
[In Don Berkich and Matteo Vincenzo d'Alfonso (eds), On the Cognitive, Ethical, and
Scientific Dimensions of Artificial Intelligence - Themes from IACAP 2016, Philosophical
Studies Series, Springer, pp. 27-47, (2019)]

Computation in Physical Systems: a Normative Mapping Account

Paul Schweizer

Institute for Language, Cognition and Computation

School of Informatics

University of Edinburgh

paul@inf.ed.ac.uk

Abstract The relationship between abstract formal procedures and the activities of actual physical

systems has proved to be surprisingly subtle and controversial, and there are a number of competing

accounts of when a physical system can be properly said to implement a mathematical formalism and

hence perform a computation. I defend an account wherein computational descriptions of physical

systems are high-level normative interpretations motivated by our pragmatic concerns. Furthermore,

the criteria of utility and success vary according to our diverse purposes and pragmatic goals. Hence

there is no independent or uniform fact to the matter, and I advance the ‘anti-realist’ conclusion that

computational descriptions of physical systems are not founded upon deep ontological distinctions,

but rather upon interest-relative human conventions. Hence physical computation is a ‘conventional’

rather than a ‘natural’ kind.

1 Introduction

What is computation? There are two basic ways to look at the issue: 1) in theory, as a type of

mathematical ‘process’ – as something that belongs to a purely abstract and formal domain,

like topology, set theory or real analysis; and 2) in practice, as the activity of certain physical

systems − as what computers do, where a computer is a concrete device that exists in actual

space and time. The connection between these two perspectives is generally conceived to lie

in the implementation relation: a physical system or device performs a computation when it

‘implements’ or ‘realizes’ a particular abstract formalism. However, specifying the criteria

under which the implementation relation properly obtains has proved surprisingly subtle and

controversial, and there are a number of opposing views on the constraints that must be

satisfied in order for a physical system to count as a ‘genuine’ implementation.

2 A Simple Mapping Account

A very straightforward and elegant account articulated by Putnam (1988) and others is based

on a simple mapping between physical structure and abstract formalism. Accordingly, a

physical system P performs a computation C just in case there is a mapping from the actual

physical states of P to the abstract computational states of C, such that the transitions between

physical states reflect the abstract state transitions as specified by the mapping. The

minimalism, neutrality and generality of the Simple Mapping Account (henceforth SMA,

adopting the terminology of Piccinini 2015a) make it a natural choice as the in-principle

standard for physical implementation − it takes the Mathematical Theory of Computation

(MTC) as its starting point and adds no substantial assumptions. And because it adds no

further assumptions or restrictions, SMA is in an important sense maximally liberal ‒ there

will exist abstract mappings from a huge class of physical systems and processes to an

equally huge class of computational formalisms.

 And there is a clear sense in which this is a significant theoretical virtue. It is standard

practice in computer science to apply computational descriptions to various physical systems

at will, simply on the condition that the mapping yields an interesting or useful perspective.

For example, simple physical devices such as parking ticket dispensers or traffic light

controllers can be modelled in terms of Finite State Machines, without any reference to the

original intentions of their designers nor to the actual details of their internal causal structure.

In such cases, computational ascriptions constitute an idealized depiction, one that abstracts

away from many actual features of the device to yield a simplified formal model of selected

aspects of the device. This is quite analogous to applying mathematical formalisms such as

differential equations to various physical systems to characterize aspects of their trajectories

through state space. In both cases, the mapping from physical phenomena to mathematical

formalism is highly reliant on both idealization and approximation, and deliberately neglects

many aspects of the internal causal mechanisms.

 In this type of endeavor, which aspects of the system are selected for abstract

modelling is not fundamental to the system per se, but instead remains a question of human

choice relative to our interests and goals. There are any number of different perspectives and

levels for describing the very same system, and none of them is privileged. A traditional

spring-driven analogue clock can be formally modelled at various microphysical levels ‒ at a

subatomic level in terms of quantum mechanical processes and interactions, and at a higher

microphysical level in terms of molecular thermodynamics. In the latter case, it could also be

described in more abstract functional terms as a temperature detector, where the mean

molecular kinetic energy of its metallic components tracks the ambient atmospheric

temperature. And it can be described and modelled at various macrophysical levels as well,

such as an intricate classical mechanism with states evolving in accord with continuous real

valued equations. It could also be described in more idealized conventional terms, where

certain selected continuous features are broken into discrete segments and given a

chronological interpretation. And yet again, this relatively advanced design level stance could

be ignored, and the object could be given a more rudimentary functional depiction, e.g. where

its size and inertial properties make it useful as a doorstop.

 For computation to remain an unfettered, and maximally adaptable mathematical tool,

like set theory or topology, it is requisite that no fixed or preconceived limits be placed upon

its potential range of physical interpretation. And indeed, SMA exemplifies this neutrality

and universality with respect to the possible relations between abstract formal structure and

'concrete' physical phenomena. In this vein, Putnam (1988) gives a technical proof of the

theorem that every open physical system implements every (inputless) Finite State Machine

(FSM). He provides a generic depiction of a physical system as a bounded, continuous region

of space-time, and the basic idea is that the region is held constant but sliced up in an as many

different ways as one likes in order to define a sequence of disjunctive ‘physical states’ that

can be mapped to any given run of a FSM.

 And Searle famously promulgates the universality of SMA with the claim that

virtually any physical system can be interpreted as implementing virtually any formal

procedure. For example, Searle (1990) asserts that the molecules in his wall could be

interpreted as running the WordStar program. The claim is simply put forward with no

further defense, but Copeland (1996) provides a proof of what he calls 'Searle's Theorem',

which he observes is essentially a notational variant of Newman's (1928) objection to Russell

(although Copeland then goes on to reject SMA) .

