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Some Paradoxes of Infinity Revisited
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Abstract. In this article, some classical paradoxes of infinity such as
Galileo’s paradox, Hilbert’s paradox of the Grand Hotel, Thomson’s
lamp paradox, and the rectangle paradox of Torricelli are considered.
In addition, three paradoxes regarding divergent series and a new para-
dox dealing with multiplication of elements of an infinite set are also
described. It is shown that the surprising counting system of an Amazo-
nian tribe, Pirahã, working with only three numerals (one, two, many)
can help us to change our perception of these paradoxes. A recently
introduced methodology allowing one to work with finite, infinite, and
infinitesimal numbers in a unique computational framework not only
theoretically but also numerically is briefly described. This methodol-
ogy is actively used nowadays in numerous applications in pure and
applied mathematics and computer science as well as in teaching. It is
shown in the article that this methodology also allows one to consider
the paradoxes listed above in a new constructive light.
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grossone.

1. Introduction

We use finite numbers every day and rarely think about the nature of the infi-
nite using it mechanically in our math classes. However, infinity and infinitesi-
mals are among the most fundamental notions in mathematics (and not only).
They have attracted the attention of the most brilliant thinkers through-
out the whole history of humanity. Arabic, Indian, and Babylonian math-
ematicians worked hard on these problems. Aristotle, Archimedes, Euclid,
Eudoxus, Parmenides, Plato, Pythagoras, and Zeno dealt with these prob-
lems in antiquity. In the years 1500–1900, important contributions were made
by such eminent researchers as Bolzano, Briggs, Cantor, Cauchy, Dedekind,
Descartes, Dirichlet, Euler, Hermite, Leibniz, Lindemann, Liouville, Napier,
Newton, Mercator, Peano, Stevin, Wallis, and Weierstrass. In the twentieth

0123456789().: V,-vol  

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-022-02063-w&domain=pdf
http://orcid.org/0000-0002-1429-069X


  143 Page 2 of 28 Y. D. Sergeyev MJOM

century, new exciting results have been obtained by Brouwer, Cohen, Frege,
Gödel, Hilbert, Robinson, Scott, and Solovay.

Introduction of the ideas of the number line, positional number sys-
tems, negative numbers, zero, rational and irrational numbers, limits, car-
dinal and ordinal numbers, continuum hypothesis, problems of consistency
and completeness, and non-standard analysis are among the major milestones
of these impressive research efforts. Research on these topics continues to be
very active nowadays, as well (see, e.g., [1,7,24,25,32,35,36,39–41,49,62] and
references given therein).

However, it is well known that the ideas of infinities and infinitesimals
lead to numerous paradoxes. Is it true that they are inevitable? Is it possible
to propose a viewpoint allowing us to avoid some of them? In this paper, we
try to answer these questions using counting systems of two tribes, Pirahã
and Mundurukú, living in Amazonia nowadays (see [23,47]) together with
a recent methodology working with finite, infinite, and infinitesimal num-
bers in a unique computational framework not only theoretically but also
numerically on a patented supercomputer called the Infinity Computer (see
a comprehensive technical survey [58], a brief survey in Italian [56], and a
popular book [53] for its description).

2. Paradoxes of Infinity

Let us consider several classical paradoxes coming from different situations
involving infinity. In many of them, the set, N, of natural numbers

N = {1, 2, 3, 4, 5, . . .} (1)

is involved. We informally define it as the set of numbers used to count
objects. Notice that nowadays not only positive integers are taken as elements
of N, but also zero is frequently included in N. However, since historically zero
has been invented significantly later with respect to positive integers used for
counting objects, zero is not included in N in this article.

2.1. Galileo’s Paradox

In his book “Discourses and mathematical demonstrations relating to two
new sciences” published in 1638, Galileo Galilei considered the set N together
with the set, that we call I2, of square natural numbers

I2 = {x : x ∈ N, i ∈ N, x = i 2} = {1, 4, 9, 16, 25, . . .}. (2)

He then established the following bijection among the sets I2 and the set of
natural numbers, N, as follows:

1, 22, 32, 42, 52, 62, . . .
� � � � � �
1, 2, 3, 4 5, 6, . . .

(3)

This bijection is paradoxical, since there are much more numbers than squares
and still to any number there can be found the corresponding square and vice
versa. Clearly, the same paradoxical result arises from considering a simpler
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bijection between N and the set E of even numbers being a proper subset of
N

2, 4, 6, 8, 10, 12, . . .
� � � � � �
1, 2, 3, 4 5, 6, . . .

(4)

From the modern point of view, these bijections mean that all the sets
involved are countable. However, the perplexity noticed by Galileo remains,
because in our every day life dealing with finite objects and sets, a part of a
set is always less than the whole set. In his Elements, Euclid has expressed
this property as Common Notion no. 5 ‘The whole is greater than the part’,
where Common Notions are evident assertions that are accepted without any
proof.

Let us introduce now a new paradox that can be considered as a kind
of inversion of (4) where we have started from E and established the bijec-
tion with the set N. In the new paradox, that hereinafter will be called set-
multiplication paradox we start from N and arrive to E.

2.2. Set-Multiplication Paradox

Let us consider a finite even number n and the corresponding set of natural
numbers

B = {1, 2, 3, . . . , n − 2, n − 1, n}.
Then, we multiply each of its elements by 2 and obtain the set

B̄ = {2, 4, 6, . . . , n − 4, n − 2, n, n + 2, n + 4, . . . , 2n − 4, 2n − 2, 2n}.
Notice the following three properties of the sets B and B̄: (i) they have
the same number of elements; (ii) B̄ � B; (iii) n/2 elements of B̄, namely,
n + 2, n + 4, . . . , 2n − 4, 2n − 2, 2n, do not belong to B.

Suppose now that we wish to multiply each element of the set of natural
numbers, N, by 2. Clearly, as a result, we obtain the set, E, of even numbers.
Let us see whether the properties (i)–(iii) of the sets B and B̄ hold for N

and E. With respect to the property (i), we should say that, due to (4),
the set obtained after multiplication has the same cardinality as the original
set, i.e., it is countable. Then, we see a paradoxical situation, because, in
contrast with the finite sets B and B̄, the set E obtained after multiplication
is a proper subset of the original set N, i.e., the property (ii) does not hold.
Once again due to (4), the property (iii) does not hold either.

2.3. Hilbert’s Paradox of the Grand Hotel

This paradox proposed by David Hilbert in 1924 became popular thanks to
the book “One, Two, Three, ... Infinity” of George Gamow (see [20]). It has
the following formulation. We all know that in a hotel having a finite number
of rooms, no more new guests can be accommodated if it is full. Hilbert’s
Grand Hotel has an infinite number of rooms (of course, the number of rooms
is countable, because the rooms in the Hotel are numbered). If a new guest
arrives at the Hotel where every room is occupied, it is, nevertheless, possible
to find a room for the newcomer. To do so, it is necessary to move the guest
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occupying room 1 to room 2, the guest occupying room 2 to room 3, etc.
In such way, room 1 will be ready for the new guest and, in spite of the
assumption that there are no available rooms in the Hotel, an empty room
is found.

The paradox consists in the fact that we have supposed that the hotel
is full and, nevertheless, it becomes possible to accommodate a newcomer in
it. There exist different generalizations of this paradox showing in a similar
way how it is possible to accommodate a finite and even infinite number of
new guests in it.

