
Chapter 3
Frege, Russell, Ramsey and the Notion
of an Arbitrary Function

Gabriel Sandu

3.1 The Background

In Frege’s Philosophy of Language, Dummett claims that Frege’s notion of a
function coincides with the notion of an arbitrary correspondence ([68], pp. 223
and 177):

[…] Frege had not the slightest qualm about the legitimacy or intelligibility of higher-order
quantification: he used it from the first, in Begriffsschrift, freely and without apology, and
did not even see first-order logic as constituting a fragment having any special significance.

[…] it is true enough, in a sense, that, once we know what objects there are, then we also
know what functions there are, at least, so long as we are prepared, as Frege was, to admit
all “arbitrary” functions defined over all objects.

Against this background, I claimed with Hintikka, in [129], that Frege’s notions
of a function and a class cannot be that of an arbitrary correspondence or arbitrary
collection of objects and that Frege favoured, instead, some variety of non-standard
interpretation, for which the domain of the function variables is something less than
the characteristic functions of all subsets of the domain over which the individual
variables range.Whenwewrote our paper, wewere unaware of Dummett’s argument
in Frege’s Philosophy of Mathematics which shows that the author changed his mind
vis à vis his earlier position emerging from the above quote. Here is what he write
there ([74], pp. 219–220):

[…] Frege fails to pay due attention to the fact that the introduction of the [class] abstraction
operator brings with it, not only new singular terms, but an extension of the domain. […]
[I]t may be seen as making an inconsistent demand on the size of the domain D, namely
that, where D comprises n objects, we should have nn ≤ n, which holds only when n = 1,
whereas we must have n ≥ 2, since the two truth-values are distinct: for there must be
nn extensionally non-equivalent functions of one argument and hence nn distinct value-
ranges. But this assumes that the function-variables range over the entire classical totality
of functions from D into D, and there is meagre evidence for attributing such a conception
to Frege. His formulations make it more likely that he thought of his function-variables as
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ranging over only those functions that could be referred to by functional expressions of his
symbolism (and thus over a denumerable totality of functions), and of the domain D of
objects as comprising value-ranges only of such functions.

The last two sentences, which show Dummett attributing to Frege a non-standard
interpretationof his function-variables, are alike in spirit to someof the considerations
we put forward in [129]. For example this one ([129], p. 292):

Sometimes, a non-standard interpretation is guided by the idea that only such properties,
relations, and functions can be assumed to exist as can be defined or otherwise captured by a
suitable expression of one’s language. In the case of theories with infinite models, this leads
inevitably to a non-standard interpretation, for there can be only a countable number of such
definitions or characterisations available for this purpose. Hence they cannot capture all the
subsets of do(M), for there is an uncountable number of them.

In a rejoinder to our paper, Bell and Demopoulos [62] took side with Dummett’s
standard interpretation of Frege’s function variables in [68], and argued that Frege’s
concept of a function coincides with the set-theoretic notion of an arbitrary corre-
spondence. The main idea behind that paper is summarised in [61], p. 5:

Our thought was that whatever covert role the neglect of Cantor’s theorem might have
played in the inconsistency of […][Grundgesetze], it is unlikely that Frege sought to ignore
the theorem by assuming that the totality of functions, like the totality of expressions, is
countably infinite. But we sided with Dummett in […] [74] and supposed that Frege might
verywell have beenmisled into assuming thatwhat holds for certain countable interpretations
of the function variables holds in general; hence we agreed with Dummett’s evaluation of
the sense in which Frege missed the significance of the possibility of different interpretations
for his program.

For me and Hintikka the definability of functions in one’s suitable symbolism is
just one possible manifestation of the basic idea underlying the non-standard inter-
pretation: the connection between an argument and the corresponding value of a
function is determined by a formal law, norm or property. This idea stands in con-
trast to the conception underlying the standard interpretation according to which the
correlation between values and arguments is purely arbitrary and not determined by
such a law. For this reason, the main argument of our paper was intended to focus
on the distinction between, on one side, the idea of arbitrary variation between val-
ues and arguments, and the idea of a correlation as determined by a formal law, on
the other. We argued that Frege could not have had a standard interpretation of his
function-variables given that the notion of a law was important for him when charac-
terising functions. Part of our argument was Frege’s discussion of the inadequacies
of the definition of a function proposed by Czuber. We contrasted Czuber’s notion
of correlation which involves no assertion as to the law of correlation, and which
can be set up in the most various ways, with Frege’s conception of correlation which
focuses on the idea of a law ([100], p. 662; [104], p. 112):

Correlation, then, takes place according to a law, and different laws of this sort can be thought
of. In that case, the expression y is a function of x’ has no sense, unless it is completed by
the law of correlation.
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To the question of how such a law is specified, Frege answers (ibid.):

Our general way of expressing such a law of correlation is an equation in which the letter
‘y’ stands on the left side whereas on the right there appears a mathematical expression
consisting of numerals, mathematical signs, and the letter ‘x’, e.g. ‘y = x2 + 3x’.

Frege also remarks that with the introduction of the notion of a law, “variability has
dropped out of sight, and instead generality comes into view, for that is what the word
‘law’ indicates” (ibid.). One of Frege’s conclusions is that the notion of a function
has nothing to do with variation, that ‘x’ does not denote an “indefinite” or “variable”
number, but serves to express generality.

In another rejoinder to our paper, Heck and Stanley [124] claimed that we placed
too much emphasis on Frege’s remarks. They admit that Frege manifests a tendency
to explain the notion of a function in terms of the nature of functional expressions,
but that this should not obscure the fact that functions, for Frege, are the kind of
unsaturated entities which only need to have arguments and values.

In [173] I considered the notion of an arbitrary correlation in the context of
Ramsey’s criticism of Principia’s notion of classes and his moving away from a
predicative notion of a function towards the notion of a function-in-extension, which
is an arbitrary correlation between arguments and propositions. The idea was to
bring another, indirect evidence to my earlier claim with Hintikka to the effect that
Frege could not have defended the idea of arbitrary correlation, for that would have
placed him in the same camp with Ramsey, against Russell. In fact, I thought that
Russell’s notion of a propositional function and Frege’s notion of a concept stand in
deep contrast to Ramsey’s notion of a function in extension in his “Foundations of
Mathematics” [165]. Some of the arguments in my paper determined Demopoulos
to reconsider, in [61], his earlier position with Bell which had attributed to Frege a
standard interpretation. The present paper contains some reflections on thesematters.
The main focus will be on the notion of an arbitrary correlation, but let me start by
saying few things on the connection between this notion and Dedekind theorem.