 This broad-minded position on physical computation arises as the natural inverse of

the standard and uncontroversial view that abstract formal procedures, as such, are multiply

realizable. It’s clearly possible to implement the very same computational formalism using

vastly different arrangements of mass/energy. Following notation and terminology introduced

in Schweizer (2012), let us call this top-down feature ‘downward multiple realizability',

wherein, for any given formal procedure, this same abstract formalism can be implemented

via an arbitrarily large number of distinct types of physical systems. And let us denote this

type of downward multiple realizability as ‘↓MR’. The basic perspective advocated by

Putnam and Searle then goes in the reverse direction. Let us call the bottom-up view that any

given physical system can be interpreted as implementing an indeterminately large number of

different computational formalisms ‘upward MR’ and denote it as ‘↑MR’. The basic import

of ↑MR is the non-uniqueness of computational ascriptions to particular configurations of

mass/energy. In the extreme versions of ↑MR propounded by Putnam and Searle, it is not

simply a case of non-uniqueness, but rather there are apparently no significant constraints at

all – it is held to be possible to interpret virtually any open physical system as realizing

virtually every computational procedure. Let us call this more extreme version ‘universal

upward MR’ and denote it as ‘↑MR*’. ↑MR* is noteworthy in that it provides the theoretical

limit case in terms of abstraction away from physical specifics or limitations, and in this

sense is comparable to the idea that, e.g., any physical object can be an element in a limitless

number of distinct sets.

3 The Computational Stance

Many philosophers have found the degree of liberality induced by SMA objectionable.

Historically, these objections stem from the conflict between critics versus proponents of the

Computational Theory of Mind (CTM). Critics of CTM have used SMA to argue that a

computational approach to the mind is empirically vacuous. These ‘trivialization’ arguments

hold that, a la ↑MR*, a mapping will obtain between virtually any physical system and

virtually any formalism, which in turn is construed as fatally undermining CTM, since

whatever computational procedures are held to account for our cognitive attributes will also

be realized by a myriad of other ‘deviant’ physical systems, such as buckets of water and

possibly even stones. Hence by CTM it would seem to follow that such obviously insentient

systems have the same cognitive attributes that we do, which is then taken as a reductio ad

absurdum disproof of CTM.

 In response to ↑MR* and the associated trivialization claims, a host of authors,

including Fodor (1981), Maudlin (1989), Chrisley (1994), Chalmers (1996), Copeland

(1996), Shagrir (2001), Block (2002), Sprevak (2010), Milkowski (2013), Rescorla (2014),

Piccinini (2015b) advocate additional constraints on the implementation relation, so that it is

no longer a ‘simple’ or theoretically neutral mapping. In effect, these restrictions serve to

preclude a vast number of physical systems from the domain of the mapping function, in an

attempt to separate ‘true’ or ‘genuine’ implementations from the many presumably ‘false’

cases countenanced by SMA. These constraints include: causal, counterfactual, semantic, and

mechanistic/functional criteria.

 However, I advance quite a different type of response to the situation. First, instead of

attempting to ‘save’ CTM by constraining the account of physical implementation, I hold that

SMA does not actually constitute a threat to scientifically plausible versions of CTM. No one

thinks that SMA ‘threatens’ electrical engineering or our ability to design and utilize

sophisticated computational artifacts, and in my view, the particular version of CTM that is

undermined by SMA is not one that should be accepted in any case. Second, I argue that none

of the proposed constraints provides a truly general and satisfactory 'realist' account of

physical implementation ‒ indeed, none succeeds at providing a globally applicable

necessary condition. So I advocate retaining a very liberal SMA view of physical

implementation, that derives from the basic insights of Turing, Kripke, Putnam and Searle,

while rejecting the standard anti-CTM conclusion of the trivialization arguments.

 In line with SMA and ↑MR, I argue that computation is not an ‘intrinsic’ property of

physical systems, in the sense that (a) it is founded on an observer-dependent act of

ascription, upon an entirely conventional correlation between physical structure and abstract

formalism. Furthermore, (b) this conventional mapping is essentially prescriptive in nature,

and hence projects an outside normative standard onto the activities of a purely physical

device. In this manner we adopt what could be termed a ‘Computational Stance’ towards

physical systems. This approach is in some ways comparable to Dennett's (1981) Intentional

Stance, wherein intentional states such as beliefs and desires are not posited as objectively

real phenomena. Instead, they are treated as mere ‘calculational devices’ or ‘abstracta’ in

Reichenbach's sense (like point masses and perfectly frictionless surfaces in classical

mechanics), used to predict observable events but without any additional ontological

commitments.

 Analogously, I would construe abstract computational states on a similar footing. In

the case of our purpose-built artifacts, these abstract states are idealized formal notions that

we employ to describe such devices from a higher design-level perspective. Classic digital

computation is rule-governed syntax manipulation, and as such is no more intrinsic to

physical configurations than is syntax itself. Furthermore, discrete states are themselves

idealizations, since the physical processes that we interpret as performing digital

computations are continuous (in the standard non-quantum case). Thus discrete states do not

literally correspond to the underlying causal substrate. We must abstract away from the

continuity of actual physical processes and impose a scheme of conventional demarcations to

attain values that we can then interpret as discrete. Hence this elemental building block of

digital procedures must be projected onto the natural order from the very beginning (as

Turing observed in 1950), and in this respect is a convenient fiction rather than a literal

depiction..

 Dennett holds that there is no internal matter of fact distinguishing systems that

'really' possess intentional states from those which do not ‒ the strategy only requires us to

view the system as if it possessed such states. Hence there is nothing in principle to stop one

from depicting a stone as an intentional system if one so chooses. In a similar vein, I would

argue that there is no deep or metaphysically grounded fact regarding whether or not a

physical system 'really' implements a given computational formalism. In the case of artifacts

such as my desk top computer, I can gain a huge increase in the ability to predict its future

states if I adopt a computational stance as opposed to viewing it as a brute physical

mechanism. And this is because it has been designed and constructed for exactly this purpose,

just as an electric toaster has been designed and constructed to perform a particular function.

In contrast, a stone has not been so designed, and the pragmatic value of viewing it in

computational terms will be rather limited.

