
The Swapping Constraint*

Henry Ian Schiller

Abstract
Triviality arguments against the computational theory of mind claim that computa-
tional implementation is trivial and thus does not serve as an adequate metaphysical
basis for mental states. It is common to take computational implementation to consist
in a mapping from physical states to abstract computational states. In this paper,
I propose a novel constraint on the kinds of physical states that can implement
computational states, which helps to specify what it is for two physical states to
non-trivially implement the same computational state.

1 Introduction

The computational theory of mind (CTM) holds that mental states are realized by
a physical system just in case that system implements a particular computation.
Computationalists have faced serious difficulty when it comes to saying exactly what
it is for a physical system to implement a particular computation. One option is to
give a structuralist account of implementation. This is, broadly, to say that a physical
system implements an abstract computation if the physical system’s causal structure
is a mirror of the computation’s formal structure (Chalmers 1996). This gives us
a criterion for mapping states in a physical system to states in a computation: if a
physical state and a computational state have the same input-output dispositions,
then the physical state implements that computational state.1

CTM proponents and opponents alike have made much of the fact that no two
physical states are identical down to the last microphysical detail. Thus, for any given
physical system, the mapping that occurs from physical states to computational states
will actually be a mapping from disjunctions of physical states — or coarse-grained
physical states — to computational states. The individual physical states which make
up a coarse-grained physical state will all have the same input / output dispositions

* Thanks to Mark Sprevak for guidance and support in the early stages of this project, and for crucial
feedback on an earlier draft. Thanks to Cory Juhl, and to several anonymous reviewers for crucial
feedback on more recent drafts. Thanks are also due to Andy Clark, Jonny Lee, Becky Millar,
Alex Rendon and audiences at the University of Edinburgh and the 2015 Northwestern Philosophy
Conference,for helpful questions and discussion.

1 The mapping function between physical states and computations must be a mapping from physical
states to states in the computation; as we will see, physical states are fine-grained enough that multiple
physical states will map to one computational state.

1

Issues relating to the difference in fineness-of-grain between physical and com-
putational systems has lead to a number of so-called triviality arguments against
CTM. The general thrust of these arguments is that complex enough open systems
(like rocks, tables, and walls) can be shown to trivially map to any given abstract
computer.2 It is trivial that these open systems have ‘behavioral patterns’ with re-
spect to inputs and outputs like heat or light, and as long as they can be described as
behaving in a certain way, they can be mapped to a computation associated with that
behavioral profile (Putnam 1987, Chalmers 1996, Godfrey-Smith 2009).3

As Godfrey-Smith notes, in order to avoid trivial computational implementations
there needs to be some “constraint on the sets of total physical states that are disjoined
and mapped to each formal state” (Godfrey-Smith 2009: 289). In this paper, I argue
for a constraint on structuralist theories of implementation which would guarantee
an appropriate mapping from physical states to computational states. The proposal,
briefly, is that a physical state counts as instantiating a computational state only if it
can be swapped with another physical state that allegedly serves as an instantiation
of the same state and not change the overall behavioral dispositions of the system.

This paper will proceed as follows. First, I will present a sophisticated triviality
argument against computationalism, due to Godfrey-Smith (2009).4 Though the
argument is sophisticated, I will — with an aim at clarity — focus on its application
to a fairly simple model for computationalism, involving the implementation of finite
state automata. The structure of Godfrey-Smith’s argument generalizes to more
contemporary and sophisticated models of computational implementation (such
as those involving combinatorial state automata), and I hold that the constraint
provided here does as well. Then, I will give an account of my proposed constraint,
and explain how it rules out trivial computational systems. I will discuss some
potential upshots of my proposal for discussion of aging and neural reuse.

2 The sufficient level of complexity is just that the system is in a unique physical state at any given
point, where uniqueness applies to the intrinsic properties of the system (Putnam 1987). I follow
Godfrey-Smith (2009) in assuming an account of intrinsic properties along the lines of Langton &
Lewis (1998).

3 A non-structuralist response to triviality worries — which rejects some of these assumptions about
what it takes to implement a computation — can be found in Rescorla (2014). This paper will focus
on structuralist responses to issues of triviality.

4 I will focus on Godfrey-Smith’s argument because it is immune to objections which have been raised
to earlier triviality arguments, and because there is not yet a satisfying response to it in the literature.
However, I take what is said here to be in general a first step at outlining a constraint on computational
triviality.

2

2 Triviality Arguments Against Computationalism

There are different ways of representing computations. One kind of abstract computer
is a finite state automaton (FSA). An FSA is a rule-related set of abstractly-specified
inputs, outputs, and states. While a physical computational system could take all
sorts of inputs (photons, perceptual information, keyboard inputs) and produce
all sorts of outputs (twitches in a muscle, sound, a display on a screen), the FSA
distinguishes inputs and outputs only at a formal level (Input 1, Input 2, etc.). Two
different physical systems, with different physical inputs and outputs, can thus be
said to implement the same computation only if their physical inputs and outputs
can be appropriately mapped to the same abstractly specified inputs and outputs of
an abstract computation.

Let us give a specific FSA as an example. Our FSA will have two inputs (desig-
nated ‘I1’ and ‘I2’), three outputs (‘O1’, ‘O2’, and ‘O3’), and three states (‘S1’, ‘S2’,
and ‘S3’). We will also give the following (exhaustive) list of the FSA’s dispositional
properties, which specifies the six possible state and input combinations, as well as
the state and output combinations that each of them leads to.