3.2 The Standard versus Non-standard Distinction
and Dedekind Theorem

In [129] I and Hintikka claimed that it is the standard interpretation which is the
most important for foundations of mathematics, for it is the only one which allows
one to formulate descriptively complete categorical axiomatisations of mathematical
theories such as number theory and the theory of real numbers (ibid., p. 295). The
only concrete example we gave was Dedekind’s characterisation of real numbers
by means of the cut principle, which says that every bounded set of reals has a
least upper. This characterisation is a categorical one only if the sets involved are
arbitrary and not restricted, as in Frege’s system, to courses of values of concepts
expressible in the language of arithmetic. We concluded that “there is a deep sense
in which Frege’s system is not adequate for interpreting results in contemporary set
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theory and mathematical theorising, for instance in real analysis” (ibid., p. 314). It
is this connection between Frege’s non-standard interpretation and the failure of his
system to formulate categoricity results that irritated some of our critics, including
Demopoulos ([61], pp. 4–5):

But although Dummett shares Hintikka and Sandu’s conclusion that Frege tended toward a
non-standard interpretation, his analysis does not support Hintikka and Sandu’s evaluation
of Frege’s foundational contributions. If we follow Dummett, Frege missed the fact that
the consistency of […][Grundgesetze], relative to a non-standard interpretation, does not
necessarily extend to its consistency when the logic is given a full interpretation. This is
certainly an oversight, but it is not the oversight that is appealed to in those of Hintikka
and Sandu’s criticisms of Frege that so offended some of their critics, as for example,
whether, without having isolated the notion of a standard interpretation, Frege could have
even conceptualised results like Dedekind’s categoricity theorem.

In [61], Demopoulos refers to [120], who showed that Frege proved an analogy
of Dedekind’s theorem using an axiomatisation of arithmetic that is only a slight
variant of the Peano-Dedekind axiomatisation. He also refers to [62] for an argument
which questions the systematic dependence of categoricity results on the standard
interpretation. The argument shows that categoricity proofs can also be given in a
suitably rich first-order theory such as Zermelo-Fraenkel set theory, and these proofs
have pretty much the same form as categoricity proofs in second-order logic. His
conclusion is this ([61], p. 5):

Hintikka and Sandu’s claim that Frege could not even have formulated (let alone appreciated)
these results because of their dependence on the standard interpretation is therefore incorrect
both historically andmethodologically. It is incorrect historically because Frege successfully
proved a categoricity theorem like Dedekind’s. And it is incorrect systematically because
essentially the same argument establishes the categoricity of second-order arithmetic in any
of the usual systems of set theory. And surely it is implausible that only someone familiar
with the categoricity of the Peano-Dedekind Axioms as a theorem of second-order logic has
really grasped the theorem or its proof. At most, Frege might be charged with having missed
a subtlety concerning the distinction between formal and semi-formal systems; but this is
hardly surprising for the period in which he wrote.

3.3 The Isomorphism Theorem

In [129] we did not explicitly claim that Frege was unable to formulate, let alone to
appreciate, results like Dedekind’s theorem. But it is true that our paper suggested
it. In the light of [120], that was certainly an oversight. Few things should be said,
however. As pointed out by Heck, the statement of this theorem, that is, that two
structures which satisfy the Dedekind-Peano axioms are isomorphic, does not appear
in Grundgesetze. Heck shows how it can be extracted from the proof of the famous
theorem 263, which states the conditions under which the number of objects falling
under a concept G is Endlos (cf. the introduction to the present volume, p. ix, above).
The conditions state that there exists a relation Q which is functional, and thus
determines a sequence, no object follows after itself in this sequence, each G stands
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in the relation Q to some object in the series, and the G’s are the members of the
Q-sequence beginning with some object.

In the proof of this theorem, Frege builds up by induction a binary relation which
maps the natural numbers into the members of the Q-sequence, and vice versa. That
is, the members of this relation are the pairs (0, x0), (1, x1), . . ., where x0, x1, . . .
are the G’s in the order determined by Q. This relation is functional and it preserves
both the orderings of the natural numbers and the Q-ordering. For this reason, Heck
proposes to call theorem 263 (or rather the theorem 254 which proves the general
result that all simple and endless series are isomorphic) ‘the Isomorphism Theorem’.
It can be proved in second-order logic augmented by the ordered pair axiom. Heck
shows the ordered pairs to be dispensable and also suggests that Frege knew his use
of ordered pairs to be dispensable so that finally this is a “theorem of second-order
arithmetics and logic simpliciter” ([120], p. 322). And when the conditions of the
Isomorphism Theorem are rewritten so that one can easily derive from them the
more familiar Dedekind-Peano axioms, then the proof of theorem 263 shows that
“any two structures satisfying Frege’s axioms for arithmetic are isomorphic” (ibid.,
pp. 324–325).1

But although we are told that a modern reader should take the Isomorphism
Theorem to show that any two structures satisfying certain conditions are isomorphic,
this theorem is not put to much use in Grundgesetze. I take Frege’s proof and Heck’s
reconstruction of it to give us a derivation in second-order logic. In the remaining
of this section I will look at a more recent argument about categoricity proofs in
second-order logic and set theory that seems to support Demopoulos’ conclusion.

According to Väänänen ([198], p. 378):

[…] the situation is entirely similar in second-order logic and in set theory. […] All the usual
mathematical structures can be characterised up to isomorphism in set theory by appeal to
their second-order characterisation but letting the second-order variables range over sets
that are subsets of the structure to be characterised. The only difference to the approach of
second-order logic is that in set theory these structures are indeed explicitly defined while in
second-order logic they are merely described. In this respect second-order logic is closer to
the standardmathematical practice of not paying attention to what the “objects” e.g. complex
numbers really are, as long as they obey the right rules.