2.4. Three Paradoxes Regarding Divergent Series

Let us now present another kind of paradoxes dealing with divergent series.
We shall show that a very simple chain of equalities including addition of an
infinite number of summands can lead to a paradox. The first paradox is the
following. Suppose that we have

x = 1 + 2 + 4 + 8 + · · · (5)

Then, we can multiple both parts of this equality by 2

2x = 2 + 4 + 8 + · · ·
By adding 1 to both parts of the previous formula, we obtain

2x + 1 = 1 + 2 + 4 + 8 + · · · (6)

It can be immediately noticed that the right-hand side of (6) is just equal to
x and, therefore, it follows:

2x + 1 = x

from which we obtain

x = −1

and, as a final paradoxical result, the following equality follows:

1 + 2 + 4 + 8 + · · · = −1. (7)

The paradox here is evident: we have summed up an infinite number of pos-
itive integers and have obtained as the final result a negative number.

The second paradox considers the well-known divergent series of Guido
Grandi S = 1 − 1 + 1 − 1 + 1 − 1 + · · · By applying the telescoping rule, i.e.,
by writing a general element of the series as a difference, we can obtain two
different answers using two general elements, 1 − 1 and −1 + 1

S = (1 − 1) + (1 − 1) + (1 − 1) + · · · = 0,
S = 1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + · · · = 1.

In the literature, there exist many other approaches giving different answers
regarding the value of this series (see, e.g., [33]). Some of them use various
notions of average (for instance, Cesàro summation assigns the value 0.5 to
S).
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The third series we consider is the famous paradoxical result of Ramanu-
jan

c = 1 + 2 + 3 + 4 + 5 + · · · = −1/12. (8)

To obtain this remarkable result, he multiplies the left-hand part of (8) by 4
and then subtracts the result from (8) as follows:

c = 1 + 2 + 3 + 4 + 5 + 6 + · · ·
4c = 4 + 8 + 12 + · · ·

−3c = 1 − 2 + 3 − 4 + 5 − 6 + · · ·
(9)

Ramanujan then uses the result (considered in various forms by Euler, Cesàro,
and Hölder) attributing to the alternating series 1− 2 + 3 − 4 + · · · the value
1
4 as the formal power series expansion of the function 1

(1+x)2 for x = 1, that
is

1 − 2 + 3 − 4 + · · · = 1/4. (10)

Thus, it follows from (9) and (10) that:

−3c = 1 − 2 + 3 − 4 + 5 − 6 + · · · = 1/4,

from where Ramanujan gets (8). This result looks even stranger than (11),
because the sum of infinitely many positive integers is not only negative but
also fractional.

2.5. The Rectangle Paradox of Torricelli

This paradox proposed by Evangelista Torricelli (see, e.g., [1,44]) considers a
rectangle ABCD that is not a square (see Fig. 1). Without loss of generality,
let us suppose that the length |AB| is two times smaller than |BC|. On
one hand, it is evident that the diagonal AC splits the rectangle into two
triangles ABC and CDA having equal areas. On the other hand, it is possible
to propose the following reasoning using infinitesimals (Torricelli talks about
indivisibles) that challenges this conclusion.

Let us cover the upper triangle ABC by an infinite number of horizontal
line segments having an infinitesimal width. Analogously, the lower triangle
CDA is covered by the corresponding equal number of vertical line segments
also having an infinitesimal width. Figure 1 illustrates only six horizontal
segments of this kind and the corresponding six vertical segments. By the
construction, each horizontal line segment is two times greater in length than
the corresponding vertical line segment, for instance, |EF | = 2|FG|. The
area of the upper triangle ABC can be obtained by summing up the areas of
the horizontal line segments covering it. Analogously, the area of the triangle
ACD can be obtained by summing up the areas of the vertical lines covering
it. Because each horizontal line segment has the length that is two times
greater than the length of the corresponding vertical line segment, it follows
that the triangle ABC has a greater area than the triangle ACD. Thus, the
paradox arises, because the two triangles have areas that are equal and in
the same time are not equal.
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Figure 1. The rectangle paradox of Torricelli

2.6. Thomson’s Lamp Paradox

The last paradox we consider here is the Thomson Lamp Paradox described
in [63]. Suppose that we have a lamp and start to turn it on for 1

2 minute,
then turn it off for 1

4 minute, then on again for 1
8 minute, etc. At the end of

one minute, the lamp switch will have been moved infinitely many times (to
be precise, countably many times). Will then the lamp be on or off at the
end of one minute? It is easy to see that this paradox is equivalent to the
following question: Is the ‘last’ integer even or odd?

3. Numeral Systems of Pirahã and Mundurukú Prompt a New
Point of View on Infinity

To understand how one can change his/her view on infinity, let us consider
some numeral systems used to express finite numbers. Recall that a numeral
is a symbol (or a group of symbols) that represents a number that is a con-
cept. The same number can be represented by different numerals. For exam-
ple, symbols ‘10’, ‘ten’, ‘IIIIIIIIII’, and ‘X’ are different numerals, but they
all represent the same number. Rules used to write down numerals together
with algorithms for executing arithmetical operations form a numeral sys-
tem. Thus, numbers can be considered as objects of an observation that are
represented (observed) by instruments of the observation, i.e., by numerals
and, more general, by numeral systems.

People in different historical periods used different numeral systems to
count and these systems: (a) can be more or less suitable for counting; (b)
can express different sets of numbers. For instance, Roman numeral system
is not able to express zero and negative numbers and such expressions as
II–VII or X–X are indeterminate forms in this numeral system. As a result,
before the appearance of positional numeral systems and the invention of
zero, mathematicians were not able to create theorems involving zero and
negative numbers and to execute computations with them. The positional
numeral system not only has allowed people to execute new operations but
has led two new theoretical results, as well. Thus, numeral systems not only
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limit us in practical computations, they induce boundaries on theoretical
results, as well.

It should be stressed that the powerful positional numeral system also
has its limitations. For example, nobody is able to write down a numeral
in the decimal positional system having 10100 digits (see a discussion on
feasible numbers in [45,52]). In fact, suppose that one is able to write down
one digit in one nanosecond. Then, it will take 1091 s to record all 10100 digits.
Since in 1 year, there are 31.556.926 ≈ 3.2 × 107 s, 1091 s are approximately
3.2 × 1083 years. This is a sufficiently long time, since it is supposed that the
age of the universe is approximately 1.382 × 1010 years.

As we have seen above, Roman numeral system is weaker than the
positional one. However, it is not the weakest numeral system. There exist
very poor numeral systems allowing their users to express very few numbers
and one of them is illuminating for our story. This numeral system is used by
a tribe, Pirahã, living in Amazonia nowadays. A study published in Science
in 2004 (see [23]) describes that these people use an extremely simple numeral
system for counting: one, two, many. For Pirahã, all quantities larger than
two are just ‘many’ and such operations as 2 + 2 and 2 + 1 give the same
result, i.e., ‘many’. Using their weak numeral system, Pirahã are not able
to see, for instance, numbers 3, 4, and 5, to execute arithmetical operations
with them, and, in general, to say anything about these numbers, because in
their language, there are neither words nor concepts for that.

It is worthy of mention that the result ‘many’ is not wrong. It is just
inaccurate. Analogously, when we observe a garden with 547 trees, then both
phrases: ‘There are 547 trees in the garden’ and ‘There are many trees in the
garden’ are correct. However, the accuracy of the former phrase is higher than
the accuracy of the latter one. Thus, the introduction of a numeral system
having numerals for expressing numbers 3 and 4 leads to a higher accuracy
of computations and allows one to distinguish results of operations 2+1 and
2 + 2.

