian Neural Network was assembled

for each of the partitions.
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Figure 6.1 : Assumed Topology to suit the experiment dataset into the proposed

paradigm

6.3 Data Analysis

Within the dataset, the periods of time between the Leave Home and the Enter

Home activities is a period when no one is at home. So, a new activity was added,

noted as outside. The system can use this information to enhance the energy con-

sumption of the sensory infrastructure, as the installed sensors in the location might

be deactivated while there is no one in it, except the door sensors, therefore reduc-

ing energy consumption without losing prediction accuracy. Also, there are spaces

between the end of each activity and the beginning of the next one. These are not

indicating any activities involved within the environment, so it was noted as ”no

activity” in the dataset.

The dataset needed to be analysed in order to be fitted and fed into the program.

When analysing data a huge imbalance was noticed among the noted activities

as in figure 6.2. Especially, the ”no activity” class which has a dominance upon

all other classes in the dataset that leads to misprediction (though the accuracy
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Figure 6.2 : Dataset Activies Frequencies showing lable inbalance

percentage would still be high because the classes with high occurrence would be

predicted correctly). The Neural Network would tend to predict classes with higher

existence in the data upon all other classes with little presence in the data whenever

it is uncertain about the decision. This leads to the resolution of performing the

model into two steps: separating the ”no activity” class from all other classes (noted

as ”activity” class), then inferring one of the other classes as a second step. In

such a case, an addition to the assumption were made that there are two levels

of aggregators, the first one is used to classify the activities into ”no activity” or

”activity” shown in figure 6.3, while the other one predicts all other classes from the

”activity” class. Then the assumed topology would be as shown in figure 6.1 where

the L1.1 aggregator would classify the activity and no activity while L1.2 would

predict other classes.
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Figure 6.3 : dataset Active vs NonActive lables

Another crucial part of data analysis is data scaling and normalization. The

data has three types of sensors, motion sensors with ”on” and ”off” readings, door

closure sensors with ”open” and ”close” status, and temperature sensors with values

in degrees Celsius. For a model to well trained, the data fed into it has to scale within

the same range and can be described in a single distribution [174]. For this reason,

the data was normalised using data mapping techniques to scale sensors readings

into a common range.

After performing the first phase of predicting the activity or no activity classes,

the activity data need to be fixed in order to resolve the class imbalance among the

activities. In deep neural networks, this is done by data augmentation which is the

technique of producing artificial information so as to decrease the classifier’s variance

with the aim to decrease errors [175]. By applying data augmentation procedure
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on the dataset, all the classes would have the same number of records within the

dataset. In this case, the decision about the class in the test phase of the cross

validation process would be fair [176]. Now the data is ready to be partitioned and

its patterns is to be learned by the neural networks within the proposed blueprint.

Initially, the data was separated into ten parts and the BNN was implemented

upon each of these parts. The results from cross-validation show a low accuracy

levels for each of the partitions as illustrated in figure 6.4. Nearly the same level of

accuracy had been shown when executing a consensus ensembles (Bagging (Boot-

strap aggregating), Weighted Average and Majority Vote) to the outcomes of the

BNNs as shown in figure 6.5. To show how the data with one feature criterion can

perform, a cross-validation was implemented using Machine Learning Random For-

est and Logistic Regression classifiers. A comparison among them and the average

of employing Bayesian Neural Network over the ten data chunks as well as their

consensus ensemble is shown in figure 6.6.

A thorough investigation was made to discover the reason behind these results

and a conclusion was made that the dataset itself needed to be modified. The origi-

nal dataset has only one feature (sensors’ readings) based on time series, thus more

features needed to be extracted from the data in order to make it more distinguish-

able for the neural network to learn. Feature engineering is the technique utilizing

domain knowledge of the dataset in order to transform raw data into features in a

way which makes better representation to the decision making models, resulting in

enhanced system accuracy [177]. This technique, feature engineering, was applied

to the data then the dataset was divided into four training sets in addition to one

extra set for testing by comparing the outcome of each technique.
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(a) 1st Chunk (b) 2nd Chunk

(c) 3rd Chunk (d) 4th Chunk

(e) 5th Chunk (f) 6th Chunk

Figure 6.4 : Training accuracy vs. validation accuracy for the dataset parts after

applying the second model befor performing extensive data analysis. a-f represent

the first six parts of the data (participants).
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(a) 7th Chunk (b) 8th Chunk

