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Abstract

Traditional computers work with finite numbers. Situations where the us-
age of infinite or infinitesimal quantities is required are studied mainly the-
oretically. In this paper, a recently introduced computational methodology
(that is not related to the non-standard analysis) is used to work with finite,
infinite, and infinitesimal numbers numerically. This can be done on a new
kind of a computer – the Infinity Computer – able to work with all these types
of numbers. The new computational tools both give possibilities to execute
computations of a new type and open new horizons for creating new mathe-
matical models where a computational usage of infinite and/or infinitesimal
numbers can be useful. A number of numerical examples showing the poten-
tial of the new approach and dealing with divergent series, limits, probability
theory, linear algebra, and calculation of volumes of objects consisting of
parts of different dimensions are given.

Key Words: Numerical computations, infinite and infinitesimal numbers, the Infin-
ity Computer.

1 Introduction

The point of view on infinity accepted nowadays takes its origins from the famous
ideas of Georg Cantor (see [2]). Different generalizations of the traditional arith-
metic for finite numbers to the case of infinite and infinitesimal numbers have been
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proposed in literature (see, e.g., [1, 2, 3, 6, 7] and references given therein). How-
ever, these generalizations are quite different with respect to the finite arithmetic
we are used to deal with. Moreover, very often they leave undetermined many op-
erations where infinite numbers take part (e.g., ∞−∞, ∞

∞ , etc.) or use representation
of infinite numbers based on infinite sequences of finite numbers.

In spite of these crucial difficulties and due to the enormous importance of the
concept of infinite and infinitesimal in Science, people try to introduce these no-
tions in their work with computers. Thus, the IEEE Standard for Binary Floating-
Point Arithmetic (IEEE 754) being the most widely-used standard for floating-
point computation defines formats for representing special values for positive and
negative infinities and NaN (Not a Number) (see also incorporation of these notions
in the interval analysis implementations e.g., in [18]). The IEEE infinity values can
be the result of arithmetic overflow, division by zero, or other exceptional opera-
tions. In turn, NaN is a value or symbol that can be produced as the result of a
number of operations including that involving zero, NaN itself, and infinities.

Recently, a new applied point of view on infinite and infinitesimal numbers
has been introduced in [8, 11, 13, 14, 15]. With respect to the IEEE 754 standard,
the new approach significantly extends the variety of operations that can be done
with infinity. It gives a possibility to work with various infinite and infinitesimal
quantities numerically by using a new kind of a computer – the Infinity Computer
– introduced in [9, 10, 11]. A number of applications related to the usage of the
new approach for studying fractals (being one of the main scientific interests of the
author (see, e.g., [16, 17]) has been discovered (see [13, 14]).

The new approach is not related to non-standard analysis ideas from [7] and
does not use Cantor’s ideas (see [2]) either. The Infinity Computer works with
infinite and infinitesimal numbers numerically using the following methodological
principles having a strong applied character (see survey [15] for a detailed discus-
sion on the new approach).

Postulate 1. Existence of infinite and infinitesimal objects is postulated but it
is also accepted that human beings and machines are able to execute only a finite
number of operations.

Postulate 2. It is not discussed what are the mathematical objects we deal
with; we just construct more powerful tools that allow us to improve our capacities
to observe and to describe properties of mathematical objects.

Postulate 3. The principle formulated by Ancient Greeks ‘The part is less than
the whole’ is applied to all numbers (finite, infinite, and infinitesimal) and to all
sets and processes (finite and infinite).

Due to this declared applied statement, such traditional concepts as bijection,
numerable and continuum sets, cardinal and ordinal numbers are not applied when
one works with the Infinity Computer because they belong to Cantor’s approach
having significantly more theoretical character and based on different assumptions.
However, the methodology used by the Infinity Computer does not contradict Can-
tor. In contrast, it evolves his deep ideas regarding existence of different infinite
numbers in a more practical way.

2



The accepted applied methodology means in particular (see Postulate 1) that we
shall never be able to give a complete description of infinite processes and sets due
to our finite capabilities. Acceptance of Postulate 1 means also that we understand
that we are able to write down only a finite number of symbols to express numbers
in any numeral system1.

Postulate 2 states that the philosophical triad – researcher, object of investi-
gation, and tools used to observe the object – existing in such natural sciences as
Physics and Chemistry, exists in Mathematics, too. In natural sciences, the instru-
ment used to observe the object limits and influences the results of observations.
The same happens in Mathematics where numeral systems used to express num-
bers are among the instruments of observations used by mathematicians. Usage
of a powerful numeral system gives a possibility to obtain more precise results in
Mathematics in the same way as usage of a good microscope gives a possibility
to obtain more precise observations in Physics. However, due to Postulate 1, the
capabilities of the tools will be always limited.