The poverty of the numeral system of Pirahã leads also to the following
results:

‘many’ + 1 = ‘many’, ‘many’ + 2 = ‘many’, ‘many’ + ‘many’ = ‘many’ (11)

that are crucial for changing our outlook on infinity. In fact, by changing in
these relations ‘many’ with ∞, we get relations used to work with infinity in
the traditional calculus

∞ + 1 = ∞, ∞ + 2 = ∞, ∞ + ∞ = ∞. (12)

Analogously, if we consider Cantor’s cardinals (where, as usual, numeral
ℵ0 is used for cardinality of countable sets and numeral c for cardinality of
the continuum, see, e.g., [65]), we have similar relations

ℵ0 + 1 = ℵ0, ℵ0 + 2 = ℵ0, ℵ0 + ℵ0 = ℵ0, (13)
c + 1 = c, c + 2 = c, c + c = c. (14)
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It should be mentioned that the astonishing numeral system of Pirahã
is not an isolated example of this way of counting. In [10], more than 20 lan-
guages having numerals only for small numbers are mentioned. For example,
the same counting system, one, two, many, is used by the Warlpiri people,
aborigines living in the Northern Territory of Australia (see [5]). The Pit-
jantjatjara people living in the Central Australian desert use numerals one,
two, three, big mob (see [34]) where ‘big mob’ works as ‘many’. It makes
sense to remind also another Amazonian tribe–Mundurukú (see [47]) who
fail in exact arithmetic with numbers larger than 5, but are able to compare
and add large approximate numbers that are far beyond their naming range.
Particularly, they use the words ‘some, not many’ and ‘many, really many’
to distinguish two types of large numbers. Their arithmetic with ‘some, not
many’ and ‘many, really many’ reminds the rules Cantor uses to work with
ℵ0 and c, respectively. In fact, it is sufficient to compare

‘some, not many’ + ‘many, really many’ = ‘many, really many’ (15)

with

ℵ0 + c = c (16)

to see this similarity.
Let us compare now the weak numeral systems involved in (11), (15)

and numeral systems used to work with infinity. We have already seen that
relations (11) are results of the weakness of the numeral system employed.
Moreover, the usage of a stronger numeral system shows that it is possible
to pass from records 1 + 2 = ‘many’ and 2 + 2 = ‘many’ providing for two
different expressions the same result, i.e., ‘many’, to more precise answers
1 + 2 = 3 and 2 + 2 = 4 and to see that 3 �= 4. In these examples, we
have the same objects—small finite numbers—but results of computations
we execute are different in dependence of the instrument—numeral system—
used to represent numbers. Substitution of the numeral ‘many’ by a variety
of numerals representing numbers 3, 4, etc. allows us both to avoid relations
of the type (11), (15) and to increase the accuracy of computations.

Relations (12)–(14), (16) manifest a complete analogy with (11), (15).
Canonically, symbols ∞, ℵ0, and c are identified with concrete mathematical
objects and (12)–(14), (16) are considered as intrinsic properties of these infi-
nite objects (see e.g., [51,65]). However, the analogy with (11), (15) suggests
that relations (12)–(14), (16) do not reflect the nature of infinite objects.
They are just a result of weak numeral systems used to express infinite quan-
tities. As (11), (15) show the lack of numerals in numeral systems of Pirahã,
Warlpiri, Pitjantjatjara, and Mundurukú for expressing different finite quan-
tities, relations (12)–(14), (16) show shortage of numerals in mathematical
analysis and in set theory for expressing different infinite numbers. Another
hint leading to the same conclusion is the situation with indeterminate forms
of the kind III–V in Roman numerals that have been excluded from the
practice of computations after introducing positional numeral systems.

Thus, the analysis made above allows us to formulate the following key
observation that changes our perception of infinity:
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Our difficulty in working with infinity is not a consequence of the
nature of infinity but is a result of weak numeral systems hav-
ing too little numerals to express the multitude of infinite num-
bers.

The way of reasoning where the object of the study is separated from
the tool used by the investigator is very common in natural sciences where
researchers use tools to describe the object of their study and the used instru-
ment influences the results of the observations and determine their accuracy.
The same happens in Mathematics studying natural phenomena, numbers,
objects that can be constructed using numbers, sets, etc. Numeral systems
used to express numbers are among the instruments of observation used by
mathematicians. As we have illustrated above, the usage of powerful numeral
systems gives the possibility to obtain more precise results in Mathematics in
the same way as usage of a good microscope gives the possibility of obtain-
ing more precise results in Physics. Traditional numeral systems have been
developed to express finite quantities and they simply have no sufficiently
high number of numerals to express different infinities (and infinitesimals).

4. A New Way of Counting

In this section, we briefly describe a recent numeral system that can be used
to write down various infinite, finite, and infinitesimal numbers in a unique
framework (see a comprehensive technical survey [58] and a popular book
[53] for its description) concentrating ourselves on details that then will be
used to reconsider the paradoxes. It should be emphasized immediately that
the methodology to be presented is not a contraposition to the ideas of Can-
tor, Levi-Civita, and Robinson. In contrast, it is an applied evolution of
their ideas. The new computational methodology introduces the notion of
the accuracy of numeral systems and shows that different numeral systems
can express different sets of finite and infinite numbers with different accu-
racies. The following clear analogy with Physics can be established in this
context.

When a physicist uses a weak lens A and sees two black dots in his/her
microscope he/she does not say: The object of the observation is two black
dots. The physicist is obliged to say: the lens used in the microscope allows
us to see two black dots and it is not possible to say anything more about the
nature of the object of the observation until we replace the instrument—the
lens or the microscope itself—with a more precise one. Suppose that he/she
changes the lens and uses a stronger lens B and is able to observe that the
object of the observation is viewed as ten (smaller) black dots. Thus, we have
two different answers: (i) the object is viewed as two dots if the lens A is
used; (ii) the object is viewed as ten dots by applying the lens B. Which of
the answers is correct? Both. Both answers are correct but with the different
accuracies that depend on the lens used for the observation. The answers
are not in opposition one to another, and they both describe the reality (or
whatever is behind the lenses of the microscope) correctly with the precision
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of the used lens. In both cases, our physicist discusses what he/she observes
and does not pretend to say what the object is.

We shall do the same with infinite numbers and sets (objects of our
study) and numeral systems used to observe them (our tools). Traditional
approaches (Cantor, Robinson, etc.) and the methodology described here do
not contradict one another: they are just different lenses having different
accuracies for observations of mathematical objects.

Before we start a technical consideration, let us mention that a number
of papers studying consistency of the new methodology and its connections
to the historical panorama of ideas dealing with infinities and infinitesimals
have been published (see [21,37,38,41,43,54,59,64]). In particular, in [59], it
is stressed that it is not related to non-standard analysis. The methodology
has been successfully applied in several areas of mathematics and computer
science (more than 60 papers published in international scientific journals can
be found at the dedicated web page [27]). We provide here just a few examples
of areas where this methodology is useful. First of all, its successful appli-
cations in teaching mathematics should be mentioned (see, e.g., [3,28,30]).
The dedicated web page [26] developed at the University of East Anglia, UK
contains, among other things, a comprehensive teaching manual and a nice
animation related to the Hilbert’s paradox of the Grand Hotel. Then, we can
indicate game theory and probability (see, e.g., [8,12,18,19,46,49,50]); local,
global, and multiple criteria optimization (see [9,13–15,22,55,61,67]), hyper-
bolic geometry and percolation (see [31,42]), fractals (see [4,6,57]), infinite
series (see [58,66]), Turing machines, cellular automata, and supertasks (see
[11,48,50,60]), numerical differentiation and numerical solution of ordinary
differential equations (see [2,16,17,29]), etc.

