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Communication facilitates coordination, but coordination might fail if there’s too much uncertainty.

I discuss a scenario in which vagueness-driven uncertainty undermines the possibility of publicly

sharing a belief. I then show that asserting an epistemic modal sentence, ‘Might φ ’, can reveal

the speaker’s uncertainty, and that this may improve the chances of coordination despite the lack

of a common epistemic ground. This provides a game-theoretic rationale for epistemic modality.

The account draws on a standard relational semantics for epistemic modality, Stalnaker’s theory of

assertion as informative update, and a Bayesian framework for reasoning under uncertainty.

Shiv and Logan want to spend time together over the coming weekend. They prefer to go to the beach if

it will be sunny and to a café if it will be raining, but they will only go to either place if the other goes.

Their predicament is the familiar one of a coordination problem [19]. In a variant known as the signalling

game, Shiv and Logan coordinate by sending a signal, i.e. an utterance that reveals information that is

initially available to only one of the players [23, 8, 27, 24].

It’s relatively well-understood how Shiv and Logan coordinate if the relevant information (it will

be sunny, it will be raining) is public. Roughly, q is public information within a group just in case all

members of the group believe that q, all believe that all believe that q, all believe that all believe that all

believe that q, and so on. Sometimes, however, a belief may fail to be public. For example: Shiv thinks

that it will be raining, but she’s not very confident, and indeed she expects that, reasonably, Logan thinks

that it will be sunny. In this case Shiv does not believe that she and Logan share the belief that it will

be raining. The belief fails to be public. Is there still a way for Shiv and Logan to coordinate for the

weekend, despite the uncertainty?

In this paper, I provide a rational reconstruction of the use of epistemic modals in a signalling game.

I will present a game-theoretic rationale for epistemic possibility talk: revealing one’s uncertainty to

the interlocutors can improve one’s expected utility despite lack of public information. I will employ a

general Bayesian framework for reasoning under uncertainty [12, 11, 14, 18]. The model will show that,

in conditions of uncertainty specified below, rational agents can improve their chances of coordination

by means of sentences that make an epistemic hedge.

My focus is on sentences of the form ‘Might φ ’, where an epistemic possibility operator takes wide

scope. Epistemic possibility modal auxiliaries and adverbs, and expressions of close kin (might, perhaps,

maybe, possibly, probably) are natural resources to employ in case coordination is challenged by the lack

of an epistemic common ground. If Shiv uttered (1) in the story above, for example, she would be

naturally understood as suggesting to go to a café for the weekend—almost as if she simply asserted that

it will be raining, while at the same time hedging that assertion.

1. It might be raining.
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(a) Let’s stay in.

(b) Let’s go out.

In her context, it is very natural for Shiv to continue (1) as in (1a), much less natural (and not even so

coherent) to continue as in (1b). Therefore, even if the speaker is not in a position to outright assert

that it will rain, the interlocutors might still coordinate on going to a café by means of something less

committal than that assertion.

1 Failures of Coordination

A game is a set of players I, and sets of actions xi and utility functions ui for each player i in I. In a

coordination game between two players, each having two actions, a and b, the players’ utility functions

are summarized in Table 1. Shiv (the Column player S) prefers to stay in, a, if Logan (the Row player L)

stays in, and prefers to go out, b, if Logan goes out. Same for Logan.

S

a b

L
a 1,1 0,0
b 0,0 1,1

Table 1: Coordination Game

This particular assignment of preferences makes the agents indifferent as to whether they stay in or

go out so long as each does what the other does. How do they coordinate? Either could commit to an

action, and then inform the other about their commitment. But if they are indeed indifferent, they might

as well toss a (fair) coin, and resolve to stay in if and only if it lands heads. Suppose furthermore that

only one of them, S, can see the coin: she will then report to L the outcome of the coin toss by sending a

signal (‘It’s tails!’). Coordination is then easily achieved [23, 27].

