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Abstract

We examine the proof-theoretic verificationist justification proce-
dure proposed by Michael Dummett. After some scrutiny, two distinct
interpretations with respect to bases are advanced: the independent
and the dependent interpretation. We argue that both are unaccept-
able as a semantics for propositional intuitionistic logic.

1 Introduction

Prawitz [7, 9, 10] and Dummett [1] proposed proof-theoretic inductive defi-
nitions of validity for arguments. These definitions assume that introduction
rules provide the canonical assertability conditions for complex sentences
based on assertability conditions of their constituents. They are an attempt
to explain a remark by Gentzen [2, p. 189] to the effect that “the introduc-
tion rules are definitions and the eliminations are only their consequences
thereof”. Broadly conceived, proof-theoretic definitions of validity for logi-
cal laws are relevant in the philosophy of language as part of an anti-realist
approach to meaning. They are an essential component in a general verifi-
cationist theory of meaning (see, for instance, Prawitz [10, § 5]).

Traditionally, proof-theoretic semantics is built on a mix of ideas from
proof theory (as expressed in Gentzen’s work) and intuitionistic philosophy
of mathematics (as expressed in Heyting’s BHK interpretation). Indeed,
Prawitz [8, 11] conjectured the completeness of intuitionistic logic with re-
spect to proof-theoretic notions of validity, and Dummett [1, p. 270] made
the stronger claim that, if no classical canons of reasoning are incorporated
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into the introduction rules, proof-theoretic definitions would validate only in-
tuitionistic logic. However, Sandqvist [12] has advanced a semantics based on
constructive ideas and established the validity of classical logic with respect
to it. Although based on constructive principles, Sandqvist’s semantics has
noticeable differences from the proposals from either Dummett [1] or Prawitz
[7, 9, 10].

Further results concerning the adequacy of intuitionistic logic with respect
to proof-theoretic definitions of validity were published by Sanz et al. [14].
They have shown that a semantics proposed by Prawitz [7, §A.1] validates a
classical inference rule, Peirce’s rule, in the implicational fragment of propo-
sitional logic. Prawitz’s semantics in that paper was based on conservative
extensions of atomic systems (or basic systems in our terminology). This
approach however is not explicitly present in Prawitz’s most recent works.

Basic systems that discharge hypotheses escape validation of Peirce’s rule
[14, § 5]. These kinds of basic systems were further explored by Sandqvist
[13], who proved completeness for a constructive semantics with basic rules
discharging hypotheses. On the other hand, Piecha et al. [6] showed incom-
pleteness of intuitionistic logic with respect to a proof-theoretic characteri-
zation with higher-level basic rules. These results are not contradictory be-
cause, although both are proof-theoretic in nature, Sandqvist [13] and Piecha
et al. [6] employ distinct semantic clauses. Their differences especially con-
cern the clauses for disjunction.

We investigate here the proof-theoretic verificationist justification proce-
dure proposed by Dummett [1, Chapter 11–13]. In Section 2, we present
the justification procedure, following Dummett as closely as possible. There
follows, in Section 4, a discussion about the rôle played by basic rules in
proof-theoretic definitions of validity, especially in the context of Dummett’s
definitions. Then, in order to provide a formal and precise account of the
justification procedure, and also in order to cover the largest possible ground,
we work with two possible interpretations: the independent and the depen-
dent. In Section 6, we show that, not only Sandqvist’s especially designed
semantics, but also a plausible interpretation of Dummett’s own semantics
leads to a justification of classical logic. Moreover, in Section 7, we show that,
even under the dependent (and most favored) interpretation of Dummett’s
verificationist procedure, propositional intuitionistic logic is not complete.
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2 Preliminaries

2.1 Notation and terminology

For the logical constants, we use the symbols⊃ (implication), ∨ (disjunction),
∧ (conjunction) and ⊥ (absurdity). Arbitrary sentences are represented with
capital latin letters A, B, C and D. Atomic sentences are represented with
lowercase Greek letters: α, β, ϕ, ψ and χ. Trees of sentences are denoted by
Π. When necessary, we employ natural numbers as subscripts.

Following Dummett [1, p. 254], arguments are seen as trees composed of
sentences. In an argument Π, a top occurrence of a sentence is such that
there is no other above it. Similarly, the end occurrence of a sentence, or
conclusion of an argument, is such that there is no other below it. Every
sentence A occurring in a path from a top sentence to the end sentence of
an argument determines a subargument in the obvious way with A as its
conclusion. We adhere to the convention that the occurrence of a sentence
A immediately below “Π” means that A is the end occurrence of Π and the
occurrence of a list of sentences above “Π” means that those sentences appear
as top occurrences of Π. A top occurrence of a sentence A can be discharged
by the application of some rule, thus yielding a conclusion B which, together
with all sentences below B, do not depend on A. Discharge of hypotheses is
indicated by enclosing them in square brackets as in “[A]”. A top sentence
occurrence which is not the conclusion of a rule and is not discharged is said
to be open. An argument with no open top occurrences is closed. When
convenient, we may ignore the middle steps and use 〈Γ, A〉 to refer to an
argument, where Γ is a list of open top occurrences and A stands for the
end occurrence, or conclusion. The degree d(A) = n of a sentence A is the
number n of logical constants occurring in A.