To start, let us mention that for thousands of years on the Earth, there
exists a way of counting huge finite quantities that has not been formalized
until the recent times. In traditional mathematics, after appearance of axioms
of Peano, natural numbers are introduced starting from 0 by adding a unit
to get 1, then adding another unit to 1 to obtain 2, and, by continuing in this
way, other positive integers are introduced. Let us illustrate by an example
that counting is a more complex procedure with respect to just adding 1 to
0 many times.

Imagine that we are in a granary and the owner asks us to count how
much grain he has inside it. Obviously, it is possible to answer that there are
many seeds in the granary. This answer is correct, but its accuracy is low.
To obtain a more precise answer, it would be necessary to count the grain
seed by seed, but since the granary is huge, it is not possible to do this due
to practical reasons.

To overcome this difficulty and to obtain an answer that is more accurate
than ‘many’, people take sacks, fill them with seeds, and count the number
of sacks. In this situation, we suppose that: (i) all the seeds have the same
measure and all the sacks also; (ii) the number of seeds in each sack is the
same and is equal to K1, but the sack is so big that we are not able to count
how many seeds it contains and to establish the value of K1; (iii) in any case
the resulting number K1 would not be expressible by available numerals.



MJOM Some Paradoxes of Infinity Revisited Page 11 of 28   143 

Then, if the granary is huge and it becomes difficult to count the sacks,
trucks or even big train wagons are used. As it was for the sacks, we suppose
that all trucks contain the same number K2 of sacks, and all train wagons
contain the same number K3 of trucks; however, the numbers Ki, i = 1, 2, 3,
are so huge that it becomes impossible to determine their values. At the end
of this counting, we obtain a result in the following form: the granary contains
34 wagons, 27 trucks, 16 sacks, and 134 seeds of grain. Note, that if we add,
for example, one seed to the granary, we can count it and not only see that
the granary has more grain but also quantify the increment: from 134 seeds,
we pass to 135 seeds. If we take out one wagon, we again are able to say how
much grain has been subtracted: from 34 wagons, we pass to 33 wagons.

Let us make some considerations upon the way of counting described
above. In our example, it is necessary to count large quantities. They are
finite, but it is impossible to count them directly using the elementary unit
of measure, u0 (seeds), because the quantities expressed in these units would
be too large. Therefore, people are forced to behave as if the quantities were
infinite.

To solve the problem of ‘infinite’ quantities, new units of measure, u1—
sacks, u2—trucks, and u3—wagons, are introduced. The new units have an
important feature: all the units ui+1 contain a certain number Ki of units ui,
but these numbers, Ki, i = 1, 2, 3, are unknown. Thus, quantities that it was
impossible to express using only the initial unit of measure, u0, are perfectly
expressible in the new units ui, i = 1, 2, 3. Notice that, in spite of the fact
that the numbers Ki are unknown, the accuracy of the obtained answer is
equal to one seed. In fact, if we add one seed, we are able to register and
to quantify that we have more seeds, and if we subtract one wagon and two
sacks, we again can quantify the decrease.

This key idea of counting by introduction of new units of measure with
unknown, but fixed values Ki will be used in what follows to deal with infinite
quantities together with the relaxation allowing one to use negative digits in
positional numeral systems. It is necessary to extend the idea of the intro-
duction of new units of measure from sets and numbers that are huge but
finite to infinite sets and numbers. This can be done by extrapolating from
finite to infinite the idea that n is both the number of elements of the set
{1, 2, 3, . . . , n − 1, n} and the last element of this set. The infinite unit of
measure is introduced as the number of elements of the set, N, of natural
numbers and expressed by the numeral ① called grossone. Using the granary
example discussed above, we can offer the following interpretation: the set
N can be considered as a sack and 1© is the number of seeds in the sack.
Following our extrapolation, the introduction of 1© allows us to write down
the set of natural numbers in the form

N = {1, 2, 3, . . . , 1© − 3, 1© − 2, 1© − 1, 1©}, (17)

where 1© − 3, 1© − 2, 1© − 1, 1© are infinite natural numbers. Thus, the set of
natural numbers will be written in the form (17) instead of the usual record
(1). We emphasize that in both cases, we deal with the same mathematical
object—the set of natural numbers—that is observed through two different



  143 Page 12 of 28 Y. D. Sergeyev MJOM

instruments. In the traditional case, usual numeral systems do not allow us
to express infinite numbers, whereas the numeral system with grossone offers
this possibility. Similarly, Pirahã are not able to see finite natural numbers
greater than 2, but these numbers (e.g., 3 and 4) belong to N and are visible
if one uses a more powerful numeral system. Notice also that in traditional
statements (for example, in non-standard analysis), infinite numbers are not
included in N. However, if it is supposed that N is infinite and its elements
are constructed, starting from 1 (or zero, as Peano did), according to the
rule: the number n is followed by the number n + 1, then each next number
will be finite and, therefore, all natural numbers will be finite. Thus, by this
construction, any set {1, 2, 3, . . . , n} will contain a finite number of elements.
This would contradict the assumption that N is an infinite set.

Grossone is introduced by describing its properties postulated by the
Infinite Unit Axiom (IUA) consisting of three parts: Infinity, Identity, and
Divisibility. Similarly, to pass from natural to integer numbers, a new
element—zero—is introduced, a numeral to express it is chosen, and its prop-
erties are described. The IUA is added to axioms for real numbers. Thus, it
is postulated that associative and commutative properties of multiplication
and addition, distributive property of multiplication over addition, and exis-
tence of inverse elements with respect to addition and multiplication hold for
grossone as they do for finite numbers.

Let us introduce the axiom and then give some comments upon it. Notice
that in the IUA infinite sets will be described in the traditional form, i.e.,
without indicating the last element. For instance, the set of natural numbers
will be written as (1) instead of the record (17) that will be used after the
introduction of the axiom.
The Infinite Unit Axiom The infinite unit of measure is introduced as the
number of elements of the set, N, of natural numbers. It is expressed by the
numeral ① called grossone and has the following properties:
Infinity Any finite natural number n is less than grossone, i.e., n < 1©.
Identity The following relations link ① to identity elements 0 and 1

0 · 1© = 1© · 0 = 0, 1© − 1© = 0,
1©
1© = 1, 1©0 = 1, 1 1© = 1, 0 1© = 0.

(18)

Divisibility For any finite natural number n sets Nk,n, 1 ≤ k ≤ n, being the
nth parts of the set, N, of natural numbers have the same number of elements
indicated by the numeral 1©

n where

Nk,n = {k, k + n, k + 2n, k + 3n, . . .}, 1 ≤ k ≤ n,

n⋃

k=1

Nk,n = N. (19)

Let us comment upon this axiom. Its first part—Infinity—is quite clear.
In fact, we want to describe an infinite number, and thus, it should be larger
than any finite number. The second part of the axiom—Identity—tells us
that ① interacts with identity elements 0 and 1 as all other numbers do. In
the moment when we have stated that grossone is a number, we have fixed
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the usual properties of numbers, i.e., the properties described in Identity,
associative and commutative properties of multiplication and addition, dis-
tributive property of multiplication over addition, etc. The third part of the
axiom—Divisibility—is the most interesting, since it links infinite numbers
to infinite sets (in many traditional theories, infinite numbers are introduced
algebraically, without any connection to infinite sets). It is based on Euclid’s
Common Notion no. 5 ‘The whole is greater than the part’. In the new
methodology, it is applied to all quantities: finite, infinite, and infinitesimals.