(S1, I1) (S2, O1)
(S1, I2) (S3, O1)
(S2, I1) (S3, O1)
(S2, I2) (S1, O2)
(S3, I1) (S1, O2)
(S3, I2) (S1, O3)

The above list specifies the state transition the system makes and output it produces
if it is in one of three states S1−3 and receives one of two inputs I1−2. Following
Godfrey-Smith (2009), we can call this a ‘Coke Machine’ FSA (because its behavior
matches that of a very simple vending machine). The ‘Coke machine’ is such that
it takes 5c and 10c coins as inputs, and emits one of three outputs: a ‘null’ output
(when it hasn’t received enough money), a Coke, or a Coke plus 5c in change. A
coke costs 15c, so the machine has three internal states. A state where it has no
money in it, a state where it has 5c, and a state where it has 10c. Given that the
machine is in the ‘no money’ state, if it recevies 5c it transitions into the 5c state, and
produces a ‘null’ output. Given that the machine is in the 5c state, if it receives 10c
it transitions into the ‘no money’ state and produces a coke (and so on). So in order
to make a computer that a coke machine maps to, we need three abstract internal
states (S1, S2, S3), two abstract inputs (I1, I2), and three abstract outputs (O1, O2,
O3). Further, these states need to have the right sorts of transitions; for example, if
we define the mappings from physical inputs to formal inputs as follows,

3

S1

S3, O1

S1, O3
S3, O1I2

S2, O1I1
I2

S1, O2
S3, O1I2

S2, O1I1

I1I2

S2, O1

S1, O2
S3, O1I2

S2, O1I1
I2

S3, O1
S1, O3I2

S1, O2I1

I1

I1

Figure 1 ‘Coke Machine’ FSA (Godfrey-Smith 2009: 277)

Inputs Outputs States
I1 = 5c O1 = null S1 = empty
I2 = 10c O2 = coke S2 = 5c

O3 = coke + 5c S3 = 10c

then it needs to be the case that if the system is in S1, and receives I1, it transitions
to S2 and produces the null output (O1).

We can graphically represent the Coke Machine FSA as a contingency tree
(Figure 1), which maps all the different possible state transitions of the FSA.5 This
will be useful for clearly representing some of the moves made later in the paper,
where contingency trees for computations are compared with those for physical
systems.

Now that we have a computation (the Coke Machine FSA) and a way of giving
it graphical representation (the contingency tree in Figure 1), let us turn our attention
to how a physical system might map to this computation (and thus implement this
computation). I follow Chalmers (1996) and Godfrey-Smith (2009) in adopting a
‘simple mapping’ criterion for implementation/realization. This specifies the way
in which the physical inputs (designated with ‘I*n’), physical outputs (designated
with ‘O*n’) and physical states (designated with ‘Pn’) associated with some physical

5 The contingency tree in Figure 1 is taken from Godfrey-Smith 2009. It has been pointed out to me by
redacted that this is a nonstandard description of FSA, as it does not specify a non-arbitrary initial
state, or terminating states.

4

system map to the abstract inputs, outputs, and states of the FSA. Below I quote
Godfrey-Smith’s characterization of the simple mapping criterion verbatim:6

Simple Mapping Criterion: “A physical system realizes a given
FSA during a time interval iff there is mapping M from states of the
physical system onto states of the FSA, and from inputs and outputs
of the physical system onto inputs and outputs of the FSA, such that:
for every state-transition (S, I)→ (S’, O) of the FSA, if the physical
system were to be in state P and receive input I* such that M(P) =
S and M(I*) = I during this time interval, then it would transition to
state P’ and would emit output O* such that M(P’) = S’ and M(O*) =
O” (Godfrey-Smith 2009: 275-6).

Imagining something like the Coke Machine posited by Godfrey-Smith as the im-
plementor of the computation, certain mappings from physical states in the machine
to formal states in the FSA will be intuitive. As noted by Putnam (1987) and others,
it is very unlikely that any physical system will be in exactly the same physical
state at any two given times, down to the last microphysical detail. Every time our
switchboard is set to left it is in a slightly different physical state P. Thus, left is
actually an arbitrary way of specifying the type of state the physical system is in.
Saying that it’s the right level of description because it lets us map the physical
system to the Coke Machine FSA doesn’t give us a satisfying explanation of why
this is the right level of description.

Thus,unlike the contingency tree for the FSA, where each node on the tree corre-
sponded to one of three possible state types, in the contingency tree for the physical
system each of the 15 possible physical states depicted in the tree corresponds to a
unique physical state type Pn.7

S1 = Q1 = P1 ∨ P5 ∨ P6 ∨ P7 ∨ P8 ∨ P9

6 Chalmers (2012) says something similar: “A physical system implements a given computation when
there exists a grouping of physical states of the system into state-types and a one-to-one mapping from
formal states of the computation to physical state-types, such that computational states related by
an abstract state-transition relation are mapped onto physical state-types related by a corresponding
causal state-transition relation” (Chalmers 2012: 229). It should be noted that Chalmers reverses the
domain and range of the mapping: whereas I (and Godfrey-Smith) state it as a mapping from physical
states (P) to formal states (S), Chalmers states it as a mapping from formal states (S) to physical states
(P). My reason for stating it as a P to S function is that if physical states are fine-grained, then there
will be many physical states mapping to formal states (a many-to-one mapping). So, doing it the other
way give you a one-to-many mapping, which would not be a function (thanks to NAME REDACTED
for pointing this out to me). One could specify the mapping this way if one had a reasonably good
characterization of the physical state types being mapped to; but, of course, this is exactly what is at
issue.