Particularly, this means that from this applied point of view, axiomatic systems
do not define mathematical objects but just determine formal rules for operating
with certain numerals reflecting some properties of the studied mathematical ob-
jects. For example, axioms for real numbers are considered together with a particu-
lar numeral system S used to write down numerals and are viewed as practical rules
(associative and commutative properties of multiplication and addition, distributive
property of multiplication over addition, etc.) describing possible operations with
the numerals. The completeness property is interpreted as a possibility to extend S
with additional symbols (e.g., e, π,

√
2, etc.) taking care of the fact that the results

of computations with these symbols agree with facts observed in practice. As a
rule, assertions regarding numbers that cannot be expressed in a numeral system
are avoided (e.g., it is not supposed that real numbers form a field).

In this paper, the methodology from [8, 11, 13, 14, 15] is used to describe how
the Infinity Computer can be applied for solving new and old (but with higher pre-
cision) computational problems. Representation of infinite and infinitesimal num-
bers at the Infinity Computer and operations with them are described in Section 2.
Then, Sections 3 and 4 present results dealing with applications related to linear
algebra and calculating divergent series, limits, volumes, and probabilities.

2 Representation of infinite and infinitesimal numbers at
the Infinity Computer

In [8, 11, 13, 14, 15], a new powerful numeral system has been developed to ex-
press finite, infinite, and infinitesimal numbers in a unique framework by a finite

1We remind that a numeral is a symbol or group of symbols that represents a number. A number
is a concept that a numeral expresses. The same number can be represented by different numerals
(e.g., the symbols ‘10’, ‘ten’, and ‘X’ are different numerals, but they all represent the same number).
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number of symbols. The main idea of the new approach consists of measuring infi-
nite and infinitesimal quantities by different (infinite, finite, and infinitesimal) units
of measure. This section gives just a brief tour to the representation of infinite and
infinitesimal numbers at the Infinity Computer and describes how operations with
them can be executed. It allows us to introduce the necessary notions and designa-
tions. In order to have a comprehensive introduction to the new methodology, we
invite the reader to have a look at the recent survey [15] downloadable from [10] or
at the book [8] (written in a popular manner) before approaching Sections 3 and 4.

2.1 A new infinite numeral and a positional numeral system with
the infinite radix

A new infinite unit of measure has been introduced for this purpose as the number
of elements of the set N of natural numbers. It is expressed by a new numeral ①

called grossone. It is necessary to emphasize immediately that the infinite number
① is not either Cantor’s ℵ0 or ω. In particular, ① has both cardinal and ordinal
properties as usual finite natural numbers. Formally, grossone is introduced as
a new number by describing its properties postulated by the Infinite Unit Axiom
(IUA) (see [8, 10, 12, 13, 15]). This axiom is added to axioms for real numbers
(viewed in sense of Postulates 1–3) similarly to addition of the axiom determining
zero to axioms of natural numbers when integer numbers are introduced.

One of the important differences of the new approach with respect to the non-
standard analysis consists of the fact that ① ∈ N because grossone has been intro-
duced as the quantity of natural numbers (similarly, the number 3 being the number
of elements of the set {1,2,3} is the largest element in this set). The new numeral
① allows one to write down the set, N, of natural numbers in the form

N = {1,2,3, . . . ①−3, ①−2, ①−1, ①} (1)

where the numerals
. . . ①−3, ①−2, ①−1, ① (2)

indicate infinite natural numbers.
It is important to emphasize that in the new approach the set (1) is the same set

of natural numbers
N = {1,2,3, . . . } (3)

we are used to deal with and infinite numbers (2) also belong to N. Both records,
(1) and (3), are correct and do not contradict each other. They just use two different
numeral systems to express N. Traditional numeral systems do not allow us to
see infinite natural numbers that we can observe now thanks to ①. Similarly, a
primitive tribe of Pirahã (see [4]) living in Amazonia that uses a very weak numeral
system for counting (one, two, many) is not able to see finite natural numbers
greater than 2. In spite of this fact, these numbers (e.g., 3 and 4) belong to N and
are visible if one uses a more powerful numeral system. Thus, we have the same
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object of observation – the set N – that can be observed by different instruments –
numeral systems – with different accuracies (see Postulate 2).

It is worthy to notice that the introduction of ① defines the set of extended
natural numbers indicated as N̂ and including N as a proper subset

N̂ = {1,2, . . . ,①−1,①,①+1, . . . ,①2 −1,①2,①2 +1, . . .}. (4)

Due to Postulates 1 and 2, the new numeral system cannot give answers to all
questions regarding infinite sets. What can we say, for instance, about the number
of elements of the set N̂? The introduced numeral system based on ① is too weak
to give an answer to this question. It is necessary to introduce in a way a more
powerful numeral system by defining new numerals (for instance, ②, ③, etc).

Inasmuch as it has been postulated that grossone is a number, associative and
commutative properties of multiplication and addition, distributive property of
multiplication over addition, existence of inverse elements with respect to addi-
tion and multiplication hold for grossone as for finite numbers. Particularly, this
means that the following relations hold for grossone, as for any other number

0 ·① = ① ·0 = 0, ①−① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0. (5)

To express infinite and infinitesimal numbers at the Infinity Computer, records
similar to traditional positional numeral systems can be used (see [8, 10, 12, 13]).
In order to construct a number C in the new numeral positional system with the
radix ①, we subdivide C into groups corresponding to powers of ①:

C = cpm①pm + . . .+ cp1①
p1 + cp0①

p0 + cp−1①
p−1 + . . .+ cp−k①

p−k . (6)

Then, the record

C = cpm①pm . . .cp1①
p1cp0①

p0cp−1①
p−1 . . .cp−k①

p−k (7)

represents the number C, where ci are called grossdigits and are expressed by tra-
ditional numeral systems used to represent finite numbers (e.g., floating point nu-
merals). Grossdigits can be both positive and negative. They show how many
corresponding units should be added or subtracted in order to form the number C.
Grossdigits can be expressed by several symbols.

