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Abstract: According to the PubMed resource from the U.S. National Library of Medicine, 
over 750,000 scientific articles have been published in the ~5000 biomedical journals 
worldwide in the year 2007 alone.  The vast majority of these publications include results 
from hypothesis-driven experimentation in overlapping biomedical research domains.  
Unfortunately, the sheer volume of information being generated by the biomedical 
research enterprise has made it virtually impossible for investigators to stay aware of the 
latest findings in their domain of interest, let alone to be able to assimilate and mine data 
from related investigations for purposes of meta-analysis.  While computers have the 
potential for assisting investigators in the extraction, management and analysis of these 
data, information contained in the traditional journal publication is still largely 
unstructured, free-text descriptions of study design, experimental application and results 
interpretation, making it difficult for computers to gain access to the content of what is 
being conveyed without significant manual intervention.  In order to circumvent these 
roadblocks and make the most of the output from the biomedical research enterprise, a 
variety of related standards in knowledge representation are being developed, proposed 
and adopted in the biomedical community.  In this chapter, we will explore the current 
status of efforts to develop minimum information standards for the representation of a 
biomedical experiment, ontologies composed of shared vocabularies assembled into 
subsumption hierarchical structures, and extensible relational data models that link the 
information components together in a machine-readable and human-useable framework 
for data mining purposes. 
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I. General Overview 
 
Paradigm shift in biomedical investigation 
The advance of science depends on the ability to build upon information gathered and 
ideas formulated through prior investigator-driven research and observation.  
Traditionally, the output of the international research enterprise has been reported in print 
format – scientific journal articles and books.  The intended audiences for these scientific 
reports are other scientists who carefully read through the text in order to understand the 
rationale behind the arguments and experimental designs and thereby to gauge the merits 
of results obtained in addressing the proposed hypothesis.  This approach has worked 
well thus far; it worked well during the advent of molecular biology, when many of the 
fundamental principles in biology were defined. 
 
However, the last two decades have witnessed a paradigm shift in biomedical 
investigation, in which reductionistic approaches to investigation in which single 
functions of single molecules studied using tightly controlled experiments are being 
replaced by high throughput experimental technologies in which the functions of large 
numbers of biological entities are evaluated simultaneously.  This shift in experimental 
paradigm was largely initiated when the U.S. Department of Energy, the U.S. National 
Institutes of Health and the European Molecular Biology Laboratory committed to the 
sequencing of the human genome.  In addition to the information derived from the 
genome sequence itself, the human genome project spawned the development of new 
research technologies for high throughput investigation that rely on automation and 
miniaturization to rapidly process large numbers of samples and to simultaneously 
interrogate large numbers of analytes.  For example, microarrays of probes for all known 
and predicted genes in the human genome are now commercially available to enable 
simultaneous measurement and comparison of the mRNA levels of all genes in biological 
samples of interest.  The output of these high throughput methodologies is massive 
amounts of data about the biological systems being investigated, and this has lead to two 
challenges – how do we analyze and interpret these data, and how do we disseminate the 
resultant information in such a way as to make it available to (and thus discoverable by) 
the broader scientific community? 
 
Data sharing standards 
In order to maximize its return on investment, NIH established a policy for data sharing 
in 2003 (http://grants.nih.gov/grants/policy/data_sharing/), to the effect that for any 
project receiving more than $500,000 per year in NIH funding, the investigators must 
make their primary data freely available to the scientific community for re-use and meta-
analysis.  Although most journals now provide electronic versions of their print articles 
that also include supplemental files of supporting data, these data files are not always 
available through open access, nor is it easy to find relevant data sets through these 
sources.  Thus, the U.S. National Center for Biomedical Informatics (NCBI), the 
European Bioinformatics Institute (EBI) and the Stanford microarray community have 
each established archives for gene expression microarray data – the Gene Expression 
Omnibus (www.ncbi.nih.gov/geo) [Barrett 2007], ArrayExpress (www.ebi.uk/array-
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express) [Parkinson 2007], and the Stanford Microarray Database (http://genome-
www5.stanford.edu/) [Demeter 2007], respectively.  Several other institutes at NIH are 
supporting projects to develop more comprehensive data sharing infrastructures.  The 
National Cancer Institute’s caBIG project is working toward the development of 
vocabulary standards and software applications that will support data sharing using a 
distributed grid approach.  The Division of Allergy, Immunology and Transplantation of 
the National Institute of Allergy and Infectious Disease (NIAID) is supporting the 
development of the Immunology Database and Analysis Portal (ImmPort) to serve as a 
sustainable archive for research data generated by its funded investigators 
(www.immport.org).  The Division of Microbiology and Infectious Disease also of the 
NIAID has supported the development of eight Bioinformatics Resource Centers for 
Biodefense and Emerging/Re-emerging Infectious Disease to assemble research data 
related to selected human pathogens (www.brccentral.org) [Greene 2007, Squires 2008].  
The goal of each of these projects is to make primary research data freely available to 
investigators in a format that will facilitate the incorporation of these data and the 
information derived there from into new research studies designed to extend previous 
findings. 
 
Three new interrelated biological disciplines have emerged to address the challenges of 
data management and analysis – bioinformatics, computational biology and systems 
biology.  While there is some debate about whether these are really distinct disciplines of 
biology, for the purposes of this chapter we will include in the domain of bioinformatics 
studies related to defining how laboratory data and biological knowledge relate to each 
other and how approaches to knowledge representation can aid in data mining for the 
discovery of new knowledge.  We will also make the distinction between data retrieval 
and data mining, with the former being focused on identifying relevant data sets based on 
defined characteristics of the experiment (e.g. finding all experiments involving research 
participants with type 1 diabetes) and the latter being focused on identifying patterns in 
data sets (e.g. which single nucleotide polymorphisms correlate with the development of 
type 1 diabetes). Effective data retrieval requires the accurate and standardized 
representation of information about each experiment in an easily accessible format (e.g. 
in one or other standard relational database format).  While data mining is also dependent 
on accurate and standardized representation of data, it is also further enhanced when the 
information incorporates previous knowledge in such a way as to enable identification of 
relevant patterns (for example through the use of Gene Ontology annotation to interpret 
gene expression patterns in microarray data).   
 
Discussions of data mining tend to focus on the algorithmic portions of the technique.  In 
this chapter we will focus the discussion on how data standards can help support more 
effective data mining by providing common data structures to support interoperability 
between data sources and to provide consistent points of integration between disparate 
data set types.  When sharing data between individuals, the use of standards ensures an 
unambiguous understanding of the information conveyed.  For computer programming, 
the use of standards is essential.  In order to accomplish these objectives, data standards 
should be: 
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 Useful - provide an aid to storing, sharing and re-use of data; 
 Consensual - agreed upon by a plurality of users; 
 Flexible and evolvable - accommodate all forms of current and future data types; 
 Comprehensible - understandable by users (and computers); 
 Easy to implement - straightforward to use in software development; 
 Widely adopted - they have to be used. 