The natural deduction inference rules for propositional logic are given
below:

[A]
....
B

A⊃B ⊃I
A A⊃B

B
⊃E

A B
A ∧B ∧I

A ∧B
A

∧E
A ∧B
B

∧E
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A
A ∨B ∨I

B
A ∨B ∨I

A ∨B

[A]
....
C

[B]
....
C

C
∨E

The inference rules for the propositional connectives are symmetrically dis-
tributed between introduction (I) and elimination (E) rules. They charac-
terize the natural deduction system for Positive Propositional Intuitionistic
Logic (NJ+). Propositional Intuitionistic Logic (NJ) is obtained by adding
to NJ+ the following rule for the absurdity logical constant ⊥:

⊥
A

We consider ⊥ to be a sentential constant. It should not be confused with
prime or atomic sentences. Negation is defined as ¬A ≡ A⊃⊥.

Fragments of NJ are indicated by a subset of the propositional logical
constants as superscripts. For example, NJ⊃ indicate the fragment of NJ
with only ⊃I and ⊃E.

We also consider bases, that is, sets of basic rules for atomic sentences.
Bases are discussed in greater detail in Section 4. They can be used to extend
NJ or its fragments (NJ+, NJ⊃,∧ and etc.). We denote S+B the extension of
a natural deduction system S with the basis B.

Natural deduction derivations in a system S + B (in which B may be
empty) are trees of sentences (or arguments, in our terminology) in which
any transition in a branch corresponds to an application of a rule from either
S or B. Annotations are sometimes employed in our trees to indicate precisely
where top occurrences are being discharged.

Example 2.1. Let p, q, r and s be some particular atomic sentences. Let B†

consist of the following rules:

q
p

s r
q r

The following argument is a closed derivation in NJ + B†:

[q ∧ s]
s

(1)

r
q
p

(q ∧ s)⊃ p
(1)
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2.2 Dummett’s verificationist justification procedure

Dummett [1] considers first, second and third grade proof-theoretic justifica-
tion procedures. Each one is more complex than the previous. A first grade
justification of a rule consists in its derivation from a set of primitive rules.

Second grade justifications introduce the main idea of verificationist proof-
theoretic semantics: the introduction rules are supposed to fix the meaning
of the logical constants they govern. This insight dates back to some remarks
of Gentzen to the effect that the introduction rules are definitions and the
elimination rules are, in some sense, only their consequences.

In order to make Gentzen’s remark more precise, Dummett develops a
general justification procedure which, given a set of introduction rules, is
supposed to validate all other rules with respect to this set, including the
corresponding elimination rules for the logical constants in question. The
justification procedure amounts then to a definition of validity with respect
to a given set of introduction rules. Unless otherwise noted, we consider
the set of introduction rules to be composed of the introduction rules of
NJ.1 Humberstone [5, Theorem 4.13.3] proved soundness and completeness
of the positive intuitionistic fragment NJ∧,∨ with respect to the second grade
justification procedure.

Third grade proof-theoretic justifications are introduced to deal with dis-
charged hypotheses [1, p. 259–260]. In particular, third grade justifications
are mandatory whenever the given set of introduction rules contains ⊃I.
Third grade justifications are our main focus.

According to the standard proof-theoretic view, for a complete semantic
specification, besides inference rules governing the assertability of complex
sentences, criteria for the assertability of atomic sentences are also required.
These criteria are given by bases. Each rule in a basis enables the inference
of atomic sentences from other atomic sentences [1, p. 254]. These rules are
also called boundary rules. As in Prawitz [7], the literature usually treats
basic rules as rules of the following form, where α1, . . . , αn and β are atomic
sentences, n ≥ 0:

α1 . . . αn

β

The form of basic rules and the rôle they play in proof-theoretic semantics
has recently been discussed [14] [6]. Since they have an important impact
on proof-theoretic definitions of validity, Section 4 contains a more detailed
examination of basic rules in the context of Dummett’s verificationist justi-
fication procedure.

1The formulation of an introduction rule for ⊥ is not necessary for our purposes.
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Following intuitionistic standards fixed by Heyting [4, p. 101], Dummett
[1, p. 255–256] first considers deductive arguments composed of actual sen-
tences. His definitions apply directly to concrete arguments instead of ar-
gument schemata. As a result, validity for schematic arguments (e. g. an
inference rule schema) becomes defined only after validity for concrete argu-
ments is established. Since we are focusing on propositional logic, we omit
considerations concerning quantification and open sentences.

Although Dummett [1, p. 64] demands an argument to be an actual com-
plete deduction composed of sentences, he claims that his definition “takes
no overt account of more than the initial premisses and final conclusion of
the argument” [1, p. 264]. This is important because the definition of validity
is supposed to be given inductively and, if other sentences in the argument
were regarded as relevant, the definition might not be well-founded. In other
words, despite being applicable directly to arguments, the verificationist con-
cept of validity can also be understood as a general procedure capable of
validating one-step argument schemata (or inference rules) given a set of in-
troduction rules. Therefore, following Dummett, the concept of argument is
used ambiguously either to refer to a tree of inferences (represented by Π)
or to n-tuples 〈A1, . . . , An−1, An〉, n ≥ 1, in which An is the conclusion of Π
and A1, . . . , An−1 are the open top occurrences or premisses of Π. As said
before, the n-uples are going to be represented as 〈Γ, A〉.

3 Verificationist Validity

The following definitions are adapted from Dummett’s for the case of propo-
sitional logic.2

Definition 3.0. A sentence occurrence is in the main stem of an argument
Π if every sentence intervening between it and the conclusion of Π (inclusive)
depends only on the open top occurrences of Π. Moreover, a sentence occur-
rence that is not in the main stem and lies immediately above another one
belonging to the main stem is the final conclusion of a critical subargument
[1, p. 260].