In the perspective of second-order logic, in mathematics one studies statements
of the form

M � ϕ (3.1)

where M is a mathematical structure and ϕ is a mathematical statement written in
second-order logic. Väänänen remarks, that if N is the structure N = (N ,+,×,<)

and ϕN is a second-order axiomatisation of arithmetic, so that we have

∀M(M � ϕN ⇔ M ∼= N)

1What Heck calls ‘Frege’s axioms for arithmetic’ are just the four conditions stated above for the
number of objects falling under G to be Endlos, where Q is instantiated by the successor relation
and G by the concept of a natural number: cf. [119], Sect. 6.
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the statement (3.1) can be expressed as a second-order logical truth

� ϕN → ϕ (3.2)

The problem knowingly is that the second-order logical truth is not recursively
axiomatisable. But, he continues, there are two stronger versions of (3.2), one in
set theory and the other one in second-order logic:

ZFC � ∀M(M � ϕN → M � ϕ) (3.3)

and
CA � ϕN → ϕ (3.4)

where CA is a second-order axiomatisation of second-order logic including a com-
prehension axiom and the axiom of choice. He thinks, then, that it is reasonable to
give this later statement as a justification of (3.2). And he immediately adds this
(ibid., p. 375):

I have called (3.3) and (3.4) stronger forms of (3.2) because I take it for granted that ZFC and
CA are true axioms. It is not the main topic of this paper to investigate how much ZFC and
CA can be weakened in this or that special instance of (3.3) and (3.4), as such considerations
do not differentiate second-order logic and set theory from each other in any essential way.

Väänänen (ibid., p. 376) notices, in fact, an apparent difference between (3.4) and
(3.1): (3.1) is about the material truth of the statement ϕ in a (standard) model N,
whereas (3.4) seems to assert something that holds in all the models of CA, standard
and non-standard. But he immediately points out this is only an appearance, as
it can be seen by considering two versions of the sentence ϕN for the structure
N = (N ,+,×): ϕ1

N
in the vocabulary {+1,×1}, and ϕ2

N
in the vocabulary {+2,×2}.

If ‘CA’ now denotes the axiomatisation of second-order logic in a vocabulary that
includes both {+1,×1} and {+2,×2}, then we have

CA � ϕ1
N ∧ ϕ2

N → I som1,2

where ‘I som1,2’ denotes the statement of second-order logic stating that there is a
bijection f such that

∀x∀y[ f (x +1 y) = f (x +2 y)]
∀x∀y[ f (x ×1 y) = f (x ×2 y)]
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The conclusion is as follows (ibid.):

[…] in this subtle sense, (3.4) really asserts the truth of ϕ in one and only one model, namely
the standard model. […] Naturally, CA itself has non-standard models but they should not
be the concern in connection with (3.4) because we are not studying CA but the structure
[…][N]. In fact the whole concept of a model of CA is out of place here as CA is used as a
medium of evidence for (3.2). We can convince ourselves of the correctness of the evidence
by simply looking at the proof given in CA very carefully. There is no infinitistic element in
this.

The situation is similar in set theory. In this perspective, in mathematics one
studies statements of the form

�(a) (3.5)

where “�(x) is a first-order formula with variables ranging over the universe of sets,
and a is a set” (ibid., p. 377). Now we are told that (ibid.):

If we compare (3.1) and (3.5), we observe that the former is restricted to one presumably
rather limited structure […][M] while (3.5) refers to the entire universe. This is one often
quoted difference between second order-logic and set theory. Second-order logic takes one
structure at a time and asserts second-order properties about that structure, while set theory
tries to govern the whole universe at a time.

Two qualifications are added. The first is this, “while it is true that (3.5) refers
to the entire universe, typical mathematical propositions are really statements about
some Vα such that a ∈ Vα (ibid.). The second qualification concerns the justification
of (3.5), which raises the same worries as the justification of (3.1) in second-order
logic. The justification is given by the stronger statement

ZFC � �(a) (3.6)

where a is assumed to be a definable set. Väänänen concludes that there is no fun-
damental difference between set theory and second-order logic.

But, then, Väänänen wonders, “which is the right way to do mathematics: second-
order logic or set theory?” (ibid., p. 379). And here is, finally, his answer (ibid.):

Let us leave aside the question whether the higher ordinals that exist in set theory are really
needed. The point is that set theory is just a “taller” version of second-order logic, and if
one does not need (or like) the tallness, then one can replace set theory by second - (or
higher-) order logic. However, this does not yield more categoricity, for both second-order
logic and set theory are equally “internally categorical”. If we look at second-order logic and
set theory from the outside we enter meta-mathematics. Then we can build formalisations of
the semantics of either second-order logic or set theory and prove their categoricity in “full”
models as well as their non-categoricity in “Henkin” models.

This ends my exposition of Väänänen’s arguments. The point I want to underline,
against their author, which is the same as the point I raised earlier in connection with
Demopoulos’s and Heck’s discussion of Frege’s proof of Dedekinf theorem, is that
(3.4), like its set-theoretical counterpart (3.6), is just a formal derivation. None of
them stands by itself in the context of justification. One cannot “take for granted that
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ZFC and CA are true axioms” and assert in the same time that “the whole concept of
a model of CA is out of place here as CA is used as a medium of evidence for (3.2)”.
The point is not so much that of looking at second-order logic or set theory from the
inside or outside, but rather that of a derivation having a content or not. If it does not,
then it cannot serve as a “medium of evidence”, and this for the simple reason that
it does it not refer to the concepts it purports to refer.

3.4 Ramsey’s Notion of a Predicative Function
in “Foundations of Mathematics”

In [173], I suggested to look at the question of the notion of arbitrary correspondence
from a different angle: Ramsey’s criticisms of the notion of propositional function
in Whitehead and Russell’s Principia [203]. My punching line was that Frege’s
functions (concepts) are as predicative as Principia’s propositional functions and
thereby Ramsey’s criticisms of the logic of Principia and his conclusion that this
logic is inadequate for the logicism programme (the reduction of mathematics to
logic) apply mutatis mutandis to Frege’s logic.

Ramsey criticises Principia’s notion of a propositional function arguing for the
need of its extension, in the context of the logicist reduction of mathematics to logic.
Ramsey anticipates Carnap’s distinction between two kinds of logicist reductions,
respectively depending on:

1. the definition of all concepts of a mathematical theory in terms of logical notions.
2. (1) plus the derivation of the axioms of the resulting theory from purely logical

axioms.

Carnap [41] points out that Russell operated a reduction of type (1). In his anticipation
of this distinction, Ramsey observes that a reduction of type (1) would show the
generality of mathematics, while a reduction of type (2) would illustrate the necessity
of mathematics. The sense of necessity Ramsey is concerned with in his remarks is
that according to which tautologies, inWittgenstein’ sense (namely sentences true in
every universe of discourse), are necessary. Ramsey observes that in order to perform
a reduction of type (2), onewould have to give up the notion of propositional function
to be found in Principia.

