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Abstract

Classical cognitivist and connectionist models posit a Cartesian disesmbodiment of mind
assuming that brain events can adequately explain thought and related notions such as intellect.
Instead, we argue for the bodily basis of thought and its continuity beyond the sensorimotor
stage. Indeed, there are no eternally fixed representations of the external world in the “motor
system”, rather, it is under the guidance of both internal and external factors with important
linkages to frontal, parietal, cerebellar, basal ganglionic, and cingulate gyrus areas that subserve
cognitive and motivational activities. Indeed, the motor system, including related structures, is
a self-organizing dynamical system contextualized among musculoskeletal, environmental (e.g.,
gravity), and social forces. We do not simply inhabit our bodies; we literally use them to
think with.

“The words of language, as they are written or spoken, do not seem to play any role in my
mechanism of thought. The psychical entities which seem to serve as elements in thought are
certain signs and more or less clear images which can be “voluntarily” reproduced and
combined. . . . The above mentioned elements are, in my case, of visual and some of muscular
type” (Einstein quoted in Hadamard, 1996, The mathematician’s mind: The psychology of
invention in the mathematical field. Princeton, NJ: Princeton University Press (original work
published 1945).)
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1. Introduction

It has not been until recently that social and neuroscientists have seriously con-
sidered the nature and mechanisms of thought and cognition outside of the traditional
domains of language and logic. Indeed, the latter two have often been thought of as two
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sides of the same proverbial coin with different systems of logic at various developmen-
tal periods undergirding the foundation of languages and numbers (Piaget, 1952).
Suggest to one fortified by this belief that logic is not the sole province of these areas of
cognition and immediately one is met with the usual recognizable incredulity: “Ah, but
you are simply using the word inappropriately outside of its normal extension”, goes the
complaint. Yet, one is reminded of Alice’s response in Lewis Carroll’s childhood novel.
“When 7 use a word”, Humpty Dumpty said, “it means just what I choose it to mean
— neither more nor less”. “The question is”, said Alice, “whether you can make words
mean so many different things.” “The question is,” said Humpty Dumpty, “which is to
be the master — that’s all” (Carroll, 1872/1998).

Early theorists of sensorimotor learning and development, to their credit, recog-
nized the central importance of movement in cognitive development (c.g., Piaget,
1952). Unfortunately, the main thrust of these theories absorbs sensorimotor learning
into higher systems of thought draining it of its cognitive uniqueness and centrality in
early as well as later learning. This is surprising given that the endpoint of any
intellective activity is always some movement, action or activity (Montessori,
1949/1967). Indeed, movement occupies a central position in human cognitive activity
(Laban, 1966). To be sure, it has been recently proposed that there is an elaborate
information-processing system involved in movement with extensive bi-directional
pathways to parallel systems in the brain that are involved in planning, reasoning, and
emotion (Leiner, Leiner & Dow, 1986, 1989, 1993a,b). The cerebellum, traditionally
viewed as directing and controlling voluntary movement may play a much larger role
in thought itself (Ito, 1984, 1986, 1993). The resulting “information-processing” system
could conceivably go beyond the traditional control of motor functions subserved by
the cerebral motor cortex to enable the manipulation of kinesthetic ideas (Leiner,
Leiner & Dow, 1986). In effect, it appears that we “think” kinesically too (Gardner,
1993; Iverson & Goldin-Meadow, 1998; Kennedy, 1997; Nicoladis, Mayberry
& Genesee, 1999; Seitz, 1992, 1993, 1994a, b, 1996). For example, it has been
postulated that thinking is an advanced form of skilled behavior that has evolved from
earlier modes of flexible adaptation to the environment (Bartlett, 1958), that the body
is central to mathematical understanding (Lakoff & Nunez, 1997), that speech and
gesture form parallel computational systems (McNeill, 1985, 1989, 1992), and that
mental practice alone improves physical skills (Hinshaw, 1992; Ogles, Lynn, Masters,
Hoefel & Marsden, 1994).