 
Four related standards will be discussed that, taken together, are necessary for 
unambiguous and consistent knowledge representation: 

 proposals for the collection of minimum data elements necessary to describe an 
experiment (what information should be provided), 

 common ontologies for the vocabulary of data values that will populate these 
data elements (how that information should be described), 

 data models that describe the semantics of how the data elements and values 
relate to each other (how the information relates to each other), and 

 standards that describe the common syntax (format) for data exchange (how the 
information should be transferred between information technology resources).   

 
The chapter will end with an example of how these standards support a type of data 
mining that we term meta-mining, in which biological knowledge is integrated with 
primary experimental results for the development of novel hypotheses about the 
biological systems under evaluation. 
 
II. Minimum Data Elements 
 
The MAIME paradigm 
Reports of experimental findings and their interpretations published in scientific journals 
routinely contain specific sections in which certain types of content are provided.  The 
Methods section includes details about how specific assays and other procedures were 
performed and the materials to which those procedures were applied.  The Results section 
contains information about the design of individual experiments and the data derived.  
The Introduction section sets the stage by summarizing the current state of the field and 
setting out the issues that remain unresolved and that will be addressed in the studies 
described.  The Discussion section provides an interpretation of the experimental findings 
in the context of the body of knowledge outlined in the Introduction.  The Abstract 
section summarizes the key points of the other sections.  While this framework provides 
some general guidance as to what kind of information should be included in a scientific 
report, the details concerning what is to be included in each section are left to the authors 
to decide, thus resulting in considerable variability in the content, structure and level of 
detail of the information reported.  Since there is general agreement that sufficient 
information should be provided to allow other investigators to reproduce the reported 
findings, the problem is not so much that important information is missing from scientific 
publications, but rather that the key information is provided in haphazard, unstructured, 
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and inconsistent ways, requiring readers to distill and organize the relevant content of 
interest to them. 
 
While this approach to knowledge representation still has its place in the body of 
scientific investigation, the advent and widespread use of high throughput experiment 
methodologies has lead to the need to both capture the experimental results in archives 
and to describe the components of experiments in a standardized way in order to make 
the data more easily accessible.  The importance of these kinds of minimum information 
check lists for describing the experiment metadata was recognized by the gene expression 
microarray community, and formalized in the Minimum Information About a Microarray 
Experiment (MIAME) recommendations [Brazma 2001].  The MIAME 
recommendations have since been adopted by many scientific journals and microarray 
archive databases as the de facto standard for reporting the experiment metadata 
associated with microarray results.  Since then a variety of different communities have 
proposed similar minimum information check lists to capture the unique aspects of their 
favorite methodologies (e.g. MIFlowCyt for flow cytometry – 
http://flowcyt.sourceforge.net/) [Lee 2008].   
 
MIBBI and MIFlowCyt 
In order coordinate efforts in the development of these minimum information checklists, 
the Minimum Information for Biological and Biomedical Investigations (MIBBI) project 
(http://www.mibbi.org/) was established by a consortium of investigators from various 
research communities in order to standardize the content of these data standards and to 
encourage the re-use of common information elements across methodologies where 
appropriate [Taylor 2008].  Figure 1 shows the required minimum data elements 
identified in the MIFlowCyt standard.  Many of the data elements included correspond to 
basic elements of experimental design (e.g. experiment purpose and dependent and 
independent variables) and assay procedures (e.g. biological sample source and treatment 
details); these kinds of data elements are included in most MIBBI standards as they serve 
as a common core for biological experiment descriptions.  The MIBBI consortium is 
currently identifying these core data elements that should be consistently represented in 
all MIBBI-compliant minimum information standards.  Other data elements that relate to 
the kinds of reagents that are used to measure analytes (e.g. fluorochrome reporters and 
antibody clone names), measurement instrument configuration details (e.g. flow cell and 
optical filters), and data analysis details (e.g. compensation and gating details) are more 
technology specific and may only be found as extensions to the common MIBBI core in a 
few related methodology standards. 
 
Two important points about these kinds of minimum information standards are worth 
noting.  First, there is a distinction between what information is necessary to reproduce an 
experiment, as detailed in the MIBBI standards, and the information that would be 
relevant to capture and support in a database archive.  The latter correspond to a subset of 
MIBBI data elements that might specifically be represented in database tables and would 
be used to query the database, especially the dependent and independent variables of the 
experiment, the characteristics of the biological samples and their sources used in the 



6 

experiment, and the analytes being measured.  While the other information is equally 
important to reproduce the experimental findings, they may not play important roles in 
the conduct of data meta-analysis.  For example, while the instrument configuration 
details may be necessary to reproduce a particular data set, it is unlikely that one would 
search for data sets in the database archive based on the details of the optical path.  
Rather than capturing these details in specific database table columns, this information 
can be included in text documents that describe all of the protocol details. 
 
The second important point about these minimum information standards relates to who 
should be responsible for providing the information.  In the case of MIFlowCyt, some of 
the information is derived from the configuration of the instrument and analytical 
software used in the capture of the resulting data.  This information would more 
appropriately be provided directly by the instrument and software packages themselves, 
rather than expecting the investigator to have to determine these details for every 
experiment they run.  Thus, in the development of the MIFlowCyt standard, it was 
important to engage stakeholders from the instrument manufacturer and software 
developer communities so that they would agree to provide this information as a matter 
of course in the resulting output files. 
 
Thus, by formalizing the details for the minimum data elements that should be included 
in the description of an experiment, a higher level of consistency in how to describe 
experiments can be obtained, both within and between different experimental 
methodologies.  Consistent representation frameworks will facilitate the identification of 
related experiments in terms of health conditions being investigated, treatment 
approaches being varied, and responding variable being tested in order to support meta-
analysis and re-use of related data sets. 
 
Information Artifacts and MIRIAM 
Although the biomedical minimum information standards were initially developed to 
support the description of wet lab experimentation, it became apparent that similar 
standards would be useful to support the work coming out of the bioinformatics research 
community in terms of the description of system models and data mining analysis.  The 
BioPax [Luciano 2005], SBML [Hucka 2003] and CellML [Lloyd 2004] standards have 
been developed to provide the syntactic standards necessary to exchange biological 
pathway and systems descriptions.  The Minimum Information Requested in the 
Annotation of biochemical Models (MIRIAM) [Le Novere 2005] was developed to 
ensure that sufficient information is included in the description of any biological model 
such that any results obtained from modeling could be reproduced by outside 
investigators.  The Minimum Information About a Simulation Experiment (MIASE) 
extends MIRIAM to support model simulation.  Recently, the European Bioinformatics 
Institute has established a set of resources based on the MIRIAM standards [Laibe 2007], 
including: 

 MIRIAM Database - containing information about the MIRIAM data types and 
their associated attributes; 

 MIRIAM Web Services - a SOAP-based application programming interface (API) 
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for querying the MIRIAM Database; 
 MIRIAM Library - a library instruction set for the use of MIRIAM Web Services; 
 MIRIAM Web Application - an interactive Web interface for browsing and 

querying MIRIAM Database, and for the submission and editing of MIRIAM 
data types. 