Let me comment first on Ramsey’s notion of a predicative function in [165]. I will
rely heavily on Trueman’s reconstruction of it in [194].

We start with a class of propositions built from a stock of atomic propositions of
the form ‘John is tall’, through (possibly an infinite application of) truth-functional
connectives. Ramsey ([165], p. 35) defines a propositional function of individuals,
as “a symbol of the form ‘ f (x̂, ŷ, ẑ, . . .)’” such that every replacement in it of
‘x̂’,‘ŷ’,‘ẑ’, …with names of individuals yields a proposition of the initial class.
Ramsey takes, moreover, a propositional function ‘ f (x̂, ŷ, ẑ, . . .)’ to be identical
with ‘g(x̂, ŷ, ẑ, . . .)’ if the substitution of the same set of names in one and the other
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yields the same proposition, that is, if ‘ f (x̂, ŷ, ẑ, . . .)’ and ‘g(x̂, ŷ, ẑ, . . .)’ have the
same truth-table. The definition extends to higher-order propositional functions.

To specify the subclass of propositional functions that Ramsey calls ‘predicative
functions’ we need first to specify atomic predicative function of individuals. They
are “the result of replacing by variables any of the names of individuals in an atomic
proposition expressed by using names alone” (ibid., p. 38). Thus ‘x̂ is tall’ is an
atomic predicative function.

This notion is then extended to cover truth-functions of propositional functions
and propositions. Ramsey’s definition is as follows (ibid.):

Suppose we have functions φ1
(
x̂, ŷ

)
, φ2

(
x̂, ŷ

)
, etc., then saying that a function ψ

(
x̂, ŷ

)

is a certain truth-function […] of the functions φ1
(
x̂, ŷ

)
, φ2

(
x̂, ŷ

)
, etc. and the proposi-

tion p, q, etc., we mean that any value of ψ
(
x̂, ŷ

)
, say ψ (a, b), is that truth-function of

the corresponding values of φ1
(
x̂, ŷ

)
, φ2

(
x̂, ŷ

)
, etc., i.e. φ1 (a, b), φ2 (a, b), etc. and the

propositions p, q, etc.

Hence, ‘F
(
x̂0, x̂1, . . . , x̂n

)
’ is a truth-function of some propositional functions and

propositions if and only if any of its values for some appropriate arguments is
the corresponding truth-function of the values of these propositional functions for
these arguments and of these propositions. To take an example ‘

[
G

(
x̂1, x̂2

) ∨ p
] ∧[

H
(
x̂1, x̂2

) ∨ q
]
’ is a certain truth-function of ‘G

(
x̂1, x̂2

)
’, ‘H

(
x̂1, x̂2

)
’, p, and q,

since for whatever names ‘a’, ‘b’, ‘c, ‘d’, ‘[G (a, b) ∨ p] ∧ [H (c, d) ∨ q]’ is this
same truth-function of ‘G (a, b)’, ‘H (c, d)’, p, q.

Finally Ramsey defines predicative functions of individuals as follows (ibid.,
p. 39):

A predicative function of individuals is one which is any truth-function of arguments which,
whether finite or infinite in number, are all either atomic functions of individuals or propo-
sitions.

Hence, a predicative function of individuals is “a (perhaps infinite) truth-function of
atomic predicati[…][ve] functions of individuals and propositions”, and, vice versa
such a truth-function is a predicative function of individuals ([194], p. 294).

What needs to be emphasized is that, according to this definition, the predicativity
of a propositional function ‘F

(
x̂
)
’ consists, as generally agreed, in the fact that the

proposition ‘F (a)’, which ‘F
(
x̂
)
’ assigns to ‘a’, says or predicates the same thing

of a as the proposition ‘F (b)’, which ‘F
(
x̂
)
’ assigns to ‘b’, does of b.

I regard Ramsey’s definition of a predicative function as a manifestation of the
phenomenon we discussed in connection with Frege: the specification of a function
by a formal law. In this case the “glue”which keeps the arguments and values together
is a propositional function. A good example is our earlier propositional function ‘x̂
is tall’, which maps ‘Socrates’ to ‘Socrates is tall’ and ‘Plato’ to ‘Plato is tall’, i.e.,

‘F(Socrates)’ is ‘Socrates is tall’
‘F(Plato)’ is ‘Plato is tall’.

Let me finally mention that Ramsey uses his notion of propositional function to give
an account of quantification in the Tractatus. The proposition ‘∀x F (x)’ is conceived
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of as the conjunction of all the values of ‘F
(
x̂
)
’, and the proposition ‘∃x F(x)’ as

the disjunction of all these propositions. Similarly, the higher-order ‘∀ϕ f
(
ϕ

(
x̂
))
’ is

the conjunction of all the values of ‘ f
(
ϕ

(
x̂
))
’ ([165], p. 40). In addition, the use of

quantifiers is governed bywhat is known as the exclusive interpretation of quantifiers,
e.g. ‘∃x R(x, a)’ is conceived of as a disjunction of all the values of ‘R

(
x̂, a

)
’ except

for ‘R(a, a)’, and similarly for ‘∀x R(x, a)’, which is conceived of as the conjunction
of these values.

3.5 Ramsey’s Reduction of Type (2)

Reduction (2) is achieved in two steps, following Whitehead and Russell. In the first
step mathematics is reduced to the theory of classes, e.g., each natural number n is
defined as the class of all n-membered classes of individuals. For instance, 1 is defined
as the class of all singletons, 2 as the class of all doubletons, etc. In the second step, the
theory of classes is reduced to logic. It is here that propositional functions are needed,
as class-terms are partially eliminated in favour of propositional functions. As a result
of this process, every class is presented as the extension of a propositional function.
But as Trueman observes Ramsey realised that if the only admissible propositional
functions are predicative functions, then there can be no reduction of mathematics to
logic. As logical truths are tautologies, then the failure of this reduction would also
be a failure to show that mathematical truths are tautologies in Wittgenstein’s sense.