4 Critique of the Causal Account

I will now critically address some of the proposed constraints on SMA, with the aim of

showing that none provides a principled necessary condition for physical computation. The

causal account supplies one of the most natural and intuitively compelling constraints on the

implementation relation. Chalmers (1996), for example, contends that it is a necessary

condition that the pattern of abstract state transitions must be the image under the mapping of

an appropriate transition of physical states of the machine, where the relation between

succeeding physical states in this sequence is governed by proper causal regularities.

Furthermore, these regularities are supposed to ‘mirror’ the structure of the abstract

formalism. The imposition of such a constraint will screen off a vast number of Putnam’s

sequences of physical states, with the aim of reducing the domain of the mapping function to

a tiny subset of purportedly ‘legitimate’ cases of implementation.

 However, I argue that the causal constraint is too stringent in general and rules out a

significant number of cases which should not be excluded. And although it's a more

specialized and sophisticated approach, the mechanistic/functional account shares some key

features with the causal, so many of the following criticisms carry over to this account as

well. A basic problem with causal and mechanistic approaches is that they place emphasis on

the wrong level of conceptual analysis. Rather than addressing the question of whether or not

a given configuration of mass/energy implements a given computational formalism, causal

considerations instead address the lower level and divergent practical question of how, in

certain circumstances and over limited spans of time, this implementational sequence is

mechanically generated.

 The inessential status of causal structure can be elucidated with the observation that

the key factor in judging that a given configuration of mass/energy implements a particular

computational formalism is simply because, according to our abstract blueprint, the correct

series of physical state transitions actually occurs. As an exemplary case of where appeal to

causal regularities is completely irrelevant to determining whether or not a given sequence of

states counts as an implementation, consider Turing's original (1936) heuristics, where the

paradigm of actualized computation is a human computor, meticulously following a program

of instructions and executing computations by hand with pencil and paper. In this seminal

and classic example of concrete realization, the transitions from one state to the next are not

governed by causal regularities in any straightforward mechanical sense. When I take a table

of instructions specifying a particular abstract TM and perform a computation on some input

by sketching the configuration of the tape and read/write head at each step in the sequence,

the transitions sketched on the paper are not themselves causally connected: as in the virtual

machine states in standard computers, one sketch in the sequence in no way causes the next

to occur.

 In terms of the ‘causal’ factors underpinning their occurrence, it is primarily through

my understanding of the instructions and intentional choice to execute the procedure that the

next stage in the sequence appears. But my complex behaviour as a human agent deliberately

following instructions is not something that we currently have any hope of being able to

recast in terms of causal regularities at the purely physical level of description. Furthermore,

whatever causal factors at this level do ultimately underwrite my ability to execute the

procedure, they will be exceedingly convoluted and indirect, and there is no reason to believe

that they will ‘mirror’ (or even remotely resemble) the structure of the formalism. In cases of

intentionally mediated causation, we accept the sequence of configurations on the paper as an

implementation of the program, not because we have the faintest idea of the underlying

causal story, but rather because the sequence itself is correct and can be seen to follow the

procedural rules. In other words, the projected mapping, a la SMA, has been preserved.

 To continue the example, consider the following 3 state Turing machine M given by

the four quadruples:

 q11Rq1 q101q2 q21Lq2 q20Rq3

The first element in each quadruple (e.g. q1 in the first case) is the current state, the second

element is the currently scanned symbol (either 1 or 0) the third element is the overt action

(move R or L one square, or print a 1 or a 0), and the last element is the covert ‘act’ of

entering the next state. Now suppose I’m confronted with an initial tape configuration

 01100… (all other squares to the right are blank).

Armed with the foregoing explication of the quadruple notation, along with a few basic

operational conventions (as described in Boolos and Jeffrey 1989), I can act as a perfectly

good human computor and manifest a physical implementation of the respective Turing

machine computation. With pencil and paper I can perform the sequence of 6 transitions

determined by the input configuration and then halt. Indeed, I've now keyed into the digital

file generating this document the very same sequence that I sketched in my notebook, and

have thus produced an alternate physical realization of the same computation. The machine

starts in its lowest numbered state reading the leftmost non-blank square (where the contents

of a square are indicated by the corresponding digit in the tape string). An underline indicates

the currently scanned square, and the number below this indicates the current state. The

machine halts when it enters a state for which there is no instruction.

 q11Rq1; q101q2; q21Lq2; q20Rq3 on input 01100…

 Start 01100…

 1

 01100…

 1

 01100…

 1

 01110…

 2

 01110…

 2

 01110…

 2

 01110…

 2

 01110… Halt

 3

 It’s important to note that the foregoing sequence of configurations is not just a

linguistic description of a possible physical implementation. Instead, the actual syntactic

tokens are themselves concrete realizations extended in physical space-time. Manipulating

syntactic tokens on piece of paper is a transformation of the physical environment that itself

constitutes a realization of the abstract formalism. And the same is true of the sequence of

symbols generated above ‒ it's a physical implementation of the abstract TM computation

generated by Microsoft Word.

 But what is the causal structure underling the Microsoft implementation? It doesn’t

really matter. The entries in this sequence bear no decipherable causal relations to each other

– they’re simply generated by what is stored in the digital file that is stored in the computer

connected to the monitor. The actual computation in space-time appearing as I type is a

sequence of illuminated patterns projected onto the screen, not supported by any causal

regularities that 'mirror' the structure of the Turing machine program. It's surely true that

every event must have a cause, but my point is that surface inspection alone reveals that this

sequence is a proper realization of the specified TM program on input 01100… To arrive at

the judgement, we do not need to know anything about the causal mechanisms whereby this

sequence was produced.

 And what is the semantic interpretation of the Microsoft implementation? Again, it

doesn’t really matter. The computation itself is comprised of rule governed syntactic

transformations. How these transformations are then semantically construed is superfluous to

the execution of the program. If we choose, we can interpret M's activity as computing the

function f(x) = x+1 on positive integers expressed in monadic notation (and which halts on

the same square at which it starts), so that the foregoing sequence of configurations is a

computation of f(2) = 2+1 = 3. However, this is clearly not essential to the formal procedure

itself.

