Saeed SALEHI

DECIDABLE FORMULAS OF INTUITIONISTIC PRIMITIVE RECURSIVE ARITHMETIC

Abstract

By formalizing some classical facts about provably total functions of intuitionistic primitive recursive arithmetic ($i P R A$), we prove that the set of decidable formulas of $i P R A$ and of $i \Sigma_{1}^{+}$(intuitionistic Σ_{1}-induction in the language of $P R A$) coincides with the set of its provably Δ_{1}-formulas and coincides with the set of its provably atomic formulas. By the same methods, we shall give another proof of a theorem of Marković and De Jongh: the decidable formulas of $H A$ are its provably Δ_{1}-formulas.

1. Notation

Following Wehmeier [5] let $i P R A$ be the intuitionistic theory in the language of $P R A$ which is the first order language containing function symbol for each primitive recursive function, whose nonlogical axioms are the defining equations for all primitive recursive functions plus the axiom

[^0]scheme of induction restricted to atomic formulas.
$i \Sigma_{1}^{+}$is $i P R A$ plus induction over Σ_{1} formulas.
$P R A$ is $i P R A$ together with classical logic, and similarly is $I \Sigma_{1}^{+}$.
For a function f, let $\Gamma_{f}(\bar{x}, y)$ be (the formula of) its graph (intuitively, $\left.\Gamma_{f}(\bar{x}, y) \equiv f(\bar{x})=y\right) . \mathbf{T}, \mathbf{U}$ are Kleene's functions, μ is the minimalization operator and \langle,$\rangle is the pairing function with the projections \pi_{1}, \pi_{2}$.

A function f is called provably total in a theory T, if $T \vdash \forall x \exists y \Gamma_{f}(x, y)$, and is called provably Δ_{1}, if moreover Γ_{f} is provably Δ_{1} in T. (For an accurate definition of a Δ_{1} formula see [3] or Definition 3.1 below.)

2. Provably Recursive Functions

In classical arithmetics provably Δ_{1} functions are also called provably recursive, the following theorems show that provably Δ_{1} functions are really provably recursive, in intuitionistic arithmetics as well.

Let S be any arithmetical theory containing $i P R A$.
Lemma 2.1. Σ_{1} provably total functions are Δ_{1}, that is, if

$$
S \vdash \forall x \exists!y \exists t \varphi(x, y, t) \text { for } \varphi \in \Delta_{0}
$$

then

$$
S \vdash \exists t \varphi(x, y, t) \leftrightarrow \forall z, u(\neg \varphi(x, z, u) \vee z=y)
$$

The proof is straightforward, noting that the equality is decidable in S.
Lemma 2.2. Provably (total) recursive functions are provably Δ_{1}, that is, if

$$
S \vdash \forall x \exists!y A(x, y) \text { and } S \vdash \exists c \forall x \exists!z(\mathbf{T}(c, x, z) \wedge A(x, \mathbf{U}(z)))
$$

then

$$
S \vdash A(x, y) \leftrightarrow \exists z(\mathbf{T}(c, x, z) \wedge y=\mathbf{U}(z))
$$

(and so by the previous lemma, A is Δ_{1}.)
Lemma 2.3. Provably total Σ_{1} functions are provably recursive, that is, if

$$
S \vdash \forall x \exists!y A(x, y) \text { and } A \in \Sigma_{1}
$$

then

$$
S \vdash \exists c \forall x \exists!z(\mathbf{T}(c, x, z) \wedge A(x, \mathbf{U}(z)))
$$

Proof. If $A=\exists t \varphi(t, x, y)$ and $\varphi \in \Delta_{0}$ then let

$$
c=\overline{\lambda x . \pi_{2}(\mu\langle a, b\rangle\{\varphi(a, x, b)\})}
$$

($=$ the code of the function which with input x gives the output: $\left.\pi_{2}(\mu\langle a, b\rangle\{\varphi(a, x, b)\})\right)$.