Trueman spells out nicely what is at stake here ([194], p. 296):

If 1 is defined as the class of singletons of individuals and 2 as the class of doubletons
of individuals, then the mathematical truth that 1 = 2 requires that there be a singleton
or a doubleton: otherwise, 1 and 2 would both be empty and hence identical. If, in turn,
the existence of a singleton or doubleton of individuals is to be reduced to logic then,
assuming […][that all logical truths are tautologies, and vice versa], it must be a tautology
that some propositional function is true of exactly one or exactly two individuals. But, if every
propositional function is predicati[…][ve] then this is not a tautology, and this is because
predicati[…][ve] functions do not logically discriminate between individuals, meaning that
it is not contradictory for every individual to satisfy exactly the same predicati[…][ve]
functions as every other individual

These considerations illustrate the kind of challenge Ramsey faced. Assume there
are only two individuals, a and b. If it is a tautology that some propositional function
is true of only these two individuals, then it must be a contradiction that, say, every
atomic predicative propositional function ‘F

(
x̂
)
’ is satisfied by both ‘a’ and ‘b’. But

the fact that every atomic predicative propositional function ‘F
(
x̂
)
’ may be satisfied

by both ‘a’ and ‘b’ is something that follows from the logical independence of
atomic propositions: atomic propositional functions do not discriminate between
individuals.

The argument extends then to the general case. As every predicative function is
a truth-function of atomic predicative functions and propositions, it is not a contra-
diction that every individual which satisfies one function, satisfies also another. So
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as Trueman points out it cannot be a tautology that some predicative function is true
of exactly one individual, or exactly two individuals, etc.

3.5.1 Logical Necessity versus Analytical Necessity

It has been emphasised (ibid.) that the argument establishing that predicative func-
tions do not logically discriminate between individuals at no point appeals to the
Tractarian assumption that all necessity is logical necessity. We could, for instance,
introduce a different notion of necessity, call it ‘analytic necessity’, which is necessity
in virtue of meaning. This will not rule out the possibility that there are two individ-
uals who satisfy the same predicative functions, provided the atomic propositions
would remain logically independent in the above sense of logical necessity.

Such a notion of necessity has been considered, among others, by the Finnish
logician Erik Stenius [186]. According to Stenius, a statement is analytic if it is
true in virtue of the semantic conventions for certain of its symbols. Alternatively,
a statement is analytic if, according to the semantic conventions for some of its
expressions, no state of affairs is a truth restriction for it (that is, no state of affairs
makes it false).

The statement ‘If a is red, then a is not green’ symbolised by

‘R (a) → ¬G (a) ’ (3.7)

can be shown to be analytic in Stenius’s sense. Its truth-table is

R (a) G (a) ¬G (a) R (a) → ¬G (a)

T T F F
T F T T
F T F T
F F T T

This truth-table seems to possess what Stenius calls, a truth-restriction, that is, a state
of affairs which renders the proposition ‘R (a) → ¬G (a)’ false. But for Stenius this
truth restriction is not a state of affairs because the colours green and red are logically
incompatible. Therefore the first linemust be erased and the truth restriction vanishes.

Wewitness here a violation of the logical independence of the atomic propositions
which is of a different kind than the one we have considered so far: the truth of
‘R (a)’ is incompatible with that of ‘G (a)’, that is, one and the same individual
cannot simultaneously be the argument of both propositional functions ‘R

(
x̂
)
’ and

‘G
(
x̂
)
’. Given that (3.7) is analytic for each a, then so is

‘No red objects are green’
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symbolised by
‘∀x [R(x) → ¬G (x)] ’

Thus the failure of logical independence in this new sense leads to the new notion of
analytical necessity. But allowing for this kind of non-logical, analytical necessity is
perfectly compatible with the logical independence of atomic propositions from the
previous section.

Ramsey wanted to show that mathematical statements are logically necessary in
the Tractarian sense. For this he needed to give up the kind of logical independence
of atomic propositions we considered in the previous section and find a notion of
propositional function which would discriminate between individuals and would
not be grounded in the notion of analytical necessity illustrated in this section. He
did that by introducing the notion of a propositional function in extension. Before
discussing it, let me point out that Frege went a different way: although he wanted to
show that mathematical (arithmetical) statements are reducible to logic, he did not
conceive of logical statements as necessary in the Tractarian sense. For Frege logical
statements are the most general statements about a universe of discourse. No wonder
that the modern discussion around Frege’s logicism ended up in debating whether
the ultimate logical principles to which arithmetics is reduced are analytic or not.

3.5.2 Ramsey’s Propositional Functions in Extension

Ramsey needed, then, a new notion of a propositional function which would allow
him to distinguish between individuals. In order to do this, he needed to extend the
notion of a function to cover also non-predicative propositional functions, where
predicativity is understood as above. Here is how he expresses himself ([165],
p. 52):

The only practicable way to do it as radically and drastically as possible; to drop altogether
the notion that ϕ (a) says about a what ϕ (b) says about b, to treat propositional functions
like mathematical functions, that is, to extensionalise them completely. Indeed it is clear
that, mathematical functions being derived from propositional, we shall get an adequate
extensional account of the former only by taking a completely extensional view of the latter.

Ramsey is well aware that he cannot give an explicit definition of a function
in extension and for this reason he contents himself to explain this notion rather
than define it. His explanation is given in terms of the notion of correlation, that
is, a relation in extension between propositions and individuals, which associates to
each individual a unique proposition. In specifying the nature of this correlation, he
remarks that it may be “practicable or impracticable” (ibid.). I take this to be just
another way for Ramsey to say that the correlation is not determined by a formal
law, but is an arbitrary association between individuals and propositions.

Ramsey uses propositional functions in extension to define identity:

x = y =d f ∀ϕe [ϕe (x) ≡ ϕe (y)]
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where ϕe takes propositional functions in extension as values. We notice that when
a and b are the same individual, then ‘a = b’ is the conjunction of ‘p ≡ p’, ‘q ≡ q’,
…, which is a tautology. On the other side, when a is distinct from b, then there is
a propositional function ‘ϕe

(
x̂
)
’ such that ‘ϕe (a)’ is ‘p’ while ‘ϕe (b)’ is ‘¬p’. In

this case ‘a = b’ is a conjunction of propositions which includes ‘p ≡ ¬p’, that is,
a contradiction.

After having defined identity, Ramsey can introduce set-theoretical notions. In
order to introduce singletons, he considers the propositional function ‘x̂ = a’, where
a is an arbitrary individual. When identity is defined as above, then ‘a = a’ is a
tautology, and for any other b, ‘b = a’ is a contradiction. Hence it is a tautology that
some propositional function is true of exactly one individual. By a similar reasoning
one can introduce doubletons. The propositional function ‘x̂ = a ∨ x̂ = b’ is true of
exactly two individuals. (I am indebted to Trueman for this argument.)