The purpose of the concept of main stem is to keep track of discharged
hypotheses as we move up from the conclusion of the argument towards

2Definitions are going to be numbered x.y, where x indicates the section and y indicates
the position inside the section. The numbering system is intended to make a parallelism
between the various definitions and characterizations. For instance, Characterization 3.1,
Definition 6.1 and Definition 7.1, where y = 1, all deal with the notion of canonical
argument.
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top occurrences. Meanwhile, examining each of the possible branches in
turn, we identify subarguments whose conclusion depend on additional open
top occurrences. Notice that an application of ⊃I might not discharge any
hypothesis. Thus, whether or not the occurrence of B immediately above
A⊃B is in the main stem depends on whether some hypotheses were actually
discharged by the application of ⊃I.

Example 3.1. In the following argument, only the conclusion (B∧C)⊃(A∧B)
is in the main stem. The subtree until that point is a critical subargument.3

A

[B ∧ C]

B
A ∧B

(B ∧ C)⊃ (A ∧B)

The next characterizations involve the notion of canonical argument and
are essential to the whole proof-theoretic justification procedure. As we re-
marked (Section 2.2), the verificationist procedure aims to justify logical laws
based on a given set of introduction rules. However, Dummett’s formulation
of the notion of canonical argument also mentions basic rules, but he is not
explicit about them. Thus, as they stand, these formulations are not precise
enough. Nevertheless, they do provide the general framework of the justifica-
tion procedure even if they should be regarded as provisional. In Section 4,
we discuss the rôle played by basic rules and provide two possible ways for
interpreting the reference to basic rules in the characterization of canonical
arguments.

Provisional Characterization 3.1. An argument is canonical if the following
three conditions hold [1, p. 260]:

(i) all its open top occurrences are atomic sentences;

(ii) every atomic sentence in the main stem is either an open top occurrence
or is derived by a basic rule;

(iii) every complex sentence in the main stem is derived by means of one of
the introduction rules.

Provisional Characterization 3.2. A supplementation of a given argument
is the argument resulting from the addition of a valid canonical argument

3When discussing this example, Dummett [1, p. 263] doesn’t follow his own definition.
He claims that both the premiss A and the final conclusion (B ∧ C)⊃ (A ∧B) are in the
main stem. However, since the sentence A ∧B (which depends on the hypotheses B ∧C)
occurs in the path from A to the conclusion, A is not, after all, in the main stem. This
causes no further difficulties for understanding his definitions.
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for each complex open top occurrence [1, p. 255,261]. The valid canonical
arguments added will here be referred to as supplements.

Notice that the open top occurrences of the supplementation are exactly
those of the supplements plus any open atomic top occurrences already in
the original argument. In addition, since the supplements are valid canonical
arguments, the notion of a supplementation becomes completely clear only
after the characterization of valid canonical arguments.

Example 3.2. For the following inference rule.

B ∨ C
(A⊃B) ∨ (A⊃ C)

any supplementations will take one of the forms below, where α1, . . . , αn and
β1, . . . , βm are open atomic top occurrences.

α1, . . . , αn

Π1

B
B ∨ C

(A⊃B) ∨ (A⊃ C)

β1, . . . , βm
Π2

C
B ∨ C

(A⊃B) ∨ (A⊃ C)

Provisional Characterization 3.3. An argument is valid if we can effectively
transform any supplementation of it into a valid canonical argument with
the same open top occurrences and same conclusion of the supplementation.
Furthermore, a canonical argument is valid if all its critical subarguments
are valid [1, p. 261].4

Characterization 3.3 shows us that transformations of supplementations
are the main element in the verificationist justification procedure. The fact
that supplementations should be obtained by adding valid canonical argu-
ments for complex open top occurrences indicates Dummett’s partial adher-
ence to the substitutional point of view concerning open arguments.5 His
commitment to the substitutional point of view is not complete because he
allows canonical arguments to contain atomic open top occurrences. As an
immediate consequence, for every sentence A, there is a canonical argument

4We do not consider instances as in Dummett’s original formulation because they are
only relevant for predicate logic.

5According to the substitutional point of view, hypothetical arguments, i. e. arguments
with open assumptions, should be explained in terms of closed arguments by transforming
canonical closed arguments for the open assumptions into canonical closed arguments for
the conclusion [15, Section 2.2].

8



for A, built from atomic sentences occurring in A by a series of introduction
rules.6

As emphasized by Characterization 3.3, transformations should be effec-
tive. Dummett does not explicitly elucidate what kinds of transformations
are admitted. But, considering that Heyting’s BHK clause for the assertion
of an implication requires the possession of a construction transforming any
construction of the antecedent into a construction of the succedent [4, p. 102],
it seems reasonable to assume that Dummett had a similar idea in mind.7

Summarizing, an argument should be considered valid when any list of
canonical arguments for its complex open top occurrences can be transformed
into a canonical argument for the conclusion depending, at most, on atomic
open top occurrences already appearing in the original argument or in the
supplements.

4 Verificationist validity and basic rules

Characterization 3.1 is the only place where explicit reference to basic rules is
made. However, because of their interconnection, the other characterizations
that follow also depend on bases. As a result, the concept of verificationist
validity can not be properly and unambiguously understood without a careful
examination of the rôle played by basic rules. Dummett himself does not
offer a detailed discussion of basic rules. His book contains what seem to be
conflicting ideas and intuitions on the matter.