In terms of development, nonverbal behavior is central to expression and commun-
ication. Infants and young children learn to communicate with gestures before they
learn to speak (Bruner, 1983) and this mode of communication continues into
adulthood where a large body of kinesic behaviors augments or replaces language
(e.g., illustrators, regulators, affect displays, diectics, metaphoric gestures, emblems,
and a huge class of procedural knowledge and skills) (Ekman & Friesen, 1969;
McNeill, 1992). To be sure, there have been recent arguments made for the gestural
origins of language and the fact that both speech and hand control originate from the
same neural systems (Corballis, 1999). Choreography and dance, sports, and crafts-
manship are but a few examples of nonverbal abilities. Evidences from the study of the
deaf and sign languages (Klima & Bellugi, 1980), the blind and the reading of Braille
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text (Seitz, 1993), and use of body therapies (Feldenkrais, 1991), are a few other
examples. Historically, the suppression of sign language use among the deaf has
resulted in a significant deterioration in the intellectual achievement of deaf children
(Sacks, 1990) and developmentally, in delays in cognitive and social development
(Bebko, Burke, Craven & Sarlo, 1992). With regard to the blind, Braille is essentially
the “reading” of a tactile code in which the number and spatial forms of the raised dots
are critical (Hardman, Drew, Egan & Wolf, 1993). In human cultures, facial expres-
sion, gesture and posture, gaze, spatial behavior among conspecifics, touch, bodily
movements, vocalization, smell, and appearance are essential and basic to commun-
ication (Argyle, 1989). Even Charles Darwin went so far as to suggest that, for
example, head shaking in infants originates in the mother—child relationship (Darwin,
1872/1965).

The experience of music is an elegant specific example of the body in thought:
Loudness, tonal colors, musical beat and tempo, dynamic changes, melodic phrasing
and contours, chromatic harmonies, musical accents, accelerando, syncopation,
rhythmic ostinato, among other aspects, form the bodily basis of meaning in the
musical domain. Indeed, pedagogical practices such as the Dalcroze, Kodaly, Orff,
and Suzuki methods capitalize on the fact that basic elements of music (rhythm and
musical dynamics, intervallic relationships such as pitch and melody, and sonority)
can be most effectively taught through physical motion using such devices as rhythm,
rhythmic solfege, and improvisation (Jaques-Dalcroze, 1930/1976).

One reason for the importance of studying motor abilities is the recognition that
evidence from the study of children’s and adult’s motor capacities can address
long-standing questions in other psychological domains such as the nature of human
learning and memory, planning, and categorization, to name a few. Another reason is
that it throws into relief some of the major problems with the contemporary “repres-
entational” view of the mind. Classical cognitivist and connectionist models posit
a Cartesian disembodiment of mind assuming that brain events can adequately
explain thought and related notions such as intellect. While much has been written
about the subject, little is known about how the mind actually represents anything.
That is to say, how does the brain give rise to mental states that “represent” the
external world (McGuinn, 1999)? One problem with the representational view is that
it presumes an hierarchical system in which the brain is a distributor of commands
and the body is an ambassador of purpose or, to put it another way, the brain
regulates our bodies as does a CEO a corporation: the knowledge flow is one way and
top-down. Linked to this view is the computer metaphor of the mind in which
thinking is solely a brain-based (or CPU-based) activity. This standard view has been
popularized in such early movies as “Invaders from Mars” (1963) in which a head in a
glassfilled dome commands a motley assortment of unintelligent drones as they
attempt to invade and take over the human world.

What has been left out of these accounts of cognition is the central importance of
the body in thought. And when one puts the body back in thought, or what are now
called “embodied mind” approaches to human thought and intelligence, one is left
with a very different perspective on human thinking. For instance, the human
propensity for categorization is structured by metaphoric, imagistic, and schematizing
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abilities that are themselves undergirded by perceptual and motor capacities
(Jackson, 1983; Johnson, 1987). Moreover, these capacities rest on a biological
infrastructure.

2. The biological basis of intelligent movement

Recent findings in the neurosciences indicate reciprocal and parallel neural path-
ways between the cerebellum, traditionally viewed as controlling gross and fine motor
functions but now hypothesized to play a role in thought itself (Ito, 1984, 1986, 1993),
and the frontal cortex, where working memory and executive functions such as
planning, monitoring, task management, and focusing attention occur (Smith & Jon-
ides, 1999). It has been suggested that the evolutionary significance of these pathways
is that they enable the kinesic manipulation of concept and ideas (Bracke-Tolkmitt
et al., 1989; Leiner et al., 1986, 1989, 1993a,b). For instance, inadequate network
connections among the dorsolateral prefrontal cortex, thalamic pathways, and cere-
bellar sites lead to “cognitive dysmetria” or problems in the processing, coordination,
and prioritizing of information that may play a role in the genesis of schizophrenia
and other mental illnesses (Andreasen, Paradiso & O’Leary, 1998). Similarly, the
“cerebellar cognitive affective syndrome” is linked to disturbances in language (e.g.,
agrammatism), personality (e.g., blunted affect), spatial cognition (e.g., deficits in
visuospatial memory), and executive functions (e.g., difficulties in planning) as a result
of disruption of network connections. Whereas cerebellar lesions are associated with
disturbed affect, posterior lobe lesions are associated with problems in cognitive
processing. Nonetheless, the cerebellum is posited to integrate diverse internal repres-
entations with self-generated activity and the external world through corticopontine,
pontocerebellar, cerebellothalamic, and thalamocortical network pathways and loops
(Schmahmann & Sherman, 1998). In fact, there is evidence of cerebello-thalamocorti-
cal loops from the dentate part of the cerebellum to the dorsolateral prefrontal cortex
involved in spatial working memory that would suggest nonmotor functions (Middle-
ton & Strick, 1994). Moreover, the parallel evolution of both the dentate nucleus and
regions of the frontal lobe in hominids as well as the integration of stereoscopic vision
and use of the hands in primate evolution (Sanides, 1970) suggests motor activity as
the basis of intelligence. Indeed, it has been postulated that the core of human intellect
is the capacity of more recent abilities to draw on computational domains that
evolved for other tasks (Rozin, 1976).