(c) 9th Chunk (d) 10th Chunk

(e) Bagging ensemble (f) Weighted Average (g) Majority Vote

Figure 6.5 : Accuracy for the last four parts of the dataset (participants) after

applying the second model befor performing extensive data analysis (a-d). e-g are

the ensembles Training vs. validation accuracies after applying the third model

befor performing extensive data analysis (feature engineering)
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Figure 6.6 : comparison about prediction accuracy levels when cross-validating util-

ising Random forest, Logistic Regression and taking average of 10 data chuncks

Bayesian Neural Network and when applying Bagging ensemble to the 10 BNN

outputs for the data having one feature criterion

6.4 Model Procedure

The process is cascaded into two phases, predicting ”no activity”/ ”activity”

phase and inferring the activity class in the other. One classification model was

built to perform the first phase, the Long Short-Term Memory (LSTM). However,

for acquiring the functionality of the second phase, two models were set up, Bayesian

Neural Network for the individual data partitions (participants) and an ensemble

process used for consensus.

LSTM is a time series based artificial Recurrent Neural Network (RNN) archi-

tecture in deep learning field that can process entire sequences of data. It has a

feedback connection which makes it capable of simulating any computer algorithm
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logic. The LSTM classification model used for separating the no activity from the

activity classes uses the He initializer to initialise the weight matrix. Deep learning

neural networks are probable to rapidly overfit a training dataset with few instances.

In order to reduce overfitting and enhance generalization error in all kinds of deep

neural networks, a dropout model is used. Dropout is a single model that can sim-

ulate a large number of various network architectures through arbitrarily dropping

out nodes while training is in progress. This offers a very computationally inexpen-

sive and remarkably efficient regularization scheme. For this experiment, the system

is implemented in dropout layers as in [178]. Three dropout layers are used as well

as three other batch normalization layers. Batch normalization is used to normalise

the input layer by scaling and regulating the activations. It is beneficial so as to

speed up learning, increase the stability of a neural network and permit the use of

fewer dropouts in order not to lose a lot of information [174]. Additionally, two dense

softmax units were employed in the model. Softmax is an activation function that

is used to map the non-normalised output produced by a neuron to a probability

distribution over predicted output classes. Softmax functionality is to determine the

probabilities of every class over all potential target classes. Then, those probabilities

would help in choosing the target class to the given inputs [179] [180]. In order to

optimise the learning rate and update network weights iterative based in the trained

dataset, Adam adaptive learning rate optimization algorithm is used with decaying

learning rate of 1e−6 [181]. The selection of optimization procedure for deep learn-

ing technique can mean the difference between good outcomes in minutes, hours,

or days. Finally, to avoid overfitting, an early stopping regularization is utilised.

Such method updates the neural network to make it better fit the training data at

every epoch [182]. In the assumed topology, this model is to be executed in L1.1

aggregator. The process of implementing this model is shown in the tensor board

visualization figure 6.7. The same model settings were applied to two classifiers
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perform employing machine learning, Random Forest and Logistic Regression, to il-

lustrate the effectiveness of the LSTM within the design by comparing the outcome

of each technique.

The second model, classifying the activity classes, is to take place in L1.2 ag-

gregator nodes according to the assumed design. Ten ( then finally four) identical

models were trained on ten (then four) randomly split datasets (each of which is

partitioned from the whole dataset).Bayesian deep learning algorithm was applied

to each of the models. Each model has two Dense layers with rectified linear acti-

vation function and He uniform initialization and is composed of 200 and 220 units

respectively. In addition, each model has one dense softmax layer with twelve units,

two Dropout layers with 0.2 probability, and a total number of hidden layers equals

to three. The models employ Adam optimizer with constant learning rate of 0.0005.

The third model performed to accomplish the objective of the project is the

consensus model utilizing ensemble procedures. As the focus for this experiment is

to appraise the uncertainty of the model, Bootstrap Aggregating (Bagging) ensemble

technique is used. Bagging is a parallel ensemble i.e. it require each model to be

built independently from the other and it is aimed to decrease variance. It decreases

the prediction variance through generating extra training data from the original

dataset utilizing combinations with repetitions to generate multi-sets of the same

size as the original dataset. As measuring uncertainty includes the variance of the

softmax probabilities and variation ratios [183], Bagging seems to be the best fit for

the design. Two other well-known ensemble methods were implemented (Majority

Vote and Weighted Average) to provide variety of techniques and confidence in the

outcome.
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Figure 6.7 : Design procedure showing the the processes done to attain Bayesian

deep learning



147

Figure 6.8 : prediction accuracy of the ”no activity” or ”activity” with the increas

of epochs count

6.5 Outcomes

When performing the first classification model, involving the prediction of active

and non-active labels, the accuracy of the prediction output is raising as the predic-

tion model is learning(see figure 6.8). As the number of training epochs increases,

the accuracy of model improves until it reaches 92.6% on the final epoch. Note that

this model runs in 60 epochs. Additionally, the accuracy tests of the LSTM, Ran-

dom Forest and Logistic Regression algorithms were performed as shown in figure

6.9.