Shiv and Logan can coordinate by “pivoting” on the weekend being rainy, rather than the coin landing

tails, as well as on any other proposition. Let q and q̄ be two mutually exclusive propositions. The agents

mutually know that they prefer a if q and b if q̄. If Shiv believes that q, she may signal so, and thereby

share her belief with Logan. Neither Shiv nor Logan has reason to deceive the other, since either receives

a positive payoff just in case the other does (as shown in Table 1). Therefore, once a belief is shared by

signalling, it typically becomes public: both believe it, both believe that both believe it, and so on. In a

coordination game, if q is public between Shiv and Logan, the rational (i.e. utility maximizing) choice

for both is a.1

The crucial idea is that signalling turns a belief into public belief. Sometimes, however, beliefs fail

to be public. This may be for a number of reasons. In more accidental cases, people are distracted,

uncurious, or unintelligent. The impasse here is “solved” by a sleight of idealization. Let’s assume that

Shiv and Logan are Bayesian agents who do not suffer from such accidental shortcomings of rationality.

Their credences are mathematically coherent, and they update by Bayes’ rule. Still, there are complex

cases of failure of public belief known to the literature.

1This is version of the traditional signalling game described by David Lewis [19], with a couple of qualifications. (i)

Lewis talked about common knowledge, rather than common belief, but the stronger condition doesn’t add much at this stage:

people can coordinate on something false, so long as enough people believe it. (ii) Lewis worked with the notion of a Nash

equilibrium, but the idea of solving the game by reference to an event with an independent prior probability (the coin lands

heads, the weekend will be rainy) leads in fact to a generalization known as correlated equilibrium, with which I work in the

current paper [1, 29]. Games of this kind have played an important role in our understanding of language [24].
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In the following scenario, Shiv and Logan are planning for dinner. However, they are try to coordinate

on something vague. The model of vagueness below is discussed in [4], and inspired by the well-known

case of two generals’ failing to coordinate an attack [7, 21].

Vagueness. Shiv and Logan just moved to a new town. They have been told about a great

restaurant. If the restaurant is close, they would like to go there for dinner, but since they

are quite tired after a day of moving and unpacking, they prefer to eat in if the restaurant is

far. They can either go out or stay in, but if either goes while the other doesn’t, both will eat

alone and be miserable.

In Vagueness, Shiv and Logan are facing a Lewisian coordination problem. Sometimes, however, a

restaurant is neither definitely close, nor definitely far. There is no sharp boundary between close and

far, and, in the “borderline area”, each may think that the restaurant is close while the other thinks that

it’s far. They will coordinate only if a particular belief is public, but in borderline cases, neither believes

that they believe the same thing. Vagueness undermines the possibility of sharing a belief in public.

It would be natural for Shiv and Logan to be uncertain about what to do, in their situation. Vagueness

has often been linked to uncertainty [6, 20]. A common way to describe uncertainty is in terms of degrees

of confidence. Let’s say that an agent i thinks that q just in case i has some positive degree of confidence

that q is the case. Then i thinks that q just in case p(qi)> 1− p(qi), i.e. i expects that q is more likely than

not. In the borderline area, Shiv may think that the restaurant is close, although her confidence remains

low: indeed, below a relevant threshold. Above the threshold, Shiv thinks that the restaurant is definitely

close, or, as I shall say, she believes that it is close.

What is a confidence threshold? In ordinary life, many factors contribute to an agent’s confidence

level. In the context of the game, a qualitative characterization helps: an agent believes that q just in case

she thinks that q, and thinks that others think that q as well. That is, one believes that q just in case one is

confident enough that q is the case to think that others think that q as well. And so someone who thinks

that the restaurant is close is uncertain so long as she has a reasonable expectation that others are not of

the same opinion.2

By assuming that confidence thresholds and shared attitudes line up, the failures of coordination

in Vagueness are failures to share a belief about what others think. In other words, coordination fails

because a belief isn’t public. To make this point precise, let there be at least three discrete states w1,w2,w3

in the agents’ environment. In w1 the restaurant is close (q), in w3 it is far (q̄), and in w2 it is neither close

nor far. As far as the agents know, prior to the interaction, any of these worlds might be theirs.