It is perhaps worth comparing Ramsey’s definition of identity to the modern
model-theoretic definition of identity in second-order logic with the standard inter-
pretation:

x = y ⇔ ∀X [X (x) ⇔ X (y)]

Here X is a second-order variable ranging over sets. By the standard interpretation
we mean that every model for the second-order language is such that the range
of the second-order variables is the full power set of the set which is the range
of the first-order variables. In this setting, instead of showing that ‘a = a’ is a
tautology, and for any individual b distinct from a, ‘b = a’ is a contradiction,
we can show that in every model in which a and b are the same individual, then
‘∀X [X (x) ⇔ X (y)]’ is (trivially) true. And in every model in which a is distinct
from b, ‘∀X [X (x) ⇔ X (y)]’ is false. Indeed, the first claim is true: it follows from
the principle of extensionality of sets. As for the second claim, the set {a} falsifies
the formula ‘∀X [X (x) ⇔ X (y)]’. Given the standard interpretation, this set exists.
Notice that the only principle we need to rely on is the extensionality of sets.

We can achieve the same result by using functions. In this case the definition of
identity would be

x = y ⇔ ∀ f [ f (x) ⇔ f (y)]

where we may take f to be a function from individuals to truth-values. Then ‘a = a’
is a tautology and ‘b = a’ is false in every model in which a and b are distinct
individuals: take a function f which maps a to T and b to F . Here we need the
standard interpretation of function variables and the notion of function in extension.
Then, we can go on and reconstruct singletons and doubletons as Ramsey did.

In the remaining of mys paper let me consider two objections against the notion
of propositional functions in extension discussed in [194]. One of them is due to
Sullivan, the other to Wittgenstein.
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3.5.3 Sullivan’s Objection to the Notion of Propositional
Function in Extension: Containment

According to Sullivan [187], the main difference between propositional functions
and propositional functions in extension lies in the fact that the former are contained
in their values in a way in which the latter are not. In other words, a propositional
function in extension needs all its values to be individuated, whereas one single value
suffices for the individuation of a (predicative) propositional function. It is not diffi-
cult, intuitively, to see why this is so. Take any argument and consider the proposition
which is the value of the propositional function for that argument. By deleting the
argument, you can recover the propositional function. To take an example, if ‘F

(
x̂
)
’

is a propositional function and you know that ‘F (John)’ is ‘John is tall’, then you
also know that ‘F (Peter)’ is ‘Peter is tall’, etc. On the other side, if you know that
‘ϕe (John)’ is ‘Paris is beautiful’ then you cannot infer anything about ‘ϕe (Peter)’,
when ϕe is a function in extension.

Trueman ([194], Sect. 4) gives an example of a propositional function which
shows Sullivan’s argument to be invalid. Here it is take the function

‘P
(
x̂
) ∨ ∃y

[
T (Plato) ∧ ¬P

(
ŷ
)]
’ (3.8)

where ‘T
(
x̂
)
’ is

‘P
(
x̂
) ∨ ¬P

(
x̂
)
’

Consider first the value of this function for an argument ‘a’ other than ‘Plato’, i.e.

‘P (a) ∨ ∃y
[
T (Plato) ∧ ¬P

(
ŷ
)]
’ (3.9)

By the convention governing the use of quantifiers, ‘∃y
[
T (Plato) ∧ ¬P

(
ŷ
)]
’ is

a disjunction of the values of ‘T (Plato) ∧ ¬P
(
ŷ
)
’ for every argument other than

‘Plato’. But given that ‘T (Plato)’ is a tautology, and the conjunction of a proposi-
tion with a tautology is that proposition itself, this conjunction is equivalent to the
conjunction of the values of ‘¬P

(
ŷ
)
’, for every argument other than ‘Plato’, one

conjunct of which will be ‘¬P (a)’. Hence (3.9) will be a disjunction including both
‘P (a)’ and ‘¬P (a)’ as disjuncts, and will, then, be a tautology. On the other side,
the value of (3.8) for ‘Plato’ is the the disjunction of ‘P (Plato)’ and the values of
‘¬P

(
ŷ
)
’ for every argument other than ‘Plato’. It will, then, be the disjunction of

an atomic proposition with the negation of another atomic proposition, and will not
be a tautology.

It follows that (3.8) maps every name other than ‘Plato’ to a tautology, and ‘Plato’
to a non-tautology. Trueman concludes that we need all the values of this proposi-
tional functions in order to establish its identity, and thereby Sullivan’s claim should
be restricted to atomic predicative propositional functions: only in this case the propo-
sitional function may be recovered by whatever value of the function one considers.
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As nice as this example is, one should not overestimate its importance, though
(I also take this to be Trueman’s position). Its particularity is due to the convention
governing the use of quantifiers that we discussed above. Even if the property of
containment held only for atomic predicative propositional functions, it would still
explain why these functions are more accessible than their extensional relatives
and how our conceptual system can somehow integrate and manipulate potentially
infinite correlations of arguments and values. For in the absence of properties like
containment or other mechanisms which perform a similar function, the question
still remains: How are we to understand the notion of mapping? Moreover, is there
any way for us to grasp potentially infinite correlations?

3.5.4 Substitution

I take the notion of containment to provide an answer to the second question. One
possible answer to the first question that Trueman considers is to understandmapping
in terms of substitution. This is an expected move: after all, we needed substitution
when we explained the notion of atomic predicative propositional function in the
first place. We took such a function to be the result of replacing by variables any of
the names of individuals in an atomic proposition. An example may help. For ‘F

(
x̂
)
’

standing for the atomic propositional function ‘x̂ is wise’, when we substitute ‘x̂’
with ‘Socrates’ we thereby generate ‘Socrates is wise’ in which ‘Socrates’ occurs
as a name of Socrates. The sense in which non-atomic predicative functions “map”
names to propositions is explained analogously. It is quite clear that substitution,
as a mechanical operation on expressions in an underlying language, explains the
property of containment and thus also answers the second question considered above.