When performing the second model, the uncertainty of each procedure (applied

at one of the data partitions) at each epoch were calculated. Then after training

every procedure, the uncertainty was recorded for that particular procedure. Also,

during that operation, the Bagging ensemble method was run aggregating the out-
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Figure 6.9 : The accuracy of the first stage of distinguishing between ”Activities”

classes and the ”NO Activity” class

come of the models one by one. This means that the first ensemble method was run

on the output of the first and second procedures, after that it was performed upon

the first three procedures, then on the first four then kept doing so till it aggregates

the ten procedures. While doing so, the certainty of each ensemble were measured.

The uncertainty measures for each of the procedure (single ones) and the ensembles

are shown in figure 6.10.

After dealing with data analysis and partitioning the data into four partitions

(each one represents data of a sub-network headed by a participant node), each single

partition was trained employing the second model to infer decisions about activities’

classes. Afterward, decisions from the four participants were entered in the third

model so as to proceed with the consensus procedure. The accuracies of each class at
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Figure 6.10 : uncertainity levels

each step were calculated to test the efficiency of the system. Figure 6.11 illustrates

the training vs. validation accuracies after applying the extensive data analysis.

Also, figures 6.12 and 6.13 show the confusion matrix with the accuracies of all

activities’ classes as a result of applying the second model to each participant’s

dataset and performing three consensus algorithms respectively. The consensus

algorithms used are three ensembles: the Majority Vote, Weighted Average, and

Bagging ensembles. The accuracies of all classes and the overall accuracy for each

participant’s BNN model as well as for every consensus model are shown in figure

6.14. The last column of this figure shows the final overall accuracy for applying

each of the algorithms to the data. It shows that the precision of each BNN model

is around 97.5% while it rise for each of the consensus models to be approximately

97.63% for Majority Vote ensemble, 97.7% for Weighted Average ensemble, and

98.1% for the Bagging ensemble.



150

(a) 1st Participant (b) 2nd Participant

(c) 3rd Participant (d) 4th Participant

(e) Bagging ensemble (f) Weighted Average (g) Majority Vote

Figure 6.11 : The accuracy of participant’s classifier for each of the four data subsets

after applying the data analysis first and then generating the second model (a-d); e-g

are the ensembles accuricies after applying the feature engineering to the dataset.
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(a) Participant 1 (b) Participant 2

(c) Participant 3 (d) Participant 4

Figure 6.12 : Confusion matrix plot showing the precision of the 12 activities’ re-

sult by training each of the four participants after data analysis data analysis and

performing the BNN on partitions’ data
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(a) Majority Vote (b) Weighted Average

(c) Bagging Ensemble

Figure 6.13 : Confusion matrix plot showing the precision of the 12 activities’ result

by performing three consensus models through three different ensemble algorithms
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Figure 6.14 : Accuracies of all classes as well as the overall accuracies for the par-

ticipants and ensemble algorithms after data processing and applying the BNN and

consensus models

6.6 Evaluation

In this experiment, Bayesian Neural Networks were performed upon a smart

home data generated by sensors installed in fixed spots of that setting. In order

to examine the effectiveness of applying the proposed blueprint onto the produced

dataset, the accuracies and uncertainty levels were tested for all classes in each of

the models. As mentioned in 6.3 , the original data was not good enough to be

trained by machine learning methods because it contains very few features and a

huge class imbalance even though the dataset itself has a lot of records. Analysing

the data and prepare it to suit the system was a very challenging task. The data
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went into some processes involving: data cleaning, data mapping, and data scaling.

At this point, the first model was trained by a part of the data (training) to infer

the activity or no activity classes (employing the test data partition). The results

shows an acceptable range of accuracies (reached to 92.6%) when using the LSTM

depending only on the sensors readings and time stamp as illustrated in figures 6.8

and 6.9. This step demonstrates the effectiveness of the model when dealing with

two classes.