The motor basis of concepts and ideas is also reported in case studies of cerebellar
damage where there are deficits in practice-related learning (e.g., the wearing of
magnifying or reducing prisms) and in detection of errors (e.g., selecting between
synonyms and nonsynonyms). These studies suggest that if the cerebellum is the
interface between sensory representations and motor output, it may serve as an
anatomically distinct long-term memory and learning system (Fiez, Peterson, Cheney
& Raichle, 1992) or modifiable pattern recognition system (Marr, 1969). Moreover,
basal ganglia defects and deterioration of the substantia nigra, locus ceruleus, and
raphe nuclei in the brainstem that upset dopamine pathways, result in cognitive (e.g.,
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dementia and depression) as well as motor deficits. These deficits are characteristic of
both Pakinson’s disease, in which an increase in inhibitory signals leads to a reduction
in cortical excitation and movement (DeLong, 1990; Youdim & Riederer, 1997), and
Huntington’s disease in which a reduction in inhibitory signals leads to an increase in
cortical potentiation and movement (Cote & Crutcher, 1991); Middleton & Strick,
1994). Such dual circuits suggest that the ability to shift behavioral set, that is, initiate
action, underlies the production of novel behavior or the amalgamation of patterned
behavior into novel sequences. Indeed, repetitive stereotyped movement patterns (e.g.,
obsessive-compulsive behavior and Gilles de Tourette syndrome) indicate the malfun-
ctioning of this system (Gazzaniga, Ivry & Mangun, 1998).

Since the beginning of the 1990s, research on the cerebellum and related “motor”
structures has undergone a renaissance. The cerebellum is now known to play an
important role in timing functions that are utilized by perceptual and cognitive
systems (Gazzaniga et al., 1998; Ghez, 1991b; Wickelgren, 1998, 1999), but there is also
recent evidence that it, along with the basal ganglia (Cote & Crutcher, 1991; DeLong,
1990; White, 1997), plays a role in planning, regulation, and attention (Akshoomoff
& Courchesne, 1994; Courchesne et al., 1994). Indeed, there appears to be two
separate pathways for planning movement: the extrapyramidal tracts originating in
the brainstem and the corticospinal tracts originating in the motor cortex. Whereas
the former specifies the goal or target location and is less flexible, the latter specifies
the trajectory of action (i.e., distance) and has evolved as a more flexible system
(Gazzaniga et al., 1998). Both pathways indicate that cognition follows action (e.g.,
specification of location and distance). Moreover, it has been posited that the cerebel-
lum contributes to basic associative learning processes (e.g., associating words with
colors; Bracke-Tolkmitt et al., 1989) and the ability to rapidly shift attention both
within and between sensory modalities (Akshoomoff & Courchesne, 1994). The latter
may lie at the core of autism, in which maldevelopment of the cerebellum leads to
poor social and cognitive development even in the absence of damage to the hip-
pocampus and amygdala (Courchesne et al., 1994). On the other hand, the basal
ganglia, via the dorsolateral prefrontal circuit, appears to store representations of
spatiotemporal contexts concerned with orientation in space, and the lateral orbitof-
rontal circuit with the ability to shift from one mental set to another (Cote & Crutcher,
1991). The storage of these representations in the basal ganglia may abet the frontal
cortex in implementing appropriate behaviors (White, 1997).

Moreover, some parts of the motor systems are specialized for acquisition of new
motor behaviors under external guidance (lateral premotor, parietal, and neocerebel-
lar regions; Ghez, 1991a; Willingham, 1998), whereas other parts are specialized for
already acquired skilled motor plans (supplementary motor, dorsolateral prefrontal,
and basal ganglionic areas; Curran, 1995; Goldberg, 1985). Another “motor” struc-
ture, the posterior parietal cortex, is responsible for creating a frame of reference (i.e.,
spatial, visual, vestibular, and haptic) for movement (Ghez, 1991a; Willingham, 1998)
and for coordinating multimodal sensory feedback with motor imagery (Crammond,
1997). Moreover, new evidence on the function of the motor cortex indicates that it
stores (i.e., “kinesthetic” or procedural memory) and implements the serial order of
a motor plan (Carpenter, Georgopoulos & Pellizzer, 1999), what I will call the syntax
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of movement or “motor logic”, and the motor system as a whole organizes movement
so that the parts work together (i.e., “motor organization”). Thus, it has been posited
that there is a general-purpose module for sequencing that participates in both
movement and language, among other cognitive tasks (Corballis, 1999; Greenfield,
1991; Lashley, 1951). Or to put it another way, there is evidence for a “mirror system”
for both action recognition and intentional communication in the primate cortex
(Rizzolatti & Arbib, 1998).