Numbers pi in (7) called grosspowers can be finite, infinite, and infinitesimal.
They are sorted in decreasing order with p0 = 0:

pm > pm−1 > .. . > p1 > p0 > p−1 > .. . p−(k−1) > p−k.

In the record (7), we write ①pi explicitly because in the new numeral positional
system the number i in general is not equal to the grosspower pi.

Finite numbers in this new numeral system are represented by numerals having
only the grosspower p0 = 0. In fact, if we have a number C such that m = k = 0
in representation (7), then due to (5), we have C = c0①0 = c0. Thus, the number
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C in this case does not contain grossone and is equal to the grossdigit c0 being a
conventional finite number expressed in a traditional finite numeral system.

Infinitesimal numbers are represented by numerals C having only negative fi-
nite or infinite grosspowers, e.g., 3.48①−46.7126.4①−132①. The simplest infinitesi-
mal number is 1

①
= ①−1 being the inverse element with respect to multiplication

for ①:
①−1 ·① = ① ·①−1 = 1. (8)

Note that all infinitesimals are not equal to zero. Particularly, 1
①

> 0 because it is
a result of division of two positive numbers.

Infinite numbers are expressed by numerals having at least one positive finite
or infinite grosspower. Thus, they have infinite parts and can also have a finite part
and infinitesimal ones. For instance, the number

12.4①34.21①(-20.64)①150.8①00.71①−332.1①−6.5①

has two infinite parts, 12.4①34.21① and −20.64①15, one finite part, 0.8①0 = 0.8,
and two infinitesimal parts, 0.71①−3 and 32.1①−6.5①.

2.2 Arithmetical operations executed by the Infinity Computer

A working software simulator of the Infinity Computer has been implemented (see
[9, 10, 11]). It works with infinite, finite, and infinitesimal numbers numerically,
(not symbolically) and executes the arithmetical operations as follows.

Let us consider the operation of addition (subtraction is a direct consequence
of addition and is thus omitted) of two given infinite numbers A and B, where

A =
K

∑
i=1

aki①
ki , B =

M

∑
j=1

bm j ①
m j , C =

L

∑
i=1

cli①
li , (9)

and the result C = A + B is constructed by including in it all items aki①
ki from A

such that ki 6= m j,1 ≤ j ≤ M, and all items bm j ①
m j from B such that m j 6= ki,1 ≤

i ≤ K. If in A and B there are items such that ki = m j, for some i and j, then this
grosspower ki is included in C with the grossdigit bki +aki , i.e., as (bki +aki)①

ki .
The operation of multiplication of two numbers A and B in the form (9) returns,

as the result, the infinite number C constructed as follows:

C =
M

∑
j=1

C j, C j = bm j ①
m j ·A =

K

∑
i=1

akibm j ①
ki+m j , 1 ≤ j ≤ M. (10)

In the operation of division of a number C by a number B from (9), we obtain
a result A and a reminder R (that can be also equal to zero), i.e., C = A ·B+R. The
number A is constructed as follows. The first grossdigit akK and the corresponding
maximal exponent kK are established from the equalities

akK = clL/bmM , kK = lL −mM. (11)
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Then the first partial reminder R1 is calculated as

R1 = C−akK ①kK ·B. (12)

If R1 6= 0 then the number C is substituted by R1 and the process is repeated by a
complete analogy. The process stops when a partial reminder equal to zero is found
(this means that the final reminder R = 0) or when a required accuracy of the result
is reached.

Example 2.1. We consider two infinite numbers A and B, where

A = 304.21①16.8①(-7.1)①1241.2①0, B = 6.23①313.1①015①−6.2①.

Their sum C is calculated as follows:

C = A+B = 304.21①16.8① +(-7.1)①12 +41.2①0 +6.23①3 +13.1①0 +15①−6.2① =

304.21①16.8① −7.1①12 +6.23①3 +54.3①0 +15①−6.2① =

304.21①16.8①(-7.1)①126.23①354.3①015①−6.2①. 2

More examples illustrating the work of the Infinity Computer can be found in
[8, 11, 12, 13, 15].

3 Examples of situations where the Infinity Computer
executes operations that traditionally required a human
intervention

In this section, we describe a number of computational tools provided by the new
methodology and the Infinity Computer. It becomes possible in several occasions
to automatize the process of the solving of computational problems avoiding an
interruption of the work of computer procedures and the necessity of a human in-
tervention required when one works with traditional computers. For instance, when
one meets a necessity to work with divergent series or, even worse, their difference,
traditional computers are not able to execute these operations automatically and a
human intervention is required in order to avoid these difficulties. In this situation
and in other examples below, it is shown how the work usually done by humans
can be formalized following Postulates 1–3 and passed to the Infinity Computer.