After this step, the ”activity” data was divided into ten partitions. After apply-

ing that form of data into the second and third models, it produced low accuracy as

in the figures 6.4, 6.5 and 6.6 due to lack of enough features to enable the model to

differentiate between several classes. What was surprising is even at that low per-

centage of the ensemble accuracy (about 62%), the uncertainty level changed vastly

as the ensemble was used. The uncertainty levels after implementing the ensemble

went down from approximately 3.16% to 0.116% in the last ensemble combining ten

single models as shown in figure 6.10. Thats because the ensemble operation has a

property of decreasing the variance of the overall model [184].

The same dataset was investigated by Yala, Fergani and Fleury(2015)[185]. They

used the Support Vector Machine as well as three other proposed models to classify

the classes. They also made a comparison between the activity and no activity

classes and implemented two experiments, the first one without including the no

activity class whereas the second one was with that class being included. The

results showed an accuracy measures of around 87% when not including the no

activity class, while it was around 67% when including it.

With the low accuracy range for all models, more data analysis was required to

train the models on data which has more features. More data analysis techniques

were applied to the data including: Bootstrapping, Factor analysis, Feature engi-
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neering, data augmentation, class imbalance, label encoding for categorical data.

Then the data was partitioned to four training datasets and one test dataset. The

data was ready to be applied into the second model (then the results will be fed to

the third model) and the inference results show a very high precision outcome as

illustrated in figures 6.11, 6.12, 6.13 and 6.14. The improvement in the prediction

accuracy (from the levels shown in figures 6.4 and 6.5 to that in figure 6.11), allows

more credibility of observation and events detection for models when predicting ac-

tivities. It is important because when precision is more accurate, it contribute to

much more reliable models of activity prediction. This demonstration of the out-

comes indicates the need for extensive data analysis when dealing with data with

very few features. Additionally, the experiment exhibited some observations about

the consensus operation. Consensus models provide stable, solid and overall better

performance than using single models. It makes the models more prone to over-

fitting with a huge decrease in the uncertainty. The ensemble models decrease the

variance of the overall model as well. Finally, even if the dataset changed, the con-

sensus method has a stable level of accuracy even when one or more of the individual

procedures produces low accuracy.

6.7 Conclusion

The goal of this third experiment is to investigate the efficiency of the proposed

paradigm when applied on a data collected in a smart environment settings. The

setting has fixed sensors producing motion and temperature measures from smart

home to monitor the activities occurring in this setting. The aim of the project

is to use different techniques in performing decision making and execute consensus

models to investigate the effectiveness of the consensus operation upon different

processes. In this experiment, the Bayesian Neural Networks were used to perform

the cross validation process which would lead to making decisions about the activities
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involved within the network settings. Three models were designed and implemented

to fit the data generated in that particular setting into the design or the proposed

paradigm. For that, the paradigm is assumed to have two aggregators’ nodes each

with different responsibilities and performed on a different forms of the same data.

The first aggregator was assumed to perform the first model to classify between two

classes, activity and no activity, and was performed on data applied to data cleaning,

mapping and scaling. This step demonstrates the effectiveness of the model when

dealing with two classes. The second aggregator (the participant) was assumed

to perform the second model to classify between twelve classes. However, with this

step there is a requirement for extensive data analysis techniques to be applied when

dealing with data with very few features. The third model, the consensus model,

was assumed to be performed by multiple participants, each perform the second

model and get its outcome, then operate on all the resultant outcomes of the other

participants to get the consensus decision. The output results demonstrated a very

good gain in decreasing the uncertainty levels when utilizing the consensus methods

even when the data was not good enough in terms of accuracy. It also showed that

the consensus operation provides stable, solid and overall better performance than

the individual models. Additionally, the consensus models are more resistant to

overfitting and have better accuracies. This Experiment also illustrates that after

implementing data analysis upon the data then applying the BNN algorithm, the

outcome demonstrates a superiority over some other methods implemented by other

research in [185] over the same dataset.
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Chapter 7

Conclusion

7.1 Introduction

The recent expansion of the Internet of Things has created a tremendous amount

of services, sophisticated data and shared resources that require automated systems

to manage them. Big Data issues have evolved as a result of IoT which needs to

be mitigated as the data is generated near its source. Fog Computing is the ar-

chitecture which utilises the network edge devices to perform local computation,

communication and storage. This research proposes a Consensus-base data man-

agement paradigm within the Fog Computing of the Internet of Things. The aim

of the proposed paradigm is to manage the generation and transmission of IoT

Fog data through consensus decision making practices. The paradigm also aims

to recognise the events and activities which occur within the network environment.