Let us consider two examples for n = 1 and n = 2 in (19). If we take
n = 1, then it follows that N1,1 = N and Divisibility says that the set, N, of
natural numbers has ① elements. If n = 2, we have two sets N1,2 and N2,2,
where

N1,2 = {1, 3, 5, 7, . . . },

N2,2 = { 2, 4, 6, . . . }
(20)

and they have 1©
2 elements each. Notice that the sets N1,2 and N2,2 have the

same number of elements not because they are in a one-to-one correspondence
but due to the Divisibility axiom. In fact, we are not able to count the number
of elements of the sets N, N1,2, and N2,2 one by one, because we are able to
execute only a finite number of operations (we emphasize here the practical
orientation of this methodology) whereas these sets are infinite. To define
their number of elements, we use Divisibility and implement the principle
‘The whole is greater than the part’ in practice by determine the number of
the elements of the parts using the whole.

In general, to introduce 1©
n , we do not try to count elements k, k +

n, k + 2n, k + 3n, . . . one by one in (19). In fact, we cannot do this due to
the finiteness of our practical counting abilities. Using Euclid’s principle, we
construct the sets Nk,n, 1 ≤ k ≤ n, by separating the whole, i.e., the set N,
in n parts and we affirm that the number of elements of the nth part of the
set, i.e., 1©

n , is n times less than the number of elements of the entire set, i.e.,
than ①.

As was already mentioned, in terms of our granary example, ① can
be interpreted as the number of seeds in the sack. In that example, the
number K1 of seeds in each sack was fixed and finite, but it was impossible
to express it in units u0, i.e., seeds, by counting seed by seed, because we
had supposed that sacks were very big and the corresponding number would
not be expressible by available numerals. In spite of the fact that K1,K2,
and K3 were inexpressible and unknown, using new units of measure (sacks,
trucks, etc.), it was possible to count more easily and to express the required
quantities. Now, our sack has the infinite but again fixed number of seeds.
It is fixed, because it has a strong link to a concrete set—it is the number
of elements of the set of natural numbers. Since this number is inexpressible
by the existing numeral systems with the same accuracy afforded to measure
finite small sets, we introduce a new numeral, 1©, to express the required
quantity. Then, we apply Euclid’s principle and say that if the sack contains①
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seeds, then, even though we are not able to count the number of seeds of the
nth part of the sack seed by seed, its nth part contains n times less seeds
than the entire sack, i.e., 1©

n seeds. Notice that the numbers 1©
n are integer,

since they have been introduced as numbers of elements of sets Nk,n.
The new unit of measure allows us to express a variety of infinite num-

bers (including those larger than 1© that will be considered shortly) and
calculate easily the number of elements of the union, intersection, difference,
or product of sets of type Nk,n. Due to our accepted methodology, we do
it in the same way as these measurements are executed for finite sets. Let
us consider two simple examples showing how grossone can be used for this
purpose (see [58] for a detailed discussion).

Let us determine the number of elements of the set Ak,n = Nk,n\{a},
a ∈ Nk,n, n ≥ 1. Due to the IUA, the set Nk,n has 1©

n elements. The set
Ak,n has been constructed by excluding one element from Nk,n. Thus, the

set Ak,n has 1©
n − 1 elements. The granary interpretation can also be given

for the number 1©
n − 1 as the number of seeds in the nth part of the sack

minus one seed. For n = 1, we have 1© − 1 interpreted as the number of seeds
in the sack minus one seed.

Let us consider the following two sets:

B1 = {4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, 79, . . .},
B2 = {3, 14, 25, 36, 47, 58, 69, 80, 91, 102, 113, 124, 135, . . .}

and determine the number of elements in the set B = (B1∩B2)∪{3, 4, 5, 69}.
It follows immediately from the IUA that B1 = N4,5 and B2 = N3,11. Their
intersection

B1 ∩ B2 = N4,5 ∩ N3,11 = {14, 69, 124, . . .} = N14,55

and, therefore, due to the IUA, it has 1©
55 elements. Finally, since 69 belongs

to the set N14,55 and 3, 4, and 5 do not belong to it, the set B has 1©
55 + 3

elements. The granary interpretation: this is the number of seeds in the 55th
part of the sack plus three seeds.

The IUA introduces 1© as the number of elements of the set of natural
numbers and, therefore, it is the last natural number. We can also talk about
the set of extended natural numbers indicated as N̂ and including N as a
proper subset

N̂ ={1, 2, . . . , 1© − 1, 1©︸ ︷︷ ︸
Natural numbers

, 1© + 1, 1© + 2, . . . , 2 1© − 1, 2 1©, 2 1© + 1, . . .

1©2 − 1, 1©2, 1©2 + 1, . . . 3 1© 1© − 1, 3 1© 1©, 3 1© 1© + 1, . . .}.
(21)

The extended natural numbers greater than grossone are also linked to infinite
sets of numbers and can be interpreted in the terms of grain. For example,
1© + 1 is the number of elements of a set B3 = N ∪ {a}, where a is integer
and a /∈ N. In the terms of grain, 1© + 1 is the number of seeds in a sack plus
one seed.
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Let us give another example and determine the number of elements of
the set

B4 = {(a1, a2) : ai ∈ N, i ∈ {1, 2}},
being the set of couples of natural numbers. It is known from combinatorial
calculus that if we have two positions and each of them can be filled in by one
of l symbols, the number of the obtained couples is equal to l2. In our case,
since N has grossone elements, l = 1©. Thus, the set B4 has 1©2 elements.
This fact is illustrated below

(1, 1), (1, 2), . . . (1, 1© − 1), (1, 1©),
(2, 1), (2, 2), . . . (2, 1© − 1), (2, 1©),
. . . . . . . . . . . . . . .

( 1© − 1, 1), ( 1© − 1, 2), . . . ( 1© − 1, 1© − 1), ( 1© − 1, 1©),
( 1©, 1), ( 1©, 2), . . . ( 1©, 1© − 1), ( 1©, 1©).

The introduced numeral system allows us to observe not only initial
elements of certain infinite sets but also the final ones and some other infinite
numbers in these sets. For example, we can write now the following records:

N =
{

1, 2, . . . , . . .
1©
2

− 1,
1©
2
,

1©
2

+ 1, . . . 1© − 1, 1©
}
,

O =
{

1, 3, 5, . . . , . . .
1©
2

− 1,
1©
2

+ 1, . . . 1© − 3, 1© − 1
}
,

E =
{

2, 4, 6, . . . , . . .
1©
2

− 2,
1©
2
,

1©
2

+ 2, . . . 1© − 2, 1©
}
,

Z = {− 1©,− 1© + 1,− 1© + 2, . . . − 2,−1, 0, 1, 2, . . . , 1© − 1, 1©}.
Due to the IUA, the set, O, of odd numbers has 1©

2 elements, the set, E,

of even numbers also has 1©
2 elements. It is easy to calculate the number of

elements of the set, Z, of integers. It has 1© positive elements, 1© negative
ones, and zero. Thus, the set Z has 2 1© + 1 elements. For the purpose of this
article, the introduced material is sufficient. As was already mentioned, more
information about 1© can be found in a comprehensive technical survey [58]
and a popular book [53].