It is necessary to emphasize that the examples described in this section are
related to numerical computations at the Infinity Computer. No symbolic compu-
tations are required to work with infinite and infinitesimal numbers when one uses
the Infinity Computer.
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3.1 Calculating sums with an infinite number of items

The new approach allows one to use the Infinity Computer for the calculation of
sums with an infinite number of items. The term ‘series’ is not used here because,
due to Postulate 3, it is required to indicate explicitly the number of items (finite
or infinite) in any sum. Naturally, it is necessary that the number of items and
the result of the considered sum are expressible in the numeral system used for
calculations.

Let us illustrate the new possibilities by considering two traditional infinite
series S1 = 1+1+1+ . . . and S2 = 30+30+30+ . . . The traditional analysis gives
us a very poor answer that both of them diverge to infinity and, therefore, the results
cannot be calculated and represented at the traditional computers. Such operations
as S2 − S1 or S1

S2
are not defined and humans should return to the original physical

problem in order to understand whether there exist answers to these questions.
Now, when we are able to express not only different finite numbers but also

different infinite numbers, it is necessary to indicate explicitly the number of items
in the sums S1 and S2 and it is not important whether it is finite or infinite. Due to
Postulate 3, by changing the number of items in the sums, we change the respective
results, too.

Suppose that the sum S1 has k items and the sum S2 has n items. Then

S1(k) = 1+1+1+ . . .+1︸ ︷︷ ︸
k

, S2(n) = 30+30+30+ . . .+30︸ ︷︷ ︸
n

.

and it follows S1(k) = k and S2(n) = 30n. If the results S1(k) = k and S2(n) = 30n
are expressible in the chosen numeral system, then indeterminate forms disappear
and the expressions S2(k)− S1(n) and S1(k)

S2(n) can be easily calculated using the In-
finity Computer.

If, for instance, k = n = 5① then we obtain S1(5①) = 5①, S2(5①) = 150① and
S2(5①)−S1(5①) = 145① > 0.

If k = 30① and n = ① we obtain S1(30①) = 30①, S2(①) = 30① and it follows
S2(①)−S1(30①) = 0.

If k = 30①2 (we remind that we use here a shorten way to write down this in-
finite number, the complete record is 30①12①0) and n = ① we obtain S1(30①2) =
30①2, S2(①) = 30① and it follows

S2(①)−S1(30①2) = 30①−30①2 = −2 < 0.

Analogously, the expression S1(k)
S2(n) can be calculated.

Let us consider now the famous divergent series with alternate signs S3 = 1−
1 + 1− 1 + . . . In literature there exist many approaches giving different answers
regarding the value of this series (see [5]). All of them use various notions of
average. However, the notions of sum and average are different. In our approach,
we do not appeal to average and calculate the required sum directly. To do this we
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should indicate explicitly the number of items, k, in the sum. Then

S3(k) = 1−1+1−1+1−1+1− . . .︸ ︷︷ ︸
k

=

{
0, if k = 2n,
1, if k = 2n+1,

and it is not important whether k is finite or infinite.
We conclude this subsection by studying the series S4 = ∑∞

i=1
1
2i converging to

one. The new approach allows us to give a more precise answer. Due to Postulate 3,
the formula

S4(k) =
k

∑
i=1

1
2i = 1− 1

2k

can be used directly for infinite k, too. For example, if k = 3① then

S4(3①) =
3①

∑
i=1

1
2i = 1− 1

23①
,

where 1
23① is infinitesimal. Thus, the traditional answer ∑∞

i=1
1
2i = 1 is just a finite

approximation to our more precise result using infinitesimals. The traditional nu-
meral systems do not allow us to distinguish results of the sums for infinite values
of k. More examples can be found in [13].

Thus, if one is able to calculate a partial sum of a series S, he/she can use the
formula applied for this calculation to evaluate at the Infinity Computer sums S(k)
with k items for finite and infinite values of k and finite, infinite, and infinitesimal
values of S(k) and to use the obtained results in further calculations.

3.2 Computing expressions with infinite and infinitesimal arguments

In the traditional analysis, the concept of the limit has been introduced in order
to avoid difficulties that one faces when he/she wants to evaluate an expression
at infinity or at a point x infinitely close to a point a. If limx→a f (x) exists, then
it gives us a very poor – just one value – information about the behavior of f (x)
when x tends to a.

Now we can obtain significantly more rich information using the Infinity Com-
puter independently on the fact of existence of the limit. We can calculate f (x)
directly at any finite, infinite, or infinitesimal point expressible in the new posi-
tional system even if the limit does not exist. Thus, limits can be substituted by
precise numerals f (a) that are different for different infinite, finite, or infinitesi-
mal values of x = a. This is very important for practical computations because
this substitution eliminates indeterminate forms, i.e., again the Infinity Computer
should not stop its calculations as traditional computers are forced to do when they
encounter indeterminate forms.