 And what would have happened if a different input string had been attempted? Again,

it doesn’t really matter. What matters is that, in accord with the formal procedure, the

foregoing sequence is correct – it satisfies the essential normative specification as a series of

rule governed transformations on the input specified.

5 Implementation as Proof in First-order Logic

Each quadruple in the TM program can be seen as a conditional instruction, so that, e.g., the

first quadruple is the conditional: if in state q1 reading a 1, then print a 0 and enter state q1.

Hence it is the logical form of the if-then statement that captures the significance of the TM

instruction, and this is all that must be satisfied by an implementation. Again, this is a

quintessentially normative constraint, and it's a basic fact of logic that the truth-functional

character of the material conditional does not imply any causal connection between

antecedent and consequent.

 This same fundamental point is made even more graphic by noting that Turing

machine computations can be formalized in first-order logic with identity (FOL=). Each

quadruple instruction can be rendered as a universally quantified conditional indicating the

result of executing the instruction. In providing the details of the formalization, our object

language L for FOL= will contain the symbols o and ′ as distinguished vocabulary items,

where o is a singular constant that, under the intended interpretation I, denotes the number 0,

and where ′ is a 1-place function symbol which under I denotes the successor function. With

these resources we can construct canonical numerals intended to denote numbers in the

obvious fashion, e.g., where o′ is the numeral for the number 1, o′′ the numeral for 2, etc.

 In order to formalize the very simple machine M depicted above, we can make do

with the assumption that the operant squares are unbounded only to the right. Furthermore, a

blank square is construed as containing the symbol '0', and only finitely many squares are

ever non-blank (i.e. contain the symbol '1'). To begin the formalization, let all the operant

squares of the tape be labelled by a natural number, with the leftmost such square labelled

with 0, the next with 1, etc. (the labelling number is distinct from the symbol occurring in the

square). We adopt the convention that the positive integer input is expressed in monadic

notation, with the leftmost '1' occurring in square number 1. At the start of the computation,

all non-input squares of the tape are blank, and the machine starts in state 1 reading square 1.

 Let t be the ‘time’ variable ranging over steps in the computation. We need two final

FOL vocabulary items: for each state qi of a given machine, pick a 2-place predicate Qi . For

each symbol Sj the machine can read/write, pick a 2-place predicate Sj (in this case there are

only two). The domian D of the intended interpretation I is the set of natural numbers, and

tQix is true in I iff at time t M is in state qi scanning square number x, and tSjx is true in I iff

at time t the symbol Sj is in square number x. With these details in place we can now proceed

to formalize M's program of instructions.

The first quadruple q11Rq1 is rendered as the ‘axiom’ A1

 ∀t∀x∀y[(tQ1x ˄ tS1x) → (t′Q1x′ ˄ (tS0y → t′S0y ˄ tS1y → t′S1y))]

Under the intended interpretation this axiom 'says that' if machine M is in state q1 at time t

scanning square number x on which the symbol S1 (= 1) occurs, then at time t+1 M is in state

q1 scanning square x+1, and in all squares the same symbol appears at time t+1as at time t.

Various authors (including Chalmers 1996 and Copeland 1996) have objected to Putnam's

proof because it relies on material conditionals, and it is claimed that more powerful

counterfactual machinery is required to account for possibilities other than the input actually

given. However, it is significant to note that the above universally quantified conditional

ranges over all times and all squares in any computation, and hence exhaustively covers all

relevant possibilities.

 q101q2 is rendered as A2

∀t∀x∀y[(tQ1x ˄ tS0x) → (t′Q2x ˄ t′S1x ˄ (y ≠ x → (tS0y → t′S0y ˄ tS1y → t′S1y)))]

 q21Lq2 yields A3

∀t ∀x ∀y[(tQ2x′ ˄ tS1x′) → (t′Q2x ˄ (tS0y → t′S0y ˄ tS1y → t′S1y))]

 q20Rq3 yields A4

∀t∀x∀y[(tQ2x ˄ tS0x) → (t′Q3x′ ˄ (tS0y → t′S0y ˄ tS1y → t′S1y))]

The set {A1,A2,A3,A4} formalizes M’s program.

Next two arithmetical axioms are needed to govern the behavior of ′ and <. The first axiom

says that each integer is the successor of exactly one integer: A′

 ∀z∃x(z = x′) ˄ ∀z∀x∀y ((z = x′ ˄ z = y′) → x = y)).

The axiom governing < states that: A<

∀x ∀y ∀z (x < y ˄ y < z → x < z) ˄ ∀x ∀y(x′ = y → x < y) ˄ ∀x ∀y(x < y → x ≠ y) (needed for

 the entailment relation below)

Finally, for the initial configuration with ‘01100’ as starting input

 (t = 0 in state q1 reading square 1): A0

 oQ1o′ ˄ oS1o′ ˄ oS1o′′ ˄ ∀y ((y ≠ o′ ˄ y ≠ o′′) → oS0y))

Let ∆ = {A1,A2,A3,A4, A′,A<,A0}

 Now ∆ completely formalizes the ‘actions’ of machine M on input ‘01100’, and each

step n in the previously sketched sequence of configurations, constituting the computation on

input ‘01100’, is syntactically encoded by a sentence Tn in FOL=. Furthermore, the sentence

Tn is logically entailed by ∆.