To conclude this section, it is necessary to emphasize that the introduced
numeral system cannot give answers to all questions regarding infinite sets.
As all numeral systems, it has its limitations. What can we say, for instance,
about the number of elements of the set N̂? Was this set described completely?
The introduced numeral system based on ① is too weak to give answers to
these questions, since it does not allow us to express the number of elements
of this set. It is necessary to introduce in a reasonable way a more powerful
numeral system by defining new numerals (for instance, ②, ③, etc).

5. Paradoxes of Infinity Revisited

In this section, we reconsider in the 1©-based framework the paradoxes
described above. It should be mentioned that several other paradoxes related
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to infinities and infinitesimals in probability theory and decision-making were
considered using the 1©-based methodology in [19,48–50].

5.1. Galileo’s Paradox

Before we start to consider the set I2 of square natural numbers from (2),
let us study bijection (4) between the sets of even and natural numbers. The
traditional conclusion from (4) is that both sets are countable and they have
the same cardinality ℵ0.

Let us see now what we can say from the new methodological position,
in particular, using Euclid’s principle together with the separation of the
objects of study form the tools used for this study. The objects of study here
are two infinite sets, N and E, and the instrument used to compare them is
the bijection. Since we know that some elements of N do not belong to E, the
separation of the objects of our study from the tools suggests that another
conclusion can be derived from (4): the accuracy of the used instrument is
not sufficiently high to see the difference between the sizes of the two sets.

We have already seen that when one executes the operation of counting,
the accuracy of the result depends on the numeral system used for counting. If
one asked Pirahã to measure sets consisting of four apples and five apples, the
answer would be that both sets of apples have many elements. This answer
is correct, but its precision is low due to the weakness of the numeral system
used to measure the sets.

Thus, the introduction of the notion of accuracy for measuring sets is
very important and should be applied to infinite sets also. As was already
discussed earlier, the similarity of Pirahã’s rules (11) with the relations (13)
and (14) holding for cardinal numbers suggests that the accuracy of the
cardinal numeral system of Alephs is not sufficiently high to see the difference
with respect to the number of elements of the two sets from (4).

To look at the record (4) using the new methodology, let us remind that
due to the IUA the sets of even and odd numbers have 1©/2 elements each
and, therefore, ① is even. It is also necessary to recall that numbers that
are larger than 1© are not natural, they are extended natural numbers. For
instance, 1© + 2 is even but not natural, it is the extended natural, see (21).
Thus, the last even natural number is 1©. Since the number of elements of
the set of even numbers is equal to 1©

2 , we can write down not only the initial
(as it is usually done traditionally) but also the final part of (4)

2, 4, 6, 8, 10, 12, . . . 1© − 4, 1© − 2, 1©
� � � � � � � � �
1, 2, 3, 4 5, 6, . . .

1©
2 − 2, 1©

2 − 1, 1©
2

(22)

concluding so (4) in a complete accordance with the principle ‘The part is
less than the whole’. Both records, (4) and (22), are correct, but (22) is more
accurate, since it allows us to observe the final part of the correspondence
that is invisible if (4) is used. The new 1©-based numerals allow us to see that
the set E has two times less elements with respect to N. Thus, the paradox
is not present.
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We are ready now to consider the set I2 of square natural numbers from
(2) and the corresponding bijection from (3). The traditional reasoning does
not allow one to see that these two sets have different numbers of elements.
Again, the answer that both sets are countable is correct, but its accuracy
is low. The 1©-based methodology allows us to see the difference in their
number of elements and to express the final part of (3). The set I2 can be
defined now more accurately by emphasizing the fact that, by definition of
1©, each square natural number should be less than or equal to grossone

I2 = {x : x ∈ N, i ∈ N, x = i 2, x ≤ 1©}.
Then, the number of elements, J , of the set I2 can be determined as

J = max{i : i 2 ≤ 1©}.
By solving the required inequality i 2 ≤ 1© and taking the maximal integer
i satisfying this inequality we obtain that J =  1©1/2�. Thus, as it was with
the sets N and O, we can re-write the bijection (3) indicating both its initial
and finite elements

1, 22, 32, 42, 52, . . . (� 1©1/2� − 2)2, (� 1©1/2� − 1)2, � 1©1/2�2
� � � � � � � �
1, 2, 3, 4 5, . . . � 1©1/2� − 2, � 1©1/2� − 1, � 1©1/2�.

(23)

Since  1©1/2� < 1©, this paradox also vanishes.

5.2. Set-Multiplication Paradox

The introduction of the 1©-based numeral system allows us to write down the
sets of natural and extended natural numbers in the form (21). By definition,
the number of elements of N is equal to 1©. After multiplication of each of the
elements of N by 2, the resulting set, that we call E

2, will also have grossone
elements, because multiplication of elements of a set by a constant that is
not equal to zero does not change the number of elements of the set. In fact,
the number 1©

2 multiplied by 2 gives us 1© and 1©
2 + 1 multiplied by 2 gives

us 1© + 2 that is even extended natural number, see (21). Analogously, the
last element of N, i.e., 1©, multiplied by 2 gives us 2 1©. Thus, the set E

2 can
be written as follows:

E
2 = {2, 4, 6, . . . 1© − 2, 1©, 1© + 2, . . . 2 1© − 4, 2 1© − 2, 2 1©},

and the corresponding bijection is

2, 4, 6, . . . 1© − 2, 1©, 1© + 2, . . . 2 1© − 4, 2 1© − 2, 2 1©
� � � � � � � � �
1, 2, 3, . . .

1©
2 − 1,

1©
2 ,

1©
2 + 1, . . . 1© − 2, 1© − 1, 1©

where numbers {2, 4, 6, . . . 1© − 4, 1© − 2, 1©} are even and natural (they

are 1©
2 ) and numbers { 1© + 2, 1© + 4, . . . 2 1© − 4, 2 1© − 2, 2 1©} are even and

extended natural, they also are 1©
2 . Thus, all the properties (i)–(iii) from

Sect. 2.2 hold and the paradox does not occur.
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5.3. Hilbert’s Paradox of the Grand Hotel

Let us consider now the Grand Hotel in the 1©-based framework. In the
paradox, the number of rooms in the Hotel is infinite. In the new terminology,
it is not sufficient to say this; it is required to indicate explicitly the infinite
number of the rooms in the Hotel. Suppose that it has ① rooms. When a new
guest arrives, it is proposed to move the guest occupying room 1 to room 2,
the guest occupying room 2 to room 3, etc. At the end of this procedure,
the guest from the last room having the number ① should be moved to the
room ①+1. However, the Hotel has only ① rooms and, therefore, the poor
guy from the room 1© will go out of the Hotel (the situation that would
occur in hotels with a finite number of rooms, if such a procedure would be
implemented). A nice animation describing Hilbert’s paradox of the Grand
Hotel in the 1©-based framework can be viewed at the didactic web page [26]
developed at the University of East Anglia, UK.

Notice once again that there is no contradiction between the two ways
to see the Grand Hotel. The traditional answer is that it is possible to put the
newcomer in the first room. The 1©-based way of doing confirms this result
but shows something that was invisible traditionally—the guest from the last
room should go out of the Hotel. Thus, the paradox is avoided.