 
 
III. Ontologies 
 
Ontologies versus controlled vocabularies 
While the minimum data standards describe the types of data elements to be captured, the 
use of standard vocabularies as values to populate the information about these data 
elements is also important to support interoperability.  In many cases, groups develop 
term lists (controlled vocabularies) that describe what kinds of words and word phrases 
should be used to describe the values for a given data element.  In the ideal case each 
term is accompanied by a textual definition that describes what the term means in order 
to support consistency in term use.  However, recently many bioinformaticians have 
begun to develop and adopt ontologies that can serve in place of vocabularies for use as 
these allowed term lists.  As with a specific vocabulary, an ontology is a domain-specific 
dictionary of terms and definitions.  But an ontology also captures the semantic 
relationships between the terms, thus allowing logical inferencing about the entities 
represented by the ontology and by the data annotated using the ontology’s terms.  The 
semantic relationships incorporated into the ontology represent universal relations 
between the classes represented by its terms based on knowledge about the entities 
described by the terms established previously.  For example, if we use a disease ontology 
to annotate gene function that explicitly states that type 1 diabetes and Hashimoto’s 
disease are both types of autoimmune diseases of endocrine glands, then we can infer that 
gene A, annotated as being associated with type 1 diabetes, and gene B, annotated as 
being associated with Hashimoto’s disease, are related to each other even though this is 
not explicitly stated in the annotation through our previous knowledge of disease 
relationships captured in the structure of the disease ontology used for annotation.  Thus, 
an ontology in the sense here intended is a representation of the types of entities existing 
in the corresponding domain of reality and of the relations between them. This 
representation has certain formal properties, enabling it to serve the needs of computers. 
It also employs for its representations the terms used and accepted by the relevant 
scientific community, enabling it to serve the needs of human beings. To support both 
humans and computers the terms used are explicitly defined using some standard, shared 
syntax.  Through these definitions and through the relations asserted to obtain between its 
terms the ontology the ontology captures consensual knowledge accepted by the relevant 
communities of domain experts.  Finally, an ontology is a representation of universals; it 
described what is general in reality, not what is particular.  Thus, ontologies describe 
classes of entities whereas databases tend to describe instances of entities. 
 
In recognition of the value that ontologies can add to knowledge representation, several 
groups have developed ontologies that cover specific domains of biology and medicine.  
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The Open Biomedical Ontology (OBO) library was established in 2001 as a repository of 
ontologies developed for use by the biomedical research community 
(http://sourceforge.net/projects/obo). As of August 2008 the OBO library includes 70 
ontologies that cover a wide variety of different domains.  In some cases, the ontology is 
composed of a highly focused set of terms to support the data annotation needs of a 
specific model organism community (e.g. the Plasmodium Life Cycle Ontology).  In 
other cases, the ontology covers a broader set of terms that is intended to provide 
comprehensive coverage of an entire life science domain (e.g. the Cell Type Ontology).  
Since 2006, it has become possible to access the OBO library through their BioPortal 
http://www.bioontology.org/tools/portal/bioportal.html) of the National Center for 
Biomedical Ontology (NCBO) project, which also provides a number of associated 
software services and also access to a number of additional ontologies of biomedical 
relevance. .  The European Bioinformatics Institute has also developed the Ontology 
Lookup Service (OLS) that provides a web service interface to query multiple OBO 
ontologies from a single location with a unified output format 
(http://www.ebi.ac.uk/ontology-lookup/).  Both the BioPortal and the OLS permit users 
to browse individual ontologies and search for terms across ontologies according to term 
name and certain associated attributes. 
 
OBO Foundry 
While the development of ontologies was originally intended to advance consistency and 
interoperability in knowledge representation, the recent explosion of new ontologies has 
threatened to undermine these goals.  For example, in some cases multiple ontologies that 
have been developed independently cover overlapping domains, thus leading to different 
terms or single terms with different definitions being used to describe the same entity by 
different communities.  While this problem can be partly resolved by efforts to map 
between terms in different ontologies, in many cases the lack of a one-to-one mapping 
makes this problematic. Moreover, mappings themselves are difficult to construct, and 
even more difficult to maintain as the mapped ontologies change through time. A second 
problem is that in many cases the relationships between terms that are used to assemble a 
single ontology hierarchy are not described explicitly and are not used consistently.  It is 
impossible to support inferencing based on the ontology if it is unclear how adjacent 
terms in the hierarchy relate to each other.  Finally, some ontologies have been developed 
by small groups from what may be a highly idiosyncratic perspectives and thus may not 
represent the current consensual understanding of the domain in question. 
 
In order to overcome these and other problems with the current collection of biomedical 
ontologies, several groups have proposed frameworks for disciplined ontology 
development (e.g. [Aranguren 2008]. The Open Biomedical Ontologies Foundry 
initiative (http://www.obofoundry.org/) was established in 2005 as a collaborative 
experiment designed to enhance the quality and interoperability of life science ontologies, 
with respect to both the biological content and its logical structure [Smith, 2007]. The 
initiative is based on the voluntary acceptance by its participant ontology development 
communities of an evolving set of design and development principles designed to 
maximize the degree to which their ontologies can support the broader needs of scientists.  
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These best-practice design principles can be roughly sub-divided into three broad 
categories – technical, scientific and societal (Table 1).  Technical principles include 
requirements for the inclusion of a common set of meta-data (in a manner similar to the 
MIBBI-type specifications described above), and the use of a common shared syntax.  
Scientific principles include the requirement of orthogonality to the effect that the content 
of each Foundry ontology should be clearly specified and delineated so as not to overlap 
with other Foundry ontologies, and the requirement for a consistent semantic framework 
for defining the relations used in each ontology.  (These scientific principles are 
described in more detail below.)  Societal principles would include the requirement that 
the ontology be developed collaboratively, and that the resulting ontology artifact is open 
and freely available. 
 
Table 1. OBO Foundry Principles as of April 2006 
Technical  
 The ontology is expressed in a common shared syntax for ontologies (e.g. 