Crucially, the agents’ doxastic states are not aligned in the borderline area. For concreteness, let’s

assume that Shiv does not distinguish w1 and w2, in which the restaurant looks close to her, and Logan

does not distinguish w2 and w3, in which the restaurant looks far to him. (The converse possibility is

analogous, and omitted.) Thus, the agents partition the logical space differently. A partition is a set of

jointly exhaustive and mutually exclusive subsets of the logical space W . Each agent i has their own

partition Πi, which represents how they distinguish possibilities. Let πi(w) ∈ Πi be the cell of Πi to

2Of course, this is not an analysis of think and believe, but a stipulation for describing a probability distribution over

propositions. The stipulation plausibly fits with at least some informal uses of think and believe. The terminology, however, may

sound misleading. Does belief imply certainty? Not if certainty means ‘lack of Cartesian doubt’, but it might if it means ‘having

high-ish confidence about what others think’. I mean the latter. Likewise, there is a sense in which one could be confident that

something is the case while believing that others disagree: but this just shows that there are other characterizations of what

confidence thresholds are, besides what I offered. That’s fine. It’s worth keeping in mind that Shiv and Logan are supposedly

rational epistemic peers: if they think that q expecting that someone else does not think that q, who is equally rational and in the

same epistemic position, then they should be less confident about their judgement. I assume that they are. That’s the relevant

sense of confidence.
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which w belongs. An agent i ‘fails to distinguish’ w from any w′ that belongs to πi(w). I will say that i

thinks that q at w just in case πi(w) ⊆ q. Figure 1 represents the agents’ doxastic states with respect to

the three possibilities that are salient to them at the beginning of the interaction. Furthermore, I assume

that Figure 1 is how the agents understand their own beliefs as well as those of the others.

φ

¬φ

w1

w3

S w2 w2

w3

w1

L

1− γ

γ

Figure 1: Signalling game under uncertainty

Partitions in Figure 1 are generated as follows. Let’s consider a Sorites series S of states t1, . . . , tn.

The restaurant is definitely close in t1 (it is downstairs), it is definitely far in tn (it is two time zones

away), and the remaining states form a linearly ordered progression from near to far. Shiv and Logan go

through a ‘forced march’ [16]. For all states in S, they judge whether the restaurant is close, q, or far, q̄.

The judgment has to be made even if the agents hesitate. Both Shiv and Logan think that q in t1 since

the restaurant is definitely close. For some x between 1 and n, Shiv will presumably flip and think that

q̄ in tx. For some y between 1 and n, Logan will flip too. There comes a point during the forced march

at which they both judge ‘It’s far’, not necessarily the same point. Thus, both Shiv and Logan think that

q in all t < min(tx, ty), and both think that q̄ in all t > max(tx, ty). Therefore, we may pool S into three

“uber” states w1,w2,w3 without loss of generality, and continue working with uber states (or worlds).

w1 = {t ∈ S : t < min(tx, ty)}

w2 = {t ∈ S : min(tx, ty)≤ t ≤ max(tx, ty)}

w3 = {t ∈ S : max(tx, ty)< t}

The picture could be complicated by adding more players, each drawing the line between q and q̄ at a

different point. It would still be possible to pool all states in S into those in which q is true for every

player, those in which q̄ is true for every player, and the rest. Thus, there is a supervaluational description

of the Vagueness game environment, in which players take the place of ‘precisifications’ [4].

Finally, let’s suppose that Shiv and Logan have two signals, φ and ¬φ : ‘The restaurant is close’ and

‘The restaurant is far’. For the semantics, let φ be true at w1 and false at w3, so ¬φ is false at w1 and true

at w3. I prefer to remain neutral on further details of the semantics of vague terms, such as ‘close’ and

‘far’. In order to be more specific, one could say that φ and ¬φ are truth-valueless at w2. Alternatively,

one could keep classical logic, following [30]. My discussion does not depend on the logic of vague

terms.