Therefore, motor logic, motor organization, kinesthetic memory, and on-line kines-
thetic awareness form the core of the intelligent operation of the motor system.
Nevertheless, movement and thinking do not exist in a cognitive and biological
vacuum. Sensory systems guide movement and thought (Reed, 1982). The nervous
system does not so much as direct behavior as shape the dynamics of the coupled
system of brain, body, and environment (Chiel & Beer, 1997). So, for example, visual
information is essential to the location of a sound source encoded in eye-based
coordinates necessary for reaching in a spatial frame of reference — even in the dark
(Batista, Buneo, Snyder & Andersen, 1999). Moreover, movement is contextualized)
among musculoskeletal, environmental (e.g., gravity; Turvey, 1990), and social forces.
Muscle neurons fire simultaneously in aggregate in concert with the olivocerebellar
system to produce periodicity and patterned motor activity in an open loop system
(Welsh & Llinas, 1997). Brain and environment form a synergistic relationship in
which brain events are embedded in a social matrix (Saito, 1996). That is to say, there
are no eternally fixed representations of the external world in the “motor system”,
rather, it is under the guidance of both internal and external factors with important
linkages to frontal, parietal, cerebellar, basal ganglionic, and cingulate gyri areas that
subserve cognitive as well as motivational activities. With regard to motor initiation,
voluntary movement selection and initiation form an embedded system consisting of
the rostral portion of the cingulate motor area, which is innervated by the amygdala
and ventral striatum, and the caudal portion which innervates the primary and
secondary motor areas, brainstem, and spinal cord with input from working memory
in the prefrontal cortex (Shima & Tanji, 1998). Furthermore, there is evidence for
a correlative distributed neural network, including the somatosensory cortex, limbic
system, and cortical regions central to object- and self-recognition, that forms the
neural basis for corporeal awareness, that is, one’s representation of one’s body or
“body schema” (Berlucchi & Aglioti, 1997).

In fact, the “motor system” including related structures, is a self-organizing, distrib-
uted, nonlinear dynamical system in which a motor plan is but one component of
internal and external forces that operate on and create intelligent movement. Action is
self-organized from properties of the components that are structured at more abstract
levels in a heterarchical, not hierachical, system (Thelen, 1995). Neurogenesis
establishes maps among the brain, spinal cord, and motor neurons that
possess overlapping and degenerate connections with multisensory input that
calibrate perceptual-perceptual, perceptual-motor, and motor-motor configurations
(Lockman & Thelan, 1993; Sporns & Edelman, 1993). Therefore, the context in which
each part functions is essential to understanding the overall operation of the system.
That is, the central nervous system is a massively parallel, adaptive system in which
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the biophysical makeup of the brain and its functioning are inextricably interwoven,
continuously updating, modifying, replacing, and generating new neural connections
(Koch & Laurent, 1999). Even human growth and development is not contingent on
a central processor but emerges piecemeal from specific experiences the infant en-
counters through movement and activity “softly assembled” within the current
task domain (Bertenthal, 1996). For example, early reaching is first guided by
proprioceptive input followed by visual and auditory guidance by the end of the
first year of life. Thus, transitions in reaching behavior and locomotor development
in infants are structured by proprioceptive (position, orientation, and movement of
body parts relative to each other), exproprioceptive (movement of body parts in
relation to the environment), and exteroceptive (layout of surfaces and objects)
indicating a close correspondence between action and perception (Bertenthal &
Clifton, 1998).

Nonetheless, so-called “instrumental” abilities have been given short shrift in
theories of intellect and abilities. Recent evidence, however, has been marshaled in
support of a separate bodily intelligence (Gardner, 1993; Johnson, 1987). The latter
involves two central components: Masterful coordination of whole body movements
(so-called gross motor skills) and the ability to manipulate objects in a skilled manner
(so-called fine motor skills) (Gardner, 1993). Moreover, such an autonomous bodily
intelligence has important attributes that distinguish it from other forms of intellect.
Of central importance is the role of the core mental operations in bodily-gestural
expression.