3. Decidable Formulas of $i P R A, i \Sigma_{1}^{+}$and $H A$.

Definition 3.1. [4]

$$
\Delta(\psi, \chi)=\forall \bar{x}(\exists y \psi(\bar{x}, y) \leftrightarrow \forall z \chi(\bar{x}, z))
$$

$$
P \Delta(\psi, \chi)=\forall \bar{x} \forall y \forall z \exists u \exists v((\psi(\bar{x}, y) \rightarrow \chi(\bar{x}, z)) \wedge(\chi(\bar{x}, u) \rightarrow \psi(\bar{x}, v)))
$$

For any formula $\phi(\bar{x})$, we say $\phi \in \Delta_{1}(S)$ (provably Δ_{1}) if there are $\Delta_{0^{-}}$ formulas $\psi(\bar{x}, y), \chi(\bar{x}, z)$ such that $S \vdash \phi(\bar{x}) \leftrightarrow \exists y \psi(\bar{x}, y)$ and $S \vdash \Delta(\psi, \chi)$.

Fact 3.2. [6] iPRA (resp. $i \Sigma_{1}^{+}$, resp. HA) is Π_{2}-conservative over PRA (resp. $I \Sigma_{1}^{+}$, resp. PA.)

Lemma 3.3. For $\psi, \chi \in \Delta_{0}$ and $T=i P R A$ or $i \Sigma_{1}^{+}$, we have:

$$
T \vdash \Delta(\psi, \chi) \text { iff } T \vdash P \Delta(\psi, \chi) \text { iff } T^{c} \vdash \Delta(\psi, \chi)
$$

(T^{c} is the classical counterpart of the theory T.)
Proof. The proof of Lemma 2 in [4] works, using Fact 3.2.
Fact 3.4. [5] If $H A \vdash \forall \bar{x} \exists y A(\bar{x}, y)$ then $H A \vdash \exists c \forall \bar{x} \exists z(\mathbf{T}(c, \bar{x}, z) \wedge$ $A(\bar{x}, \mathbf{U}(z)))$.

Fact 3.5. [6] If $T \vdash \forall \bar{x} \exists y A(\bar{x}, y)$ then there is a (primitive recursive) function symbol f such that $T \vdash \forall \bar{x} A(\bar{x}, f(\bar{x}))$, for $T=i P R A$ or $i \Sigma_{1}^{+}$.

Theorem 3.6. If $\phi \in \Delta_{1}(H A)$ then $H A \vdash \forall \bar{x}(\phi(\bar{x}) \vee \neg \phi(\bar{x}))$.
Proof. Suppose for $\psi, \chi \in \Delta_{0}, H A \vdash \phi(\bar{x}) \leftrightarrow \exists y \psi(\bar{x}, y) \leftrightarrow \forall z \chi(\bar{x}, z)$, so by Lemma 3.3 (for $H A,[4]$), $H A \vdash \forall \bar{x} \exists u, v(\chi(\bar{x}, u) \rightarrow \psi(\bar{x}, v)$), so by Fact 3.4,

$$
H A \vdash \exists c \forall \bar{x} \exists z\left(\mathbf{T}(c, \bar{x}, z) \wedge\left[\chi\left(\bar{x}, \pi_{1}(\mathbf{U}(z))\right) \rightarrow \psi\left(\bar{x}, \pi_{2}(\mathbf{U}(z))\right)\right]\right)
$$

On the other hand we have $H A \vdash \forall \bar{x} \forall y(\psi(\bar{x}, y) \vee \neg \psi(\bar{x}, y))$ so,

$$
H A \vdash \exists c \forall \bar{x} \exists z\left(\mathbf{T}(c, \bar{x}, z) \wedge\left[\psi\left(\bar{x}, \pi_{2}(\mathbf{U}(z))\right) \vee \neg \psi\left(\bar{x}, \pi_{2}(\mathbf{U}(z))\right)\right]\right),
$$

so,

$$
H A \vdash \exists c \forall \bar{x} \exists z\left(\mathbf{T}(c, \bar{x}, z) \wedge\left[\exists y \psi(\bar{x}, y) \vee \neg \chi\left(\bar{x}, \pi_{1}(\mathbf{U}(z))\right)\right]\right),
$$