Sending signals reveals to the signal receiver what the signal sender thinks, and this is how coordi-

nation is ordinarily reached, if it is. For if they both think the same then, through signalling, they both

come to believe that they both think the same. But uncertainty can undermine coordination. Suppose

that the agents know that their interaction is as depicted in Figure 1. Suppose first that Shiv thinks that

the restaurant is far. Then she sends ¬φ . Upon receiving ¬φ , Logan thinks that Shiv thinks that the

restaurant is far, for Shiv has no reason to deceive Logan. Therefore, a signal ¬φ is how Logan can

distinguish a possibility in which Logan thinks that the restaurant is far and Shiv does too, from one in

which he thinks that the restaurant is far but Shiv doesn’t. But Logan thinks that the restaurant is far in

any circumstance in which Shiv does, hence if ¬φ is sent, Shiv and Logan believe that it’s far. Moreover,
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since they can reason to this point, they believe that they believe that it’s far, and so on. Therefore, if ¬φ

is sent, the belief that the restaurant is far becomes public, and they coordinate on staying in.

If instead Shiv thinks that the restaurant is close, she sends φ , but public belief might fail. For Shiv

fails to distinguish a possibility in which both think that the restaurant is close from another possibility,

w2, in which she thinks that the restaurant is close but Logan doesn’t. These cases can be interpreted as

those in which Shiv wrongly guesses what Logan thinks. For Shiv’s signal φ (‘The restaurant is close!’)

would come across to Logan as an error of judgement: Logan would think that the restaurant is far, and

realize by Shiv’s signal that she thinks that it’s close. Since Shiv is aware of this, if she thinks that the

restaurant is close, she may not think that Logan thinks it is.

Coordination equilibria still exist, although within the limits given by the agents’ uncertainty. Let γ

be the agents’ shared prior concerning the chance that they give different judgments as to whether the

restaurant is close or far, and let δ be a real number between 0 and 1. The relevant possibilities can then

be evaluated as follows.

p(w1) = δ (1− γ) p(w2) = γ p(w3) = (1−δ )(1− γ)

That is, with chance γ the agents guess that they don’t think what the other thinks, i.e., they are in w2,

and they assign complementary probabilities to the rest of the cases by splitting them over δ and 1−δ .3

Under the plausible assumption that an agent i chooses a only if i thinks q, we can calculate the expected

utility of a for i. Let ui be i’s utility function, and j be i’s opponent.

eui(a) = p(qi & q j) ·ui(a,a)+ p(qi & q̄ j) ·ui(a,b)

By Table 1, ui(a,b) = 0 for both agents, hence by Bayes’ rule,

eui(a) = p(qi) · p(q j|qi) ·ui(a,a)

Consider S first. The probability p(qS) that S thinks that q is δ (1−γ)+γ , and the conditional probability

p(qL|qS) that L thinks that q while S thinks that q is just the proportion of cases in which L thinks q out

of those in which L does:
δ (1−γ)

δ (1−γ)+γ
. Hence euS(a) = δ (1− γ).

Consider L. The probability that L thinks that q is p(w1) = δ (1− γ), and the probability that S thinks

that q given that L thinks that q is just 1, for all cases in which S thinks that q are cases in which L

does too. It follows that euL(a) = δ (1− γ) = euS(a). Parallel reasoning shows that euS(b) = euL(b) =
(1− δ )(1− γ). Consequently, the coordination equilibrium (a,a) obtains only if euS(a) > euS(b) and

euL(a) > euL(b), hence only if δ > 1−δ . Similarly, the (b,b) equilibrium obtains only if 1−δ > δ .

I have assumed in the preceding paragraph that γ 6= 1. This seems reasonable, since γ represents the

chance that an agent doesn’t think as the other does. In other words, so long as doxastic misalignment

isn’t inevitable, coordination equilibria exist under the conditions just derived. While reasonable, this

conclusion is not very strong. For even if the agents are rational, and know by the proof above that

coordination equilibria exist, it doesn’t follow that they will coordinate. The uncertainty may still be too

impressive for them to take action.

An upper bound on γ would help. Earlier I assumed that a necessary condition for i to choose a is that

i thinks that q. It seems plausible to say that a sufficient condition for i to choose a is that both think that

3Probabilities are only assigned to sets of possible worlds, in order to uniformly represent an agent’s credal state. Therefore,

p(w) is strictly speaking a function from the singleton {w} to a real number, not a function of a world.
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q, i.e., that both consider q more likely than not. That is, a is a best response for both if p(qi & q j)> 1/2.