OBO format, OWL (Ontology Web Language) format). 
 The ontology possesses a unique identifier space. 
 The ontology provider has procedures for identifying distinct successive 

versions. 
 The ontology includes textual definitions for all terms. 
 The ontology is well documented. 
Scientific  
 The ontology has a clearly specified and clearly delineated content. 
 The ontology uses relations that are unambiguously defined following the 

pattern of definitions laid down in the OBO Relation Ontology. 
Societal  
 The ontology is open and available to be used by all without any 

constraint. 
 The ontology has been developed collaboratively with other OBO 

Foundry members. 
 The ontology has a plurality of independent users. 
 
As argued above, the great value in using ontologies to represent a particular data set lies 
in the background knowledge embedded in the relationships that link the terms together 
in the ontology.  OBO Foundry ontologies are expected to utilize relations defined in the 
Relation Ontology (RO) [Smith 2005] to describe these relations (the first set of relations 
is depicted in Table 2). 
 
Table 2. OBO Relation Ontology (RO) 
Foundational  
 is_a 
 part_of 
Spatial  
 located_in 
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 contained_in 
 adjacent_to 
Temporal  
 transformation_of 
 derives_from 
 preceded_by 
Participation   
 has_participant 
 has_agent 
 
The foundational relation that is used primarily in the assembly of OBO Foundry 
ontologies is the is_a relation that links parent and child terms in the ontology hierarchy.  
Parent and children terms in the is_a hierarchy can be thought of as having type-subtype 
relations similar to the genus-species relations in the species taxonomy.  Several 
advantages arise out of building the ontology structure based on an is_a hierarchy of 
type-subtype relations, including: 

 First, definitions of terms can be constructed using the genus differentia approach 
proposed by Aristotle, so that the definition of the term ‘A’ will take the form: 
‘An A is_a B that C’s’ in which A is a subtype (child) of (parent) type B with the 
special characteristic C that distinguishes instances of A from other instances of 
B.  For example, ‘type 1 diabetes is_a autoimmune disease of endocrine glands 
that involves the endocrine pancreas as the primary target.’ 

 Second, terms in a well-formed is_a hierarchy inherit characteristics from their 
parents through the property of transitivity.  By defining type 1 diabetes as a 
subtype of autoimmune disease of endocrine glands, the term inherits 
characteristics that define all such autoimmune diseases, as well as characteristics 
of all diseases in general through the definitions of and other attributes associated 
with these parent terms.  Indeed, adherence to the property of transitivity can be a 
good test for correct positioning of terms in the ontology hierarchy. 

 
Role, quality, function and type 
During ontology development, there is often difficulty in trying to define which sort of 
characteristic should be used as the primary differentia between sibling subtypes.  For 
example, let’s consider the type: old, faded blue Dodge CaravanTM minivan airport shuttle 
that we might want to represent in a vehicle ontology.  Should it be considered to be a 
subtype of old vehicles, a subtype of faded blue vehicles, a subtype of Dodge vehicles, a 
subtype of Dodge CaravanTM vehicles, a subtype of minivan vehicles, a subtype of airport 
shuttle vehicles, or a subtype of all of these parent terms? 
 
In order to address this issue, we need to discuss the distinctions between roles, qualities, 
functions and types.  A role is a special attribute that an entity can be made to play by 
societal choice.  The ‘airport shuttle’ attribute is an example of a role that the driver has 
assigned to the vehicle.  It is not an inherent property of the vehicle that distinguishes it 
from other vehicles.  Indeed, any vehicle could be used as an airport shuttle.  The role is 
also frequently a transient attribute.  For example, at the end of the driver’s shift the 
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‘airport shuttle’ might transform into a ‘soccer practice shuttle’, and then back into an 
‘airport shuttle’ the next day.  The transient, subjective nature of roles makes them a poor 
choice for primary differentia in ontology hierarchies. 
 
In the example, ‘old’ and ‘faded blue’ describe qualities of the vehicle.  Qualities are not 
acquired by choice in the natural world.  We cannot choose our age or the color of our 
skin.  And yet qualities are frequently transient in nature.  At one point the vehicle was a 
new, bright blue Dodge CaravanTM.  Thus, basing annotations on terms distinguished 
based on quality characteristics would mean that the annotation would not be invariant 
and would have to be undated continually to deal with these changes over time.  In 
addition, entities can be described on the basis of a whole range of different quality 
characteristics – height, width, length, volume, shape mass, color, age, smell, etc.  
Without selecting a single defining characteristic, the ontology would explode into a 
hierarchy of multiple inheritance, in which specific terms would have parents like: old 
things and blue things, large things and oily-smelling things, and so on. 
 
We conclude that type-subtype is_a relations should be based on properties of the entity 
that are invariant.  A Dodge CaravanTM will always be a minivan regardless of whether it 
is used as an airport shuttle, whether it is old or new, whether it is painted red or blue, and 
so forth.  It will never be a sports car. 
 
For a more biological example, consider the use of the EcoR1 enzyme in the construction 
of a recombinant plasmid in a genetic engineering experiment.  We would consider 
EcoR1 to be a type of protein with a molecular function restriction endonuclease activity 
(GO:0015666).  In its normal context, EcoR1 plays a role in the DNA restriction-
modification system (GO:0009307) that protects an organism from invading foreign 
DNA by nucleolytic cleavage of unmethylated foreign DNA.  However, EcoR1 can also 
play another role in an experimental context, its use to open up a double-stranded circular 
plasmid to accept the insertion of a foreign DNA fragment in a cloning experiment.  At 
the end of the cloning experiment we may want to change the quality of the enzyme from 
active to inactive through a denaturation process in order to prevent it from realizing its 
function any further.  Thus, while the type of protein and its designed function haven’t 
changed, its role can change based on the process it is involved in and its quality can 
change dependent on its physical structure state in this case.  By precisely distinguishing 
between roles, functions, qualities and types we can support the accurate representation 
of entities in the their normal states and in artificial experiment contexts, and accurate 
reasoning about theses entities in these different contexts. 
 
Orthogonality 
The second major scientific OBO Foundry principle relates to the concept of 
orthogonality.  The Foundry is striving toward complete coverage of the entire biological 
and biomedical domain using one and only one term for a given entity.  However, it 
would be virtually impossible to build a single ontology that covers the entire scope of 
this domain in a reasonable amount of time with a manageable group of developers who 
have the requisite expertise in all disciplines of biology.  For these reason, the OBO 
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Foundry has adopted a modular, iterative approach in which smaller subdomains are 
defined that then become the focus of activity for groups of ontology developers with 
appropriate expertise.  For example, the Chemical Entities of Biological Interest (ChEBI) 
ontology is being developed by biochemists and organic chemist with knowledge of 
chemical structure and function in order to cover the small molecules (e.g. drugs, 
metabolites, peptides, etc.) of interest to biologists.  While this modular approach 
addresses the challenges of biology domain coverage, it brings the problem of potential 
overlap between subdomains being developed by different groups.  Thus, ontologies that 
are part of the OBO Foundry must submit to the principle of orthogonality in which a 
given biological entity is covered by one, and only one, ontology.  In cases, where 
potential overlap exists, negotiation and consensus building is used to assign terms to a 
given ontology. 
 