Example 3.1. In the traditional analysis, the following two limits

lim
x→+∞

(x4 +11.5x2 +10100) = +∞, lim
x→+∞

(x4 +11.5x2) = +∞.
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give us the same result, +∞, in spite of the fact that for any finite x the difference
between the two expressions is equal to quite a large number

x4 +11.5x2 +10100 − (x4 +11.5x2) = 10100.

The new approach allows us to calculate exact values of both expressions, x4 +
11.5x2 + 10100 and x4 + 11.5x2, at any infinite (and infinitesimal) x expressible in
the chosen numeral system. For instance, the choice of x = 3①2 gives the values

(3①2)4 +11.5(3①2)2 +10100 = 81①8103.5①410100①0

and 81①8103.5①4, respectively. Consequently, one obtains

81①8103.5①410100①0 −81①8103.5①4 = 10100. 2

An additional advantage of the usage of the Infinity Computer arises in the fol-
lowing situations. Suppose that we have a computer procedure calculating f (x), we
do not know the corresponding analytic formulae for f (x), for a certain argument
a the value f (a) is not defined (or a traditional computer produces an overflow or
underflow message), and it is necessary to calculate the limx→a f (x). Traditionally,
this situation requires a human intervention and an additional theoretical investi-
gation whereas the Infinity Computer is able to process it automatically working
numerically with the expressions involved in the procedure. It is sufficient to cal-
culate f (x), for example, at a point x = a + ①−1 in cases of finite a or a = 0 and
x = ① in the case when we are interested in the behavior of f (x) at infinity.

Example 3.2. Suppose that we have two procedures evaluating f (x) = x2+2x
x and

g(x) = 34
x . Obviously, f (0) and g(0) are not defined and it is not possible to calcu-

late limx→0 f (x), limx→∞ f (x) and limx→0 g(x), limx→∞ g(x) using traditional com-
puters. Then, suppose that we are interested in evaluating the expression

h(x) = ( f (x)−2) ·g(x).

It is easy to see that h(x) = 34 for any finite value of x. On the other hand, the
following limits

lim
x→0

h(x) = (lim
x→0

f (x)−2) · lim
x→0

g(x),

lim
x→∞

h(x) = ( lim
x→∞

f (x)−2) · lim
x→∞

g(x)

cannot be evaluated. The Infinity Computer can calculate h(x) numerically for
different infinitesimal and infinite values of x obtaining the same result that takes
place for finite x. For example, it follows

h(①−1) =

(
(①−1)2 +2①−1

①−1 −2

)
· 34

①−1 = (①−1 +2−2) ·34① = 34,

h(①) =

(
①2 +2①

①
−2

)
· 34

①
= (①+2−2) ·34①−1 = 34. 2
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It is worthy to notice that expressions can be calculated by the Infinity Com-
puter for infinite and infinitesimal arguments, even when their limits do not exist,
thus giving a very powerful tool for studying divergent processes.

Example 3.3. The limit limn→+∞ f (n), where f (n) = (−5)nn, does not exist. How-
ever, we can calculate the expression (−5)nn for different infinite values of n. For
instance, since it can be easily proved that grossone is even (see [8, 15]), for n = ①

it follows f (①) = 5①① and for n = ①−1 we have f (①−1) = −5①−1(①−1). 2

Thus, these new computational possibilities of the Infinity Computer allow one
both to avoid calculating limits theoretically and to increase the accuracy of nu-
merical computations.

3.3 Usage of infinitesimals for solving systems of linear equations

Very often in computations, an algorithm performing calculations encounters a sit-
uation where the problem to divide by zero occurs. Then, obviously, this operation
cannot be executed. If it is known that the problem under consideration has a solu-
tion, then a number of additional computational steps trying to avoid this division
is performed. A typical example of this kind is the operation of pivoting used when
one solves systems of linear equations by an algorithm such as Gauss-Jordan elim-
ination. Pivoting is the interchanging of rows (or both rows and columns) in order
to avoid division by zero and to place a particularly ‘good’ element in the diagonal
position prior to a particular operation.

The following two simple examples give just an idea of a numerical usage of
infinitesimals and show that the usage of infinitesimals can help to avoid pivoting
in cases when the pivotal element is equal to zero. We emphasize again that the
Infinity Computer (see [9]) works with infinite and infinitesimal numbers expressed
in the positional numeral system (6), (7) numerically, not symbolically.

Example 3.4. Solution to the system
[

0 1
2 2

] [
x1

x2

]
=

[
2
2

]

is obviously given by x∗1 = −1, x∗2 = 2. It cannot be found by the method of Gauss
without pivoting since the first pivotal element a11 = 0.

Since all the elements of the matrix are finite numbers, let us substitute the
element a11 = 0 by ①−1 and perform exact Gauss transformations without pivoting:

[
①−1 1 2

2 2 2

]
→
[

1 ① 2①

0 −2①+2 −4①+2

]
→
[

1 ① 2①

0 1 −4①+2
−2①+2

]

[
1 0 2①−① · −4①+2

−2①+2

0 1 −4①+2
−2①+2

]
→


 1 0 2①

−2①+2

0 1 −4①+2
−2①+2


→

[
1 0 −1+ 1

1−①
0 1 2− 1

1−①

]
.
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It follows immediately that the solution to the initial system is given by the finite
parts of numbers −1+ 1

1−①
and 2− 1

1−①
.