7 See Putnam 1987 for the origins of this kind of disjunctive description.

5

P1

P3,O1

P7,O3
P15,O1I2

P14,O1I1
I2

P6,O2
P13,O1I2

P12,O1I1

I1I2

P2,O1

P5,O2
P11,O1I2

P10,O1I1
I2

P4,O1
P9,O3I2

P8,O2I1

I1

I1

Figure 2 Contingency tree for a physical implementer of the ‘Coke Machine’
FSA.

S2 = Q2 = P2 ∨ P10 ∨ P12 ∨ P14

S3 = Q3 = P3 ∨ P4 ∨ P11 ∨ P13 ∨ P15

Disjunctions of physical states P are mapped to a coarse-grained physical state Q
before being mapped to the corresponding computational state.

(Q1, I1)→ (Q2, O1)
(Q1, I2)→ (Q3, O1)
(Q2, I1)→ (Q3, O1)
(Q2, I1)→ (Q1, O2)
(Q3, I1)→ (Q1, O2)
(Q3, I1)→ (Q1, O3)

We can give the same kind of graphical representation we used for the FSA to depict
the dispositions of a physical system through time. Figure 2 is a contingency tree for
a physical system (like the switchboard, or a vending machine) that instantiates the
Coke Machine FSA.

2.1 Triviality Argument

The mapping from the physical system contingency tree depicted in Figure 2 to the
FSA depicted in Figure 1 relies a great deal on the behavioral properties of both the

6

physical system and the FSA. A state P of a physical system maps to a state S of an
FSA if there is the correct kind of fit between the behavioral profile of the physical
system and the dispositional profile of the FSA:

If a state P of a physical system is such that given input I1 the system
transitions to state P’ and produces output O1 and given input I2 the
system transitions to state P” and produces output O2, and if states
P’ and P” are such that etc. etc.... then P maps to S.

This is how we determine the appropriate mapping from physical states to computa-
tional states.

But this means that any system whose states exhibit the same behavioral patterns
with respect to arbitrarily defined inputs and outputs (the same input-output disposi-
tions) as those of the states in the Coke Machine FSA will properly map to the FSA.
If the states of a physical system are mapped to states in a computation on the basis
of their input/output dispositions alone, then computationalism reduces to a sort of
behaviorism at the level of states.

What gives this argument even more force against the computationalist position
is, as Godfrey-Smith notes, that “any sufficiently complex physical system can be
made into a behavioral system duplicate of an intelligent agent, via a change to the
‘transducer layer’ of that system” (Godfrey-Smith 2009: p. 284). The transducer layer
is the part of a system which acts as an interface between system and environment
(for example: the retina, in humans). Godfrey-Smith gives the following example
using a bucket of water:

The transducer layer that has to be given to the bucket of water to
make it into a coke machine includes an input device and an output
device. At the input end, we need the device to accept 5c and 10c
coins. This is no problem; they can be dropped into the bucket. We do
have to assume a stock of very physically similar 5c and 10c coins,
and a uniform method of dropping. Each coin sends the bucket of
water into a new unique physical state, and also generates a unique
output. Here, the outputs are the effects of ripples in the water on air
molecules at the surface. At each moment, the effects of the water
surface on these air molecules are unique products of the prior state
of the water and the particular impact of a coin.

(Godfrey-Smith 2009: 287)

Though the outputs will be unique, we can build a transducer device that disjunctively
maps them to the formal outputs O1, O2, and O3. The contingency tree representing
the dispositions of the Coke Machine implementer through time (Figure 2) is thus

7

formally identical to the contingency tree for a trivial physical system with the right
sort of behavioral profile.

We get the trivial implementation because the criteria for realization – the map-
ping criteria – actually has to be fairly weak. For example, it allows for disjunctions
of outputs to be mapped to outputs in the formal model. We have already discussed
why it is that the mapping requires us to map disjunctions of physical states to
internal states in the formal model. One might object that a stronger mapping criteria
would be able to rule out these trivial implementations. But a stronger mapping
criteria is not something that we can just non-arbitrarily insist upon. 8

3 The Swapping Constraint

One way of dealing with this kind of triviality argument is to identify further
constraints (besides whatever is already supplied by the simple mapping criteria)
on what it takes for a physical system to implement a computer.9 Chalmers (1996),
for example, notes that the state transitions of a physical system must be sufficiently
reliable, and that the internal organization of the states needs to be taken into account.
I am specifically interested in supplying a constraint on what it takes for two physical
states to instantiate the same computational state, in a particular system. Such a
constraint will allow us to identify the correct level of granularity for computational
implementations.

What we would like is to be able to identify an appropriate level of physical
description for individuating computations; to be able to say that only physical
states that are sufficiently similar in X way can count as instantiating the same
computational state. But what notion of sufficient similarity will place adequate
constraints on the kinds of things that we can say are implementing computers?

It is obviously too much to ask that these states be microphysical duplicates
because, as discussed above, there will always be microphysical differences between
physical states in a system (so nothing would count as a physical computer). And
we cannot just say that these states have to map to the same formal state in the FSA;
they do, but this is insufficient to block against the triviality arguments discussed
above. We need some non-arbitrary way of determining a level of description at a

8 Godfrey-Smith makes a note of this issue as well. “The criteria for realization discussed above look
weak because of the existential quantifiers; all that is required that a system have some physical states
that map onto a given structure, or contain some states that are related in such a way that they occupy
a given set of roles. But this weakness is often something that functionalism seeks, because of the
message of multiple realizability, and the alleged ‘autonomy’ of high-level descriptions of complex
systems” (Godfrey-Smith 2009: 289)

9 This is more or less what Godfrey-Smith (2009) suggests in response to the triviality problem he
raises.

8

coarser-grain than microphysical structure, but fine-grained enough to block triviality
arguments.

