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Abstract

When reasoning about dependence relations, philosophers often

rely on gradualist assumptions, according to which abrupt changes

in a phenomenon of interest can only result from abrupt changes in

the low-level phenomena on which it depends. These assumptions,

while strictly correct if the dependence relation in question can be ex-

pressed by continuous dynamical equations, should be handled with

care: very often the descriptively relevant property of a dynamical sys-

tem connecting high- and low-level phenomena is not its instantaneous

behavior, but its stable fixed points (those in the vicinity of which it

spends most of the time, after comparatively short transitory periods),

and stable fixed points can change abruptly as a result of infinitesimal

changes of the low-level phenomenon. We illustrate this potential grad-

ualist trap by showing that Chalmers’s fading qualia argument falls in

it.
∗Authors listed in random order.
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1 Introduction

The following gradualist assumption is very common. Suppose there is a

high-level variable of interest, H, which depends on a low-level variable L,

in the sense that there is a lawlike relation between the value taken by H

and the value taken by L. The gradualist assumption is the expectation that

abrupt changes in H require abrupt changes in L. This assumption in turn

relies on the notion that the laws that govern such dependence relations are

continuous and that, as a consequence, we should not expect discontinuities

in the relation between L and H.

While gradualist assumptions are strictly valid, reasoning based on them

can lead to grossly inadequate conclusions: very often what actually matters

to the behavior of a system is not how instantaneous changes in the value

of L are translated into instantaneous changes in the value of H, but how

stable values of H —the values in the vicinity of which H spends most of the

time, after comparatively short transitory periods— change as we change L.

And, even in systems governed by continuous functions, stable values of a

high-level variable can change discontinuously and abruptly in response to

gradual changes in a low-level variable: for example, if the relation between

H and L is described by nonlinear dynamical equations exhibiting bifurca-

tions, it is entirely possible to have sudden, abrupt, irreversible changes in

H’s stabilities in response to infinitesimal changes in L.1

In this paper we bring bifurcations to the attention of philosophers, as
1The argumentative flaw that we target in this piece relies on overlooking the possibility

of bifurcations in nonlinear systems, and not merely on overlooking the kind of sensitive
dependence of the magnitude of some variables on others derived from nonlinearity—cf.
Chalmers 1996, pp. 237–239.
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an important corner case to keep in mind when reasoning about real-world

dependence relations. In particular, we focus on Chalmers’ fading qualia

argument (Chalmers 1996), to this day an extremely popular and widely

discussed argument on the metaphysics of consciousness, which, we will show,

illegitimately relies on a gradualist assumption. The fading-qualia argument

aims at establishing that functional duplicates have qualitatively identical

experiences (in the actual world). To achieve this, the argument invites

us to imagine a scenario where neurons in a certain cognitive system are

gradually replaced with artificial units that perform the same function, and

then appeals to our intuitions as to what would happen in that situation with

the resulting phenomenal states of the system. Even if the conclusion of the

argument is true, the argument is flawed: we should not assume that the

relationship between neuronal goings-on and phenomenal consciousness can

be adequately described by dynamical equations lacking bifurcations; and if

it is governed by equations exhibiting (subcritical) bifurcations, then, pace

Chalmers, suddenly disappearing qualia are perfectly possible—a cautionary

tale for gradualists.

In §2 we summarize Chalmers’ fading qualia argument, stressing its re-

liance on a gradualist assumption. In §3 we introduce the relevant theory of

nonlinear dynamical systems, and make the connection between bifurcations

and the possible shortcomings of gradualist reasoning. We evaluate the ar-

gument in the light of this theory in §4. Section §5 offers some concluding

remarks.
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2 Fading Qualia

Chalmers’ principle of organizational invariance [OI henceforth] is the claim

that “given any system that has conscious experiences, then any system that

has the same fine-grained functional organization will have qualitatively iden-

tical experiences” (Chalmers 1996, p. 249). That is to say, there is a suffi-

ciently fine-grained specification of the functional organization (according to

Chalmers, fine-grained enough to fix behavioral dispositions is fine-grained

enough for OI) such that all systems meeting that specification, regardless

of their particular realization, will enjoy qualitatively identical experiences.2