The operation of substitution cannot obviously ground the notion of mapping
that underlies propositional functions in extension. One has to try something else.
Returning to our last example, we notice that the operation of substitution generates
a table:

F
(
x̂
)

‘Socrates’ ‘Socrates is wise’
‘Plato’ ‘Plato is wise’

Following the same idea, we could also introduce atomic predicative propositional
functions in extension by tables, e.g.:

Fe
(
x̂
)

‘Socrates’ ‘Queen Anne is dead’
‘Plato’ ‘Einstein is a great man’
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As expected, this suggestion is not shared by those who oppose arbitrary cor-
relations. For the whole matter of dispute is the nature of the relation between the
name on the left side, and the corresponding proposition on the right side. Trueman
endorses an argument by Wittgenstein ([204], part II, Chap. 16) who points out that
the name ‘Socrates’ appears here only to direct us to a line of the table. We could
have marked instead the lines of this table with any signs we liked: numerals, letters
or squares of colour, etc. The fact that we chose to mark each line of this table with
strings which look like the names of Socrates and Plato should not mislead us into
thinking that they are those names. Consequently, if ‘Fe

(
x̂
)
’ is a predicative func-

tion defined as in the table above, then the first and second occurrences of the string
‘Socrates’ in ‘F(Socrates)∧Fe (Socrates)’ have different significances, the first is an
occurrence of the name of Socrates and the latter is not.

We are back to square one. Wittgenstein’s criticism is nothing else but a milder
expression of the requirement that we have seen at work in the case of predicative
propositional functions. According to that requirement, the proposition ‘F (a)’ that
the propositional function ‘F

(
x̂
)
’ assigns to ‘a’, must say or predicate the same thing

of a as the proposition ‘F (b)’, which ‘F
(
x̂
)
’ assigns to b, predicates of b. The present

version is milder because it only asks for the value that the function assigned to ‘a’
to say something about a. Still it is obvious that in both cases we witness the refusal
to accept the idea that what is important for individuating a function is an arbitrary
correlation of values and arguments.

3.5.5 Arbitrary Functions

This is, then, Wittgenstein’s criticism of Ramsey’s notion of a propositional function
in extension: the argument of such a function is there “only to direct us to a line of
the table”. In other words, when a function in extension is introduced, one abstracts
from the nature of the connection between arguments and values and makes sure
only that, to each argument, there is a line in the table.

Wittgenstein’s criticism sounds surprisingly similar to Frege’s criticism of the
extensional notion of a set and of the individuation of sets through their members. In
[129], p. 301,wepointed out twodifferent reasons for Frege to reject the individuation
of classes through their members. The first one concerns the definition of the empty
class. Here is what Frege writes in an undated letter to Peano ([106], vol. II, p. 177;
[108], p. 109):

Of course, one must not then regard a class as made out by the objects (individual, entities),
that belong to it; for removing the objects one would then also be removing the class con-
stituted by them. Instead, one must regard the class as made out by the characteristic marks,
i.e., the properties which an object must have if it is to belong to it. It can then happen that
these properties contradict one another, or that there occurs no object that combines them in
itself. The class is then empty but without being logically objectionable for that reason.

The second reason concerns the individuation of infinite classes. According to Frege,
from the finiteness of the human intellect it follows that an infinite class cannot be
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given solely by its members. The only way it can be given is by deriving it from a
concept, that is, by takings it as “yielded by thought”. Here is what Frege writes in
“Booles rechnende Logik und die Begriffsschrift” ([106], vol. I, p. 38; [107], p. 34;
notice that this passage illustrates the first reason, too). This is also made clear in the
following passage:

But it is surely a highly arbitrary procedure to form concepts merely by assembling individ-
uals, and one devoid of significance for actual thinking unless the objects are held together
by having characteristics in common. It is precisely these which constitute the essence of the
concept. Indeed one can form concepts under which no object form, where it might perhaps
require lengthy investigation to discover that this was so. Moreover, a concept, such as that
of number, can apply to infinitely many individuals. Such a concept would never be attained
by logical addition. Nor finally may we presuppose that the individuals are given in toto,
since some, such as e.g. the numbers, are only yielded by thought.

As we observed in [129], p. 305, “what made possible the conception of an
arbitrary set was the gradual disentanglement of the notion of set from intensional
ingredients such as concepts, properties, etc., and the definition of sethood in an
alternative way”. In a parallel development, the modern notion of arbitrary func-
tion emerged through the gradual disentanglement of the notion of correlation from
Fregean concepts, equations and other formal rules, or from requirements like pred-
icativity. Ramsey’s notion of a propositional function in extension is one step in this
process of emancipation.Modern logic has developed Ramsey’s idea and taken func-
tional dependencies as arbitrary correlations between values and arguments. Here is
one example which illustrates this trend taken from [116].

The idea, made possible by the development of model-theoretical semantics, is
not to define arbitrary functional correlations, but to introduce a new logical constant
in the object language and then give its meaning through a semantical clause. More
specifically, the syntax of first-order logic is extended with atomic formulas of the
form

=(−→x , y
)

intended to express arbitrary functional dependence: the (values of the) variables−→x totally (functionally) determine (the value of) y. Such an atom is interpreted in a
model by a set X of (partial) assignments in the universe of themodel. The semantical
clause that we need is:

1. X makes the formula ‘=(−→x , y
)
’ true if and only if for any two distinct assignments

s and s′ in X , whenever s and s′ agree on the values of the variables in −→x , they
also agree on the values of y.

The right-hand side of this double implication defines a functional correlation in
purely extensional terms, without appealing to any particular relation between an
argument and its value. Here is an example ([197], p. 11), which also illustrates the
kind of extensional correlation Wittgenstein objected to:
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x0 x1 x2
s0 1.5 4 0.51
s1 2.1 4 0.55
s2 2.1 4 0.53
s3 5.1 4 0.54
s4 8.9 4 0.53
s5 21 4 0.54
s6 100 4 0.54

The set X consisting of the six assignments s0, . . . , s6 makes both =(x0, x1) and
=(x0, x1) true.

Grädel and Väänänen define also independence. To this purpose, the syntax of
first-order logic is extended with atomic formulas of the form

x ⊥ y

with the intended interpretation: the (values of the) variable y is (are) independent of
the (values of the) variable x . Such a formula is interpreted by a set X of assignments,
as in the previous case, but now the interpretative semantical clause is:

2. X makes ‘x ⊥ y’ true if and only if for any two assignments s and s′ in X there
is a third assignment s′′ such that s′′ agrees with s on the value of x and it agrees
with s′ on the value of y.