Specifically, this needs to be a (non-arbitrary) way of determining a level of
physical description such that for things we want to describe as computers, every
physical disjunct in a coarse-grained physical state Qi is identical, but for trivial
implementers (rocks, walls, buckets) such a non-arbitrary mapping from physical
state disjuncts to coarse-grained physical states is not possible. I propose a constraint
that tells us not only when it is appropriate to say that a physical state instantiates
some FSA state, but also when it is appropriate to say that two physical states
instantiate the same FSA state. This will give us a way of setting the correct level of
description for a given computational implementation.

I propose the following simple constraint, which I call the swapping constraint,
on what it is for physical states in a system to count as instantiating the same
computational state. We can think of this proposal as a necessary condition on two
physical states counting as both instantiating the same computational state in a given
physical system.

Swapping Constraint: What it is for two states in a given physical
system to count as instantiating the same computational state type is
for it to be the case that a) both states map to that computational state
type via Chalmers’ simple mapping criterion, and b) if those states
were physically swapped in the system, this swapping would not alter
the internal organization of the contingency tree that represents the
physical system.

So, take some coarse-grained physical state Q, such that physical states Pn and Pm
are disjuncts of Q, (and Q is the coarse-grained physical state that instantiates some
computational state S). In order for the physical system to meet the swapping con-
straint, it has to be the case that Pn and Pm could switch positions in the contingency
tree, and this would not alter the internal organization of the contingency tree for
the computation being implemented by that system (it could be represented in the
physical system contingency tree as having no effect on any subsequent physical
states). In other words, we identify a Putnam-style disjunction of physical states,
and then apply the constraint that these states need to be swappable in the physical
system without compromising the system’s computational integrity.

It might be objected that it looks as though meeting condition (a) of the swapping
constraint entails meeting condition (b). That is, if two states, P6 and P8, exhibit the
same behavior (i.e., produce the same output, O2, given the same inputs) then they
will continue to exhibit this behavior if their positions are swapped.10 The issue,

10 Thanks to an anonymous reviewer for pressing me to say more about this issue.

9

however, is that these states exhibit the same behavior only insofar as there is a
(arbitrary) mapping from the distinct physical outputs they produce to the same
formal output O2. Because swapping will have an inevitable effect on the physical
outputs they produce, and on the subsequent state transitions they make, this will
require us to ‘redo’ the mapping.11 This I will expand on this in detail in what
follows. So, arbitrary trivial systems that meet condition (a) will not exhibit the
swapping feature, because the transducer layer needs to be adjusted after the swap
takes place in such a system in order to preserve the claim that it is running the same
computation as before (I will go into greater detail below).

P1

P3,O1

P7,O3
P15,O1I2

P14,O1I1
I2

P8,O2
P17,O1I2

P16,O1I1

I1I2

P2,O1

P5,O2
P11,O1I2

P10,O1I1
I2

P4,O1
P9,O3I2

P6,O2I1

I1

I1

Figure 3 Contingency tree for a physical implementer of the ‘Coke Machine’ FSA
with ‘swapped’ states. If the behavioral dispositions of the system would
remain unchanged after the swap, then the physical states exhibit the
right properties to be counted as implementing the same computational
state.

This brings up an important point about how we are to interpret this constraint.
The Swapping Constraint has two possible interpretations, one weak and one strong.
A weak interpretation would allow for adjustments to be made to the transducer layer
of a system in order to accommodate physical differences in swapped components.
This is an interpretation of the constraint that I would like — for the time being — to
rule out; without adequate restrictions on the sort of adjustments we can make, the

11 As Godfrey-Smith notes, key to showing that some trivial system B implements some computation S
is “that all B’s physical outputs, as well as inner states, are unique” (Godfrey-Smith 2009: 287).

10

Swapping Constraint will fail to distinguish trivial systems from nontrivial ones.12

Thus, the Swapping Constraint should be interpreted as a strong constraint, which
says that two physical states only count as implementing the same computational
state in a physical system if a swapping can occur without adjustments to the system’s
transducer layer.13

Why think that the ability of two states to be swapped is the right thing to measure
when trying to identify whether those two states instantiate the same computational
state? Even if it should so happen that only true computational systems have this
property, we need some reason for thinking why this is sufficiently explanatory.14

One answer we might give is that the swapping constraint has to do with the
functional properties of the states in question. If a physical state P to be able to
subjunctively fulfill a certain functional role (the role of another state) in virtue of its
actually fulfilling a certain functional role, then this is a functional property of P. If a
physical state P1 is such that were it to have occurred in the physical contingency
tree where P1000 in fact occurred it would have fulfilled the same functional role
(produced the same output), then this is a functional property of P1.15 This is to say
that the swapping constraint is based on the right kind of thing for a constraint on
computational systems: functional properties. What proponents of CTM are after
is an explanation of the mind in terms of computational properties; i.e., properties
that can be specified at the level of computational, rather than physical, description.
Functional properties are the ‘right kind of thing’ in this sense.

Further, the view has some intuitive plausibility with respect to how we think
about the components of physical computers. Imagine a standard computer with
discrete functional components. One such component will be a logic gate, which
(in a physical computer) is a physical device implementing a Boolean function. If
that physical component were to be swapped with a similar enough (but not micro-
physically identical) physical component, the computer could still run. Swapping
it with a sufficiently dissimilar physical component will alter the subsequent state-
transitions in the contingency tree representing the system (or it may even crash the

12 It is also worth noting that this interpretation requires us to give a different account of transduction
than one that is tacitly assumed. Transduction is typically thought of as an operation on the inputs /
outputs of a system as a whole, but if we want to adjust the transducer layer so as to accommodate
physical differences in swapped components, then we need to think of transduction from/to inputs and
outputs at the level of states, rather than at the level of the system as a whole (thanks to an anonymous
reviewer for pointing this out.)