4.1 Bases and canonical arguments

The characterizations in Section 3 may be regarded as relative to a previously
fixed basis B. In this case, the phrase “in a given basis B” should be added to
clause (ii) of Characterization 3.1. Consequently, any reference to canonicity
should be understood with respect to such a given basis B. Notice, for
instance, that supplementations should be given in B because supplements
are canonical arguments.

This interpretation makes the concept of validity dependent on the basis B
under consideration. For this reason, we call it the dependent interpretation.
In a discussion of justification procedures of the second grade, Dummett [1,
p. 254] seems to assume the dependent interpretation:

6As a limiting case, we have canonical arguments for atomic sentences by an empty
series of introduction rules.

7Among the transformations that Dummett had envisaged, we think that reduction
steps of roundabouts would be included.
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We assume that we are given certain rules of inference, which we
recognize as valid, for deriving atomic sentences from one or more
other atomic sentences; we may call these ‘boundary rules’. We
now define a ‘canonical argument’ to be one in which no initial
premiss is a complex sentence (no complex sentence stands at a
topmost node) and in which all the transitions are in accordance
either with one of the boundary rules [. . . ]

Of course, Dummett’s primary concern is with the justification of logical
laws and it is reasonable to expect that the validity of logical laws should not
depend on particular features of bases. Dummett [1, p. 273, our emphasis]
says:

We originally admitted, as occurring within deductive proofs of
the kind with which we are concerned, boundary rules allow-
ing the inference of an atomic conclusion from atomic premisses:
these were, of necessity, left unspecified. Our original intention
was that the boundary rules should be deductively valid. If we
now include among them principles of non-deductive (and there-
fore fallible) inference, this will have the effect that a ‘valid’ ar-
gument, even if canonical, may have true initial premisses but
a false final conclusion. It will obviously not affect the justifica-
tion procedure, however, as a means of determining the validity
of logical laws.8

Two distinct conclusions can be drawn from this passage.
First, in order to define logical validity under the dependent interpreta-

tion, some kind of generalization with respect to bases is required. The issue
is going to be explored in Section 7.

Second, contrary to dependent interpretation, it might well be the case
that we should merely consider what is the general form of a basic rule. It
would not even matter if the basic rules considered are deductively correct
or not. A basic rule is not recognized as such because it belongs to a basis.
It is recognized as basic because it has a certain general form. Hence, the
reference to basic rules in the item (ii) of Characterization 3.1 could be
interpreted as standing for a generic formulation for rules of basic form. The
characterization could thus become independent of any particular basis. We
call this approach the independent interpretation. It is consistent with the
last quotation. In Section 6, the independent interpretation is developed into

8This quotation is extracted from a later chapter, after Dummett had already presented
his verificationist justification procedure.
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a notion of validability which is then straightforwardly used to define logical
validity. Logical principles justified in accordance with it do not depend on
any specific set of basic rules.

4.2 The general form of basic rules

An important question regarding the general form of basic rules is whether
or not they should be allowed to discharge hypotheses. In his first attempt to
define a proof-theoretic notion of validity, Prawitz [7] considered the validity
of atomic sentences by means of so-called production rules, i. e. basic rules
that do not discharge hypotheses. Since then, the standard proof-theoretic
approach is to use a system of production rules in order to give the asserta-
bility conditions for atomic sentences.

Sanz et al. [14, §,5.1] observe that using basic rules discharging hypothe-
ses is a means to avoid proof-theoretical validation of classical laws in the
implicational fragment. Moreover, Sandqvist [13] proposes a proof-theoretic
semantics with basic rules discharging hypotheses and proves completeness
of propositional intuitionistic logic with respect to it. However, Piecha et al.
[6, §,7] raised some objections to basic rules discharging hypotheses. They
claim that to allow discharge of atomic open assumptions in basic rules is
equivalent to admitting ⊃ in premisses of basic rules, which will not then
look basic. For example, if α and β are atomic, then there is a basic rule
equivalent to α, α⊃ β ` β.

For his part, Dummett [1, p. 255] partially suggests how to think basic
rules:

The need to allow for the application of boundary rules is not as
yet apparent but evidently can do no harm: they might be rules
governing either non-logical expressions or logical constants not
in the given set.

From the quotation, it is not clear if discharge of assumptions can be used
in basic rules, but the way seems to be open for it. Nevertheless, Dummett [1,
p. 261] seems to tacitly assume that basic rules are production rules. When
arguing for the non-circularity of the definition of validity, he assumes that
critical subarguments only occur in arguments for complex conclusions:

It is important to notice that a sentence A standing immediately
below the conclusion C of a critical subargument of a canoni-
cal argument must be of higher logical complexity than either
the conclusion or the premisses of that subargument. This holds
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good of C because A, being a closed sentence in the main stem,
must be derived by an application of one of the introduction rules,
of which C must accordingly be one of the premisses; by the com-
plexity condition on the introduction rules, A must be of higher
logical complexity than any of its premisses. The premisses of
the subargument must either be initial premisses of the entire
argument, in which case they are atomic, or be hypotheses dis-
charged by the introduction rule, in which case they must again
be of lower logical complexity than A.

Notice that, if basic rules are allowed to discharge hypotheses, basic ar-
guments (that is, arguments containing only basic rules) may have critical
subarguments. In this case, the non-circularity of Dummett’s notion of valid
argument becomes problematic. We do not examine this problem here be-
cause, for the sake of our arguments, it suffices to consider bases without
discharge. However, a great deal of the results below do not depend on the
issue of allowing, or not, discharge in basic rules. When this is not so, we
make explicit mention of it.