3. Core cognitive abilities in movement

Three central cognitive abilities have been proposed for the bodily basis of thought:
motor logic and organization, kinesthetic memory, and kinesthetic awareness (Seitz,
1992, 1994a, 1996). Motor logic comprises the subject’s neuromuscular skill with
regard to the articulation and ordering of movement what one could call the “syntax”
of movement. Scientific support for this component comes from studies of ideational
apraxia in which damage to the brain results in the dissolution of the “plan” or “idea”
of movement (Roy, 1982). That is, there is a failure to represent the goal of movement
and hence there is no activiation of muscle effectors. Each movement element is
treated separately rather than part of an overall movement plan (Gazzaniga et al.,
1998). The second component, kinesthetic memory, enables the subject to think in
terms of movement by mentally reconstructing muscular effort, movement, and
position in space. The designation shares some very important characteristics with
what researchers of human cognitive capacities call procedural knowledge: knowledge
of how to do something (e.g., ride a bicycle). Scientific corroboration for this compon-
ent arises from the investigation of ideomotor apraxia in which injury to the brain
results in loss of memory for movement sequences. In the first instance, if the
supramarginal or angular gyrus is lesioned there is damage to the parietal visuokines-
tic areas and a consequent inability to differentiate well performed from poorly
performed movements. In the second instance, if the lesions are anterior to the
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supramarginal gyrus disconnecting the premotor and motor areas from the vis-
uokinesthetic areas, then subjects perform poorly to imitation and command (Heil-
man, Rothi & Valenstein, 1982). In both cases, the goal of movement is adequately
represented, but there is a failure to specify muscle effectors to faithfully achieve the
movement goal (Gazzaniga et al., 1998). The last component, kinesthetic awareness,
operates through proprioceptors in the muscles and tendons that provide on-line
information on posture, movement, and changes in body equilibrium as well as
knowledge of resistance, position, and weight of objects.

4. Cognition and movement
4.1. Communication

The use of sign language as a medium of communication illuminates the role of
movement and language use. American Sign Language (ASL) depicts complex linguis-
tic structure by encoding it in spatial contrasts by way of the hands and the body
(Sternberg, 1999). That is, the body is a vehicle for thought. ASL uses the spatial
relationships of the hands and body to depict syntactic information such as verb ob-
jects and nouns by manipulating loci of the hands and body and relations
among these loci in the immediate plane of signing space. Indeed, only deaf signers
with damage to the left hemisphere show language aphasias. Right hemisphere
damage results in distortions of space and spatial perspective and neglect of the left
side of space (e.g., spatial descriptions of office layouts) but not competence in ASL,
suggesting similar brain organization for both sign and spoken languages (Bellugi
& Klima, 1997).

Sign language is capable of expressing nonliteral meaning by the overlapping,
blending, and substitution of signs as in deaf theatre or sign poetry. Using form and
design in space (i.e., external kinetic superstructure) that is superimposed on signs and
signing, poetic structure, such as alliteration and assonance, is possible. Indeed,
among the deaf, the use of ironic and metaphoric modes of communication
occurs frequently in deaf communities (Klima & Bellugi, 1980). Children also
produce figurative sign language through pantomine, sign modification, ritualized
movement, and by adding iconic, visuospatial detail (Marschark, Everhart, Martin
& West, 1987).

4.2. Categorization

Four-year-olds make significant use of motion cues to categorize objects regardless
of whether the objects are geometric or animal figures. Seven-year-olds and adults
tend to make use of motion cues more often to categorize animal figures (Mak & Vera,
1999). Similarly, infant vervets — small grey, African monkeys — use a motion-
oriented categorization scheme to classify objects initially according to their actions
or behavior (Allen, 1996). These studies indicates that motion plays a pivotal role in
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concept acquisition and guides human and infrahuman primates in both the categor-
ization of objects and the learning of concepts across the lifespan.

4.3. Imagery

Mental practice, or the cognitive rehearsal of a physical skill in the absence of
movement, includes both external, mental imagery (i.c., viewing oneself from the
perspective of an observer) and internal, kinesthetic imagery (Magill, 1989). Meta-
analytic studies indicate that the effect of mental practice over no practice is highly
significant (effect size = 0.68, SD = 0.11). However, kinesthetic imagery is more effec-
tive than external imagery. This is hypothesized to be due to increases in muscle
memory as well as spatial, temporal or sequential aspects of the symbolic components
of the image (Hinshaw, 1992). On the other hand, external imagery is more effective
for long distance runners who tend to dissociate the physical pain of the body as one
might expect (Ogles, Lynn, Masters, Hoefel & Marsden, 1994).

Moreover, recent studies of physical imagery suggest that it is an analog of physical
action rather than a correlate of visual perception (Schwartz, 1999). Traditional
models of physical imagery have explained motion without regard to the physical
forces that control them (e.g., Kosslyn, 1980; Shepard, 1978). Dynamic models,
however, describe the forces acting on a system in motion (e.g., Kepler’s theory of
planetary motion). These include elements of force and resistance as well as their rate
of change. Such enactive or “timing-responsive” representations allow individuals to
anticipate, plan, and respond directly to the dynamic world through their physical
actions. Moreover, both haptic and imagistic information are incorporated into the
timing-responsive representation so that physical imagery is predictably tied to
perception.