For t = 1 the sentence T1:

 o′Q1o′′ ˄ o′S1o′ ˄ o′S1o′′ ˄ ∀y ((y ≠ o′ ˄ y ≠ o′′) → o′S0y))

For t = 2 the sentence T2:

 o′′Q1o′′′ ˄ o′′S1o′ ˄ o′′S1o′′ ˄ o′′S0o′′′ ˄ ∀y ((y ≠ o′ ˄ y ≠ o′′ ˄ y ≠ o′′′) → o′′S0y))

For t = 3 the sentence T3:

 o′′′Q2o′′′ ˄ o′′′S1o′ ˄ o′′′S1o′′ ˄ o′′′S1o′′′ ˄ ∀y ((y ≠ o′ ˄ y ≠ o′′ ˄ y ≠ o′′′) → o′′′S0y))

 ⁞

For t = 7 the sentence T7:

 o′′′′′′′Q3o′˄ o′′′′′′′S1o′ ˄ o′′′′′′′ S1o′′ ˄ o′′′′′′′S1o′′′ ˄ ∀y ((y ≠ o′ ˄ y ≠ o′′

 ˄ y ≠ o′′′) → o′′′′′′′S0y))

M has no instructions for q3 and hence will halt if it enters this state. So the ‘canonical’

Halting Sentence H for this machine is

 ∃t∃x (tQ3x ˄ tS0x) ˅ ∃t∃x (tQ3x ˄ tS1x)

and it’s provable (by mathematical induction) that ∆ ⊨ H, since ∆ ⊨ T8 and T8 ⊨ H.

 Logical entailment is an abstract mathematical relation, but a particular proof is a

concrete syntactic phenomenon extended in physical space-time. In this manner, the

foregoing Turing machine computation is equivalent to a proof in FOL=, and any such proof

carried out with pencil and paper, following the rules of your favorite first-order deductive

system, counts as a physical implementation of the computation.

 It seems a very strange and implausible view to maintain that the property of being a

proof in first-order logic is constrained by underlying causal regularities or mechanistic

features. Indeed, when I mark student exams in my Introduction to Logic course,

considerations of underlying causal regularities and biological mechanisms play no role

whatever in determining whether some sequence of formulas is or is not a proof. The only

thing that matters is whether or not the rules have been correctly followed, and this is a purely

normative consideration. And since a proof of the relevant sort counts as an implementation

of a Turing machine computation, it follows that causal regularities likewise have no bearing

on the status of such implementations. Indeed, part of the reason that underlying causal

considerations are the wrong level of analysis is that there is no sense in which error or

malfunction can occur when viewed from this basic physical perspective. This thread will be

resumed in section 7.

 The foregoing counterexamples show that causal and mechanistic factors do not

impose a necessary condition on physical implementation. Instead, the only necessary

condition is that the intended mapping, a la SMA, is preserved. In particular, we don’t need

to take into account the mechanics of how this success has been achieved in order to judge

that it has it has occurred. And indeed, this is directly comparable to other abstract, rule

governed activities such as chess. A game of chess is constituted by a sequence of moves on a

geometrically defined board. Like computations, chess games are substrate neutral and can be

realized in a virtually limitless variety of physical media. Furthermore, in ascertaining

whether a given sequence is a legitimate game, all we need to know is whether or not each

move is in accordance with the abstract structural rules of chess. The question of how these

moves were physically accomplished is entirely irrelevant. Was the white bishop picked up

and moved with the right hand or the left? Held between thumb and forefinger or thumb and

index finger. Or perhaps moved by the power of psycho kinesis? Obviously the answer

makes no difference.

6 Counterfactual Constraints

The counterfactual requirement is aimed at another apparently ‘slack’ feature incorporated by

Putnam and the SMA, viz. the mapping from formalism to physical system is defined for only

a single run, and says nothing about what would have happened if a different input had been

given. And it is objected that this is too weak to satisfy the more rigorous operational notion

of being a ‘genuine’ realization. However, in response to this quite natural proposal, it is

worth noting that for a physical system to realize a rich computational formalism with proper

input and output capacities, such as an abstract TM, this will always be a matter of mere

approximation. For example, any given physical device will have a finite upper bound on the

size of input strings it is able to process, its storage capacities will likewise be severely

limited, and so will its actual running time. In principle there are computations that formal

TMs can perform which, even given the fastest and most powerful physical devices we could

imagine, would take longer than the lifespan of our galaxy to execute. Hence even the fastest

and most powerful physical devices we could envision will still fail to support all the salient

counterfactuals.

 So it will never be possible to construct a complete physical realization of an abstract

TM – the extent to which a concrete device can execute the full counterfactual range of state

transitions of which the abstract machine is capable will always be a matter of degree. For

example, consider the exceedingly simple machine M given above. It’s a straightforward

matter to exhibit particular computations on small inputs. But there is no finite upper bound

on the size of input strings that this abstract machine can handle. The set of four quadruples

yields a mathematically well defined and effective procedure for adding one to a monadic

input string which contains in excess of, say, 10
1000000000000000000000000000

 1's. It's not physically

possible for any artefact that we could build to carry out computations for such

astronomically large inputs. Hence no physical implementation of this simple three state TM

can deal with the full range of possible inputs.

 So, in general, the class of counterfactual cases on alternative inputs with which a

physical realization can cope is by necessity limited – not all counterfactual cases will be

supported by any physical device implementing any TM. And this renders the appeal to

counterfactuals inescapably ad hoc. The restrictive strategy demands that the mapping be

able to support counterfactual sequences of transitions on inputs not actually given − but

precisely how many inputs not actually given? One, two, twenty trillion? For any

implementation, there will be a finite upper bound on the size of input string it can process,

and beyond that size there will be infinitely many potential inputs for which it will not be able

to perform the salient computation.

 This indicates that there is no clear or principled cut off point demarking ‘genuine’

implementations from ‘false’ ones in terms of counterfactuals. As another, more common

place, illustration of the ad hoc nature of the appeal to counterfactuals, consider a standard

pocket calculator that can intake numbers up to, say, 6 digits in decimal notion. Is this a

‘false’ realization of the corresponding algorithm for addition, since it can’t calculate 10
6
 +

10
6
? It’s an approximate instantiation which is nonetheless exceedingly useful for everyday

sums. It will always be a matter of degree how many counterfactuals can be supported, where

a single run on one input is the minimal case. Where in principle can the line be drawn after

that? It’s a matter of our purposes and goals as interpreters and epistemic agents, and is not an

objective question about the ‘true’ nature of the physical device as an implementation. In

some cases we might only be interested in the answer for a single input, a single run.