Dummett [1, p. 254, our emphasis] seems to work with a restricted notion
of basic rules: they are used “for deriving atomic sentences from one or more
other atomic sentences”. The restricted notion is sufficient because canonical
arguments for atomic sentences can be easily obtained by assumption (see
Section 3, in particular item (i) of Characterization 3.1). To allow atomic
axioms, however, can do no harm. Here, we work with the general notion of
basic rules where the set of premisses can be empty.

5 Completeness of intuitionistic logic

We remarked in Section 2.2 that Dummett’s definition apply directly to con-
crete arguments and, consequently, that validity is primarily a property of
concrete arguments, i. e. arguments composed of actual sentences as op-
posed to schematic letters. In contrast with basic rules, the inference rules
of NJ are schematic, which means that deducibility in NJ is preserved over
any uniform substitution of the sentences. Validity, however, is not defined
schematically. As a result, two different notions of completeness can be dis-
tinguished. Piecha et al. [6] discusses both notions. We adopt the distinction,
but we do not use the same terms.

Definition 5.1. A deductive system is complete, or simply complete, when,
for any set of sentences Γ and any sentence A, if 〈Γ, A〉 is valid (Γ |= A) then
〈Γ, A〉 is deducible (Γ ` A). Furthermore, a deductive system is structurally
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complete when, for all formulas Γ and A, if all sentential instances Γ′, A′ (of
Γ, A) are valid (Γ′ |= A′), then 〈Γ, A〉 is deducible (Γ ` A).

Piecha et al. [6] showed that, for a constructivist semantics monotonic
over basis extensions, propositional intuitionistic logic is neither complete
nor structurally complete if basic rules are allowed to discharge atomic rules.
However, as we shall see in Section 7, Dummett’s verificationist procedure
has its own idiosyncrasies. In particular, monotonicity over basis extensions
does not hold (Corollary 7.2).9

Definition 5.2. We say that a verificationist notion of logical validity is
normal if it has the following two properties:

(i) it validates (justifies) the standard elimination rules with respect to its
corresponding introduction rules;

(ii) every argument obtained by composition of valid inferences is also valid.

Normal proof-theoretic notions of logical validity satisfy the transitivity
of the consequence relation (as defined trough the validity of inferences) and
fullfill Gentzen’s insight to the effect that the elimination rules are, in some
sense, consequences of the introduction rules. It is clear that any adequate
proof-theoretic definition of logical validity based on introduction rules must
be normal.

6 Independent interpretation

In the independent interpretation, basic rules are recognized by their gen-
eral form. However, a restriction must be imposed on the transformations
described in Characterization 3.3: they can not add new basic rules. The
rationale is that, whatever basic rules appear in the supplements, a trans-
formation should not use more than those rules in order to construct the
canonical argument for the conclusion. The restriction is similar to the one
Dummett already imposes on open top occurrences.

By adopting the independent interpretation, validity of basic arguments
may be left unspecified. The notion characterized under the independent
interpretation is going to be called validability, instead of validity. We write
the definitions accordingly.

Definition 6.1. In the context of the independent interpretation, an argu-
ment is I-canonical, if the following three conditions hold:

9This remark refers to the dependent interpretation.
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(i) all its open top occurrences are atomic sentences;

(ii) every atomic sentence in the main stem is either an open top occurrence
or is derived by a rule of form

α1 . . . αn

β

where α1, . . . , αn and β are atomic sentences and α1, . . . , αn can be
empty; we call every application of a rule of this form an application
of a basic rule;

(iii) every complex sentence in the main stem is derived by means of one of
the introduction rules.

Lemma 6.1. I-canonical arguments have the following properties.

1. I-canonical arguments may have atomic open top occurrences;

2. I-canonical arguments whose conclusion are atomic sentences proceed
only by basic rules from atomic top occurrences, if any;

3. I-canonical arguments always have an introduction rule as its last step
when the conclusion is a complex sentence.

Proof. Each item follows from the corresponding item in Definition 6.1.

Definition 6.2. An I-supplementation of a given argument is the argument
resulting from the addition of a validable I-canonical argument for each com-
plex open top occurrence. The validable I-canonical arguments added will
here be referred to as I-supplements.

Definition 6.3. An argument is validable if we can effectively transform any
I-supplementation (with any kind of basic rules) into a validable I-canonical
argument for the conclusion containing no additional open top occurrences
and no additional basic rules. Furthermore, an I-canonical argument is val-
idable if all its critical subarguments are validable.

All four definitions are interconnected. In particular, Definition 6.2 and
Definition 6.3 simultaneously define the concepts of I-supplementation, valid-
able I-canonical argument and validable argument. As a result, a double in-
duction is involved. This fact might raise doubts concerning well-foundedness
of the notion of validability.

Definition 6.4. The degree of an argument 〈Γ, A〉 is the maximum of the
degrees of the sentences in Γ and the conclusion A.
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Theorem 6.1. The definition of validable argument is well-founded.10

Proof. Let 〈Γ, A〉 be an argument of degree n. First, we work the case for
n > 0. If 〈Γ, A〉 is a I-canonical argument, then its validability depends
only on the validability of its critical subarguments, which, by Definition 6.3,
are all of lower degree.11 If 〈Γ, A〉 is not I-canonical, then, according to the
same definition, in order to judge its validability, we have to consider trans-
formations of I-supplements for the sentences in Γ into validable I-canonical
arguments for A. By definition, all these I-canonical arguments are of de-
gree n, at most. That is, validability for I-canonical arguments of degree n
has to be defined beforehand, which is indeed the case. Now, if 〈Γ, A〉 is of
degree n = 0 and it is not I-canonical, then its validability depends on the
validability of I-canonical arguments of degree, at most, n = 0. By item (ii)
of Lemma 6.1 and Definition 6.3, all I-canonical arguments of degree n = 0
are validable.