In order to bring some level of consistency in the definition of a subdomain module, the 
biology domain can be divided into partitions based on two axes (Figure 2).  The first 
axis relates to size/granularity, e.g. from molecules to organelles to cells to tissues to 
organisms to populations to ecosystems.  The second axis reflects the general types of 
entities found in reality as represented in the Basic Formal Ontology (BFO).  At the 
highest level, these entities can be broken down into continuants and occurrent.  
Continuants are further subdivided into dependent and independent continuants.  
Continuants exist throughout time.  An independent continuant exists on its own without 
any dependence on another entity; these are the physical objects like tables, cups, 
proteins, organs, etc.  A dependent continuant exists throughout time, but requires 
adherence in an independent continuant to exist; these are the qualities, roles and 
functions like the color blue, which only exists I the context of a physical entity.  
Occurrents are processes, like driving and replication, which exist in a defined time 
period with a start point and end point.  Thus, we can subdivide the biology domain based 
on grid in which one axis corresponds to size/granularity and the other to time and entity 
dependencies (Figure 2). 
 
Through the OBO Foundry initiative, the goal is to achieve, in the long term, complete 
coverage of the entire biological domain with single terms for each entity of interest, in 
which terms are initially linked together using foundational relations (is_a and part_of) 
into a single hierarchy in a given ontology, which is developed by groups of subdomain 
experts and reflects the consensual knowledge of the general relations of types of entites 
in that domain.  These terms can then be used to annotate database records in an 
unambiguous way that supports inference based on the consensual knowledge 
incorporated into the ontology structure and thus supports database interoperability. 
 
IV. Data Models 
 
The Immunology Database and Analysis Portal (ImmPort) is being developed to serve as 
a long-term sustainable archive for data being generated by investigators funded by the 
Division of Allergy, Immunology and Transplantation (DAIT) of the U.S. National 
Institute of Allergy and Infectious Diseases (NIAID).  DAIT funds a wide range of basic 
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laboratory and clinical research studies and so the ImmPort system must be able to handle 
everything from genotyping and gene expression microarray data to clinical trials of new 
vaccines and therapeutic strategies.  As such, ImmPort must be able to manage data 
associated with a variety of different experiment methodologies and must be able to 
effectively integrate these data through common metadata features and/or results 
characteristics.  For example, investigators may want to aggregate data from any 
experiment in which type 1 diabetes is being investigated, or experiments in which some 
characteristic of particular gene (e.g. TLR4) was found to be significantly associated with 
the independent variable of the experiment.  Thus, the many of the requirements for 
knowledge representation associated with ImmPort are distinct from those associated 
with other database archives focused on data from single experiment approaches, like 
dbGAP for human genetic association data or GEO and ArrayExpress for microarray 
data.  The challenge to support such a wide range of research data lead us to implement a 
database structure that would reflect the common features of a biomedical investigation. 
 
Several different data model frameworks have been developed over the years – the 
hierarchical model (used in IBM’s IMS database management system), the network 
model (used in IDS and IDMS), the relational data model (used in IBM DB2, Oracle 
DBMS, Sybase, Microsoft Access), the object-oriented model (used in Objectstore and 
Versant) and hybrid object-relational models [Ramakrishnan 2003].  Depending on the 
application, each of these frameworks has its advantages and disadvantages, but the 
relational data model has become widely adopted for databases such as ImmPort in that it 
can handle complex interrelated data in an efficient manner. 
 
The development of a database involves six major steps: 

 Requirements Analysis – in which an understanding of what the data include and 
how it will be used are defined; 

 Conceptual Database Design – in which the entities and their relationships are 
defined; 

 Logical Database Design – in which the conceptual design is converted into a 
logical model based on the data model framework chosen; 

 Schema Refinement – in which the logical model is analyzed to identify potential 
problems and refined accordingly; 

 Physical Database Design – in which the logical model is converted into a 
physical database schema that incorporate design criteria to optimize system 
performance; 

 Application and Security Design – integration of the database with other software 
applications that need to access the data. 

 
Because the uses of biomedical data varies by data type and the specific requirements of 
the user communities involved, it is virtually impossible to development a single physical 
database design that will efficiently meet all user requirements.  And yet, in order to 
support interoperability between database resources common approaches for data 
representation is essential.  For these reasons several groups have worked on the 
development of data models that capture the kinds of entities and relationships in 
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biomedical data that are universal and application independent at the conceptual level.  
These conceptual models can then be refined in their conversion into physical database 
schemas optimized to support specific use case applications while still incorporating the 
common entity types and relationships that allow effective data sharing between data 
users and data providers [Bornberg-Bauer 2002]. 
 
BRIDG 
Several groups have attempted to develop a data model based on this principle. In the 
clinical domain, the Biomedical Research Integrated Domain Group (BRIDG) project is a 
collaborative initiative between the National Cancer Institute (NCI), the Clinical Data 
Interchange Standards Consortium (CDISC), the Regulated Clinical Research 
Information Management Technical Committee (RCRIM TC) of Health Level 7 (HL7), 
and the Food and Drug Administration (FDA) to develop a semantic model of protocol-
driven clinical research [Fridsma 2008].  It was developed to provide an overarching 
model that could be used to harmonize between various standards in the clinical research 
and healthcare domains.  It includes representation of “noun things” like organizations, 
participants, investigators, drugs, and devices, ‘measurement things’ like physical exam 
assessments, and ‘interpretation things’ like adverse event determination. 
 
FuGE 
In the basic research domain, the FuGE (Functional Genomics Experiment Model) is a 
generic data model to facilitate convergence of data standards for describing high-
throughput biological experiments [Jones 2007].  Development of FuGE was initially 
motivated by analysis of a well-established microarray data model: MAGE-OM.  The 
initial goal of FuGE is to deliver a more general model than MAGE-OM by removing 
concepts that were specific to microarray technology.  After receiving a wide range of 
use cases from different communities on describing experimental designs across multi-
omics and conventional technologies, FuGE developers further generalized the model 
and added more placeholders in a way to broaden the application scope of the model.  
Current FuGE v1 model aims at not only a generic database schema but also a data 
exchange standard, if the model can be widely adopted.  In order to capture not only 
common but also domain-specific experimental information, FuGE is designed to be 
extensible.  Its core model consists of a set of generic object classes to represent the 
common information in different laboratory workflows and experimental pipelines used 
in high-throughput biological investigations, while domain-specific extensions of the 
FuGE core classes are needed to capture specific information requirements in the domain.  
Due to its extensible characteristic in providing formal and generic data representations, 
FuGE has been adopted by the Microarray and Gene Expression Data (MGED) Society, 
the Human Proteome Organization - Proteomics Standards Initiative (PSI), Genomics 
Standards Consortium (GSC), Metabolomics Standards Initiative (MSI) etc. 
 