13 Thanks to an anonymous reviewer for pushing me to address this in detail.
14 We might also think that only true computational systems have the property of being claimed by us to

be true computational systems. But this would not make such a property a compelling one to use in
developing a constraint.

15 We might wish to put this in terms of a microphysical duplicate of the state P1 being instantiated at
the node of the contingency tree where P1000 is.

11

computer).16 Components that are similar enough to preserve the contingency tree
when swapped are, intuitively, the same kind of physical component (as far as the
system’s behavior is concerned).

In Figure 2 — which could be used to represent the Coke Machine FSA being
instantiated by either a trivial or nontrivial physical system — states P5 and P8
are both mapped to the same coarse-grained physical state Q1, which maps to the
computational state S1. If we were to swap them in the system, then in a nontrivial
system we should expect the contingency tree to remain unchanged, with respect to
its overall functional structure. The reason for this is that what is being swapped is
two states that have the same relevant internal structure, which moves the system in
to a new state and produces particular output.

Why should a trivial system fail to meet this expectation? Because the mapping
from a trivial system to an FSA is based on a trivial reading, there is no reason
to think that a trivial computation system could satisfy the requirements of the
swapping constraint without some aspect of the input/output readings being altered.
I will say a bit more about why I find this claim so compelling.17

I will demonstrate how the mapping constraint rules out trivial systems. I will
do this by providing a completely arbitrary physical system, instantiating Godfrey-
Smith’s ‘Coke Machine’ FSA, and show how it meets condition (a) but not (b) of
the Swapping Constraint. Most of this will be borrowed from Godfrey-Smith’s own
discussion of the trivial implementer.

Take an ordinary bucket of sea water. We will show how it implements the Coke
Machine FSA (but fails to meet the swapping constraint). Let our arbitrary inputs be
dropping a 5c coin (I1) and dropping a 10c coin (I2) in the bucket. Remember that
the Coke machine has three states, and starts in the ‘empty’ state (S1). The bucket of
water starts without any coins in it, so this is S1. However, we cannot simply define
S1 as the state at which the bucket has no coins in it (or S2 as the state at which the
bucket has a 5c coin in it, or S3 as the state at which the bucket has a 10c coin in it).
S1 will also have to be a state at which the bucket has a 10c coin and a 5c coin in
it.18

The bucket produces ripples when the coin is dropped in. The exact nature of
the ripples produced is going to be different enough between ripples that they can

16 That physical component could be swapped with a similar enough physical component in (a) a
standard computer of the same kind, or (b) the same physical system at a different time.

17 Thanks to an anonymous reviewer for pushing me to go into greater detail on this point.
18 This is not crucial, but it is worth noting to highlight the difference between the bucket of water and a

wall. In some sense the wall is ‘more’ trivial (which is why I use the bucket as the example) because
the different states are not differentiable in the terms used here. We can add complexities to the case,
such as drop levers, etc. in order to give a more direct mapping here. However, it should be noted that
we run the risk of turning the bucket of water into a nontrivial computer.

12

be mapped to different formal outputs. It is worth noting that the ripples produced
when a 5c coin is dropped in will probably be, overall, more similar than the ripples
produced when a 10c coin is dropped in, even though either could count as, for
example, O1 or O2 (only the latter could count as O3 – which is the output that
includes change). Given these features of the system, how do we get the requisite
mapping from physical states to computational states?

All that then has to be done is collect the OP
i that should map onto

each of the three desired outputs of the coke machine. Those are O1
(null output), O2 (emit coke), and O3 (emit coke and 5c change). So
physical outputs OP

1 , OP
2 , and OP

3 (and some others), should map to
O1 physical outputs OP

4 , OP
7 (etc.) should map to O2, and physical

outputs OP
6 and OP

∗ should map to O3. All the designer has to do to
generate coke machine behavior over the interval is build a transducer
device that does nothing when it detects OP

1 (etc.), emits a coke when
it detects OP

4 (etc.), and emits a coke and change in response to OP
6

(etc.) (Godfrey-Smith 2009: 287).

Let us consider (part of) a contingency tree for our trivial physical system. The
physical inputs are 5c and 10c coins being dropped in the bucket, and the outputs
are the different resulting ripple effectd. The bucket would have slightly different
physical properties — and thus produce slightly different outputs — depending on
very small changes in the way the coins are dropped, and on very small differences
in the internal organization of the bucket at a given time (See Figure 4).19 Receiving
one input rather than another (I1 rather than I2) at a particular time changes how the
bucket will behave at later times, with respect to different inputs. That is to say, if
the system receives I1 at some time t1, versus receiving I2 at t1, then the way the
system responds (the output it produces) to any given input In at some later time tn
will differ. Consider the tree above — if it is in physical state P1 and it gets input I1,
then it will have a different disposition to respond to I3 than it would have if it had
gotten input I2 while in physical state P1.

Now imagine that physical states P3 and P4 (both of which map to S3) in Figure 4
are swapped. In the initial contingency tree, when P3 received a 5c coin, it moved
to a new state and produced physical output OP

4 and when P4 received a 5c coin, it
moved to a new state and produced physical output OP

7 , and these were disjunctively
mapped to O2.