Chalmers’ fading-qualia thought experiment (1995; 1996; 2010) is one of

the most prominent argument in favor of OI.3 Chalmers invites us to con-

sider the brain of some human, let’s call them Geppetto, currently enjoying

a perceptual experience as of a red patch. Assume that we have a suffi-

ciently fine-grained functional specification of this brain’s activity (say, its

full connectome plus a measure of activation for each unit—or whatever else

is needed.) Consider also a robot, GPTto, whose sensory processing happens

in a silicon-based computer meeting the exact same specification. We also

assume that GPTto is not enjoying an experience as of red. Finally, a sorites

series is launched, in which at each step Geppetto’s brain is rewired so that

one of its neurons is replaced by its silicon analog in GPTto.

Chalmers considers two possible predictions for those who reject OI to

make in this scenario: either the qualitative feel of the experience enjoyed
2For a recent discussion of functionalism about qualia, see (Van Gulick 2017). We

would like to thank an anonymous reviewer for prompting us to be more precise here.
3Chalmers’ argument relies on keeping the actual laws of nature fixed. For the sake of

brevity we omit “... in the actual world” and related qualifications in what follows.
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by Geppetto fades as we progress through the sorites series (as we substitute

each of its neurons by a silicon unit), until no experience is left by the time

we have no neurons left, or qualia suddenly dissappear ; that is, there is some

point in the series at which “the replacement of a single neuron . . . could

be responsible for the vanishing of an entire field of conscious experience.”

(1996, p. 238). Chalmers quickly dismisses this second option, for two rea-

sons. First, he claims that if suddenly disappearing qualia were possible,

“we could switch back and forth between a neuron and its silicon replace-

ment, with a field of experience blinking in and out of existence on demand”

which seems “entirely bizarre” (p. 238). Let us call this possibility “flickering

qualia”. Second, he claims that suddenly disappearing qualia require “brute

discontinuities in the laws of nature unlike those we find anywhere else.” In

what follows, we show that suddenly disappearing qualia are, in fact, entirely

possible if the dynamical system governing the relationship between neurons

and phenomenal states exhibits subcritical bifurcations. Furthermore, as it

happens, the possibility of suddenly disappearing qualia does not necessitate

the possibility of flickering qualia.

Before we are in a position to show this, we need to introduce the relevant

dynamical-systems theory.4 We do so in the next section.
4Our introduction draws heavily from Strogatz 2001, which is where we learned about

these ideas.
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3 Nonlinear Dynamic Systems, Fixed Points and

(Subcritical) Bifurcations

Dynamical systems are collections of evolving variables. We describe them

using differential equations, which represent how each of these variables

change with time as a function of its own and other variables’ values.

Consider, to begin with, a simple system consisting of a particle moving

in one dimension. We can describe this system completely by giving the

position of the particle, x, and its velocity (the instantaneous rate of position

over time), ẋ = dx
dt . Assume that the evolution of the system is fully described

by the following differential equation:

ẋ = x2 − 1 (1)

One common way to make sense of the behavior of dynamical systems

such as this is to find their fixed points—those points at which the velocity

of the system is zero. This is shown in the so-called phase portrait of this

system, in fig. 1.

We can see that there are two fixed points of the system, (i.e., points

at which the velocity is zero, and therefore the curve intersects with the

x-axis) at x = −1 and x = 1. Examining how the velocity changes as we

move slightly away from these points, we see that the leftmost fixed point,

marked with a black circle, is stable (in the sense that trajectories that are

nudged away from it quickly return to it), and the rightmost one, marked

with a white circle, unstable (because trajectories nudged slightly away from
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Figure 1: A simple phase portrait. A magnitude of interest, x, is represented
on the horizontal axis, and its rate of change, dx

dt , on the vertical axis.

it and to its left will leave it and approach the stable fixed point; while

trajectories nudged slightly away from it and to its right will leave it and

approach infinity.)