Definition 6.5. An argument is logically valid under the independent inter-
pretation (LI-valid) when it is validable and it contains no applications of
basic rules.

Definition 6.6. An argument is valid in a basis B under the independent
interpretation when it is validable and all the basic rules used in the argument
belong to B.

Theorem 6.2. Let ϕ and ψ be atomic sentences. Then atomic Peirce’s rule

(ϕ⊃ ψ)⊃ ϕ
ϕ

is LI-valid.

Proof. We show that any I-supplementation can be effectively transformed
into a validable I-canonical argument for ϕ depending on the same premisses
and no additional basic rule. Suppose Π1 is an I-supplementation depend-
ing on top occurrences α1, . . . , αn as specified by Definition 6.2. Thus, the
penultimate step in Π1 is an application of ⊃I as shown below.

α1, . . . , αn

Π2
ϕ

(ϕ⊃ ψ)⊃ ϕ
ϕ (Π1)

10Our proof is essentially the same one given by Dummett [1, p. 263].
11Here, we assume that the introduction rules comply with a complexity condition, as

formulated by Dummett [1, p. 258]. The introduction rules of NJ are examples of such
rules.
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There are two possibilities: either (1) the penultimate occurrence of ϕ is in
the main stem and we already have a validable I-canonical argument for ϕ
from the same open top occurrences, by item (ii) of Definition 6.1, or (2) ϕ
is not in the main stem and we have a critical subargument Π2 with ϕ as
conclusion (by Definition 3.0). In case (2), ϕ depends on additional open top
occurrences, besides α1, . . . , αn (again, by Definition 3.0). Considering that
these top occurrences were later discharged by an application of ⊃I whose
conclusion is (ϕ⊃ ψ)⊃ ϕ, then they can only be of the form ϕ⊃ ψ.

ϕ⊃ ψ, α1, . . . , αn

Π2
ϕ

By Definition 6.3, the critical subargument Π2 is a validable argument. From
the validability of Π2, we show how to obtain a validable I-canonical argument
for ϕ from atomic open top occurrences α1, . . . , αn and no additional basic
rules. Because Π2 is validable, we have a procedure to effectively transform
any I-supplementation Π3 into a validable I-canonical argument for ϕ from
open top occurrences α1, . . . , αn,β1, . . . , βm.

β1, . . . , βm
Π4

ψ

ϕ⊃ ψ, α1, . . . , αn

Π2
ϕ (Π3)

In particular, consider the following I-supplementation obtained by substitu-
tion of I-supplements for the open occurrences of ϕ⊃ ψ.

[ϕ]

ψ

ϕ⊃ ψ, α1, . . . , αn

Π2
ϕ (Π3ϕ/ψ)

This I-supplementation (containing ϕ/ψ as additional rule) is then trans-
formed into a validable I-canonical argument Π7 from open top occurrences
α1, . . . , αn only. By Lemma 6.1, this validable I-canonical argument proceeds
solely by basic rules. Examining Π7, if the rule ϕ/ψ is not used, then we have
in fact a validable I-canonical argument from open top occurrences α1, . . . , αn

without additional rules and our proof is complete. Otherwise, if the rule is
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used, we take its first application as depicted below.

α1, . . . , αn

Π5
ϕ

ψ
Π6
ϕ (Π7)

Since the rule ϕ/ψ does not occur in the subargument Π5, we obtain the re-
quired valid I-canonical argument for ϕ from open top occurrences α1, . . . , αn

and no additional basic rules. Finally, given that Peirce’s rule is a one-step
argument and contains no application of basic rules, by Definition 6.5, its
validability implies its LI-validity.12

Corollary 6.1. NJ is not complete under the independent interpretation.

Once all atomic instances of Peirce’s rule are shown to be valid, it is
possible to generalize the result for a fragment of the language without dis-
junction. This fragment is powerful enough to account for all valid proposi-
tional classical reasonings (with the other constants being defined in terms
of implication, conjunction, and negation). Thus, Theorem 6.3 below cer-
tainly frustrates the expectation that proof-theoretic validity, as defined by
Dummett, provides justification only for constructive reasonings.

Theorem 6.3. Let A and B be any sentences. If LI-validity is a normal
notion of logical validity, then Peirce’s rule

(A⊃B)⊃ A
A

is LI-valid in the fragment {⊃, ∧, ⊥}.
Proof. First, by induction on the degree of B, using Theorem 6.2. We only
show the case for ∧, where B = D ∧ E. The case for ⊃ is analogous.

(A⊃ (D ∧ E))⊃ A

[A⊃D](2) [A](3)

D

[A⊃ E](1) [A](3)

E
D ∧ E

A⊃ (D ∧ E)
(3)

A
(A⊃D)⊃ A

(2)

A
Peirce’s rule

(A⊃ E)⊃ A
(1)

A
Peirce’s rule

12The proof depends on the restriction to basic rules without discharge. In particular,
it depends on the absence of discharges among the rules in Π6. We thank an anonymous
referee for pointing this out.
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Next, we apply induction on the degree of A. We show the case for ⊃, where
A = D ⊃ E. Again, the other cases are similar.

((D ⊃ E)⊃B)⊃ (D ⊃ E)

[E ⊃B](2)
[D ⊃ E](3) [D](1)

E

B
(D ⊃ E)⊃B

(3)

D ⊃ E [D](1)

E
(E ⊃B)⊃ E

(2)

E
Peirce’s rule

D ⊃ E
(1)

Corollary 6.2. NJ⊃,∧,⊥ is not structurally complete under the independent
interpretation, if LI-validity is a normal notion.