The design of the proposed paradigm encompasses distributed and in-network hy-

brid methodology. The design involves adaptive data aggregation management and

autonomous consensus decision making. In order to investigate the effectiveness of

the proposed paradigm upon different processes, three different experiments were

carried out employing various techniques to perform decision making in order to

execute the Consensus-based models. The design was tested to detect events based

on environmental data which comes from environmental and air quality sensors in

the first experiment. In the second experiment, human activities based on mobile

movements and position sensors were investigated. Additionally, the third exper-

iment examines smart home activities based on fixed movement and air quality
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sensors. The execution of the three experiments shows that the paradigm is very

suitable for many IoT environments and can be adapted into different scenarios.

However, the data at each experiment’s setting needs to be analysed first in order

to fit it into the design of the proposed paradigm, especially when dealing with

data with very few features. The output results of the experiments demonstrate

that the consensus operation provides stability, solid efficiency, more resistance to

overfitting and overall better performance and precision than the individual models.

It also shows a very good gain in decreasing uncertainty levels when utilizing the

consensus methods even when the data was not good enough in terms of accuracy.

The first experiment demonstrates that the proposed Likelihood Multiplication al-

gorithm using Bayesian machine learning can attain markedly better performance

than current solutions in practical cases. In addition, the accuracy outcome of the

second and third experiments demonstrates a superiority over some other methods

implemented by other research over the same datasets. Additionally, the second

experiment illustrates that the consensus decision obtained by aggregating decisions

extracted from training subsets of data were able to surpass the decision accuracy

obtained from training the overall data. This observation gives an indication that

Fog Computing processes can compete with Cloud Computing in terms of accuracy,

with the added advantage of locality.

7.2 Future Work

The scope of this research topic brings many directions for future work. One of

these directions is that reinforcement learning methods can be applied to the nodes

after training some models in a server or in more computationally powerful node.

The trained models can be reinforced into the participants nodes to make them more

intelligent and more capable to detect the changes in operational modes or activi-

ties within the network. Also, the consensus method can advance this process by an
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exchange of the learned outcomes among the participants in that each participant

would have the overall knowledge to make better decisions. Another future work

direction is to expand the communication level between aggregators so that each

participant, as the cluster head of its own network branch, can communicate with

any sub-aggregator of another network branch to get any required data. The expan-

sion can also involve performing the Consensus operation between the participant

and its own sub-aggregators. This will help the participant in gaining more knowl-

edge by training more data which will reflect positively on the DM performance for

that participant and the network as a whole. In addition to these future directions,

when using smart sensors which have the ability to perform sophisticated compu-

tations and maintain intelligent models within itself, a Consensus scheme can be

applied among those sensors. The purpose of this Consensus operation is to decide

on matters that can increase the efficiency of data generation and aggregation. An

example of this is deciding what and when to sense and send as well as what to do

when redundancy occurs.
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Özer Aydemir. Challenges and research directions for blockchains in the in-

ternet of things. In 2019 IEEE International Conference on Industrial Cyber

Physical Systems (ICPS), pages 712–717. IEEE, 2019.

[48] Franco Cicirelli, Antonio Guerrieri, Carlo Mastroianni, Giandomenico Spez-

zano, and Andrea Vinci. The Internet of Things for Smart Urban Ecosystems.

Springer, 2019.

[49] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog Com-

puting and Its Role in the Internet of Things. Proceedings of the first edition

of the MCC workshop on Mobile cloud computing, pages 13–16, 2012.

[50] Sander Soo, Chii Chang, Seng W Loke, and Satish Narayana Srirama. Proac-

tive mobile fog computing using work stealing: Data processing at the edge.

International Journal of Mobile Computing and Multimedia Communications

(IJMCMC), 8(4):1–19, 2017.

[51] M. Yannuzzi, R. Milito, R. Serral-Gracia, D. Montero, and M. Nemirovsky.

Key ingredients in an IoT recipe: Fog Computing, Cloud computing, and more

Fog Computing. 2014 IEEE 19th International Workshop on Computer Aided

Modeling and Design of Communication Links and Networks (CAMAD), pages

325–329, 2014.

[52] Sanjay P Ahuja and Nathan Wheeler. Architecture of fog-enabled and cloud-

enhanced internet of things applications. International Journal of Cloud Ap-



167

plications and Computing (IJCAC), 10(1):1–10, 2020.

[53] Ivan Stojmenovic and Sheng Wen. The Fog Computing Paradigm: Scenarios

and Security Issues. 2:1–8, 2014.

[54] Antonio ATR Coutinho, Fab́ıola Greve, and Cássio Prazeres. An architec-
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