Object classes in FuGE v1 are organized under two namespaces: common and bio.  There 
are six packages under namespace common: Audit, Description, Measurement, Ontology, 
Protocol, and Reference.  Bio namespace consists of four packages: ConceptualMolecule, 
Data, Investigation, and Material.  Each package has a set of predefined classes that can 
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be either used to describe experimental information directly or re-used in domain-specific 
extensions through inheritance, depending on the nature of the information and the class 
to be used.  Not only entities like instruments, samples, and data files but also 
relationship among the entities can be described.  For example, sample and data can be 
linked together in FuGE through protocol and protocolApplication, the latter of which 
provides a flexible binding between input and output as well as related parameters and 
the use of instrument.  To facilitate data sharing, ontology terms and external resources 
can be referenced in FuGE to annotate or directly describe the objects.  Another benefit 
of using FuGE is if an extension of FuGE follows MDA (Model-Driven Architecture) 
standard, a FuGE-compliant database schema (XSD) as well as software code can be 
automatically generated.  A typical extension example is FuGEFlow 
(http://wiki.ficcs.org/ficcs/FuGEFlow), a recent extension of FuGE to capture 
MIFlowCyt-compliant information for flow cytometry experiments.  The generated data 
schema, called Flow-ML, is planned to be used to help building flow cytometry databases 
and exchanging flow cytometry experimental information among different labs and 
institutions.   
 
Ontology-Based eXtensible Data Model (OBX) 
In order to leverage the efforts of the MIBBI and OBO Foundry community, we have 
recently developed a data model – the Ontology-Based eXtensible Data Model (OBX) 
that reflects many of the design principles incorporated in these data standards.  Of 
particular importance to ImmPort database development, a consortium of different 
research communities has been working on the development of an ontology of terms 
needed to represent experiment metadata - the Ontology for Biomedical Investigation 
(OBI; http://purl.obofoundry.org/obo/obi/).  The OBI ontology is focused on those 
aspects of biology that are directly related to scientific investigations – experiment 
design, protocol specification, biomaterial isolation/purification, assays for the 
measurement of specific analytes in specimens, instruments and reagents used in these 
measurement assays, etc.  The OBI ontology hierarchical structure has been built on a 
BFO framework and points to, but does not include, terms from other OBO Foundry 
ontologies.  Several important concepts have been incorporated into the OBI structure, 
including the typing of assay, biomaterial transformation and data transformation 
processes based on the kinds of entities that serve as inputs and outputs to those 
processes, the typing of investigation specifications based on objectives, and the 
importance of precisely defining the roles played by the various different process 
components (e.g. specimen, reagent, principle investigator).  While the OBI ontology is 
focused on representing general features of entity classes used in investigations, OBX is 
focused on capturing instance level information about specific investigations. 
 
A UML diagram of the high level entities represented in OBX is depicted in Figure 3.  
The major axis in the model includes objects – events – qualities, which reflects the 
major branches of the BFO, namely independent continuants – occurrents – dependent 
continuants (Figure 3A). Objects include entities like biological specimens, laboratory 
equipment, assay reagents, chemicals, etc.  Procedures are types of Events, and are 
defined based on their inputs and outputs.  For example, biomaterial transformation 
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procedures have biomaterial objects as inputs and outputs, whereas assay procedures 
have biomaterial object inputs and quality outputs (i.e. the assay results).  In addition to 
describing the specific input entity to a given procedure, the role that the entity plays in 
the procedure is also captured.  This allows for the distinction between the use of an 
antibody as an assay reagent versus the role of an antibody as an analyte to be measured 
in a given specimen.  Every event occurs in a spatial-temporal context and so the Event 
table is linked to the Context table to capture these event attributes.  In the case of OBX, 
all events also occur during the conduct of a research study, which is specified through a 
study design; the study and the study specification are kept distinct to accommodate 
deviations from the original design. 
 
Thus, the high-level core set of entities includes processes/events, process specifications, 
objects and qualities. Each of these high-level tables is then connected to a series of lower 
level, related tables.  The high-level tables include attributes in common to all related 
entities, whereas the low-level tables include attributes that are specific to the related 
entity types.  For example, the Objects table is connected to a series of sub-tables for 
Human Subjects, Organ/Tissue, Instrument, Compounds/Agents, etc. (Figure 3B), which 
include attributes specific for the given entity type (e.g. Compound Manufacturer for the 
Compound/Agent entities).  Assays include both clinical assessments/ physical exams as 
well as laboratory tests.  Therapeutic intervention is a type of material transformation in 
which the input is a human subject and a compound formulation and the output is a 
treated subject.  Diagnosis is a type of data transformation in which the variety of data 
inputs from laboratory test results and clinical assessments are processed (i.e. 
transformed) into a diagnosis by the clinician/diagnostician.  A detailed description of the 
OBX UML model can be found at http://pathcuric1.swmed.edu/Research/scheuermann/ 
OBX.html. 
 
An example of how the OBX framework can be used to represent a laboratory 
experiment is shown in Figure 4.  The experiment comes from a published study in which 
the immune response to influenza virus infection is assessed by measuring the levels of 
interferon gamma in the lungs of infected mice.  The first protocol application is the 
generation of a lung homogenate from infected mice, which can be thought of three 
ordered biomaterial transformations – the infection of the mouse, the removal of the lung 
specimen and the generation of the lung homogenate.  In each case the output from the 
previous process serves as the input for the subsequent process.  The process inputs are 
described as playing specific roles, e.g. host and infectious agent.  The first process is a 
merging (mixing) type of biomaterial transformation, whereas the second two are 
partitioning (enriching) type of biomaterial transformations.  The second protocol 
application is the measurement of interferon gamma levels in the lung homogenate, 
which is composed of three ordered sub-processes – the ELISA assay used to derive 
output data (OD590) as a surrogate of the analyte (interferon gamma) concentration in 
the specimen, the standard curve interpolation data transformation in which the OD590 
value is transformed into interferon gamma mass amount, and final a simple 
mathematical data transformation to convert the mass amount into an analyte 
concentration for the original input specimen.  Again the input components are described 
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to play specific roles in the processes, including evaluant, analyte, analyte detector, 
reagent reporter, comparator, etc.  The final protocol application includes a series of data 
transformation sub-processes to determine if the concentrations of interferon gamma in 
the lung are significantly different between uninfected and infected mice. 
 