Then a is played if δ (1− γ)> 1/2, i.e., if

γ < 1−
1

2δ
(Confidence Threshold for a)

By similar reasoning, b is played if

γ < 1−
1

2(1−δ )
(Confidence Threshold for b)

These inequalities are the confidence thresholds for coordination on (a,a) and (b,b) respectively. They

are derived assuming that δ is neither 0 nor 1, but the generality of the conclusion is not lessened. Such

values would trivialize the interaction, for δ = 0 would mean that the agents do not consider world w1 a

genuine possibility, and on the other hand δ = 1 would mean that w3 is not a genuine possibility, given

how p(w1) and p(w3) were defined above.

The value of 1/2 as tipping point for action has been chosen somewhat arbitrarily, but the conclusion

is representative of a general point. Two conditions characterize the existence of a coordination equilib-

rium in conditions of uncertainty. For the (a,a) outcome, it must be that δ > 1−δ and γ < 1− 1
2δ ; for

(b,b), that 1−δ > δ and γ < 1− 1
2(1−δ ) . Uncertainty undermines the agents’ confidence that something

is the case, so that a belief fails to be public. Nevertheless, if the chance γ that their thinking differently

is not too high, coordination may still obtain. The inequalities CTa and CTb specify what “not too high”

means.

2 Coordination in Times of Uncertainty

Confronted with a failure to coordinate beliefs, rational agents could change their mind, of course. How-

ever, revising judgements doesn’t eliminate vagueness: Shiv and Logan would simply go one step further

in the forced march. This may be as good as it gets, if the agents’ common language is indeed limited

to φ and ¬φ . Shiv and Logan will then have to learn to live with the occasional failures of coordination.

On the other hand, if the agents’ language includes epistemic vocabulary, then they could make their

uncertainty manifest, and this potentially matters for their attempt to coordinate. To characterize this

idea, I will begin with a standard relational semantic for might.

The idea that more is communicated in conversation than the semantic content of what the interlocu-

tors say goes back to H. P. Grice [15]. Gricean reasoning has a strategic nature, and an appreciation

of this point has led to a more systematic game-theoretic understanding of it [3, 12, 11, 5, 2, 22]. Fur-

thermore, recent work has emphasized the connection between Gricean reasoning and more general

Bayesian models of inference under uncertainty that have wide applications in the study of human cog-

nition [13, 14, 18]. The result is a framework for probabilistic inference and back-and-forth reasoning

whose outline I will follow in the next sections.

Suppose that, besides the two signals φ and ¬φ , the agents’ language includes epistemic vocabu-

lary. They can utter sentences such as ‘The restaurant might be close’ and ‘The restaurant might be far’,

namely ♦φ and ♦¬φ , respectively. The general idea is that a sentence ♦φ is true just in case φ is com-

patible the information some agent has. Roughly, such information is an agent’s evidence, or doxastic

mental state. For simplicity we may take the relevant agents to be the participants in the game, though of

course this would be implausible for the purposes of natural language semantics. If so, then ♦φ is true

at a world w in the game model of Figure 1 just in case there is some agent i who thinks that φ in w. By
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this light, in w2 it is true to say, ‘It might be that φ and it might be that ¬φ ’. This seems the right thing

to say when one is uncertain, as Shiv and Logan are in w2.

More formally, we define a semantic model over the game of Figure 1. The model (I,W,Π,J·Kc,g)
includes a set I of players, a set W of worlds, an interpretation function J·Kc,g relative to the context and a

variable assignment (superscripts henceforth omitted), and a set of partitions Π = {Πi : i ∈ I} of W , one

partition for each player. A rough but standard Kratzerian semantics for ♦ can be given in terms of Π

[17, 9].

J♦φK = λw.∃i ∈ I.∃πi ∈ Πi.∃w′ ∈ πi(w) : w′ ∈ JφK

Intuitively, ♦φ is true at w iff there is a w′ accessible from w such that φ is true at w′. A world is accessi-

ble form another just in case they belong to the same cell of some agent’s partition. Thus, epistemically

accessible worlds are those that some agent finds indistinguishable on the basis of their doxastic per-

spective prior to communication. It is straightforward to check that accessibility, thus defined in terms

of doxastic partitions, is reflexive, symmetric, and not transitive.