5.4. Three Paradoxes Regarding Divergent Series

Let us consider the definition of x in (5). Thanks to 1©, we have different
infinite integers and, therefore, we can consider sums having different infinite
numbers of summands. Thus, with respect to the new methodology, (5) is not
well defined, because the number of summands in the sum (5) is not explicitly
indicated. Recall that to say just that there are ∞ many summands has the
same meaning of the phrase ‘There are many summands’ (cf. (11), (12)).

Thus, it is necessary to indicate explicitly an infinite number of addends,
k, (obviously, it can be finite, as well). After this, (5) becomes

x(k) = 1 + 2 + 4 + 8 + · · · + 2k−1,

and multiplying both parts by two and adding one to both the right and left
sides of the equality gives us

2x(k) + 1 = 1 + 2 + 4 + 8 + · · · + 2k−1 + 2k.

Thus, when we go to substitute, we can see that there remains an addend, 2k,
that is infinite if k is infinite, that was invisible in the traditional framework

2x(k) + 1 = 1 + 2 + 4 + 8 + · · · + 2k−1

︸ ︷︷ ︸
x(k)

+2k.

The substitution gives us the resulting formula

x(k) = 2k − 1

that works for both finite and infinite values of k giving different results for
different values of k (exactly as it happens for the cases with finite values of
k). For instance, x( 1©) = 2 1© − 1 and x(3 1©) = 23 1© − 1. Thus, the paradox
(11) does not take place.
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Let us consider now Grandi’s series. To calculate the required sum, we
should indicate explicitly the number of addends, k, in it. Then it follows
that:

S(k) = 1 − 1 + 1 − 1 + 1 − 1 + 1 − · · ·︸ ︷︷ ︸
k addends

=
{

0, if k = 2n,
1, if k = 2n + 1, (24)

and it is not important whether k is finite or infinite. For example, S( 1©) = 0,
since ① is even. Analogously, S( 1© − 1) = 1, because 1© − 1 is odd.

As it happens in the cases where the number of addends in a sum is
finite, the result of summation does not depend on the way the summands
are rearranged. In fact, if we know the exact infinite number of addends and
the order the signs are alternated is clearly defined, we know also the exact
number of positive and negative addends in the sum. Let us illustrate this
point by supposing, for instance, that we want to rearrange addends in the
sum S(2 1©) as follows:

S(2 1©) = 1 + 1 − 1 + 1 + 1 − 1 + 1 + 1 − 1 + · · ·
Traditional mathematical tools used to study divergent series give an impres-
sion that this rearrangement modifies the result. However, in the 1©-based
framework we know that this is just a consequence of the weak lens used to
observe infinite numbers. In fact, thanks to 1©, we are able to fix an infi-
nite number of summands. In our example, the sum has 2 1© addends, the
number 2 1© is even and, therefore, it follows from (24) that S(2 1©) = 0. This
means also that in the sum, there are 1© positive and 1© negative items. As
a result, addition of the groups 1 + 1–1 considered above can continue only
until the positive units present in the sum will not finish, and then, there will
be necessary to continue to add only negative summands. More precisely, we
have

S(2 1©) = 1 + 1 − 1 + 1 + 1 − 1 + · · · + 1 + 1 − 1︸ ︷︷ ︸
1© positive and 1©

2
negative addends

−1 − 1 − · · · − 1 − 1︸ ︷︷ ︸
1©
2

negative addends

= 0, (25)

where the result of the first part in this rearrangement is calculated as
(1 + 1 − 1) · 1©

2 = 1©
2 and the result of the second part summing up negative

units is equal to − 1©
2 giving so the same final result S(2 1©) = 0. It becomes

clear from (25) the origin of the Riemann series theorem. In fact, the second
part of (25) containing only negative units is invisible if one works with the
traditional numeral ∞.

Let us use now the 1© lens to observe Ramanujan’s paradoxical result
(8). As it was in the summation discussed above, it is necessary to indicate
explicitly an infinite number of addends, n, in the sum

c(n) = 1 + 2 + 3 + 4 + 5 + · · · + n. (26)

The 1© methodology allows us to compute this sum for infinite values of n
directly (see [58] for a detailed discussion) and to show that for infinite (and
finite) values of n, it follows:

c(n) = 0.5n(1 + n), (27)
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and by taking n = 1©, we can easily compute the sum of all natural numbers

c( 1©) = 1 + 2 + 3 + 4 + 5 + · · · + ( 1© − 2) + ( 1© − 1) + 1© (28)

that, obviously, is equal to 0.5 1©(1 + 1©).
Let us now return to Ramanujan summation and consider the main

trick of (9) consisting of displacement of addends in its second line. Since we
work with natural numbers, we have n = 1© addends in the sum (26). As a
consequence, the displacement of (9) can be re-written more accurately with
the observation of the last addends in each line of (9) as follows:

c( 1©) = 1 + 2 +3 +4 +5 + · · · + 1© − 1 + 1©,

4c( 1©) = 4 +8 + · · · +4
1©
2 +4

(
1©
2 + 1

)
+ · · · + 4 1©,

−3c( 1©) = 1 − 2 +3 −4 +5 + · · · + 1© − 1 − 1© −4
(

1©
2 + 1

)
− · · · − 4 1©.

(29)

Thus, to 0.5 1© even addends in (28), there will be added the first 0.5 1©
numbers from (28) multiplied by 4, i.e., each even number i from the first
line of (29) will be summed up with the number 4 · i

2 whereas 0.5 1© odd i
from (28) are summed up with zeros. The displacement of the second line in
(29) leads to the fact that only 0.5 1© summands of this line will participate
in this addition and there will remain 0.5 1© more addends that were invisible
in the traditional framework. They are

4 ·
(

1©
2

+ 1
)

+ 4 ·
(

1©
2

+ 2
)

+ · · · + 4 · 1©. (30)

Let us compute now the right-hand part of the third line of (29) using the
fact that we can rearrange addends in the sum without changing the result.
In such way, we can group the addends in three arithmetical progressions
having 0.5 1© addends each

1 − 2 + 3 − 4 + 5 + · · · + 1© − 1 − 1© − 4

(
1©
2

+ 1

)
− 4

(
1©
2

+ 2

)
− · · · − 4 1©

= (1 + 3 + 5 + · · · + ( 1© − 3) + ( 1© − 1))︸ ︷︷ ︸
=(1+( 1©−1)) 1©/4

− (2 + 4 + 6 + · · · + ( 1© − 2) + 1©)︸ ︷︷ ︸
=(2+ 1©) 1©/4

−4

((
1©
2

+ 1

)
+

(
1©
2

+ 2

)
+ · · · + ( 1© − 1) + 1©

)

︸ ︷︷ ︸
=((

1©
2

+1)+ 1©) 1©/4

= (1 + ( 1© − 1))
1©
4

− (2 + 1©)
1©
4

− 4

((
1©
2

+ 1

)
+ 1©

)
1©
4

= −3
1©
2

( 1© + 1) .

Thus, we have obtained that

−3c( 1©) = −3
1©
2

( 1© + 1) .

As was expected, the obtained result shows that the third line of (29) is
consistent with (27) for n = 1©.

Thus, it has been shown that Riemann’s result on rearrangements of
addends in series is a consequence of the fact that symbol ∞ used traditionally
does not allow us to express quantitatively the infinite number of addends in
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Figure 2. The rectangle paradox of Torricelli in the grossone-
based framework

the series. The usage of the grossone methodology allows us to see that (as it
happens in the case where the number of addends is finite) rearrangements of
addends do not change the result for any sum with a fixed infinite number of
summands. This happens, because if one knows the number of addends and
the rule used to alternate their signs, he/she knows the number of positive
and negative addends. Thus, the careful counting of the number of addends
in infinite series allows us to avoid this kind of paradoxical results if 1©-based
numerals are used.