For a last remark concerning the independent interpretation, consider
what would happen if I-canonical arguments were restricted to be closed
instead of allowing atomic open top occurrences. Such a definition would
be fully substitutional, that is, a valid argument would transform closed
arguments of the premisses into a closed argument of the conclusion. As a
consequence, for some sentences there may be no closed argument in a given
basis B but only in extensions of B. As can be easily verified, Theorem 6.2
still holds when there are no open top occurrences α1, . . . , αn,β1, . . . , βm, if
bases are still assumed to be given by rules with no discharge.

7 Dependent interpretation

Under the dependent interpretation, the primary notion of validity becomes
relative to a fixed basis B. In other words, the supplementation of arguments
and the valid canonical arguments are all given in a fixed basis B. We give
definitions that correspond to the characterizations in Section 3, making
explicit reference to a basis B.

Definition 7.1. An argument is canonical in B if the following three condi-
tions hold:

(i) all its open top occurrences are atomic sentences;

(ii) every atomic sentence in the main stem is either an open top occurrence
or is derived by a rule in B;
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(iii) every complex sentence in the main stem is derived by means of one of
the introduction rules.

Lemma 7.1. Canonical arguments have the following properties.

1. Canonical arguments may have atomic open top occurrences;

2. Canonical arguments in B whose conclusion are atomic sentences pro-
ceed only by rules in B from atomic top occurrences, if any;

3. Canonical arguments always have an introduction rule as its last step
when the conclusion is a complex sentence.

Proof. Each item follows from the corresponding item in Definition 7.1.

Definition 7.2. A supplementation in B of an argument is the argument
resulting from the addition of a valid canonical argument in B for each com-
plex open top occurrence. The valid canonical arguments added will here be
referred to as supplements.

Definition 7.3. An argument is valid in a basis B if we can effectively
transform any supplementation of it in B into a valid canonical argument
in B with the same open top occurrences and the same conclusion of the
supplementation. Furthermore, a canonical argument is valid in B if all its
critical subarguments are valid in B.

Theorem 7.1. The definition of valid argument in B is well-founded.

Proof. Similar to that of Theorem 6.1. For the dependent interpretation with
its notion of validity in B, the validity of canonical arguments of degree n = 0
are completely determined by the basis B.

Two distinct ways for defining logical validity under the dependent inter-
pretation might be considered. Either logical validity is defined as validity
in the empty basis or, instead, it is defined as validity in all bases. These
two alternatives are different. As Dummett [1, p. 273] points out, the notion
of logical validity has to maintain a certain independence of bases and basic
rules, which then makes it natural to consider the case of the empty basis.
However, against what might be expected, logical validity defined as validity
in the empty basis raises problems.

Theorem 7.2. Let ϕ and ψ be distinct atomic sentences. The argument

ϕ⊃ ψ
ψ (1)

is valid in B = ∅.
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Proof. By Definition 7.3, (1) is valid if any supplementation of ϕ⊃ψ can be
transformed into a valid canonical argument for ψ depending on the same
open top occurrences. If B = ∅, every possible supplementation involves the
assumption of ψ. Among them, the simplest one is:

ψ

ϕ⊃ ψ
ψ

By Definition 7.1, the assumption ψ alone is a valid canonical argument.

Corollary 7.1. For ϕ and ψ distinct atomic sentences, (ϕ⊃ψ)⊃ψ is valid
in the empty basis.

Notice that (ϕ ⊃ ψ) ⊃ ψ is not classically valid. Curiously, intuitionistic
logic would be structurally complete if logical validity were defined as validity
in the empty basis because Corollary 7.1 cannot be generalized for any two
sentences. However, it seems intuitively impossible to justify the fact that
(0 = 1⊃ 1 = 2)⊃ 1 = 2 would have to be logically valid.

Apparently, we are obliged to consider logical validity under the depen-
dent interpretation as validity in all bases. As a consequence, argument (1)
becomes logically invalid.

Definition 7.4. A basis C extends a basis B whenever all basic rules belong-
ing to B also belong to C. It is clear that the set of all bases constitutes a
lattice by this relation of extension.

Corollary 7.2. Validity of arguments is not preserved by basis extension.13

Proof. According to Theorem 7.2, 〈ϕ ⊃ ψ, ψ〉 is valid in the empty basis
when ϕ and ψ are distinct atomic sentences. Clearly, it is not valid in the
immediate extension of the empty basis containing ϕ/ψ.

Now, the only way to establish logical validity of a rule schema requires
the construction of a general procedure showing how to validate every sub-
stitutional instance in every basis. This seems to be in accordance with the
constructivist point of view. On the other hand, the invalidity of an inference
schema can be established by a counterexample, i. e., an invalid instance over
a specific basis.

Definition 7.5. An argument is logically valid under the dependent inter-
pretation (LD-valid) if it is valid in all bases.