so,

$$
H A \vdash \exists c \forall \bar{x} \exists z(\mathbf{T}(c, \bar{x}, z) \wedge[\exists y \psi(\bar{x}, y) \vee \neg \forall z \chi(\bar{x}, z)]),
$$

thus, $H A \vdash \forall \bar{x}(\phi(\bar{x}) \vee \neg \phi(\bar{x}))$.
Theorem 3.7. If $H A \vdash \forall \bar{x}(\phi(\bar{x}) \vee \neg \phi(\bar{x}))$ then $\phi \in \Delta_{1}(H A)$.
Proof. Suppose $H A \vdash \forall \bar{x}(\phi(\bar{x}) \vee \neg \phi(\bar{x}))$, so

$$
H A \vdash \forall \bar{x} \exists y[(y=0 \rightarrow \phi(\bar{x})) \wedge(y=1 \rightarrow \neg \phi(\bar{x}))],
$$

then $H A \vdash \forall \bar{x} \exists!y\{y \leq 1 \wedge(y=0 \leftrightarrow \phi(\bar{x}))\}$, so, by Fact 3.4,

$$
H A \vdash \exists c \forall \bar{x} \exists z(\mathbf{T}(c, \bar{x}, z) \wedge\{\mathbf{U}(z) \leq 1 \wedge(\mathbf{U}(z)=0 \leftrightarrow \phi(\bar{x}))\}),
$$

and since $\mathbf{T}\left(c, \bar{x}, z_{1}\right) \wedge \mathbf{T}\left(c, \bar{x}, z_{2}\right) \Rightarrow z_{1}=z_{2}$, we have

$$
H A \vdash \exists c \forall \bar{x} \exists!z(\mathbf{T}(c, \bar{x}, z) \wedge\{\mathbf{U}(z) \leq 1 \wedge(\mathbf{U}(z)=0 \leftrightarrow \phi(\bar{x}))\}) .
$$

So, by Lemma 2.2 , there is a $\Psi(\bar{x}, y) \in \Delta_{1}(H A)$, such that

$$
H A \vdash \Psi(\bar{x}, y) \leftrightarrow\{y \leq 1 \wedge(y=0 \leftrightarrow \phi(\bar{x}))\},
$$

so, $H A \vdash \phi(\bar{x}) \leftrightarrow \Psi(\bar{x}, 0)$, that is $\phi \in \Delta_{1}(H A)$.
Theorem 3.8. If $\phi \in \Delta_{1}(T)$ then $T \vdash \forall \bar{x}(\phi(\bar{x}) \vee \neg \phi(\bar{x}))$, for $T=i P R A$ or $i \Sigma_{1}^{+}$.

Proof. Suppose for $\psi, \chi \in \Delta_{0}, T \vdash \phi(\bar{x}) \leftrightarrow \exists y \psi(\bar{x}, y) \leftrightarrow \forall z \chi(\bar{x}, z)$, so by Lemma 3.3, $T \vdash \forall \bar{x} \exists u, v(\chi(\bar{x}, u) \rightarrow \psi(\bar{x}, v))$, so by Fact 3.5 , there is an $f \in P R A$ such that

$$
T \vdash \forall \bar{x}\left(\chi\left(\bar{x}, \pi_{1}(f(\bar{x}))\right) \rightarrow \psi\left(\bar{x}, \pi_{2}(f(\bar{x}))\right)\right) .
$$