We have introduced the number ①−1 once and, as a result, we have obtained
expressions where the maximal power of grossone is one and there are rational
expressions depending on grossone, as well. It is possible to manage these rational
expressions in two ways: (i) to execute division in order to obtain its result in the
form (6), (7); (ii) without executing division. In the latter case, we just continue
to work with rational expressions. In the case (i), since we need finite numbers
as final results, in the result of division it is not necessary to store the parts cp①p

with p < −1. These parts can be forgotten because in any way the result of their
successive multiplication with the numbers of the type c1①1 (remind that 1 is the
maximal exponent present in the matrix under consideration) will give exponents
less than zero, i.e., numbers with these exponents will be infinitesimals that are not
interesting for us in this computational context.

Thus, by using the positional numeral system (6), (7) with the radix grossone
we obtain [

1 ① 2①

0 1 −4①+2
−2①+2

]
→
[

1 ① 2①

0 1 2①0+1①−1

]

[
1 0 2①−① · (2①01①−1)

0 1 2①01①−1

]
→
[

1 0 −1①0

0 1 2①01①−1

]
.

The finite parts of numbers −1①0 and 2①01①−1, i.e., −1 and 2 respectively, then
provide the required solution. 2

Example 3.5. Solution to the system




0 0 1
2 0 −1
1 2 3






x1

x2

x3


=




1
3
1




is the following: x∗1 = 2, x∗2 =−2, and x∗3 = 1. The coefficient matrix of this system
has the first two leading principal minors equal to zero. Consequently, the first
two pivots, in the Gauss transformations, are zero. We solve the system without
pivoting by substituting the zero pivot by ①−1, when necessary.

Let us show how the exact computations are executed:




0 0 1 1
2 0 −1 3
1 2 3 1


→




1 0 ① ①

0 0 −2①−1 −2①+3
0 2 −①+3 −①+1







1 0 ① ①

0 1 −2①2 −① −2①2 +3①

0 2 −①+3 −①+1


→




1 0 ① ①

0 1 −2①2 −① −2①2 +3①

0 0 4①2 +①+3 4①2 −7①+1




12






1 0 ① ①

0 1 −2①2 −① −2①2 +3①

0 0 1 4①
2−7①+1

4①
2
+①+3


→




1 0 0 8①
2
+2①

4①
2
+①+3

0 1 0 −8①
2
+10①

4①
2
+①+3

0 0 1 4①
2−7①+1

4①
2
+①+3




It is easy to see that the finite parts of the numbers

x̃∗1 =
8①2 +2①

4①2 +①+3
= 2− 6

4①2 +①+3
,

x̃∗2 =
−8①2 +10①

4①2 +①+3
= −2+

12①+6

4①2 +①+3
,

x̃∗3 =
4①2 −7①+1

4①2 +①+3
= 1− 8①+2

4①2 +①+3
,

coincide with the corresponding solution x∗1 = 2, x∗2 = −2, and x∗3 = 1.
In this procedure we have introduced the number ①−1 two times. As a result,

we have obtained expressions where the maximal power of grossone is equal to 2
and there are rational expressions depending on grossone, as well. By reasoning
analogously to Example 3.5, when we execute divisions, in the obtained results it
is not necessary to store the parts of the type cp①p, p < −2, because in any way
the result of their successive multiplication with the numbers of the type c2①2 will
give finite exponents less than zero. That is, numbers with these exponents will be
infinitesimals that are not interesting for us in this computational context. Thus, by
using the positional numeral system (6), (7), we obtain




1 0 ① ①

0 1 −2①2 −① −2①2 +3①

0 0 1 4①
2−7①+1

4①
2
+①+3


→




1 0 ① ①

0 1 −2①2 −① −2①2 +3①

0 0 1 1①0-2①−1


 .

Note that the number 1①0-2①−1 does not contain the part of the type c−2①−2

because the coefficient c−2 obtained after the executed division is such that c−2 = 0.
Then we proceed as follows




1 0 ① ①

0 1 0 −2
0 0 1 1①0-2①−1


→




1 0 0 2
0 1 0 −2
0 0 1 1①0-2①−1


 .

The obtained solutions x∗1 = 2 and x∗2 = −2 have been obtained exactly without
infinitesimal parts and x∗3 = 1 is derived from the finite part of 1①0-2①−1. 2

We conclude this section by emphasizing that zero pivots in the matrix are
substituted dynamically by ①−1. Thus, the number of the introduced infinitesimals
①−1 depends on the number of zero pivots.
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4 New computational possibilities for mathematical
modelling

The computational capabilities of the Infinity Computer allow one to construct
new and more powerful mathematical models able to take into account infinite and
infinitesimal changes of parameters. In this section, the main attention is given
to infinitesimals that can increase the accuracy of models and computations, in
general. It is shown that the introduced infinitesimal numerals allow us to formalize
the concept ‘point’ and to use it in practical calculations. Examples related to
computations of probabilities and areas (and volumes) of objects having several
parts of different dimensions are given.