 In addition, Bishop (2009) has importantly extended the SMA strategy to show that

any predetermined finite set of counterfactuals can be accommodated on this approach. From

this I would conclude that the underlying and more general constraint of concern to those

who would delimit the range of physical implementation is neither causal nor counterfactual.

Instead, the point to emphasize is that in ↑MR* exercises of this sort, the mapping is entirely

ex post facto. The abstract procedural ‘trajectory’ is already known and used as the basis for

interpreting various state transitions in the open system and hence characterizing it as an

implementation. Hence using this ex post facto tactic, even finite sets of counterfactuals can

be included. And as emphasized above, our actual computational artefacts are themselves

only capable of handling finite sets of counterfactuals.

 For a physical device to successfully ‘perform a computation’ is distinct from ‘fully

implementing a computational formalism’. Performing a computation is an occurrent series of

events, an actual sequence of physical state transitions yielding an output value in accord

with the normative requirements of the mapping. And this can be satisfied in the case of

computing the value of a single output on a given input. In contrast, fully implementing a

computational formalism is a much more stringent and hypothetical notion, requiring appeal

to counterfactuals, and as above, this will only ever obtain as a matter of degree. In light of

this distinction, it is clearly possible for a physical device to successfully perform a

computation without instantiating a complete computational formalism, which distinction in

turn fatally undermines the theoretical force of counterfactuals in attempting to determine

whether a physical process has 'really' performed a computation.

7 Computational Ascriptions are Normative

As mentioned above, part of the reason why underlying causal considerations are the wrong

level of analysis is that there is no sense in which error or malfunction can occur at this basic

physical plane. Physical systems, as such, are governed by natural laws, while formal

systems are intrinsically rule governed. In the case of our computational artefacts, a system

governed by natural laws must be deliberately engineered so that it can be interpreted as

evolving in accordance with a chosen rule governed formal system. 'Obedience' to natural

law is an essentially descriptive matter and there is no sense in which mistakes or error can be

involved – such laws cannot be broken, and the time evolution of material systems is wholly

determined (in the classical case at least) by the regularities in question. On the other hand,

'obedience' to formal rules is an essentially normative matter, and there is a vital sense in

which error and malfunction can occur.

 This normativity has nothing to do with ethical or religious considerations, but simply

with conventionally imposed norms. Suppose we are playing a game of chess. It's my move

and it's clear that I'm about to be checkmated by your queen. So I pick up your queen and

throw it out the window. You object with the exclamation 'You can't do that!' And I reply,

'What do you mean - I just did'. In this case the physical processes in question are in perfect

accord with natural law, but have discontinued implementing the norms of chess. Similarly, if

my desk top machine is dosed with petrol and set on fire while still in operation, the time

evolution of the hardware will remain in perfect descriptive accord with natural law.

However, it will very soon fail to comply with the normative requirements of implementing

Microsoft Word, and serious computational malfunctions will ensue. Being an

implementation of Microsoft Word is a normative and provisional interpretation of the

hardware system, which can be withdrawn when something goes ‘wrong’ or when the system

is disrupted by non-design intended forces − being an implementation of Microsoft Word is

not intrinsic to the physical structure itself. It is only at a non-intrinsic prescriptive level of

description that 'breakdowns' can occur, and we characterize these phenomena as

malfunctions only because our extrinsic ascription has been violated (as in Kripke 1982).

 Accordingly, I would argue that the status of computation is very different than the

status of abstract mathematical theories in physics. In physics we are attempting to give a

fundamental characterization of 'reality', and in principle at least all existent phenomena

supervene upon this fundamental level. There is no substrate neutrality in this case, and

instead we are attempting to arrive at a theoretical description of the fixed and given natural

order. So the mapping from abstract formalism to physical values is not purely conventional

as with SMA ‒ e.g. the variables are mapped to basic physical magnitudes and not just

anything we please. And in the mathematical descriptions of basic physical theory there is no

normativity involved. If the predictions of a particular theory, say Newtonian mechanics, turn

out to be incorrect in certain cases, we do not say that physical reality has therefore

'malfunctioned'. Instead we say that Newtonian mechanics is at fault and our mathematical

description itself is incorrect.

 Imagine that we take a device intended to compute some given arithmetical function.

There is always a non-zero probability of error for any algorithm implemented in the physical

world ‒ files become ‘corrupted’, overheating induces processing ‘faults’, ‘errors’ are

propagated. Since error is always possible it follows that there is no independent fact of the

matter regarding which function or algorithm is ‘really’ being computed. Suppose we say that

the device is computing addition. We confirm this by testing its behaviour on 50 thousand

inputs and it gives the correct outputs. But unknown to us the device possesses a mechanical

fault, and when we keep going it gives some ‘wrong’ answers for larger inputs. So which

function is it really computing − addition with errors, or the actual function in extension that

corresponds to its physical behaviour? I would say there is no objective fact to the matter. In

the arithmetical case there's an extra level of attributed abstract computational 'behaviour'

that is always underdetermined by its actual performance, and which does not supervene

upon underlying physical microstructure.

 According to Piccinini (2015b), one of the prime advantages of the mechanistic

approach is that it can account for cases of miscomputation. In this regard it diverges from a

purely causal story by invoking normative/functional considerations. However, I would

respond that these normative standards are not objective features of physical systems per se,

but rather are purely conventional human interpretations, on the same par with computational

ascriptions themselves. In the case of artifacts, the mechanistic account must invoke the

intentions of the human designers in order to characterize error and malfunction. But this

does not successfully address Kripke's philosophical critique, since the purpose and

normativity are still entirely in the eye of the human beholder.

 In the case of biological systems, including brains, the mechanistic account shifts the

burden of the intentional homunculus onto the ‘purposiveness’ of biological ‘design’.

According to this type of neo-Darwinian strategy, something has a particular biological

function if this function was selected in the course of the organism's evolutionary history. In

the present discussion there is not sufficient space to offer a sustained critique of this move.