It often makes analytical sense to consider a whole family of dynamical

systems which differ from one another in the value of certain control param-

eters, to be fixed independently. The presence or absence, and the stability,

of fixed points often depends on the value taken by these parameters. For

another very simple example, take

ẋ = x2 + r (2)

Here the behavior of the system depends on the value of r—our previous

example was just the particular case in which r = −1. Consider what hap-

pens as we change r, from some positive value all the way to some negative
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value. While r > 0, the system has no fixed points, and the speed of the

particle at x always increases quadratically as the absolute value of its posi-

tion increases. However, when r = 0 a fixed point appears at the origin and

“splits into two, one stable, one unstable” (Strogatz 2001, p. 48), when r < 0.

The appearance and disappearance of fixed points, and in general the change

of behavior as a control parameter changes value, is called bifurcation.

An example might help build intuition: consider a bead that can slide

freely along a vertical hoop. We know that the bead will end up, after a

certain period of time, at the bottom of the hoop (the stable fixed point)

unless it is located in a precarious equilibrium at the very top of the hoop

(the unstable fixed point). Now we make the hoop spin on its vertical axis

at angular velocity r, starting from zero and increasing it little by little.

At the beginning, nothing happens: very low angular velocities are unable

to overcome friction, and the bead remains at its stable bottom position.

But, at some point, the bottom position will cease to be a fixed point, and

two new symmetrical fixed points will appear, at an angular distance to the

bottom position that depends on the angular velocity of the hoop. That is

a bifurcation.

We can now start to see what the potential problem with gradualist

assumptions is: if the dynamic behavior of a system is described by an

equation like eq. 2, as r changes its value from just above 0 to just below

0, the system changes its behavior from there being no fixed point to there

being two, one of them stable. This is qualitatively very different: when

there are no fixed points the only possible evolution to the value of x is

to increase or decrease forever. When there is a stable fixed point, that’s
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where the system will land, after a short transitory period. Arbitrarily small

variations in r have substantial consequences for the behavior of the system.

r

x

stable
unstable

Figure 2: Bifurcation diagram for eq. 2.

Fig. 2 is the bifurcation diagram of eq. 2: it displays the stabilities of the

quantity of interest, x, as a function of the control parameter, r. In partic-

ular, the fixed points of the system are represented as dotted (for unstable

fixed points) and continuous lines (for stable ones).

The diagram illustrates how new fixed points are created as soon as

r ≤ 0. It also displays how, in the dynamics represented by eq. 2, they do

not abruptly change location as we modify r: small changes in r correspond

to small changes to the location of the stable points. But also this need

not necessarily be the case. In so-called subcritical pitchfork bifurcations

(Strogatz 2001, ch. 3), the position of fixed points changes abruptly, too.

Consider eq. 3, where H is the quantity of interest and L a control parameter
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(for reasons that will become obvious in the next section, we change here to

the variables L and H that we used in the introduction):

Ḣ = L ·H +H3 −H5 (3)

The resulting dynamical system presents a subcritical pitchfork bifurca-

tion. Fig. 3 shows the bifurcation diagram for eq. 3. The parameter L is

represented on the horizontal axis, and the quantity of interest H on the

vertical axis. Fixed points are represented as dotted and continuous lines

following the same convention as before.

Suppose that, in the beginning, the parameter L is somewhere between

the point marked Ls and 0. Also suppose that H = 0. In that situation,

H will remain 0, as this is a stable fixed point. There are also two high

amplitude stable branches above and below, but, assuming that H is only

subject to small variations, those are currently unreachable.

Suppose now that L starts increasing gradually. While L < 0, the situa-

tion is qualitatively as described above: the only low-amplitude stable point

for H is H = 0, and nothing changes. But, when L hits zero (the intersec-

tion of L and H axes,) this changes dramatically: suddenly, H = 0 becomes

unstable, and the only stable points are the high-amplitude branches above

and below. This means that the system will abruptly jump to one of those

high-amplitude branches, and then move along it. This is what the upward

arrow along the vertical axis, and the rightward arrows along the higher

branch, are marking. Again here, very significant changes in the landscape

of stabilities for H have resulted from infinitesimal changes in L. Although
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eq. 3 is perfectly continuous, the change in the stabilities and locations of

the fixed points of the system is not, and there are abrupt jumps from one

“landscape” to the next.