4.1 Numerical representations of points at an interval

We start by reminding traditional definitions of the infinite sequences and sub-
sequences. An infinite sequence {an},an ∈ A,n ∈ N, is a function having as the
domain the set of natural numbers, N, and as the codomain a set A. A subsequence
is a sequence from which some of its elements have been removed.

Theorem 4.1. The number of elements of any infinite sequence is less or equal
to ①.

Proof. It has been postulated that the set N has ① elements. Thus, due to
the sequence definition given above, any sequence having N as the domain has ①

elements.
The notion of subsequence is introduced as a sequence from which some of its

elements have been removed. Thus, this definition gives infinite sequences having
the number of members less than grossone. 2

It becomes appropriate now to define the complete sequence as an infinite se-
quence containing ① elements. For example, the sequence of natural numbers is
complete, the sequences of even and odd natural numbers are not complete. One of
the immediate consequences of the understanding of this result is that any sequen-
tial process can have at maximum ① elements and, due to Postulate 1, it depends
on the chosen numeral system which numbers among ① members of the process
we can observe.

By using the introduced, more precise than the traditional one, definition of
sequence, we can calculate the number of points of the interval [0,1), of a line, and
of the N-dimensional space. To do this we need a definition of the term ‘point’
and mathematical tools to indicate a point. Since this concept is one of the most
fundamental, it is very difficult to find an adequate definition. If we accept (as is
usually done in modern Mathematics) that a point A belonging to the interval [0,1)
is determined by a numeral x, x ∈ S, called coordinate of the point A where S is
a set of numerals, then we can indicate the point A by its coordinate x and we are
able to execute the required calculations.
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It is worthwhile to emphasize that we have not postulated that x belongs to the
set, R, of real numbers as it is usually done, because we can express coordinates
only by numerals and different choices of numeral systems lead to various sets
of numerals. This situation is a direct consequence of Postulate 2 and is typical
for natural sciences where it is well known that instruments influence the result of
observations. It is similar as to work with a microscope: we decide the level of the
precision we need and obtain a result which is dependent on the chosen level of
accuracy. If we need a more precise or a more rough answer, we change the lens
of our microscope.

We should decide now which numerals we shall use to express coordinates of
the points. Different variants can be chosen depending on the precision level we
want to obtain. For example, if the numbers 0 ≤ x < 1 are expressed in the form
p−1
①

, p ∈ N, then the smallest positive number we can distinguish is 1
①

. Therefore,
the interval [0,1) contains the following ① points

0,
1
①

,
2
①

, . . .
①−2

①
,

①−1
①

.

Then, due to Theorem 4.1 and the definition of sequence, ① intervals of the form
[a−1,a),a ∈ N, can be distinguished at the ray x ≥ 0. Hence, this ray contains ①2

points and the whole line consists of 2①2 points.
If we need a higher precision, within each interval

[(a−1)
i−1
①

,a
i
①

), a, i ∈ N,

we can distinguish again ① points and the number of points within each interval
[a−1,a),a ∈ N, will become equal to ①2. Consequently, the number of the points
of this kind on the line will be equal to 2①3.

Continuing the analogy with the microscope, we can also decide to change
our microscope with a new one. In our terms this means to change the numeral
system with another one. For instance, instead of the numerals considered above,
we choose a positional numeral system to calculate the number of points within the
interval [0,1) expressed by numerals

(.a−1a−2 . . .a−(①−1)a−①)b. (13)

Theorem 4.2. The number of elements of the set of numerals (13) is equal to b①.

Proof. The proof is obvious and is so omitted. 2

Corollary 1. The number of points expressed by numerals

(a①−1a①−2 . . .a1a0.a−1a−2 . . .a−(①−1)a−①)b (14)

is equal to b2①.

Proof. The corollary is a straightforward consequence of Theorem 4.2. 2
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Figure 1: What is the probability that the rotating disk stops in such a way that the
point A will be exactly in front of the arrow?

4.2 Applications in probability theory and calculating volumes

A formalization of the concept ‘point’ introduced above allows us to execute more
accurately computations having relations with this concept. Very often in scien-
tific computing and engineering it is required to construct mathematical models for
multi-dimensional objects. Usually this is done by partitioning the modelled object
in several parts having the same dimension and each of the parts is modelled sep-
arately. Then additional efforts are made in order to provide a correct functioning
of a model unifying the obtained sub-models and describing the entire object.

Another interesting applied area is linked to stochastic models dealing with
events having probability equal to zero. In this subsection, we first show that the
new approach allows us to distinguish the impossible event having the probabil-
ity equal to zero (i.e., P(∅) = 0) and events having an infinitesimal probability.
Then we show how infinitesimals can be used in calculating volumes of objects
consisting of parts having different dimensions.