You throw a quarter into the bucket and it produces a certain kind of ripple.
Later, in the same ‘state’, you throw another quarter in the bucket, and it produces

19 This means that it is not entirely appropriate, in the contingency tree that follows, to represent only
two physical inputs, rather than four (or more).

13

P1

P3,OP
2

P7,OP
6

I2

P6,OP
5I1I2

P2,OP
1

P5,OP
4

I2

P4,OP
3I1

I1

Figure 4 (Part of) the ‘coke machine’ FSA as run by a trivial system; note that
the outputs are all physically distinct, and thus require a disjunctive
mapping to a formal output.

a different ripple, though maybe it is similar in some ways to the first ripple. That
the behaviors of these states are similar when you throw a quarter in is determined
entirely by the fact that the quarter has been thrown in. But how do these states differ
from physical states of the bucket mapped to different computational states? Well,
the behavior of those states when a quarter is thrown in produces a similar ripple
effect (because of the quarter) but we map it to a different disjunction of outputs. So:
some quarter-outputs get mapped to O1, and some quarter-outputs get mapped to
O2. The system is ‘trivial’ because the mapping here is determined by our need to
map things in a certain way in order to get the kind of computational description we
want.

I will briefly give this example again with a wall. Searle (1990) famously won-
dered whether the wall of his office was running the Wordstar program. In order
to map a wall to an FSA (say, for Wordstar, or Godfrey-Smith’s coke machine)
we develop a transducer device that maps the the wall’s physical outputs to FSA’s
formal outputs.20 Swapping states in a trivial physical system results in a physical
contingency tree with different internal states and completely different outputs. It
would require an entirely new transducer device with an entirely new mapping

20 “All the designer has to do to generate coke machine behavior over the interval is build a transducer
device that does nothing when it detects OP

1 (etc.), emits a coke when it detects OP
4 (etc.), and emits

a coke and change in response to OP
6 (etc.) . . . It is as if a designer had enormous knowledge of the

physical dispositions of the bucket of water, and very fine-grained ways of building input-output
devices” (Godfrey-Smith 2009: 287).

14

system (corresponding to the new outputs) to map the outputs of the wall to the
formal outputs of the FSA.21

Given the swapped states, the inputs and outputs will differ, and a new mapping
will need to be created based on the new behavior of the system. Instead of one
physical state, which reacts to an input in a particular way, we get another physical
state, which will react to that input in a way that alters the subsequent behavior of the
system. So while the wall has the behavioral properties of the FSA, those properties
are not preserved through swapping. The constraint is based on the plausible notion
that if a state performs a function in a system, it should be able to perform that
function at any point in the system. If what it is for two states to instantiate the same
computational state is for them to exhibit swapping, then physical states of trivial
systems will fail to instantiate computational states, because the mapping from these
states to FSA states is based on dispositional properties that the states do not exhibit
after the swap.

3.1 Swapping Between Systems

The Swapping Constraint is a constraint on what it takes for two physical states to
implement the same computational state in a given physical system. In one physical
computer, the correct level of granularity might need to be fairly fine-grained (say, at
the atomic level) in order for the states to meet the swapping condition. But in another
system, physical similarity at a different level of granularity may be required. Taking
the Swapping Constraint as a system-level constraint allows us to accommodate the
fact that there may be no one correct level of granularity for describing the physical
implementation of a computer. In other words, the level of physical description at
which one physical computer’s states might be grouped as equivalent will not be the
same as another’s. That a computer can be run by a macrophysical and microphysical
implementer, the latter requiring a more fine-grained level of description than the
former, is an aspect of multiple realizability.

Note that the (strongly interpreted) swapping constraint applies not only within
the states of a single physical system, but also between sufficiently similar phys-
ical systems.22 There is, however, a question of what happens when you treat the
Swapping Constraint as a constraint on computation in general not just on states

21 No corresponding worry arises for the nontrivial system; we might think of the initial mapping of
the nontrivial system as fixing the granularity with which we describe its behavior. With respect to
that level of grain, swapping does not change the behavior of the system. With respect to the level of
grain used to describe the behavior of a trivial system, it does.

22 Of course, what counts as sufficient similarity is, in some sense, going to be determined here by
the swapping constraint itself. Perhaps the strongly interpreted swapping constraint offers a way of
distinguishing physical computers of the same ‘type’ in one sense, helping to distinguish multiple
realizability between tokes from multiple realizability between types. This relates to classic work on

15

in a particular (kind of) system. It should be clear how the Swapping Constraint
explains how distinct physical states in a particular physical system might (or might
not) implement the same computational states. The states in a system S will count
as implementing the same state only if they can be swapped, and we should expect
that within one system all functionally equivalent states will exhibit this property (I
respond to some potential worries for this claim in the next section).

Further, sufficiently physically similar systems will exhibit the swapping con-
straint with each other. Physical computers that are built the same way, out of the
same physical substrate will be able to swap components. But as many have noted,
we would often like to treat systems made from wildly different physical substrate as
performing the same computation. Sprevak (2010) offers the example of a computer
built out of silicon, and a sophisticated computational device built out of tin cans
and strings; these might be described as having computationally equivalent states
(components like logic gates) but it would not be possible to swap states between
the two systems without changing the transducer device.23

In other words, the swapping constraint may be able to fix the correct level of
granularity for discussing computational implementation in one physical system,
but cannot account for equivalencies between different kinds of implementation.
If we want to treat the Swapping Constraint as a a constraint on computational
implementation in general, then this will require that we say apparently equivalent
components in different enough kinds of physical systems are not actually equivalent.
This is a difficult view to accept without extensive argumentation, and so in this
paper I simply advocate the weaker claim that the Swapping Constraint places a
constraint on what it takes for two states in a given system to implement the same
computational state.24

3.2 CSA Models

Other proposals have been made for placing constraints on the kinds of physical
systems that might implement a computation. Perhaps most notably, Chalmers
(1996, 2011, 2012) advocates a combinatorial state automata (CSA) model, and has
rejected the FSA model as outdated. The foregoing discussion has focused on FSA

the type-identity theory (Lewis 1966), as well as some more recent work on multiple realizability
(Shapiro 2000).