This definition tells us that the value s(x) of x alone does not determine the value
s(y) of y, for there may be another assignment s′ in X which assigns to y a distinct
value, i.e. s′(y) = s(y). But then according to the proposed definition, there is a
third assignment s′′ such that s′′(y) = s′(y) and s′′(x) = s(x). That is, just when
we thought that on the basis of s(x) we can conclude that the value of y is s(y), we
discover s′′ which gives the same value for x but a different value for y. In other
words, borrowing Wittgenstein’s jargon, there is an argument which “points to two
lines” in the table. In our example, X makes both ‘x1 ⊥ x2’ and ‘x0 ⊥ x2’ true.

3.6 Conclusion

In [62], Bell andDemopoulos accept Dummett’s initial view to the effect that Frege’s
interpretation of the function variables is the standard one and that Frege’s concept
of a function coincides with the set-theoretic notion of an arbitrary correspondence,
in which case the domain of the function variables is in one-one correspondence
with the power-set of the domain of the individual variables. In [61], reconsiders this
matter (ibid., pp. 5–6):
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More recently, reflection occasioned by reading [173] has convinced me that the equation
of Frege’s concept of a function with the notion of an arbitrary correspondence should be
reconsidered, and that it might be fruitful to reconsider it from the perspective of Ramsey’s
interpretation of Principias’s propositional functions.

Demopoulos’s conclusion is that Frege’s assimilation of concepts to functions which
map into truth values is as predicative as Russell. The correspondence is not arbitrary,
but is constrained by the principle that if a function maps two objects to the True,
they must fall under a common concept. But he also observes that Fregean functions
and concepts lack the explicit association with propositions that is characteristic of
Russellian propositional functions. Principia’s propositional functions “map to the
truth values only by ‘passing through’ a proposition” whereas “Frege’s concepts map
directly to the truth values” (ibid., p. 16). Despite his acknowledgement that Fregean
concepts are constrained in the way mentioned above, Demopoulos is reluctant to
explicitly admit that Frege’s notions of a function is not extensionalist in nature. He
prefers to close his paper in a rather ambiguous way, as follows (ibid., pp. 16–17):

Fregean functions and concepts […] lack the explicit association with propositions that is
characteristic of propositional functions; an extensionalist interpretation of a Fregean concept
as an arbitrarymapping of objects to truth values is arguably still a Fregean concept. However
its utility for Frege’s theory of classes is unclear. According to a theory like Frege’s, concepts
provide the principlewhich gives classes their ‘unity’, and they also serve the epistemological
function of providing the principle under which a collection of objects can be regarded as
a separate object of thought. A class that is generated by an arbitrary pairing of individuals
with truth values might be one that is ‘determined by a concept’, but the concept which
determines it seems no more epistemically accessible than the collection itself. Even if it can
be convincingly argued that such concepts sustain the unity of the classes they determine,
it can hardly be maintained that they are capable of playing the epistemological role which
the predicative interpretation can claim for its functions and concepts.

The overall conception that dominates the present paper as well as the ideas
developed in [129] and [173], is that Russell’s notion of a propositional function and
Ramsey’s notion of predicative function are one more manifestation, albeit a special
one, of the same phenomenon which governs Fregean concepts: their determination
by a norm (rule, equation, concept). If that were not the case, then they would not be
able to perform, the epistemological function that Demopoulos attributes to them.
Now, in the last quote Demopoulos speculates with the idea that a class that is
generated by an arbitrary function might still be generated by a concept which is
epistemically inaccessible. I take the point of this remark and of those that follow
it to be that of emphasizing that there is still a considerable gap between Fregean
concepts (functions) on one side, and Russell’s and Ramsey’s predicative functions,
on the other.

A detailed comparison between predicative functions and Fregean concepts is
outside the purpose of this paper. The point I tried to defend here and elsewhere is
that both Frege’s and Russell’s conceptions of a function stand in clear contrast to
Ramsey’s notion of a propositional function in extension and to the extensionalist
notion of a function illustrated by clause 1 in Sect. 3.5.5, above. There is no doubt
that Frege could not have such a conception, for he tells us ([97], Sect. I.10; [110],
p. 161):
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We have only a way always to recognise a value-range as the same if it is designated by a

name such as whereby it is already recognisable as a value-range. However, we
cannot decide yet whether an object that is not given to us as a value-range is a value-range or
which function it may belong to; nor can we decide in general whether a given value-range
has a given property if we do not know that this property is connected with a property of the
corresponding function.

As this passage illustrates, For Frege, “an object that is not given to us as a value-
range”, i.e. that is not introduced as the extension of a law or concept, does not tell
us what function that value-range corresponds to. True, Frege was possibly thinking
here of any object whatsoever, and not necessarily of one that is easily identifiable
as a value-range of some indeterminate function; his point seems to be that taking
the value-range of a function �(ξ) to be the same as the value-range of a function
� (ξ) if and only if the values of these functions are the same for any argument does
not allow us to decide whether a certain table, the Mount Blanc, or Julius Caesar are
value-ranges. But, it is a matter of fact that his claim is general, and it also applies,
then, to objects that are easily identifiable as value-ranges, namely to classes. In
this case, the point becomes that, when a class is given to us as such and not as a
value-range of a determinate function, there is no vantage point from which we can
say what function it is the value-range of. Ramsey’s notion of propositional function
in extension and the notion of functional dependence illustrated by clause 1 in Sect.
3.5.5, above may be seen as the perfect target of Frege’s critical remark: the set of
assignments, or, as we may call it, the value-range X in that clause, may be the
extension, as we all know, of many functional laws.

What Frege and Russell ignored and Ramsey realized, is that one can and needs
to talk about a function even when one is not able to individuate it through the law
that generates is, like for instance when one talks about the properties all functions
have. In that case one abstracts from the nature of the formal law that generates the
corresponding extension. The framework outlined in the previous section allows one
to do just that. According to clause 1, a functional dependence is, indeed, just a set
satisfying appropriate conditions (namely Armstrong axioms in data base theory, as
showed by Väänänen in [197], Sects. 8.1 and 8.2). This provides an extensionalist
notion of a function, akin in spirit to Ramsey’s notion of a function in extension,
which anticipates its treatment in contemporary mathematics: a notion that stands
opposite both to Frege’s conception, according to which a function is constrained by
a law, and to Russell’s idea of a propositional function.
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