Several features of this approach to the representation of this experiment are worth 
noting: 

 First, this approach emphasizes the role that the experiment processes play in 
linking entities together.  For example, if a different type of assay were used to 
measure the interferon gamma analytes or a different standard curve were used 
for the interpolation step, different concentrations of interferon gamma would be 
obtained.  Thus, in order understand the result it is critical to know how the 
processes that were used to derive it. 

 Second, the approach shows how specimen qualities are determined – through 
combinations of assays and data transformations. 

 Third, the relationships between biomaterial objects are captured and can be used 
to transfer quality information up the biomaterial chain.  Thus, the concentration 
of interferon gamma is both a quality of the lung specimen as well as the mouse 
source. 

 Fourth, the model is focused on capturing the key entities necessary to identify 
relevant data sets based on the structure meta-data and on common approaches 
for re-analysis, namely to search for patterns in the experiment results (assay 
output qualities) based on difference in the input assay variables. 

 Fifth, one of the big advantages of taking this approach for database 
representation is that it naturally interoperates with the ontology terms from the 
OBO Foundry, which can be used to describe the types of specimens (FMA), 
chemical therapeutics (ChEBI), analytes (PRO), assay types (OBI), protocol 
application roles (OBI), etc. 

 Finally, in some cases a database resource may not be interested in capturing all 
of the details for each sub-process in a protocol application in a structured way.  
For example, the database resource may only what to parse into the table 
structure selected process inputs (the virus, the mouse strain, the lung specimen) 
and selected outputs (interferon gamma concentration and the t-test p-value 
result).  In this case, the other entities necessary to describe the derivation of the 
outputs from the inputs described in the database record must be described in a 
text document, similar to the experiment description provided in the methods 
section of the paper. 

 
V. Ontology-based data mining 
 
The ontology-based approach to knowledge representations offers many significant 
opportunities for new approaches to data mining that go beyond the simple search for 
patterns in the primary data by integrating information incorporated in the structure of the 
ontology representation.  We term these approaches ‘meta-mining’ because they 
represent the mining and analysis of integrated knowledge sets derived from multiple, 



18 

often disparate, sources.  Meta-mining approaches can be used for a wide range of 
different data mining activities, including indexing and retrieval of data and information, 
mapping among ontologies, data integration, data exchange, semantic interoperability, 
data selection and aggregation, decision support, natural language processing 
applications, and knowledge discovery [Rubin 2008, Bodenreider 2008].  For example, 
Cook et al. have describe the use of ontological representations to infer causal chains and 
feedback loops within the network of entities and reactions in biological pathway 
representation [Cook 2007]. O’Conner et al. have described the use of ontological 
representation of clinical trials information to support temporal reasoning in electronic 
clinical trials management systems [O’Conner 2008]. Here we focus on two specific 
examples. In the first example of meta-mining, the role of ontologies in the description of 
the experiment meta-data for the identification and use of related data sets will be 
discussed.  In the second example of meta-mining, the use of Gene Ontology-based 
biological process gene annotation for the interpretation of gene expression microarray 
results [Lee 2006] and protein interaction network structure [Luo 2007] will be discussed.   
 
Metadata mining 
The goal of establishing experiment data archives like ArrayExpress and ImmPort is to 
allow the re-use of data derived from previous experimentation in the interpretation of 
new experiment results.  Indeed, scientists currently do this in an informal, subjective 
way in the discussion sections of their journal articles where they interpret their 
experiment result in the context of the current state of scientific knowledge in the relevant 
biological discipline.  One of the goals of meta-mining is to approach this integrative 
interpretation in an objective, computational manner.  For example, let’s imagine that you 
have recently completed a gene expression microarray experiment in which you have 
determined gene expression levels in a series of samples from pancreatic specimens of 
rats immunized with insulin to induce type 1 diabetes through an autoimmune mechanism 
in the presence and absence of treatment with the immunosuppressive drug cyclosporin.  
While gene expression microarray have revolutionized the way we do gene expression 
analysis by allowing the simultaneous assessment of all genes in the organisms genome, 
it is still hampered by the presence of natural biological and experimental variability, 
resulting in relatively high false positive and false negative rates.  One approach for 
addressing these inaccuracies is to compare your data with related data sets under the 
assumption that any discoveries made with independent, related data sets are likely to be 
real and relevant.  So how does one determine which data sets are ‘related’ in a 
comprehensive, objective way.  This is where ontology-based representation of 
experiment meta-data can play a valuable role. 
 
A simple approach would be to look for data sets derived from identical experiment 
designs, but the chances that there are sufficient numbers of these data sets in the public 
domain tends to be relatively small.  And so, we would like to extend what we would 
consider to be ‘related’ data sets to include those that are ‘similar’ in experiment design.  
In this case we have used microarrays as the assay methodology for quantifying mRNA 
transcript levels.  However, other types of assay methodologies used for assessing 
transcript levels, like RT-PCR, SAGE and even northern blotting, would provide similar 
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data that could be useful for meta-mining.  Using an ontology like OBI to describe assay 
types would allow for this kind of definition of similar assay.  The pancreas specimen 
used for microarray assessment is a type of endocrine organ.  We might be interested in 
incorporating data derived from experiment using other types of endocrine organs, e.g. 
thyroid gland, adrenal gland, ovaries, etc.  Using organ terms derived from the 
Foundational Model of Anatomy for the annotation of the specimen derived from the 
biomaterial transformation step would allow this kind of inference about “similarity’ to 
be made.  The rat is used as an experiment animal model because it has a similar anatomy 
and physiology as humans, as do other mammalian species.  Related species could be 
identified using a species taxonomy, like the NCBI Taxonomy, as the basis for organism 
annotation.  Type 1 diabetes is an autoimmune disease of endocrine glands, as are 
Graves’ disease, Hashimoto’s thyroiditis, Addison’s disease; experiment that investigate 
these types of diseases are also likely to be helpful in the interpretation of your results.  
Indeed, we might also want to include any autoimmune disease (e.g. lupus, multiple 
sclerosis, etc.) for this purpose.  Use of an ontology like the Disease Ontology would 
facilitate the identification of experiments based on these kinds of relationships.  Finally, 
the use of an ontology like ChEBI for the identification of other immunosuppressive 
compounds could further extend the meta-mining analysis. 
 
Thus, the use of ontology-based knowledge representation to define the qualities (disease 
state, immunosuppressive) of the input entities (rat, cyclosporin) playing specific roles 
(therapeutic) in the material transformation that gives rise to the specimen output 
(pancreas), which serves as the input to the assay (gene expression microarrays) that 
results in the measurement of mRNA transcript levels output allows one to extend the 
analysis for associations between the dependent and independent variable in a range of 
related experiments through this ontology-driven meta-mining approach. 
 