5.5. The Rectangle Paradox of Torricelli

This paradox involves infinitesimals. The numeral system based on 1© allows
us to express them easily and to execute arithmetical operations with them.
For instance, numbers consisting of addends having negative finite powers of
1© represent infinitesimals and the simplest infinitesimal number is 1©−1 =
1
1© . It is the inverse element with respect to multiplication for①

1©−1 · 1© = 1© · 1©−1 = 1. (31)

The following two numbers are other examples of infinitesimals: 5.1 1©−2,
−6.1 1©−3 + 5.1 1©−32, etc. Note that all infinitesimals are not equal to zero.
In particular, 1

1© > 0, because it is a result of division of two positive numbers.
It also has a clear granary interpretation. Namely, if we have a sack containing
① seeds, then one sack divided by the number of seeds in it is equal to one
seed. Vice versa, one seed, i.e., 1

1© , multiplied by the number of seeds in the
sack, 1©, gives one sack of seeds.

To consider Torricelli’s paradox in the grossone framework, it is worthy
to mention that sums with an infinite number of infinitesimal addends can
give infinitesimal, finite, or infinite results in dependence of the number of
summands and their value. As an example, let us consider this sum

T (k) = 1©−2 + 1©−2 + 1©−2 · · · + 1©−2 + 1©−2

︸ ︷︷ ︸
k addends

. (32)



  143 Page 22 of 28 Y. D. Sergeyev MJOM

Then, for k = 2 1©, we obtain an infinitesimal result and for k = 3 1©2 and
k = 4 1©3 finite and infinite results, respectively

T (2 1©) = 1©−2 · 2 1© = 2 1©−1, T (3 1©2) = 1©−2 · 3 1©2 = 3,

T (4 1©3) = 1©−2 · 4 1©3 = 4 1©.

This machinery allows us to compute directly the areas of the two tri-
angles ABC and CDA using 1©-based infinitesimals (see Fig. 2). To be able
to execute numerical computations, let us suppose that the length |AB| = 1,
|BC| = 2 and the line AC has no width (for instance, the rectangle was cut
along this line). Obviously, it is also possible to consider the situation where
AC has an infinitesimal width, but this point is not so important for the
essense of the paradox. The procedure that has led to the paradox required
to cover the triangles by segments having an infinitesimal width. Without loss
of generality and for simplicity suppose that our horizontal segments have the
width h = 1©−1 (it is easy to see that by taking h = 2 1©−1 or h = 1©−3, the
results will be analogous). Then, since |AB| = 1, it will take 1© segments of
the width 1©−1 to cover the whole triangle ABC. By construction, the triangle
CDA will also be covered by 1© segments. Figure 2 considers one horizontal
segment, EF, and the corresponding vertical segment, FG, and shows under
a magnifying glass the situation in the neighborhood of the point F. The
1©-based framework allows us to observe that both horizontal and vertical
segments have triangular ends touching the line AC. Moreover, we can cal-
culate easily the area of these triangles and both the width and the length of
the vertical segments.

Since |AB|/|BC| = |PR|/|RQ| and |PR| = 1©−1, it follows imme-
diately that |RQ| = 2 1©−1. As a result, areas of the triangles RPF and
FQR (and of other 2 1© − 2 similar triangles on the line AC) are equal to
1©−1 · 2 1©−1/2 = 1©−2. Thus, each horizontal segment i, 1 ≤ i ≤ 1©, consists
of a rectangle with the width 1©−1 and the length 2 − 2 1©−1i, having so the
area

1©−1(2 − 2 1©−1i) = 2 1©−1 − 2 1©−2i,

and of a triangle similar to RPF having the area equal to 1©−2 (notice that
for i = 1©, the rectangle is absent). Therefore, the area Si

ABC of the ith
horizontal segment is

Si
ABC = 2 1©−1 − 2 1©−2i + 1©−2.

To obtain the area SABC of the whole coverage of the triangle ABC, it is
sufficient just to sum up the areas of all 1© small segments

SABC = Σ
1©
i=1S

i
ABC = Σ

1©
i=1(2 1©−1 − 2 1©−2i + 1©−2) = 2 + 1©−1 − 2 1©−2Σ

1©
i=1i

= 2 + 1©−1 − 2 1©−2( 1© + 1) 1©/2 = 2 + 1©−1 − (1 + 1©−1) = 1.

The area of the triangle CDA is calculated by a complete analogy. Each
vertical segment i, 1 ≤ i ≤ 1©, consists of a rectangle with the width 2 1©−1

and the height 1 − 1©−1i, having so the area

2 1©−1(1 − 1©−1i) = 2 1©−1 − 2 1©−2i,



MJOM Some Paradoxes of Infinity Revisited Page 23 of 28   143 

and of a triangle similar to FQR having the area equal to 1©−2. Therefore,
the area Si

CDA of the ith vertical segment is

Si
CDA = 2 1©−1 − 2 1©−2i + 1©−2 = Si

ABC .

Since the number of horizontal and vertical segments is equal, this fact com-
pletes the consideration and shows that this paradox is also avoided.

5.6. Thomson’s Lamp Paradox

To reconsider the Thomson lamp paradox, let us remind traditional defini-
tions of infinite sequences and subsequences. An infinite sequence {an}, an ∈
A,n ∈ N, is a function having as the domain the set of natural num-
bers, N, and as the codomain a set A. A subsequence is obtained from a
sequence by deleting some (or possibly none) of its elements. In a sequence
a1, a2, . . . , an−1, an, the number n is the number of elements of the sequence.
Traditionally, only finite values of n are considered. Grossone-based numerals
give us the possibility to observe infinite numbers and, therefore, to see not
only the initial elements of an infinite sequence a1, a2, . . . but also its final
part . . . , an−1, an where n can assume different infinite values.

The IUA states that the set of natural numbers, N, has ① elements.
Thus, by the above definition, any sequence having N as the domain has ①
elements. Since any subsequence is obtained by deleting some (or possibly
none) of the 1© elements from a sequence, any sequence can have at most
grossone elements.

Since the switches are executed in a sequence, the maximal number of
switches that can be done is equal to 1©. Remind also that we have already
established that 1© is even. Thus, after 1© switches the lamp will be off if
initially it was on and, vice versa, it will be on if initially it was off.

The 1©-based methodology gives us the opportunity to calculate how
much time will take this procedure of switching the lamp. Remind that it is
on for 1

2 minute, then it is off for 1
4 minute, then again on for 1

8 minute, etc.
Thus we deal with the sum of 1© addends of the form 1

2i , 1 ≤ i ≤ 1©. It is
easy to show (see [58] for details) that

Σ 1©
i=1

1
2i

= 1 − 1

2 1© ,

i.e., this procedure of switches will not reach number one, it will be infinites-
imally close to one.

6. A Brief Conclusion

It has been shown in this article that the surprising counting systems of
Amazonian tribes, Pirahã and Mundurukú, open an interesting perspective
on some classical paradoxes of infinity. The opportunity to use many different
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numerals to deal with infinities and infinitesimals offered by a recently intro-
duced computational methodology has allowed us to switch from qualitative
considerations of paradoxes to their quantitative analysis.
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