The surprises do not end here. By making L positive, we have moved

from having one stable fixed point at H = 0 to having two stable branches

of high absolute value for H, above and below. Now, intuition might suggest

that by reverting L to a value lower than or equal to zero we would regain

our H = 0 stable point. But this is not how things work in subcritical

bifurcations: as fig. 3 shows, once we are in a high-amplitude branch, it

remains stable well below L = 0. This is what the leftward arrows along

the higher branch are marking. This lack of responsiveness to parameter

changes is called hysteresis: some changes to the stable states of a system

are easy to make and hard to unmake. Once L falls below Ls, then, yes, the

high-amplitude branches become unstable again, and H “jumps off a cliff”

to the only remaining stable point at H = 0: we are back where we started.

The combination of jumps and hysteresis is far from a mathematical

curiosity, and has important engineering consequences (e.g., Chen, Moiola,

and Wang 2000). For the sake of simplicity of exposition we are consider-

ing only one-dimensional systems. More complex dynamics appear as we

increase the number of dimensions. The analogous of pitchfork subcritical

bifurcations in two-dimensional systems are called subcritical Hopf bifurca-

tions. These occur, for example, in aeroelastic flutter and other vibrations

(Dowell and Ilgamova 1988; Thompson and Stewart 1986), instabilities of

fluid flows (Drazin and Reid 1981), and, closer to home, in the dynamics of

nerve cells (Rinzel and Ermentrout 1989). Subcritical bifurcation offers a
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H

Figure 3: Bifurcation diagram for eq. 3 (a subcritical pitchfork bifurcation).
Redrawn from Strogatz 2001, Fig. 3.4.8.

clear, naturalistically unobjectionable model of sharp cut-offs in the depen-

dence relation between variables linked by continuous functions. In the next

section we exploit it in the context of Chalmers’s fading qualia argument.

4 Flickering and Suddenly Disappearing Qualia

Suppose, with Chalmers, that we are interested in ascertaining the depen-

dence between Geppetto’s qualitative experience when looking at a red patch

and the neural activity happening in their brain. Suppose in particular that

the dynamic dependence between Geppetto’s phenomenal experience and
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their neural activity is governed by eq. 3, where H is a measure of the vivid-

ness of their experience—high absolute value |H| corresponds to a vivid

experience; H = 0 to no experience at all—,5 and L is the amount of active

neurons in their brain, in units such that L = 0 corresponds, say, to a few

million neurons. We assume that, throughout the exercise, Geppetto has

their eyes open, in front of a red patch. At the outset, we make sure that

the system is located in a stable state with high |H|—that is to say, Gep-

petto’s experiencing a red patch corresponds to a fixed point somewhere in

the high-amplitude branches of fig. 3.6

Now we try to launch Chalmers’s sorites: we replace one of Geppetto’s

neurons by a silicon chip, reducing L as a result. The value of H will change

in a way governed by eq. 3, ending up, after a transitory time, in a different

fixed point. The trajectory taken to reach this point and the transitory

time spent in reaching it are irrelevant: what matters is that it will quickly

end up on a point along the same branch in fig. 3, to the left of where it

was before the replacement. We keep substituting neurons and the value

of |H| keeps decreasing. So far, so gradualist. However, at some point the

number of neurons in Geppetto’s brain (L) falls below Ls. At this point,

the upper branch is no longer an attractor. The system “falls off a cliff”,

and quickly evolves to the only remaining attractor, H = 0: Geppetto’s

experience is suddenly extinguished. An infinitesimal change in L (say, a

single neuron replacement) was responsible for this change! That is to say,
5The sign of H has no designated interpretation in this toy model.
6This is, of course, an entirely fanciful model of consciousness. We, like Chalmers, are

focusing on how-possibly aspects of the dynamical dependence between neural activity and
consciousness. Chalmers’ discussion of the fading-qualia argument makes no assumption
whatsoever about the relevant dynamics.
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in this idealized model suddenly disappearing qualia are, pace Chalmers, not

“entirely bizarre” but the fully foreseeable consequence of minute parameter

changes in the vicinity of a subcritical bifurcation.