However, in brief I would argue that the attribution of purpose is again just a subjective

projection on the part of human theorists, and constitutes a potentially misleading gloss on

evolutionary processes. The term ‘natural selection’ can suggest that some sort of choice

mechanism is involved, which can in turn suggest a form of proto-intentionality on the part of

biology ‒ as if ‘Mother Nature’ literally chooses the most fit to survive. But of course this is

only a metaphorical take on the fact that possessing some aimlessly mutated trait which just

happens to constitute an advantage over ones competitors will mechanically cause the

possessor to propagate more numerously. The actual mechanisms are all straightforwardly

causal, and there is no real need to invoke anthropomorphic heuristics appealing to purpose

or design. The operational effect of possessing a randomly generated favorable trait will

appear as if the trait were ‘selected’, but of course there is no ‘invisible hand’ at work. It may

be an arch conservative stand in contemporary intellectual culture, but I would still concur

with Hume that it's a basic conceptual fallacy to try and derive an ‘ought’ from an ‘is’.

8 Computational Ascriptions Are Interest Relative

I would now like to propose a different perspective on the issue. Rather than distinguishing

‘true’ from ‘false’ cases of implementation, what the various proposed constraints do instead

is to go some distance in distinguishing interesting and pragmatically useful implementations

from the many uninteresting, trivial and useless cases that abound in the space of theoretical

possibility. It’s certainly true that there is no pragmatic value in most interpretive exercises

compatible with ↑MR and ↑MR*. Ascribing computational activity to physical systems is

useful to us only insofar as it supplies informative outputs.

 So, interesting and useful mappings are such that we can directly read-off something

that follows from the implemented formalism, but which we didn’t already know in advance

and explicitly incorporate into the mapping from the start. That’s the incredible value of our

computational artefacts, and it’s one of the only practical motivation for playing the

interpretation game in the first place. Hence a crucial difference between our computational

artefacts and the attributions of formal structure to naturally occurring open systems, as

employed by ↑MR* exercises, is that the mapping in the latter case is entirely ex post facto

and thus supplies us with no epistemic gains. The abstract procedural ‘trajectory’ is already

known and used as the basis for interpreting various state transitions in the open system and

hence characterizing it as an implementation. In sharp contrast, we can use the intended

interpretation of our artefacts both to predict their future behaviour, as well as discover

previously unknown output values automatically.

 And this is obviously why an engineered correlation obtains between fine-grained

causal structure and abstract formal structure in the case of our artefacts – we want them to be

informative and reliable! We also want them to be highly versatile, and this is where

counterfactual considerations can come to the fore in practice: over time we do runs on a

huge number of different inputs, and in principle the future outputs follow as direct

consequences of the intended interpretation. And this is where semantic considerations can

enter the picture – the purely syntactic formalisms are designed to preserve truth in our

intended interpretation, so that from the automated syntactic transformations we can apply

our interest-relative semantics and hence discover new truths about our chosen semantic

domain. In general, a particular physical device is useful to us as a computer only when its

salient states are distinguishable by us with our measuring devices, and when we can put the

system into a selected initial state to compute the output of our chosen algorithm on a wide

range of input values. And these features will be relative to our current technological

capabilities.

 These pragmatic considerations supply clear and well motivated criteria for

differentiating useful from useless cases of physical implementation. And I would advocate

this type of pragmatic taxonomy in lieu of attempts to give overarching theoretical constraints

purporting to distinguish literally ‘true’ from ‘false’ cases. The pragmatic factors do not

supply global and uniform necessary conditions (and the ever present non-zero probability of

error indicates than none is sufficient, either). Different desiderata will have shifting roles and

prominence in different contexts of application, and will be satisfied to varying degrees

dependent on the goals and purposes in question, as well as the state of our technological

progress. Computation is a highly versatile tool, and there is no single and objective class of

phenomena that can be isolated as comprising the ‘real’ instances of physical

implementation. Instead, SMA specifies the maximal and context neutral space of

possibilities, and varying pragmatic considerations can then be applied to carve out different

subsets within this space which prove useful or interesting according to our divergent human

purposes. In short, physical computation is not a natural kind ‒ it is founded upon human

convention, interpretation and choice.

9 Some Standard Objections

I will end the paper by briefly addressing some objections that often arise in response to this

position.

9.1 The Spectre of Pancomputationalism

In his excellent and illuminating Stanford Encyclopedia article, Piccinini (2015a) observes

that one of the motivations for rejecting SMA is that it induces ‘unlimited

pancomputationalism’, which is presumably something we should wish to avoid. But it's

difficult to see why this type of pancomputationalism should constitute a theoretical menace,

since it goes hand in hand with anti-realism about physical computation, and simply implies

that any number of abstract mappings exist in a purely mathematical sense. Analogously,

there are any number of abstract mappings that exist from the set of positive integers to

collections of physical objects and particles. For example, the set of O2 molecules in some

arbitrarily delimited region of the atmosphere is enumerated via some function on the

positive integers. And this region can be defined as a proper subset of some other region and

the same molecules are enumerated by any number of different functions. Hence the same

molecules can be members of arbitrarily many different sets and images under many different

mappings. Is this a threat? For the most part we don't care about all these possible sets and

enumerations. But in some cases we do, as in the set of human beings living in some country,

when it comes time to do a census.

9.2 The Threat to CTM

I endorse a purely formal and non-intrinsic account of computation, and consequently argue

that the mathematical theory of computation alone is not sufficient to provide a full

explanatory theory of particular subject disciplines, such as a computational theory of the

mind. This is a specialized scientific application that requires many additional resources

appropriate to the phenomena and subject area under investigation. Computation is an

extremely powerful and versatile formal tool, that can be applied to a virtually limitless range

of phenomena. However computation per se has no mystical powers, and merely

implementing the ‘right’ sort of computational formalism cannot magically transform some

given arrangement of mass/energy into a mind. On my account, much more is required than

merely implementing a formal procedure. In particular, the system must be able to do a host

of complex and sophisticated things within a multifaceted environment. See Schweizer

(2016) for further discussion.