On the other hand, we have $T \vdash \forall \bar{x} \forall y(\psi(\bar{x}, y) \vee \neg \psi(\bar{x}, y))$, so,

$$
T \vdash \forall \bar{x}\left(\psi\left(\bar{x}, \pi_{2}(f(\bar{x}))\right) \vee \neg \psi\left(\bar{x}, \pi_{2}(f(\bar{x}))\right)\right),
$$

so,

$$
T \vdash \forall \bar{x}\left(\exists y \psi(\bar{x}, y) \vee \neg \chi\left(\bar{x}, \pi_{1}(f(\bar{x}))\right)\right),
$$

so,

$$
T \vdash \forall \bar{x}(\exists y \psi(\bar{x}, y) \vee \neg \forall z \chi(\bar{x}, z)),
$$

thus, $T \vdash \forall \bar{x}(\phi(\bar{x}) \vee \neg \phi(\bar{x}))$.
Theorem 3.9. If $T \vdash \forall \bar{x}(\phi(\bar{x}) \vee \neg \phi(\bar{x}))$ then $\phi \in \operatorname{Atoms}(T)$, for $T=$ $i P R A$ or $i \Sigma_{1}^{+}$.

Proof. Suppose $T \vdash \forall \bar{x}(\phi(\bar{x}) \vee \neg \phi(\bar{x}))$, so, $T \vdash \forall \bar{x} \exists y(y=0 \leftrightarrow \phi(\bar{x}))$, so, by Fact 3.5 there is an $f \in P R A$, such that $T \vdash \forall \bar{x}(f(\bar{x})=0 \leftrightarrow \phi(\bar{x}))$. So, $\phi \in \operatorname{Atoms}(T)$.

Corollary 3.10. Decidables $(i P R A)=\Delta_{1}(i P R A)=$ Atoms $(i P R A)$, Decidables $\left(i \Sigma_{1}^{+}\right)=\Delta_{1}\left(i \Sigma_{1}^{+}\right)=\operatorname{Atoms}\left(i \Sigma_{1}^{+}\right)$.

By the similar methods one can characterize the decidable formulas of $i \Sigma_{1}$, (see [5] for the definition of $i \Sigma_{1}$ and $I \Sigma_{1}$).

Theorem 3.11. Decidables $\left(i \Sigma_{1}\right)=\Delta_{1}\left(i \Sigma_{1}\right)$.
Proof. By Theorem 3.8, it is straightforward that

$$
\Delta_{1}\left(i \Sigma_{1}\right) \subseteq \operatorname{Decidables}\left(i \Sigma_{1}\right)
$$

Conversely if $i \Sigma_{1} \vdash \forall \bar{x}(\phi(\bar{x}) \vee \neg \phi(\bar{x}))$, then $i \Sigma_{1} \vdash \forall \bar{x} \exists!y\{y \leq 1 \wedge(y=$ $0 \leftrightarrow \phi(\bar{x}))\}$; so the formula $\Gamma(\bar{x}, y) \equiv\{y \leq 1 \wedge(y=0 \leftrightarrow \phi(\bar{x}))\}$ defines a total function in $i \Sigma_{1}$, and so it should be primitive recursive, thus provably total in $i \Sigma_{1}$ by a Δ_{1} formula. So there is a $\psi(\bar{x}, y) \in \Delta_{1}\left(i \Sigma_{1}\right)$ such that $i \Sigma_{1} \vdash\{y \leq 1 \wedge(y=0 \leftrightarrow \phi(\bar{x}))\} \leftrightarrow \Gamma(\bar{x}, y) \leftrightarrow \psi(\bar{x}, y)$, so $i \Sigma_{1} \vdash \phi(\bar{x}) \leftrightarrow$ $\psi(\bar{x}, 0)$ i.e., $\phi \in \Delta_{1}\left(i \Sigma_{1}\right)$.

4. Provably Total Functions of $H A$

Wehmeier [6] showed that provably total functions of $i \Sigma_{1}$ are precisely primitive recursive functions, that is provably recursive functions of $I \Sigma_{1}$. A corresponding theorem for $H A$ was proved by Damnjanovic [3]. Here we give a much simpler proof:

Theorem 4.1. Provably total functions of $H A$ are precisely the provably recursive functions of $P A$.

Proof. It is well-known that provably recursive functions of $P A$ are $<\epsilon_{0}-$ primitive recursive functions (see [2]).