In order to calculate the pragmatic effects of manifesting uncertainty by asserting that ♦φ , let’s refer

to the set {w1,w2,w3} as Shiv and Logan’s common ground at time 0, cg(0): the worlds the interlocutors

jointly consider to be possible, at the beginning of their interaction. Following Stalnaker [28, 25, 26],

conversation is a cooperative enterprise whereby interlocutors narrow down the common ground. The

task for the listener is to figure out which world is actual, given what the speaker said. A simple hypoth-

esis is that worlds in the common ground, at any time, have equal chances of being actual. On the basis

of this hypothesis, base-rate probabilities may be easily calculated for any time t.

For all times t and for all w in cg(t) : p(w) =
1

|cg(t)|

Therefore, once the agents narrow down the common ground to {w}, the probability that w is the actual

world is 1. In cg(0), we have p(w1) = p(w2) = p(w3) = 1/3.

Suppose for illustration that Shiv thinks the restaurant is close, but can’t tell if Logan thinks so as

well. For all she knows (we could say, semantically ascending), the actual world is w1 or w2: after all,

she cannot distinguish these two possibilities. In both w1 and w2, ♦φ is true, as for both worlds there is

an agent, namely Shiv, who thinks that the restaurant is close at those worlds. Therefore (semantically

descending), Shiv believes that ♦φ is true. Thus, she asserts so. An assertion is a proposal to update

the common ground, by eliminating possibilities that are incompatible with the semantic content of the

assertion [28]. By the standard semantics I assumed above, and the Stalnakerian dynamics of assertion,

an assertion of ♦φ rules out w3, which is incompatible with the truth of the assertion. After Shiv’s

assertion that ♦φ , the possibility that the restaurant is definitely far is no longer relevant for either Shiv

or Logan.

Logan may now reason that if Shiv had meant to suggest that w1 is the actual world, she would have

sent φ (‘The restaurant is close!’) right away, for w1 is the world in which both think that the restaurant

is close. But she didn’t send φ : she wasn’t confident enough for that. So, she doesn’t think that the

restaurant is definitely close. Since w2 is the only other possibility left, w2 must be the actual world

according to the speaker. Thus the agents become aware of a distinction between confidence levels by

using epistemic language.

This reasoning can be formalized in a Bayesian framework. At time 1, after the update, the listener L

has equal priors for the worlds in cg(1), i.e. p(w1) = p(w2) = 1/2. Moreover, L expects S to be truthful.

Since a truthful speaker could send only φ and ♦φ in cg(1), L holds even priors for the events that these
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signals are sent, i.e. p(φ) = p(♦φ) = 1/2. Finally, L expects S to send φ in w1, not in w2. For an assertion

that φ reveals the speaker’s belief that the restaurant is close, but the speaker believes that the restaurant

is close only in w1. Therefore, L’s conditional probability for the event that φ is sent given that w1 is the

actual world is at least nearly 1. Conversely for ♦φ .

p(φ |w1)≈ 1 p(♦φ |w1)≈ 0

p(φ |w2)≈ 0 p(♦φ |w2)≈ 1

The last step is for L to update by Bayes rule. The posterior probability that a world is actual is calculated

by the listener by conditionalizing on the evidence, namely the observation that ♦φ was sent.

p′(w2) =
p(♦φ |w2) · p(w2)

p(♦φ)
≈

1 ·1/2

1/2
≈ 1

From the observation that ‘It might be raining’ was uttered, with the semantics it has, and given what

else could have been uttered, the listener draws a conclusion about the speaker’s confidence level: in

the actual world the restaurant is neither definitely close nor definitely far, and in particular the speaker

thinks that it’s close but she is not confident. The listener’s inference is a defeasible one, and not a

semantic entailment. Like ordinary pragmatic reasoning, its conclusion is not packaged in the semantic

content of the sentence that was uttered by the speaker. Thus, the sentence ‘It might be raining’ is not

about the speaker’s credal state (or anybody else’s, for that matter). Yet it supports a Bayesian inference

to a conclusion about the speaker’s credences.