4.4. Gesture and touch

Studies of the acquisition of gesture in young children indicate that “iconics” (i.e.,
represent details of visual images) and “beats” (i.e., illustrate temporal structure of an
utterance) exhibit a close relationship with spoken language development in bilingual
children (Nicoladis et al., 1999). Iconics function by tying predicate structure (e.g.,
verbs, adverbs, and adjectives) to increasing mean length of utterance (MLU) and
express aspects of complex concepts (e.g., predication) through cross-modal associ-
ations with language. Beats, on the other hand, function as part of the child’s ability to
use varying stress patterns with multimorphemic utterances. Nonetheless, “deictics”
(pointing gestures), “emblems” (gestures which have a direct verbal translation as in
“bye-bye”), and “gives” (i.e., hands outstretched) arise prior to spoken language and
do not display these coordinated links to speech development. Indeed, gestural
imitation of adults is unaffected by accompanying language at the earliest stages of
lexical development in infants 13-16 months. Infants will ignore a linguistic cue if it
conflicts with a modeled gesture in later stages, and in children designated as “high
comprehenders” (131-233 vocabulary words), such speech-gesture conflict will
negatively affect motor performance (Bates, Thal, Whitesell, Fenson & Oakes, 1989).
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Deictic gestures comprise 80% of gestures in French-English bilingual children
under four-years-of-age (Nicoladis et al., 1999). In adults, it has been reported
that iconics and beats make up over 60% of gestures (McNeill, 1992). Iconic
gestures highlight linguistic meaning through pairing movement isomorphic in
form and manner of execution (e.g., hand rises upward) with language (e.g., “He crawls
up the pipe”). Metaphoric gestures, however, convey nonliteral meaning by represent-
ing abstract concepts (e.g., knowledge) through the use of gesture that depicts the
underlying meaning or vehicle of the metaphor (e.g., cupping the hands as to form
a container). On this view, graphic drawings are essentially metaphoric gestures on

paper.

The perceptual qualities of shape and motion [in drawings] are present in the
very acts of thinking depicted by the gestures (Arnheim, 1969, p. 118).

Developmentally, protogestures that link vocal and manual activities evolve in
the postnatal period, iconic and deictic gestures develop over the next two years of
life, followed by beats in the third year, and true metaphor gestures by five to
six years of age. Other schemes suggest that the ecarliest gestures are depictive
(e.g., a one-year-old child slowly opening and closing her mouth to represent analog-
ous movement of a matchbox), deictic (i.e., pointing, showing, and giving), and
enactive or recognitory gestures (e.g., pretending to comb the hair), followed closely in
age by expressive (e.g., knitted brow) and instrumental (e.g., extending arms to be
picked up) gestures (Bartin, 1979; Bates et al., 1989). Nonetheless, both schemes
suggest that two kinds of thought processes are working in parallel: an imagistic,
global-synthetic representation and a syntactic, linear-segmented one. Indeed, a vis-
ual-kinesthetic image is forged in parallel with an inner speech symbol such that
gesture and speech share a computational stage in which the separate elements combine
to form a more complex cognitive structure. Such a dialectical synthesis suggests that
thought occurs within a field of oppositions and how it carves up the imagistic and
syntactic parts is the very embodiment of thought (McNeill, 1985, 1989, 1992).

The foregoing studies, therefore, reveal the central importance of the role of the
body in forming complex concept and ideas. Indeed, it has been suggested that there is
no inherent distinction between thought and movement at the level of the brain; both
can be controlled by identical neural systems (Ito, 1993). Therefore, concepts and ideas
can be manipulated just as are body parts in motion. The “motor system” is thus
a complex computational network that controls and directs the brain’s circuitry or
internal symbols: counting, timing, sequencing, predicting, planning, correcting, at-
tending, patterning, learning, and adapting (Leiner et al., 1993a, b).

Indeed, gestures that accompany language may facilitate thought itself. For
example, people speaking on the telephone routinely gesture even though it plays no
obvious role in communication. Similarly, blind speakers when speaking to a blind
listener will gesture even though such behavior does not depend on cither an observer
or on an adult model (Iverson & Goldin-Meadow, 1998). In studies of gesture-speech
mismatch, the expression of concepts motorically before their linguistic realization
may help facilitate the working out or “packaging” of ideas. Gesture-speech
mismatch may also have communicative value because gesture highlights aspects
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of the mind of the speaker that are inconsistent with his or her spoken language
(Goldin-Meadow, 1997). Indeed, in modern choreographic practice, much of
the communicative and conceptual power of dance is facilitated by gesture (Kilian,
1999).