How about the even more bizarre flickering qualia that supposedly would

result as we replace back and forth a silicon chip with a neuron? The answer

is that there is no flickering: as we can see in the bifurcation diagram, the

origin is still an attractor and H is still zero when the neuron is replaced

back. We are in the subcritical part of the hysteresis cycle, and nothing

flickers. Chalmers claims that if “we could switch back and forth between

a neuron and its silicon replacement, we would see a field of experience

blinking in and out of existence on demand” (1995, p. 315). But this is not

merely mandated by the fact that such an abrupt change happened in one

direction (the disappearing qualia discussed above): hysteresis prevents it

from happening in the other direction. Neurons will not start being stably

active until L is again greater than zero. At this point there is a bifurcation

and we get high |H| again. Only then does Geppetto (suddenly) recover

their red quale.

To be clear, we do not dispute the implausibility of qualia depending

only on neuronal activity, all the while behavior is sensitive to functional

organization implemented in both neuronal and silicon-based activity. Our

point is that this implausibility cannot be spelled out as the claim that

suddenly disappearing qualia are naturalistically unacceptable, because there

is no nomological mechanism that could account for them. Sure there is:

jumps “off the cliff” in a subcritical bifurcation is a perfectly suitable can-

didate, with impeccable naturalistic credentials. It also cannot be spelled
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out as the claim that switching one neuron off and on again will result in

even more implausible flickering qualia, because hysteresis cycles may pre-

vent such flickering from happening. We stress again that our rejection of

Chalmers’ plausibility argument for OI does not depend on the existence of

discontinuous laws governing the relation between the relevant magnitudes.

For all we know, these laws might not exist—and, indeed, eq. 3 is perfectly

continuous. Finally, we are, of course, not assuming that brain dynamics

somehow conform to eq. 3. Brain dynamics are massively more complex

than that. What we do claim is that Chalmers, and gradualists in general,

cannot assume that they are even simpler.

5 Conclusion

If the law governing the relation between two variables is continuous, the

gradualist assumption that there cannot be abrupt changes in one without

abrupt changes in the other is well motivated. However, caution is required

when reasoning on the basis of such a gradualist assumption: in most cases,

what is relevant to the description of a phenomenon of interest are the fixed

points of the dynamical system that implements this phenomenon. As we

have seen, systems whose dynamic behavior is described by perfectly continu-

ous, non-linear equations with subcritical bifurcations present sharp cut-offs

in the evolution of the fixed points as a function of a parameter. In those

cases, an abrupt change in the location and the nature of fixed points can

be due to an infinitesimal change in the parameter at the bifurcation.

In this paper, we have illustrated the perils of gradualist reasoning, using
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as our main example Chalmers’s fading qualia argument. We have shown

that, pace Chalmers, it is perfectly coherent and consistent with the laws of

nature being perfectly continuous, for a single neuron to be responsible of the

extinction of consciousness (through a jump in the vicinity of a subcritical

bifurcation), without this committing us to the possibility of flickering qualia

as the neuron is restored (because a hysteresis cycle might prevent it).

Many philosophical arguments concerning dependence relations rely on

gradualist assumptions. These arguments include classical metaphysical ar-

guments as well as contemporary ones in the philosophy of mind. For exam-

ple, Lewis 1986’s argument for unrestricted compositionality is gradualist, as

it relies on the idea that there cannot be cut-off points in whatever relation

composition depends upon. Sider 2001’s modification of Lewis’ argument in

favor of perdurantism, and Tye 2021’s recent argument for panpsychism on

the basis of physical properties having no cut-off points are similarly gradu-

alist. It is not impossible that vulnerabilities in these arguments, and other

analogous ones, might be uncovered by paying attention to the dynamical

underpinnings of gradualist reasoning, as we have done here for Chalmers’

fading qualia. In general, caution in the application of gradualist assump-

tions is advisable.7

7We are grateful to Elias Okon, Moises Macías-Bustos, Oliver Marshall, Angélica Pena-
Martínez, Alessandro Torza, and three anonymous reviewers for this journal for their com-
ments and discussion. Financial support was provided by the PAPIIT project IN402423;
the Spanish Ministry of Science and Innovation, through grants PID2021-127046NA-I00
and CEX2021-001169-M (MCIN/AEI/10.13039/501100011033); and by the Generalitat
de Catalunya, through grant 2017-SGR-63.
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