Let us consider the problem presented in Fig. 1 from the traditional point of
view of probability theory. We start to rotate a disk having radius r with the point
A marked at its border and we would like to know the probability P(E) of the
following event E: the disk stops in such a way that the point A will be exactly in
front of the arrow fixed at the wall. Since the point A is an entity that has no extent
it is calculated by considering the following limit

P(E) = lim
h→0

h
2πr

= 0.

where h is an arc of the circumference containing A and 2πr is its length.
However, the point A can stop in front of the arrow, i.e., this event is not im-

possible and its probability should be strictly greater than zero, i.e., P(E) > 0. The
new approach allows us to calculate this probability numerically.

First of all, in order to state the experiment more rigorously, it is necessary to
choose a numeral system to express the points on the circumference. This choice
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will fix the number of points, K, that we are able to distinguish on the circumfer-
ence. Definition of the notion point allows us to define elementary events in our
experiment as follows: the disk has stopped and the arrow indicates a point. As a
consequence, we obtain that the number, N(Ω), of all possible elementary events,

ei, in our experiment is equal to K where Ω = ∪N(Ω)
i=1 ei is the sample space of our

experiment. If our disk is well balanced, all elementary events are equiprobable
and, therefore, have the same probability equal to 1

N(Ω) . Thus, we can calculate
P(E) directly by subdividing the number, N(E), of favorable elementary events by
the number, K = N(Ω), of all possible events.

For example, if we use numerals of the type i
①

, i∈N, then K = ①. The number
N(E) depends on our decision about how many numerals we want to use to repre-
sent the point A. If we decide that the point A on the circumference is represented
by m numerals we obtain

P(E) =
N(E)

N(Ω)
=

m
K

=
m
①

> 0.

where the number m
①

is infinitesimal if m is finite. Note that this representation is
very interesting also from the point of view of distinguishing the notions ‘point’
and ‘arc’. When m is finite than we deal with a point, when m is infinite we deal
with an arc.

In the case we need a higher accuracy, we can choose, for instance, numerals
of the type i①−2,1 ≤ i ≤ ①2, for expressing points at the disk. Then it follows
K = ①2 and, as a result, we obtain P(E) = m①−2 > 0.

This example with the rotating disk, of course, is a particular instance of the
general situation taking place in the traditional probability theory where the prob-
ability that a continuous random variable X attains a given value a is zero, i.e.,
P(X = a) = 0. While for a discrete random variable one could say that an event
with probability zero is impossible, this can not be said in the case of a continuous
random variable. As we have shown by the example above, in our approach this
situation does not take place because this probability can be expressed by infinites-
imals. As a consequence, probabilities of such events can be computed and used in
numerical models describing the real world (see [13] for a detailed discussion on
the modelling continuity by infinitesimals in the framework of the approach using
grossone).

Moreover, the obtained probabilities are not absolute, they depend on the accu-
racy chosen for the mathematical model describing the experiment. There is again
a straight analogy with Physics where it is not possible to obtain results that have
a precision higher than the accuracy of the measurement of the data. We also can-
not obtained a precision that is higher than the precision of numerals used in the
mathematical model.

Let us now consider two examples showing that the new approach allows us to
calculate areas and volumes of a more general class of objects than the traditional
one. In Fig. 2 two figures are shown. The traditional approach tells us that both of
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Figure 2: It is possible to calculate and to distinguish areas of these two objects

Figure 3: New possibilities for calculating volumes of objects

them have area equal to one. In the new approach, if we use numerals of the type
i①−1, i∈N, to express points within a unit interval, then the unit interval consists of
① points and in the plane each point has the infinitesimal area ①−1 ·①−1 = ①−2. As
a consequence, this value will be our accuracy in calculating areas in this example.
Suppose now that the vertical line added to the square at the right figure in Fig. 2
has the width equal to one point. Then we are able to calculate the area, S2, of the
right figure and it will be possible to distinguish it from the area, S1, of the square
on the left

S1 = 1 ·1 = 1, S2 = 1 ·1+1 ·①−1 = 1①01①−1.

If the added vertical line has the width equal to three points then it follows

S2 = 1 ·1+3 ·①−1 = 1①03①−1.

The volume of the figure shown in Fig. 3 is calculated analogously:

V = 1 ·1 ·1+1 ·1 ·①−1 +1 ·①−1 ·①−1 = 1①01①−11①−2.

If the accuracy of the considered numerals of the type i①−1, i ∈ N, is not sufficient,
we can increase it by using, for instance, numerals of the type i①−2,1 ≤ i ≤ ①2.
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Then the unit interval consists of ①2 points and at the plane each point has the
infinitesimal area ①−2 ·①−2 = ①−4. As a result, by a complete analogy to the
previous case we obtain for lines having the width, for instance, equal to five points
in all three dimensions that

S2 = 1 ·1+5 ·①−2 = 1①05①−2,

V = 1 ·1 ·1+1 ·1 ·5 ·①−2 +1 ·5 ·①−2 ·5 ·①−2 = 1①05①−225①−4.

Finally, we conclude the paper by a remark that thanks to the new approach
it becomes possible to measure fractal objects at infinity. A detailed discussion
on measuring fractals by the introduced infinite and infinitesimal numbers can be
found in [13, 14].
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