Moreover, studies of the drawings of individuals with congenital and acquired
blindness indicate that blind individuals are able to describe motion by making use of
metaphorical ways of indicating movement (e.g., curved spokes to denote motion of
a wheel). Indeed, like sighted individuals who treat brightness borders as indicators of
the edges of surfaces, blind individuals treat pressure borders as indicators of surface
edges. Thus, it has been suggested that both visual and haptic information are
coordinated by an amodal system (Kennedy, 1997). This system would make use of
haptic information in the blind to use touch to “think with” just as the sighted use
visual information to plan and organize visual reality.

4.5. Aesthetic (dance) movement

Recent research on aesthetic (dance) movement is beginning to classify the numer-
ous ways that children express thoughts and ideas through movement, action, and
activity. At a general level, the research indicates that 3- and 4-years-olds lack the
ability to express tension or weight in their movement. Nonetheless, in terms of motor
organization, they (a) have developed front-back but poor lateral movement, (b) have
acquired quasi-skipping, -marching, and -jumping abilities, (¢) demonstrate both
asymmetric use of the body and body parts but, (d) lack more advanced balancing
abilities. In terms of representational capacities, they can treat (a) one movement as
another, (b) represent a movement for an absent concept, and (c) distort a property of
a movement so as to treat it as another movement property. However, by 5- or 6-years
of age, children (a) have acquired lateral movement, (b) have acquired complex
movements such as skipping, (c) can coordinate movement with and around objects,
(d) have acquired the first and second positions in modern ballet technique, and (e) can
use their upper body to propel themselves forward in a horizontal plane. In addition,
they (a) can create geometric shapes with body parts, (b) demonstrate metrical
properties of rhythm in their movement, (¢) show symmetric use of the body and body
parts, and (d) have acquired more advanced balancing abilities. In all age groups,
studies have found the use of metaphoric gestures (e.g., the use of a body part to stand
in place of a concept or idea), simple diectic and spatial gestures, kinetographs (i.e.,
movements which depict a bodily action), and simple regulators (i.e., gestures that
regulate action between group participants) (Carlson & Seitz, 1998; Lopez, 1999;
Lopez & Seitz, 1998; Mirani & Seitz, 1998).

4.6. Mathematics

It has been suggested that our mathematical conceptual system is grounded in
basic sensorimotor experiences and is heavily dependent on metaphorical mappings
(Lakoff & Nunez, 1997). For instance, arithmetic is object collection (i.e., numbers as
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collection of physical objects), object construction (e.g., quantity), and physical motion
(i.e., number locations as situated on a path or continuum). Moreover, the parietal
lobes and the intraparietal sulci shape the neural circuit that underlies hand-
shapes and finger movements which appears to contribute to finger counting
and finger calculation (Butterwork, 1999). The latter is a universal cross-cultural
stage in the learning of numbers by children. Indeed, it appears that the cortical
representation of finger movements and numbers occupies an interrelated neural
circuit (i.e., spatial layout of the fingers on the hand, the cerebral representation of the
fingers, and the location of number on a number line) and obeys similar principles of
cerebral organization. That is, there is a close relationship among our body maps,
spatial maps, and the representation of number on a number lime (Dehaene, 1997).
Indeed, in a rare disorder of “arithmetic epilepsy,” there is periodic rhythmic dis-
charges of the body.

Recent evidence indicates the mathematical intuition emerges from two distinct
neural systems that underlie exact and approximate arithmetic (Dehaene, Spelke,
Pinel, Stanescu & Tsivkin, 1999). Whereas the former is acquired in a language-like
format and uses neural networks involved in word association, the latter is language
independent and uses bilateral areas in the vicinity of the intraparietal sulci
(Brodmann’s area 39) that are active during visual guidance of eye and hand
movements, mental rotation, and orientation to the environment. These areas
are posited to be related to preverbal numerical abilities in both human infants
and diverse animal species. Moreover, the Gerstmann syndrome, which involves
deficits in the left inferior parietal region, is characterized by difficulties in
writing, representing the fingers of the hand, distinguishing left from right,
and acalculia. This suggests that the inferior parietal area may be the central
brain region for numerical abilities including the representation of continuous
quantities, abstract maps of spatial layouts of objects in the environment, and
may be further subdivided into microregions specialized for finger movements and
graphic abilities such as writing (Dehaene, 1997). Indeed, studies purporting
to enhance spatial-temporal reasoning skills by exposure to music (e.g., Mozart
Sonata, k. 448) or keyboard training and math video games, may be tapping into
this composite neural circuit (Graziano, Peterson & Shaw, 1999; Rauscher,
Shaw, Levine, Wright, Dennis & Newcomb, 1997). Such findings fit in well from
what is known about the modular structure of the brain. The brain’s circuits are
highly compartmentalized receiving synaptic connections from less than 3% of
neurons of the surrounding square millimeter of cortex. This indicates that neural
circuits operate more efficiently by sharing information over a smaller number of
units. The extent of connectedness is uniform across tree shews, prosimians, marmo-
sets,and primates that differ in brain size by four orders of magnitude (Stevens, 1989).
Outward folds separate strongly interconnected areas while inward folds separate
weakly interconnected areas. Such compact wiring ensures that connections occur
with high probability between juxtaposed regions and with less probability among
more distance regions. Moreover, these neural arrangements develop early as local
forces and mechanical properties of surrounding tissue shape neural growth and
migration (van Essen, 1997).
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5. The “embodied mind”: a new paradigm for thinking about the relation of movement
to thought