13This result is due to Goldfarb [3].
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Example 7.1. If LD-validity is a normal notion (see Definition 5.2), the fol-
lowing rule schema

A⊃ (B ⊃ C)

(A⊃B)⊃ (A⊃ C)

is LD-valid. A canonical argument for the premiss in any basis B, i. e., a
supplement, is such that its immediate subargument Π1 shows that 〈A,B⊃C〉
is valid in B. The following argument must be a valid canonical argument,
as required:

[A](1) [A⊃B](2)

B

[A](1)

Π1

B ⊃ C
C

A⊃ C
(1)

(A⊃B)⊃ (A⊃ C)
(2)

At first sight, it may seem strange that validity is not preserved under
basis extension (Corollary 7.2). One common interpretation is that a basis
represents a state of knowledge. Monotonicity of validity over basis extension
would, then, represent stability of validity when knowledge is expanded. His-
torically, a technical reason for considering stability over basis extension was
the intent to avoid vacuous validation of implications [7, §A.1] which would
then validate negations of any non-valid sentence. We think that Dummett
was trying to solve this problem when he admitted atomic open assumptions
in canonical arguments.

Although unusual, non-monotonicity of validity over basis extensions en-
ables us to show invalidity for some non-intuitionistic rule schemata.

Example 7.2. Peirce’s rule is not valid in basis B = {ψ/ϕ}. There is no way
of transforming the following valid canonical argument into a valid canoni-
cal argument for ϕ depending on the same (empty) set of open atomic top
occurrences:

[ϕ⊃ ψ]

ψ
valid in B

ϕ

(ϕ⊃ ψ)⊃ ϕ

As pointed out, Dummett’s verificationist procedure corresponds only
partially to the intuitionistic background settled by Heyting because canoni-
cal arguments admit open atomic top occurrences. Therefore, the concept of
canonical argument does not correspond to the concept of a categorical proof.
Consequently, hypothetical proofs are not reduced to categorical proofs. In-
stead, the verificationist procedure achieves, at best, a reduction of the gen-
eral concept of hypothesis to the concept of atomic hypothesis. Futhermore,
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the fact that, for any two atomic sentences ϕ and ψ, (ϕ⊃ψ)⊃ψ is validated
in all bases in which ψ is not derivable from ϕ, does lack a constructivist
defense. The problem here seems to be located in the definition of canonical
arguments with open atomic top occurrences.

We do not claim that Dummett’s intention was to reduce the general
concept of hypothesis to the concept of atomic hypothesis. It seems more
plausible that, trying to solve the problem of vacuous validation of implica-
tions, he adopted a concept of construction that seems somehow immanent
to constructivism: Introduction rules are the canonical means used for con-
structing complex sentences starting from atomic sentences. In other words,
there is at least one way to construct a sentence starting with its component
atomic sentences.

In addition to the idiosyncrasies already discussed, other problems can
be found in the dependent interpretation.

Theorem 7.3. For any atomic ϕ,

ϕ⊃ (B ∨ C)

(ϕ⊃B) ∨ (ϕ⊃ C)

is LD-valid.

Proof. A supplementation of ϕ⊃ (B ∨C) from assumptions α1, . . . , αn, with
B ∨ C not in the main stem,14 requires the critical subargument Π1 to be
valid in a basis B, by Definition 7.2.

ϕ, α1, . . . , αn

Π1

B ∨ C

Since all assumptions are atomic, we obtain a canonical argument for B ∨
C depending solely on ϕ and α1, . . . , αn. The last step on this canonical
argument is ∨I from either B or C. In both cases, we obtain a canonical
argument for (ϕ⊃B) ∨ (ϕ⊃ C) in basis B.

Corollary 7.3. NJ is not complete under the dependent interpretation.

If the definition of canonical argument were changed in order to eliminate
open atomic top occurrences, then, in every non-trivial basis, there would be
no valid canonical argument for some sentences. As a result, when there is no
canonical argument for A in basis B, 〈A,B〉 becomes valid in B, irrespective
of B. As can be easily verified, Theorem 7.3 still holds.

14The case with B ∨ C in the main stem is trivial.
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8 Concluding Remarks

The definition of validity based on introduction rules proposed by Dummett
[1] has noteworthy differences from other proof-theoretic definitions in the
literature. For instance, Dummett’s verificationist procedure accepts atomic
top occurrences of sentences to remain open in valid canonical arguments.
His characterizations, however, are not precise enough when it comes to the
rôle played by basic rules.

Based on some passages from his work, we proposed two interpretations of
Dummett’s verificationist justification procedure with respect to bases. We
argued that, no matter what interpretation we choose, dependent or indepen-
dent, and no matter what definition of canonical argument we choose, closed
or with open atomic assumptions, the verificationist justification procedure
is not adequate as a semantics for propositional intuitionistic logic.

In particular, we showed (Corollary 6.2) that, according to a plausi-
ble interpretation of Dummett’s procedure, the independent interpretation,
Peirce’s rule is valid. Unlike Sandqvist [12], we established the validity of
classical logic under an interpretation of Dummett’s own semantic charac-
terizations. Thus, if the interpretation we proposed in Section 6 is accepted,
Theorem 6.3 frustrates the expectation, expressed by Dummett [1, p. 270]
himself, that proof-theoretic validity provides justification only for construc-
tive reasonings.

In Section 7, we advanced a dependent interpretation. The dependent
notion of validity has the interesting and surprising property that it is not
conservative over extensions of bases (Corollary 7.2). We saw that the best
approach to obtain logical validity under the dependent interpretation was to
define it as validity in all bases. We also showed the invalidity of Peirce’s rule
by means of a counterexample in a specific basis. Finally, with Theorem 7.3,
we established that propositional intuitionistic logic is not complete even
under the dependent interpretation.

The dependent interpretation could still be defended as adequate by the
adoption of a more permissive notion of completness: structural completness.
However, from the point of view of structural completeness, the question of
which definition of logical validity to adopt arises: validity in all bases or
validity in the empty basis? They are not equivalent.
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