23 Thanks to an anonymous reviewer for bringing this example to my attention, and for pressing me to
say more about this issue in general.

24 However, something like stronger view — that different material substrate realize different computa-
tions — has advocates in a related debate regarding mechanistic accounts of computation. Kaplan
(2017), for example, responds to recent arguments against mechanistic accounts, made on the basis
of similar charges (Chirimuuta 2014).Kaplan’s argument, briefly, is that we cannot expect the scope
of mechanistic explanations to completely account for considerations involving multiple realizability.

16

models to make the exposition of the problem and solution as simple as possible.
This section will briefly discuss how the proposed constraint might be applied to a
CSA model.

The reason for focusing on the simpler FSA models is in part expositional: the
triviality argument against FSA’s is much easier to summarize. Godfrey-Smith (2009)
gives a triviality argument against CSA models that is almost identical in structure
to the one outlined in the foregoing for FSA models. There is no in-principle reason
to think that my proposal for constraints on the implementation of FSAs could not
also be used to constrain the implementation of CSAs.25

The swapping constraint might also help us to avoid some of the less desirable
features of a CSA model. For example, Chalmers proposes a ‘spatial independence’
constraint on computational systems. He notes that this constraint “rules out the
relevant trivializations, but at cost of ruling out some reasonable implementations as
well” (Chalmers 2012: 232). Chalmers also notes the following about his proposal:

. . . I entertained the possibility of adding further constraints, including
further constraints on the physical state-types (e.g. a naturalness
constraint) or on the physical state-transitions (e.g. a uniformity
constraint), although I left the matter open.

(Chalmers 2012: 232)

The Swapping Constraint may be viewed as supplying specifications for a ‘natural-
ness constraint’. The idea of a nautralness constraint is that we constrain the types of
physical states that get mapped to functional states. The swapping constraint fixes a
level of physical similarity that is, I take it, appropriate for distinguishing physical
kinds in this way. In order for states to be swappable, they will have to be (relatively)
physically similar; i.e., of the same physical state type.

Chalmers suggests that we have some reliability constraint on the physical
processes that get mapped to abstract states. In a sense, the proposal made here is a
way of guaranteeing reliability without positing anything over and above a constraint
on what the physical states must be like: the physical states being mapped to a
computational state must be physically similar enough to one another to give rise to
the same sorts of behaviors.

Working in a CSA model does address many of the issues faced by FSA frame-
works; however, such a framework still faces many of the same challenges when it
comes to specifying the correct level of physical description at which to individuate
computational states. Thus, whether we think of physical computers as implementing

25 Sprevak (2012) argues somewhat compellingly that the components of a CSA can actually be
construed as FSA which are particularly permissive about inputs and outputs. See Section 4 of
Chalmers 2012 for some discussion of this proposal.

17

FSA or CSA, we (a) want an explanation of how to group the (physical) components
of those physical systems, such that we get a reliable mapping, and (b) can use the
swapping constraint to provide an explanation of this kind.

4 Changes to Computational Systems Over Time

In this section I will briefly discuss how the swapping constraint deals with change
to the physical systems that implement computations. Specifically, I address an
important way in which change occurs over time in a human brain (the supposed
implementor in a computational theory of mind): aging.

Internal states in a computation do not themselves change or age, but they are
instantiated by physical parts (cells, synapses, tissue) that change and degrade over
time. Thus, a physical state at one point in a computation may not be able to be
swapped for a physical state at another point in the computation if that second
state includes physical parts that have changed significantly. This is the case even if
these states are playing the same general role in that computation. There might be a
‘mismatch’ of parts. Imagine a puzzle which slowly becomes waterlogged over time.
If this occurs to all the pieces of the puzzle (say, while the puzzle is put together)
the pieces may still fit. But if it only occurs to some, then the puzzle will likely be
rendered useless.

It is worth noting, however, that alterations in brain structure due to aging are
“intimately tied to alterations in cognitive function” Glisky (2007). That is to say, the
process of aging might alter the computations that underwrite mental functions and
mental states, resulting in new computations underwriting what seem like identical
mental states. Some behavior or function being performed in a younger version of a
system might, as a result of aging, have a correlate behavior or function in an older
version of the system that is underwritten by a different computational process.26

It would not make sense to have to swap physical states that are part of different
computations altogether. If mental states are underwritten by computations, then
mental states will have to be considered in coarse-grained functional terms, even
within a single physical system. If a cognitive system is in mental state M1 at time
period T1, then this mental state will be underwritten by some computation C1,
which is describable by some FSA at T1. At time period T1+n, an older version of
the same cognitive system might be in mental state M1 again, but because of the
ways in which aging alters cognitive function, at this time period the mental state
could be thought of as underwritten by some other computation C1+n. Thus, M1
can be thought of as a coarse-grained state to which behaviorally similar instances
of mental states can be mapped.