3 Strategic Hedging

How do rational agents react to someone’s assertion that the restaurant might be close? Earlier I assumed

that an agent goes out if they think that the restaurant is close, and stays in if they think that it’s far. In

w2 the restaurant is neither close nor far, and Shiv thinks that it’s close while Logan thinks that it’s far.

Consequently, they don’t coordinate. The assumption is rather crude, however, for we might want to say

that uncertainty comes with indecision [20].

If Shiv says ‘The restaurant might be close’, she signals her uncertainty to Logan, who infers it as a

good Bayesian. Moreover, Shiv might expect this inference to be of some consequence. Logan would

have to take Shiv’s uncertainty into account. At the very least, Shiv might expect that Logan hesitates

before taking action, once ‘Might φ ’ is asserted. I will assume that she does. I will now show that, as a

consequence, it’s reasonable for Logan to go out, when he is told that the restaurant might be close, even

if he thinks that it’s far. That is, the chances of coordination improve despite failure of public belief.

Shiv’s expectation about Logan’s reaction to her utterance kick-starts an expectation-building pro-

cess. For she will have higher-order expectations about what her reaction will be to what she expects

Logan’s reaction to her utterance is, and so on. The result is essentially an instance of iterated reasoning

between speaker and listener. Taking notice of each other, the interlocutors adjust their propensity to

act.4

Shiv and Logan’s reasoning about each others’ actions takes place under the assumption that their

mental states are incompatible. In other words, we are in w2, and the agents correctly inferred this

4There are two slightly different frameworks one could use to reconstruct this process: iterated best response models of

pragmatic reasoning [12], and rational speech act models [10]. The discussion in this section is inspired mainly by the latter,

but could be carried out in the former setting with some adjustments.
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by Bayesian reasoning as above. Since the agents don’t change their mind concerning the restaurant’s

location as they go through the expectation-building process below, probabilities are normalized at each

step. Thus, their mental states remain incompatible throughout, insofar as beliefs can be surmised by

dispositions to act. Nevertheless, we will see that Shiv and Logan’s expected utilities increase. I indicate

with pi(x) the probability that agent i performs action x, and break down the reasoning in several steps.5

Step 0: prior to the use of epistemic modals. S thinks that q, so she chooses a. This fixes the

speaker’s prior, which is pS at step 0. At the same time, L thinks that q̄, so he chooses b. Coordi-

nation at this stage inevitably fails.

p0
S(a) = 1 p0

S(b) = 0

p0
L(a) = 0 p0

L(b) = 1

Step 1: using epistemic modals. S signals ♦φ and expects that L hesitates. L’s expected hesitation

is a matter of randomly choosing a or b. This fixes the listener’s prior, which is pL at step 1.

p1
L(a) = p1

L(b) = 0.5

Step 2: expectation-building. S reflects on her action in response to the listener’s prior. Each next

step from now on is obtained by normalizing an agent’s prior with the other player’s.

p1
S(a) =

p0
S(a)

Σi∈I pi(a)
=

p0
S(a)

p0
S(a)+ p1

L(a)
=

1

1+0.5
≈ 0.666

Step 3: as in the previous step.

p2
L(a) =

p1
L(a)

p1
L(a)+ p2

S(a)
=

0.5

0.5+0.666
≈ 0.428

By proceeding in this way, the probability that S chooses a in w2 tends approximately to 0.6, and the

probability that L does so tends approximately to 0.4. Conversely for b. The step-wise process can be

summarized by a system of equations. This is an inductive definition of a function fa(n) that maps a

number n that counts the steps, to the probability that an agent takes action a at step n. The probability

of doing a for the speaker is given by fa(2n), i.e., for steps indexed by even numbers, whereas the

probability of doing a for the listener is given by fa(2n+1). A similar series can be defined for b.

fa(0) = 1

fa(1) = 1/2

fa(n) =
fa(n−2)

fa(n−1)+ fa(n−2)

fa defines a divergent sequence of probabilities, oscillating between approximately 0.4 and approxi-

mately 0.6. This can be observed by simple calculation. Analytic proof is quite involved, and left out of

the paper.