9.3 Not all Levels of Description are ‘Intrinsic’ from the Perspective of Physics

There are many levels of description that are not ‘intrinsic’ from the perspective of

fundamental physics, but are nonetheless perfectly legitimate and scientifically respectable.

For example, various arrangements of mass/energy configured in such a way as to perform

some clear biological function, such as ‘being a kidney’. In response, I would argue that the

attribution of computational structure is crucially disanalogous to cases such as this, which

still trade on characteristics which are themselves essentially physical in nature. In order to be

a kidney, a particular assemblage of material stuff must do things with other instances of

material stuff that are characterized in terms of, e.g. the chemical composition of blood, waste

products, filtering, etc. There is an objective, observer independent fact of the matter

regarding whether or not a given configuration of matter performs the chemically specified

functions required of kidneys, because biological functions are defined in terms of cause and

effect relations in the physical world, and in stark contrast, computational realizations are not.

 There is a pronounced difference here between actual versus abstract characteristics

which makes attributions of computational structure observer dependent in a manner not

shared by biological functions. The inputs to a computational system are essentially

'symbolic' rather than physical, where the material implementations of the symbolic or formal

inputs must be interpreted as such by an outside agent, and where this symbolic interpretation

is entirely conventional in nature. This marks a prominent discontinuity in levels of

description.

9.4 There are Objective Constraints if Given an Appropriate Physical Description

Not just anything goes as SMA seems to suggest ‒ there are objective constraints at

appropriately specified levels of physical description, e.g. circuit theory (see Scheutz 1999).

And I would agree that, relative to particular design parameters imposed by human engineers,

in conjunction with known principles of materials science, there can be very tightly

constrained abstract solutions. SMA does not imply that such mappings are 'arbitrary', and

surely the impressive success and reliability of our artifacts is not a subjective phenomenon.

As with Dennett's Intentional Stance, predictive success is an objective criterion. However, to

the extent that success is achieved, it ultimately rests upon skilled manipulation of the

physical substrate. And the ever present possibility of error and malfunction indicates that an

abstract computational description of this (continuous) substrate is still a normative

idealization and not an 'intrinsic' characterization. There is nothing physically or

metaphysically privileged about circuit theory as a level of description, and it does not

preclude alternative characterizations and different computational mappings ascribed to the

very same physical system. Hence such 'favored' mappings have no impact on the basic SMA

perspective.

9.5 SMA Cannot Differentiate a Stone From a Sophisticated Computational Artifact

And surely there is a difference, objectors will contend, and hence SMA does not provide a

satisfactory account of computation in physical systems. To this complaint I would reply that

the crucial difference is in our ability to manipulate the artifact in order to acquire new

information. Artifacts are specifically designed and built to satisfy non ex post facto

mappings ‒ this is why they're so useful and why we pay good money for them. But this

feature does not ground an ontological distinction between 'real' versus 'spurious'

implementations. In other cases we appeal to ex post facto methods, as in error checking the

very same artifacts. And in the case of 'natural computation', if we have a theory concerning

what computation a given biological system is performing, then we can predict future

physical states of the system, and also test our theory, by carrying out the computation first

and then looking to see if it maps to the empirical facts.

References
Bishop, J. M. (2009). Why computers can’t feel pain, Minds and Machines, 19, 507-516.
Block, N. (2002). Searle’s arguments against cognitive science. In J. Preston and J. M. Bishop (Eds.) Views into the Chinese Room,

Oxford: Oxford University Press.
Boolos, G. and Jeffrey, R.C. (1989). Computability and Logic, 3rd edition. Cambridge: Cambridge University Press.
Chalmers, D. J. (1996). Does a rock implement every finite-state automaton?, Synthese, 108, 309-333.
Chrisley, R. L. (1994). Why everything doesn’t realize every computation, Minds and Machines, 4, 403-420.
Copeland, J. (1996). What is computation?, Synthese, 108, 335-359.
Fodor, J. (1981). The mind-body problem’, Scientific American, 24.
Kripke, S. (1982). Wittgenstein on Rules and Private Language. Cambridge: Harvard University Press.
Maudlin, T., 1989. Computation and consciousness, Journal of Philosophy, 86(8), 407–432.
Milkowski, M. (2013). Explaining the Computational Mind. Cambridge: MIT Press.
Newman, M. (1928). Mr. Russell's "Causal Theory of Perception", Mind , 37, 137-148.
Piccinini, G. (2015a). Computation in physical systems, The Stanford Encyclopedia of Philosophy, E. N. Zalta (Ed.),

<http://plato.stanford.edu/archives/fall2015/entries/computation-physicalsystems/>.
Piccinini, G. (2015b). Physical Computation. Oxford: Oxford University Press.
Putnam, H. (1988). Representation and Reality. Cambridge: MIT Press.
Rescorla, M. 2014. A theory of computational implementation, Synthese, 191, 1277–1307.
Scheutz, M. (1999) When physical systems realize functions , Minds and Machines, 9(2), 161–196.

Schweizer, P. (2012). Physical instantiation and the propositional attitudes, Cognitive Computation, 4, 226-235.
Schweizer, P. (2016). In what sense does the brain compute? In V. C. Müller (Ed.) Computing and Philosophy, Synthese Library 375,

pp. 63-79, 2016. Heidelberg: Springer
Searle, J. (1990). Is the brain a digital computer?, Proceedings of the American Philosophical Association, 64, 21-37.
Shagrir, O. (2001). Content, computation and externalism, Mind, 110(438), 369–400.
Sprevak, M. (2010). Computation, individuation, and the received view on representations. Studies in History and Philosophy of

Science, 41, 260-270.
Turing, A. (1936). On computable numbers, with an application to the entscheidungsproblem, Proceeding of the London

Mathematical Society, (series 2), 42, 230-265,
Turing, A. (1950). Computing machinery and intelligence, Mind, 59, 433- 460.