Knowledge integration 
The second example of meta-mining that takes advantage of the knowledge incorporated 
into the semantic structure of the ontology comes from the well-established approach of 
using the Gene Ontology (GO) [Ashburner 2000, Harris 2004, Diehl 2007] annotation of 
gene products to analyze experiment data sets.  The classic example of this comes from 
the use of the Gene Ontology in the interpretation of gene groups derived from gene 
expression microarray data clustering.  A common goal of microarray data analysis is to 
group genes together based on similarity in their expression pattern across different 
experiment conditions, under the assumption that genes whose expression correlates with 
the experiment condition being investigated are likely to be involved in a relevant 
underlying biological process.  For examples, genes whose expression pattern correlates 
with the cancer phenotype of the specimens might be expected to be involved in cell 
proliferation control.  The GO Consortium has performed two activities of relevance for 
this use case.  The GO developed by the consortium includes three comprehensive term 
hierarchies for biological processes, molecular functions and cellular components.  The 
consortium has then curated the scientific literature and annotated gene products with GO 
terms from this knowledgebase. 
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Several groups have developed approaches for utilizing GO annotation as a means for 
identifying relevant biological processes associated with gene expression clusters derived 
from microarray data by assessing whether specific GO annotations are over-represented 
in the gene cluster (e.g. [Lee 2006] and http://geneontology.org/GO.tools.shtml).  The 
CLASSIFI algorithm not only assesses the co-clustering of the primary GO annotations 
for genes in a cluster, but also captures the parent terms from the GO hierarchy for this 
assessment [Lee 2006]. 
 
The analysis of the data sets from B cell stimulated with a panel of ligands illustrates how 
the semantic structure of the GO hierarchy allowed the discovery of important biological 
processes that would not have been readily apparent from the use of a flat vocabulary for 
the gene function annotation [Lee 2006].  B lymphocytes were isolated from mouse 
spleen and treated with a variety of different ligands to simulate natural environmental 
stimuli.  RNA isolated from these specimens was evaluated by gene expression 
microarray to measure the expression level of a large cross section of genes in the mouse 
genome.  The ~2500 genes that were differentially expressed were grouped together into 
19 gene clusters based on their expression pattern in response to three important B cell 
stimuli – anti-CD40, lipopolysaccharide (LPS) and anti-Ig.  The CLASSIFI algorithm 
was then used to determine if any categories of genes were overrepresented in any of the 
gene clusters based on an analysis of their GO annotations.  For example, Gene Cluster 
#18 includes genes that were upregulated in response to anti-Ig but not anti-CD40 or 
LPS, and contains 191 of the 2490 genes in the entire data set, 7 of the 10 genes 
annotated with the GO term ‘monovalent inorganic cation transport’, and 24 of the 122 
genes annotated with the GO term ‘transporter activity’.  In the latter case, the probability 
that this degree of co-clustering would have occurred by chance is ~9 x 10-6.  The result 
of this data mining exercise was the hypothesis that stimulation of B lymphocytes 
through their antigen receptor using anti-Ig results in the activation of a set of specific 
transporter processes involving receptor endocytosis and intracellular vesicle trafficking 
to facilitate antigen processing and presentation.  Subsequent experimental studies 
confirmed this hypothesis. 
 
The important point is that this data mining results would not have been possible without 
the semantic structure of the GO, which was used to infer relationships between the genes 
in the gene clusters based on prior knowledge of the interrelationships of biological 
processes.  Figure 5 shows the hierarchical structure of a small portion of the GO 
biological process branch focused on transporter processes.  The genes found in Cluster 
#18 that gave rise to the cluster classification of ‘transporter activity’ are listed next to the 
specific GO term with which they are annotated.  At most only three genes were 
annotated with a given GO term.  However, many genes are annotated with terms that are 
closely related within this small region of the GO biological process hierarchy.  By 
incorporating the GO hierarchy in the analysis, CLASSIFI allowed the discovery of these 
relationships, which would not have been possible with a flat vocabulary. 
 
 
 



21 

VI. Concluding Remarks 
 
In order to take maximum advantage of the primary data and interpretive knowledge 
derived from the research enterprise is has become increasingly important to agree on 
standard approaches to represent this information in a consistent and useful format.  
Many international consortia have been working toward the establishment of standards 
related to what kind of information should be captured, how the information should be 
described and how the information can be captured in database resources.  The combined 
effect is that experimental data from biomedical investigation is becoming increasingly 
accessible to re-use and re-analysis and thus is playing increasingly important roles in the 
discovery of new knowledge of the workings of biological systems through improved 
approaches to data mining. 
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Figure Legends 
 
Figure 1 - Minimum Information about a Flow Cytometry Experiment (MIFlowCyt).  
Version 07.09.13 of the MIFlowCyt standard.  *Those data elements that are common to 
most, if not all, MIBBI minimum information standards.  †Those data elements that are 
relatively unique to the flow cytometry methodology. 
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Figure 2 – OBO Foundry candidate ontologies.  Domains of biological reality 
(highlighted in light blue) are defined based on the intersection between entity types 
(columns; yellow) as defined by their relationship with time as proposed in the Basic 
Formal Ontology (BFO) and granularity (rows; pink).  Candidate OBO Foundry 
ontologies for each domain are listed - Foundational Model of Anatomy (FMA), 
Common Anatomy Reference Ontology (CARO), Cell Ontology (CL), Gene Ontology 
(GO), Chemical Entities of Biological Interest (ChEBI), Sequence Ontology (SO), RNA 
Ontology (RnaO), Protein Ontology (PrO), Common Physiology Reference Ontology 
(CPRO), and Phenotypic Qualities Ontology (PaTO). 
 
Figure 3 - the Ontology-Based eXtensible Data Model (OBX). See text for a more 
detailed description.  (A) The high-level general entity tables of the OBX model 
including the individual table attributes.  (B) Low-level entity tables of specific Object 
types with subtype-specific attributes. 
 
Figure 4 – OBX-based representation of a virus infection experiment.  An OBX-based 
representation of an experiment from a recent publication [Conenello 2007] in which 
mice are infected with influenza virus and the amount of interferon gamma in the lung is 
assessed as a measure of the host immune response to viral infection.  Individual sub-
processes are defined based on the specific inputs and outputs of the sub-process together 
with the roles that each component plays.  The three major types of sub-processes – 
biomaterial transformation, assay, and data transformation - are described.  The ordered 
set of sub-processes forms a specific protocol application defined by its objective (e.g. 
cytokine quantification).  
 
Figure 5 – Gene Ontology Hierarchy in the Mining of Gene Expression Microarray Data.  
A piece of the GO biological process hierarchy that includes the cellular transport terms 
is displayed with GO terms listed in the yellow boxes.  Genes that have been found in the 
Gene Cluster #18 [Lee 2006] and are annotated with the specific GO term are listed italic 
to the right of the GO term box.  See text for details. 
 