While they go through the (first few steps of the) stepwise process, the agents’ dispositions to act are

incompatible throughout, as an effect of normalizing probabilities. However, the margin by which such

5More precisely, pi(x) is short for pi(x|qS & q̄L): the conditional probability that i does x given that S thinks that q and L

thinks that q̄. We are holding fixed that we are in w2, in which the condition qS & q̄L holds.
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incompatibility causes failures of coordination is reduced with each step. So, they still share no public

belief, but their expected utility is higher. Recall that the value of an agent’s expected utility for action a,

as calculated above, was:

eui(a) = p(qi & q j) ·ui(a,a) = δ (1− γ)

However, this equation assumes that one gets a payoff for a just in case both think that q. But one’s

payoff for a increases, via fa, also in proportion to the probability that S thinks that q, L thinks that q̄, but

both do a. So we revise the notion of expected utility, indexing it to the number of steps.

eun
i (a) = eui(a)+ p(qS & q̄L) · pn

S(a) · pn
L(a) ·ui(a,a)

= δ (1− γ)+ γ · pn
S(a) · pn

L(a) ·ui(a,a)

At Step 0, the listener doesn’t think that q, thus p0
L(a) = 0. Therefore, the overall expected utility of a at

0 is simply eui(a), as above. Assuming instead that we are at Step 3:

eu3
i (a) = δ (1− γ)+ γ ·0.666 ·0.428 = δ (1− γ)+ γ ·0.285

More generally, for all actions x, and for all n ≥ 0, the agents’ expected utility monotonically increases

with the sequence of steps.

eu0
i (x) ≤ eun

i (x)

This argument is fairly abstract, but it’s a mathematical reconstrution of a plausible conclusion. A rea-

soning process can be defined on the basis of the agents’ expectations, in reaction to the uncertainty

manifested by an assertion of ‘Might φ ’. The base step of the induction is the intuitively plausible idea

that the speaker, having signalled her uncertainty, expects the listener to hesitate before acting. Based on

this, the speaker reflects on how to react to the listener’s hesitation, on how the listener would react to

her reaction, and so on. The agents need not have perfect powers of reasoning. They need not follow the

induction to infinity. It suffices that one or two steps are taken, and already the use of ♦φ leads to higher

expected utility.

If the restaurant is neither close nor far, going out is reasonable not only for Shiv (who thinks with

little confidence that the restaurant is close), but also for Logan (who thinks with little confidence that

it’s far), in response to the speaker’s assertion that it might be close. This choice is reasonable in the

very concrete sense of expected utility maximization. Thus, by hedging one’s assertion in conditions of

uncertainty via the use of epistemic possibility modals, the chances of coordination improve although

public belief fails.

4 Conclusion

In this paper, I presented a “proof of concept” for the use of epistemic modal expressions in signalling

games in which uncertainty (about what another player thinks) undermines coordination. Vagueness may

trigger uncertainty of this kind, since it undermines the belief that others think in the same way as we do.

However, by using ‘Might φ ’, we hedge our assertions and make uncertainty manifest. This can be seen

by a straightforward application of Bayes’ rule, on the basis of a standard semantics for might and the

Stalnakerian pragmatics of assertion as informative update. In turn, a manifestation of uncertainty may

lead interlocutors to accommodate their actions with what they expect the others’ actions will be, even

though their doxastic mental states remain incompatible throughout. Coordination under uncertainty is

facilitated by the strategic assertion of ‘Might φ ’.
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By necessity, the view I presented applies only to particular contexts, formalized as particular kinds

of games. By no means I suggest that the interaction I described is the only effect epistemic possibility

modals have in an interactive setting. The semantics for epistemic modality I adopted is somewhat rough

but standard, and could be fine-tuned for the purposes of natural language semantics. The rational speech

act model I adopted is an abstract formalization of the computational import of epistemic signalling, but

could be understood as an element of a cognitively plausible picture of bounded rationality in interaction.
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