Suppose f is a $<\epsilon_{0}$-primitive recursive function, so $P A \vdash \forall x \exists!y \Gamma_{f}(x, y)$ for a $\Gamma_{f} \in \Sigma_{1}$. Since $P A$ is Π_{2}-conservative on $H A$, then $H A \vdash \forall x \exists y \Gamma_{f}(x, y)$. By the trivial property of the defining formula of f, we have

$$
\forall y_{1}, y_{2}\left(\Gamma_{f}\left(x, y_{1}\right) \wedge \Gamma_{f}\left(x, y_{2}\right) \rightarrow y_{1}=y_{2}\right) .
$$

So $H A \vdash \forall x \exists!y \Gamma_{f}(x, y)$.
Conversely suppose $H A \vdash \forall x \exists y A(x, y)$, so there is an $n \in \mathbf{N}$ such that $H A \vdash \forall x \exists z(\mathbf{T}(n, x, z) \wedge A(x, \mathbf{U}(z)))$, so $P A \vdash \forall x \exists!y \mathbf{T}(n, x, y)$ (since $\left.\mathbf{T}\left(m, x, z_{1}\right) \wedge \mathbf{T}\left(m, x, z_{2}\right) \rightarrow z_{1}=z_{2}.\right)$

Thus there is an $<\epsilon_{0}$-primitive recursive function g, such that $P A \vdash$ $\Gamma_{g}(x, y) \leftrightarrow \mathbf{T}(n, x, y)$. Since $\Gamma_{g}, \mathbf{T} \in \Sigma_{1}$ so $H A \vdash \Gamma_{g}(x, y) \leftrightarrow \mathbf{T}(n, x, y)$. So $H A \vdash \forall x \exists z\left(\Gamma_{g}(x, z) \wedge A(x, \mathbf{U}(z))\right)$, and then

$$
H A \vdash \forall x \exists y\left(\Gamma_{\mathbf{U} g}(x, y) \wedge A(x, y)\right) .
$$

(If $H A \vdash \forall x \exists!y A(x, y)$ then also $H A \vdash \forall x, y\left(A(x, y) \leftrightarrow \Gamma_{\mathbf{U} g}(x, y)\right)$.)
Since \mathbf{U} is primitive recursive, then $\mathbf{U} g$ is $<\epsilon_{0^{-}}$primitive recursive too.

It might be expected that provably total functions of $i \Sigma_{n}$ are the provably recursive functions of $I \Sigma_{n}$, but for $n=2$ it is false! Burr [1] has shown that provably total functions of $i \Sigma_{2}$ are primitive recursive, although it is well-known that the Ackermann's function is provably recursive in $I \Sigma_{2}$.

References

[1] W. Burr, Fragments of Heyting Arithmetic, Journal of Symbolic Logic 65, N. 3, 2000, pp. 1223-1240.
[2] S. Buss, The Witness Function Method and Provably Recursive Functions of Peano Arithmetic, "Logic, Methodology and Philosophy of Science IX", Parwitz, D., et al. (ed); Studies in Logic and the Foundations of Mathematics, Vol. 134, North-Holland, Amsterdam 1994; pp. 29-68.
[3] Z. Damnjanovic, Minimal Relaizability of Intuitionistic Arithmetic and Elementary Analysis, Journal of Symbolic Logic 60, N. 4, 1995, pp. 1208-1241.
[4] Z. Marković, On the structure of Kripke models of Heyting Arithmetic. Mathematical Logic Quarterly 39 (1993), 531-538.
[5] A.S. Troelstra and D. van Dalen Constructivism in Mathematics. An Introduction, Vol. 1. Studies in Logic and the Foundations of Mathematics, Vol. 121, NorthHolland, Amsterdam 1988.
[6] K. F. Wehmeier, Fragments of $H A$ based on Σ_{1} induction. Archive for Math. Logic 37 (1997), 37-49.

Institute of Mathematics
Polish Academy of Sciences
ul. Śniadeckich 8
P.O. Box 137

00-950 Warsaw, Poland
saeed@cs.utu.fi

[^0]: Received 1 August 2000
 Mathematics Subject Classification: Primary 03F55; Secondary 03F50, 03F30, 03B20.
 Keywords: Primitive Recursive Arithmetic, Provably Total Function.