As electronic media (e.g., TV and computers), video games, and telecommunication
devices (e.g., cellular phones) become increasingly popular, there is concern that such
“mechanization of culture” will severely limit the use of the body. Childhood play is
essential to development and traditional venues such as constructive, sociodramatic,
and symbolic play facilitate bodily coordination and the physical basis of concept
acquisition (Chirico, 1998). Practice in sports, chess, and music contribute to world-
class performance (Goleman, 1994). Depression is closely associated with negatively
distorted body images (Noles, Cash & Winstead, 1985). On the other hand, is it that
our brains are largely formed independent of type of input? What will become of
human minds in a “digitized” culture?

While it is largely true that physically handicapped children eventually develop
normally in spite of motoric impairments, their success is largely due to their ability to
compensate for their motor limitations and not because of them (Bebko et al., 1992).
The physically impaired seek out intellectual, social, and environmental stimulation
and make optimal use of what motor abilities are still intact (e.g., visual saccades or
auditory scanning) as the nervous system reroutes degenerated sensory modalities and
reorganizes defective brain regions (Gazzaniga et al., 1998). Technological innovation
has enabled the blind to “read” printed text (e.g. Optacon scanner). The evolution of
brain areas that subserve mechanical skills underlies technological development that
abetted modern civilization (Seitz, 1992, 1993). The rise of modern technology has
freed the hand to “think™ and the voice to proffer instruction (Corballis, 1999). Indeed,
sign language systems satisfy every criterion of a language in terms of generativity,
syntax, semantics, and pragmatics (Sacks, 1988). To be sure, there is a syntax of
movement as there is a syntax of speech and a logic of numbers as there is a “physi-
ology of logic”; as all skillful behavior involves the same aspects of sequence and
seriation or a “generalized schemata of action” (Lashley, 1951). Kinesthetic thinking
lies in orchestrating a sequence of activities; integrating intellective, emotional, and
multisensory experience; and selecting and executing appropriate movement, action
or activity.

Throwing, hitting, typing, writing, signing, singing, dancing, driving a car, playing
a musical instrument, and so on, suggest that motor capacities are deeply involved
with, and constitutive of, other intellective competencies. All the aforementioned
activities partake of timing, force, selection, and sequencing, orchestration, and
integration that lie at the core of human intellectual activity. Therefore, the bound-
aries between perception, action, and cognition are porous. If human communication
evolved from the capacity to recognize actions in early hominid populations to
a mirror system for intentional gestured and spoken discourse, then thought, action,
and perception are indissolubly tied. The organization of the brain and body is not
top-down but organized at the level of the system that is dependent on local,
distributed, and contextual factors and constraints.

Indeed, the study of dance movement suggests how little is known about how
children and adults use their gestural and postural abilities to express concepts and
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ideas. By sketching out both the “objective” features (i.e., motor logic, motor organiza-
tion, kinesthetic awareness, and kinesthetic memory) that are hypothesized to be at
the core of cognitive abilities central to human action, and the “subjective” features
— including repleteness (i.e., volume, line, and movement texture), exemplification
(i.e., the ability to convey rhythm or shape through movement), expression or repres-
entation (i.e., the ability to use one movement to stand in place of another), and
composition (i.e., the ability to create a spatial design(s) with the body — current
empirical studies will gain further insight into the relationship of thought and
movement. By tracing its ontogeny and the role of expressive and cognitive factors in
aesthetic movement, such studies will begin to explicate the role of kinesthetic sense
and memory, motor logic, and motor organization in human learning that occurs
through the senses, hands, and body,

Thinking is an embodied activity. Although humans may be best characterized as
symbol-using organisms, symbol use is structured by action and perceptual systems
that occur in both natural environments and artifactual contexts. Indeed, human
consciousness may arise not just from some novel feature of human brains, but way of
the body’s “awareness” of itself through its exteroceptive and prioprioceptive senses.
Indeed,the body structures thought as much as cognition shapes bodily experiences.
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