26 See Glisky & Kong 2008 for some experimental evidence in support of this claim.

18

If the brain is a physical computer, then it is such that it can accommodate (at
the computational level) changes, over time, to the various components that are
involved in implementing computations. Though these changes are accommodated,
they also have an effect on cognition. There is obviously some sense in which the
cognitive functions of an older brain might be thought of as the continuation of
cognitive functions performed by that brain when it was younger. However, the
(perhaps gradual) changes might be such that the physical system underwriting the
computation being implemented has to be thought of as a new physical computer (at
least quite narrowly speaking), capable of implementing different computations.27 If
aging does indeed lead to this kind of cognitive change, this can be accommodated
by the swapping constraint.

A similar issue might be raised for cases of neural reuse and neural plasticity.
Neural reuse is a phenomenon whereby neural circuits that have been established
for one purpose are recycled and redeployed for other purposes (Anderson 2010).
Neural plasticity, which can occur after a stroke or other traumatic neural event, is
a reorganization of neural architecture such that functional neural circuits pick up
some of the functionality of circuits that have been damaged by the event. It seems
that the same computational states can be mapped to from radically different neural
architectures within the same physical system. It is difficult to see how two physical
computational states that occur within the same system, but over different sets of
neural circuitry could be swapped without altering the internal organization of the
physical contingency tree for the computation.

In other words, the constraint threatens to be too strict. It threatens to say, of
cases of neural reuse, that two physical states (which cognitive neuroscientists would
be happy to treat as instantiating the same computational state) must be instantiating
different states because they cannot be swapped. Much worse, it might threaten to
render these systems trivial.

Cases of neural reuse and neural plasticity seem to be instances where a compu-
tation is being run on a physical system and the physical states that are disjunctively
mapped to the same computational state have a radically different structural or-
ganization. However, I think all that is happening in cases of neural reuse is that
one computation (pre-neural event) has discontinued implementation and a new
computation (post-neural event) is being implemented by the new physical system.

The computation being implemented pre-neural event may be the same com-
putation as the one being implemented after the neural event. These may each be
an instance of the same computation. That is to say, before and after the stroke or
neural reorganization, the computation being run by the brain will be describable
using the same FSA. However, they should be thought of as distinct instantiations of

27 See Olson 2002, Shoemaker 2004 for some discussion of this issue in connection with theories of
personal identity.

19

the computation, on different — albeit related — computational systems. As such,
it should not be necessary that the physical states in one instantiation are able to
‘swap’ with their FSA counterparts in the other instantiation of the computation.

5 Conclusion

I have offered a necessary condition on what it is for two physical states to implement
the same computational state as part of a nontrivial computational system. This
characterization breaks from earlier responses to triviality arguments by focusing on
the properties of particular physical states, rather than the properties of the system
as a whole Chalmers (1996). Though the proposal of a ‘swapping constraint’ is
quite specific, I hope the lesson here is a general one: we ought to think more about
computational systems in terms of the functional similarity between the physical
states they undergo through time.

References

Anderson, Michael. 2010. Neural reuse: a fundamental organizational principle of
the brain. Behavioral and Brain Sciences 33(4).

Chalmers, David. 1996. Does a rock implement every finite-state automaton?
Synthese 108(3).

Chalmers, David. 2011. A computational foundation for the study of cognition.
Journal of Cognitive Science 12(4). 323–357.

Chalmers, David. 2012. The varieties of computation: A reply. Journal of Cognitive
Science 13. 211–248.

Chirimuuta, Mazviita. 2014. Minimal models and canonical neural computations:
The distinctness of computational explanation in neuroscience. Synthese 191(2).
127–153.

Glisky, Elizabeth. 2007. Changes in cognitive function in human aging. In David
Riddle (ed.), Brain aging: Models, methods, and mechanisms, Boca Ratonn, FL:
CRC Press.

Glisky, Elizabeth & Lauren Kong. 2008. Do young and older adults rely on different
processes in source memory tasks? A neuropsychological study. Journal of
Experimental Psychology: Learning, Memory, and Cognition 34(4). 809–822.

Godfrey-Smith, Peter. 2009. Triviality arguments against functionalism. Philosoph-
ical Studies 145(2).

Kaplan, David Michael. 2017. Neural computation, multiple realizability, and the
prospects for mechanistic explanation. In David Michael Kaplan (ed.), Expla-
nation and integration in mind and brain science, Oxford: Oxford University
Press.

20

Langton, Rae & David Lewis. 1998. Defining ‘intrinsic’. Philosophy and Phe-
nomenological Research 58(333-345).

Lewis, David. 1966. An argument for the identity theory. The Journal of Philosophy
63(1).

Olson, Eric T. 2002. What does functionalism tell us about personal identity? Noûs
36(4). 682–698. http://www.jstor.org/stable/3506231.

Putnam, Hilary. 1987. Representation and reality. Cambridge, MA: MIT Press.
Rescorla, Michael. 2014. A theory of computational implementation. Synthese

191(6).
Searle, John. 1990. Is the brain a digital computer? Proceedings and Addresses of

the American Philosophical Association 64(3). 21–37.
Shapiro, Lawrence A. 2000. Multiple realizations. The Journal of Philosophy

97(12). 635–654.
Shoemaker, Sydney. 2004. Functionalism and personal identity: A reply. Noûs

38(3). 525–533. http://www.jstor.org/stable/3506251.
Sprevak, Mark. 2010. Computation, individuation, and the received view on repre-

sentation. Studies in History and Philosophy of Science 41. 260–270.
Sprevak, Mark. 2012. Three challenges to Chalmers on computational implementa-

tion. Journal of Cognitive Science .

21

http://www.jstor.org/stable/3506231
http://www.jstor.org/stable/3506251

